Hinweise¹ zu Blatt 4

Aufgabe 1

a.

Das schafft ihr...

b.

Das ist (meines Erachtens) eine hübsche Aufgabe! Versucht es wirklich (am Bestem ohne Tipps zuerst). Hier grosszügige Hilfen falls ihr stecken bleibt:

- reduziere das Problem darauf, dass mann nur noch zeigen muss, dass m(A) eine algebra ist.
- um zu zeigen, dass m(A) eine algebra ist, betrachte $A \in m(A)$ fix, und betrachte $\mathcal{M}_A := \{B \in m(A) \mid A \cup B, A \setminus B, B \setminus A \in m(A)\}$
- bemerke: $A \subseteq \mathcal{M}_A$ für jedes A; insbeondere folgt $m(A) \subset (M)_A$, da...
- argumentiere ähnlich für $B \in m(\mathcal{A})$ an der Stelle von A...
- schliesse den Beweis ab!

Aufgabe 2

Achtung: das "n" von \mathbb{R}^n ist die dimension des Raums, und hat nichts mit den anderen "n"s zu tun. Für die Dimension werden wir ab jetzt "d" benützen.

a.

Erinnerung: K is abschlossen genau dann wenn K^c offen ist. Dass K^c offen ist heisst, dass $\forall x \in K^c$ existiert $n \in \mathbb{N}$ so, dass $B_{\frac{1}{n}}(x) = \{y \in \mathbb{R}^d \mid \|x - y\| < \frac{1}{n}\} \subseteq K^c$.

b.

• zeige zuerst, dass $\mathcal{A} := \mathcal{F}_{\sigma} \cap \mathcal{G}_{\delta}$ eine Algebra ist (mithilfe von Satz 2.10). Dazu: um zu zeigen, dass $A \cup B$ in \mathcal{G}_{δ} liegt wenn A und B in \mathcal{G}_{δ} liegen, nehme Familien $\{U_n\}_{n \in \mathbb{N}}$ und $\{U'_n\}_{n \in \mathbb{N}}$ von offenen Menge, die A bzw B von aussen approximieren, und ändere diese Familien ab, so dass sie "monoton" sind (d.h. monoton abnehmend). Definiere

¹Zuerst selber denken!

dann damit eine neue Folge von offenen Mengen, die aus den zwei Familien durch Paarweise Vereinigungen definiert ist. Zeigen, dass diese neue Familie von offenen Mengen $A \cup B$ von aussen approximiert.

- argumentiere (mithilfe vom Skript bzw andere Übungsaufgaben), dass $m(\mathcal{A}) = \sigma(\mathcal{A}) = \delta(\mathcal{A})$.
- argumentiere, dass $\sigma(\mathcal{G}_n) = \sigma(\mathcal{A})$.
- argumentiere, dass $m(\mathcal{G}_n) = \sigma(\mathcal{G}_n) = \delta(\mathcal{G}_n)$.

Aufgabe 3

Werdet kreativ.

Aufgabe 4

a.

Für abzählbare Additivität: "fixiere $\varepsilon>0$ "

b.

Um zu zeigen, dass μ ein Mass ist, benütze Teil a). Für den Rest, lass ich euch selber knobeln...