Hints ${ }^{1}$ for exercise sheet 9

Exercise 1

Note: as mentioned in exercise class, we are implicitly assuming that f is not the zero function.
Tools you might find useful in this exercise (among other things):

- write out/compute expressions for L^{p} norms
- check that a sequence is (not) Cauchy
- convergence of a sequence in L^{p} implies that there is a subsequence which converges point-wise almost everywhere.
- change of variables formula
- consider expressions such as $\|\cdot\|_{L^{q}(\mathbb{R} \backslash[-R, R])} \rightarrow 0$ as $R \rightarrow \infty$
- Riemann-Lebesgue Lemma
- Don't forget that f has compact support.

Exercise 2

a. For showing weak convergence: assuming that $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ is bounded and $x_{i}^{(n)} \rightarrow x_{i}$ for all $i \in \mathbb{N}$, consider an arbitrary $y \in \ell^{q}(\mathbb{K})$ and define

$$
y_{n}^{(k)}= \begin{cases}y_{n} & \text { if } n \leq k \\ 0 & \text { if } n>k\end{cases}
$$

Then us that $\left\|y-y^{(i)}\right\|_{q} \rightarrow 0$ as $i \rightarrow \infty$ to estimate

$$
\left\langle x^{(n)}-x, y\right\rangle=\ldots
$$

b. Perhaps its useful to remember that

$$
\|x-y\|^{2}=\langle x-y, x-y\rangle=\|x\|^{2}-2 \operatorname{Re}\langle y, x\rangle+\|y\|^{2}
$$

[^0]
Exercise 3

a. You can do it.
b. Here is the beginning of one possible solution: Assume that there exists a sequence $\varepsilon_{k} \rightarrow 0$ such that $I_{\varepsilon_{k}}$ is weak-* convergent in $\left(L^{\infty}((0,1))\right)^{*}$. Then there exists a subsequence $\varepsilon_{k_{l}}$ such that $1 \geq \varepsilon_{k_{l+1}} / \varepsilon_{k_{l}} \rightarrow 0$ as $l \rightarrow \infty$ (why is this true?). Then define

$$
f=\sum_{j=1}^{\infty}(-1)^{l} \chi_{\left[\varepsilon_{k_{j+1}}, \varepsilon_{k_{j}}\right]},
$$

and check...

Exercise 4

a. You can do it.
b. For showing $\left\|x_{j}^{*}-x^{*}\right\|_{\sigma} \rightarrow 0$: split the sum! And use that not only M but also $\left\|x^{*}\right\|$ is a constant.

For showing weak-* convergence, try using a "three term triangle inequality" argument. c. A possible approach: consider $X=c_{0}(\mathbb{K})$, the space of sequences convergent to zero, equipped with the supremum norm $\|\cdot\|_{\infty}$. Inside this space, consider $\sigma=\left\{e_{n}\right\}_{n \in \mathbb{N}}$, where $e_{n}=(0, \ldots, 0,1,0, \ldots)$ as usual (" 1 " is the n-th entry), and consider functionals y_{j}^{*} defined on $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in X$ by

$$
y_{j}^{*}(x)=\frac{1}{j} \sum_{k=1}^{j^{2}} x_{k} .
$$

d. See Theorem 6.3.6 from the lecture notes.

[^0]: ${ }^{1}$ Try by yourself first!

