Hints ${ }^{1}$ for exercise sheet 8

Exercise 1

a. To show that (X, \mathcal{A}, μ) is not σ-finite, I would use a proof by contradiction. If a set has finite measure, what does that mean here?
b. Consider $\Psi(f)=\sum_{x \in[0,1]} f(x)$. Is this well-defined? Does it define a linear functional?

Exercise 2

One strategy of proof is to use the Lax-Milgram theorem from the lecture notes. For this: show that

$$
g_{f}(x):=\int_{X} L(x, y) f(y) d y
$$

is an $L^{2}(X)$ function (use Hölder and Fubini), show that the integral equation of the exercise is equivalent to

$$
\begin{equation*}
\left\langle c f-g_{f}, \phi\right\rangle=\langle-u, \phi\rangle \quad \text { for all } \phi \in L^{2}(X) \tag{1}
\end{equation*}
$$

where where $\langle\cdot, \cdot\rangle$ denotes the inner product on $L^{2}(X)$. Try setting

$$
a(f, \phi):=\left\langle c f-g_{f}, \phi\right\rangle
$$

and checking the hypotheses of Lax-Milgram...

Exercise 3

b. Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be an enumeration of the rational numbers; define $E_{n}=\cup_{k=1}^{\infty}\left(x_{k}-\frac{1}{2^{k} n}, x_{k}+\frac{1}{2^{k} n}\right)$ and $E=\cap_{n=1}^{\infty} E_{n} \ldots$

Exercise 4

a. Don't forget the special case when $A=\emptyset!$
b. Note: for this exercise, assume that \mathcal{F} is non-empty.

Exercise 5

Use the triangle inequality.

[^0]
[^0]: ${ }^{1}$ Try by yourself first!

