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1. Basic definitions

1.1. Quivers

Definition 1.1.

Definition 1.2.

Definition 1.3.

Definition 1.4.

Remark

A quiver is a directed finite graph O = (Qo, 01, s, ?).

Qo: finite set of vertices

O1: finite set of arrows

s, t: two maps Q1 — Qo such that an arrow « starts at s(«) and ends at #( @)

A representation of Q is a collection X = (Xi, Xa), i € Qo, @ € Q1.

A representation X is called indecomposable if
X#0and for X=X @ Xo > X1=00r X2 =0

Let X be an indecomposable representation of Q. We define

X is preprojective if X = C" P(i) for some vertex i and some » < 0
X is preinjective if X' = C" I(i) for some vertex i and some » > 0
Xisregularif C"X=0forallr e Z

For the definitions of C”, see [1] pages 8-10.

1.2. Finite graphs

Definition 1.5.

Definition 1.6.

Definition 1.7.

Let I" be a finite graph with n vertices. Denote the edges between two
vertices i and j with dj = dji.
I" induces a symmetric bilinear form (-, —) and a quadratic form g:

_ e £ :
(=, =):Z" X Z" — Z with (e;ej) =1 @i 1’7&1
’ 2—-2d;; ifq =]

q: Z" — Z with ¢g(x) = Z zf — ch'u.t'g.rj.
i=1 i<j

radg = {x € Z" | (x, —) = 0} is called the radical of ¢

For a quadratic form ¢g: Z" — Z we call

q positive definite if g(x) > 0 V x € Z" where x # 0
g positive semi-definite if g(x) >0 V x € Z"



1.3. Dynkin an Euclidean diagrams

Definition 1.8.

Definition 1.9.

Theorem 1.10.

Proof
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Let n € N be the number of vertices.
The following diagrams are called Dynkin diagrams:
o
A, o} [ PSP, ; I Fs o] oictioio
(0]
o E- o 0O—0—0——0—20
\
D, O e i = o
o / Ey o o—o0o—o0 o——o0——0

Let n € N be the number of vertices.
Letm=n-1, withm >0 for A, orm >4 for D,,
The following diagrams are called Euclidean diagrams:

1
|
/1— —1\ 2
» ~ |
A 1 T B 11— 3B -1
ey 7/
1— o —1 2
~ |
1 B 1—2—3—4—3—92—1
D \2— —~>/ 3
m e x
/ \ . |
1 . 2—4—6—5—4—3—2—1

Each vertex is labeled with ¢; for 6 € Z".

Let I be a connected graph with quadratic form g.

(1) T is Dynkin < g is positive definite

(i) T is Euclidean < ¢ is positive semi-definite, but not positive definite

(i11) If T" is Euclidean, then there is a unique positive vector 6 € Z" such that
radg = Zo.

[1] page 14
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2. Roots and Coxeter transformation

2.1. Roots

Definition 2.1.

Proposition 2.2.

Proof

Lemma 2.3.

Proof

A={xeZ"|q(x)<1}
{x € A|x # 0} is the set of all roots.

Let I" be a Dynkin or Euclidean diagram.

(1) each standard basis vector e; is a root

(i) xeAandy eradg =>—~x e Aandx+y e A
(iii) every root is positive or negative

(iv) T" Euclidean = A/radg finite

(v) T Dynkin = A finite

[1] page 14

Let O be a quiver with a Dynkin or Euclidean graph.
x a positive root and o;(x) not positive = x = ¢;

by Prop. 2.3.

2.2. Coxeter transformation

Definition 2.4.

Lemma 2.5.

Lemma 2.6.

Lemma 2.7.

Notation

Remark

Lemma 2.8.

Let Q be a quiver without oriented cycles. Fix i1, ..., i, as an admissible
ordering of its vertices.

The automorphism ¢: Z" — Z" such that ¢(x) = gy, ... 07, (x)

is called Coxeter transformation.

(1) c(dimP(i)) = —diml(i) Vi
(i) {dimP(i)|i € Qo}, {dimi(7) | i € Qo} are two bases of Z"

Letx,y € Z".
(i) (dimP (i), x)= x; = (x, dimI (i)) V vertices i
(ii) (x,y) =y, c(x)) = (c(x), c(¥))

Letx € 7.
c(x) =x < x e radg

In the following part, assume that the graph of Q is Dynkin or Euclidean.

(1) The map c induces a permutation of the finite set A/radg.
(ii) e; € A Vi = ¢’ is the identity on Z"/radq

Let O be Dynkin type and x € Z".
3 r > 0 such that ¢'(x) <0.



Lemma 2.9.

Proofs

Gabriel’s Theorem

Let Q be Euclidean type and x € Z".
(i) x)>0VreZ=clx)=x
(i) "(x)=x= (5 x)=0

[1] page 15
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3. Gabriel’s theorem

3.1. Dynkin case

Theorem 3.1.  Let QO be a quiver of Dynkin type.

[Gabriel] The function between X and dim.X induces a bijection from the isomorphism
classes of indecomposable representations of O to the positive roots
corresponding to the diagram of Q.
There are only finitely man isomorphism classes of indecomposable
representations.

Proof [1] page 16

3.2. Defect

Definition 3.2. Let Q be a quiver of Euclidean type.
Forx e 7", 0x = (6, x) = — (x, &) is called defect of x.
For a representation X, X = JdimX is called defect of X.

Proposition 3.3. Let X be an indecomposable representation.
(1) X s preprojective <> dX <0
(i1) X is preinjective <> X > 0
(ii1) X is regular < X =0

Proof [1] page 17

3.3. Euclidean case

Theorem 3.4. Let O be a quiver of Euclidean type with a diagram of n vertices and without
oriented cycles.
The function between X and dim.X induces a bijection from the isomorphism
classes of indecomposable preprojective or preinjective representations of O
to the positive roots with non-zero defect corresponding to the diagram of Q.
The preprojective and preinjective indecomposables form 2n countably
infinite series C~"P(i) and C" I(i) of pairwise non-isomorphic representations,
where € No and i € Q.

Proof [1] pages 17 and 18

Proposition 3.5. Let Q be a connected quiver.
[Gabriel] There are only finitely many isomorphism classes of indecomposable
representations <> the underlying graph is a Dynkin diagram

Proof [1] page 18
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4. Example

Let S, be the quiver with

vertices Qo = {1, ..., r, ¢} and

arrows Q1 = {ai, ..., ar}

with t(a;) =iand h(a;))=cVie {1,...,r}.

Gabriel’s theorem shows, that S, has
finitely many isomorphism classes of
representations for » < 4.

r = 1: Dynkin diagram 4>

r=2: Dynkin diagram A3

r = 3: Dynkin diagram D4

Gabriel’s theorem says, that S, has
infinitely many isomorphism classes of
representations for » > 4.

The underlaying graph is not one of the
Dynkin diagrams.

For more details see [2], pages 18-21.
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