Hints ${ }^{1}$ for exercise sheet 4

Exercise 1

a. Define $x_{0}:=T(0)$ and $L(x):=T(x)-x_{0}$, and show that L is linear. For this, proceed in a similar way as in in Exercise 4 of Sheet 2.
b. Suggestion: show that the vectors $T(y)-T(z)$ and $T(z)-T(x)$ are scalar multiples of one another, because for these vectors the triangle inequality is an equality (use CauchySchwarz and the parallelogram and polarization identities). This implies that the three points $T(x), T(y)$, and $T(z)$ lie on one line. Then show that $T(z)$ is the same convex linear combination of $T(x)$ and $T(y)$ as z is of x and y.

Exercise 2

a. Approximate $|u|(x)$ using $K_{\varepsilon}(x)=G_{\varepsilon}(u(x))$ with $G_{\varepsilon}(s)=\sqrt{\varepsilon^{2}+s^{2}}-\varepsilon$.

For the part about min and max functions, write these functions with the help of absolute values...
b. Argue first why it is enough to consider a connected open subset $V \subseteq U$ of finite measure. Then approximate u using functions $j_{\varepsilon} \in C_{c}^{\infty}(V)$ and $u_{\varepsilon}=u * j_{\varepsilon} \in C^{\infty}(V)$ such that $u_{\varepsilon} \rightarrow u$ as $\varepsilon \rightarrow 0$ in $L^{p}(V)$.

Exercise 3

Warning! The hint in the original version of the exercise sheet was a bit misleading. Look at the current version.

To show that

$$
\begin{equation*}
\int_{\Omega} \phi(x) \chi_{O}(f(x)) \nabla f(x) d x=-\int_{\Omega} \nabla \phi(x) G_{O}(f(x)) d x \quad \forall \phi \in C_{0}^{\infty}(\Omega), \forall \text { open sets } O \subset \mathbb{R} . \tag{1}
\end{equation*}
$$

implies the solution of the exercise, use an approximation of A from above with a decreasing sequence O_{j} of open sets (recall from Analysis III that such sequences exist by the regularity properties of the Lebesgue measure). Use (and show) that $G_{O_{j}}(g) \rightarrow 0$ as $j \rightarrow \infty$ for such a sequence of open sets.

To show that (1) is true, reduce first to the case of an open interval I (use Lebesgue dominated convergence and sigma-additivity), and then approximate χ_{I} using an increasing sequence of continuous functions; this also gives an approximation of $G_{I} \ldots$.

[^0]
Exercise 4

a. Try a proof by contradiction using exercises 3 and 2 .
b. One needs to show that

$$
\left\|\partial_{i} f(\cdot)-\frac{f\left(\cdot+t e_{i}\right)-f(\cdot)}{t}\right\|_{2}
$$

converges to zero. Use an approximating sequence $f_{\varepsilon}=f * j_{\varepsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ (where $j_{\varepsilon} \in$ $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$) such that $f_{\varepsilon} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{n}\right)$ in order to expand the above expression and estimate it from above.

[^0]: ${ }^{1}$ Try by yourself first!

