Hints¹ for exercise sheet 8

Exercise 1

a. To show that (X, \mathcal{A}, μ) is not σ -finite, I would use a proof by contradiction. If a set has finite measure, what does that mean here?

b. Consider $\Psi(f) = \sum_{x \in [0,1]} f(x)$. Is this well-defined? Does it define a linear functional?

Exercise 2

One strategy of proof is to use the Lax-Milgram theorem from the lecture notes. For this: show that

$$g_f(x) := \int_X L(x,y)f(y)dy$$

is an $L^2(X)$ function (use Hölder and Fubini), show that the integral equation of the exercise is equivalent to

$$\langle cf - g_f, \phi \rangle = \langle -u, \phi \rangle$$
 for all $\phi \in L^2(X)$ (1)

where where $\langle \cdot, \cdot \rangle$ denotes the inner product on $L^2(X).$ Try setting

$$a(f,\phi) := \langle cf - g_f, \phi \rangle$$

and checking the hypotheses of Lax-Milgram...

Exercise 3

b. Let $\{x_k\}_{k=1}^{\infty}$ be an enumeration of the rational numbers; define $E_n = \bigcup_{k=1}^{\infty} \left(x_k - \frac{1}{2^{k_n}}, x_k + \frac{1}{2^{k_n}}\right)$ and $E = \bigcap_{n=1}^{\infty} E_n \dots$

Exercise 4

- **a.** Don't forget the special case when $A = \emptyset$!
- **b.** Note: for this exercise, assume that \mathcal{F} is non-empty.

Exercise 5

Use the triangle inequality.

¹Try by yourself first!