## Hints ${ }^{1}$ for exercise sheet 6

## Exercise 1

a. Try the following: write $u(x)=(2 \pi)^{n / 2} \int_{\mathbb{R}^{n}} \hat{u}(\xi) e^{i x \cdot \xi} d \xi$ (this is possible, since $u$ is in $\left.L^{2}\right)$. Derive an estimate of the form

$$
\|u\|_{L^{\infty}} \leq(2 \pi)^{n / 2}\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{-m} d \xi\right)^{1 / 2}\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{m}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

(Cauchy-Schwarz!). Then show that the first term is bounded by a constant depending only on $n$ and $m$, and that the second term is bounded by something involving the $H^{m}$ norm.
b. Try this: Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $u(x)=\chi(x) \ln |\ln | x| |$, where $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ and $0 \leq \chi(x) \leq$ $1 \forall x \in \mathbb{R}^{2}, \chi(x)=1$ for $|x| \leq 1 / 4$ and $\chi(x)=0$ for $|x| \geq 1 / 2$.

Show that $u \notin L^{\infty}\left(\mathbb{R}^{2}\right)$ but that $u \in H^{1}\left(\mathbb{R}^{2}\right)$.
For the latter, use polar coordinates to get

$$
\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq 2 \pi \int_{0}^{1 / 2}(\ln |\ln r|)^{2} r d r
$$

Since $\ln (x) \leq 1-x$ one has for $0 \leq r \leq 1 / 2$

$$
|\ln | \ln r||\leq|1-|\ln r|| \leq|\ln r|=-\ln r
$$

this can be used to estimate.
Also one needs to show that the weak derivative of $u$ is in $L^{2}$. Show that the weak derivative is given by the function

$$
f=\frac{-x}{x^{2} \ln |x|} \chi(x)+\ln |\ln | x| | \nabla \chi(x)
$$

for this proceed by approximation as we have been doing often the last weeks!

## Exercise 2

For $E_{1}$ and $E_{2}$, compute $\left\|x^{-\alpha}\right\|_{L^{1}}$.
Hint for $E_{3}$ : it is bounded but not pre-compact. To show that latter, one can try a proof by contradiction using the following fact:

[^0]Lemma: Let $f: X \rightarrow Y$ be a continuous function between metric spaces. Assume that the metric space $\left(X, d_{X}\right)$ is complete. Then:

$$
A \subseteq X \text { precompact } \Rightarrow f(A) \subseteq Y \text { precompact. }
$$

To apply the lemma, try constructing a continous linear function $F: L^{1}((0,1)) \rightarrow Y$, where $Y$ is some other metric space, and such that $F\left(E_{3}\right) \subseteq Y$ is not precompact. For example, try defining $F$ to be something similar to the Fourier transform...

For $E_{4}$ apply Arzela-Ascoli.

## Exercise 3

a.

Consider $\left(f_{n}\right)_{n \in \mathbb{N}}$ dense in $X^{*}$. Following the hint, for every fixed $n \in \mathbb{N}$ there exists $x_{n} \in X$ with $\left\|x_{n}\right\|=1$ and $\left|f_{n}\left(x_{n}\right)\right| \geq\|f\| / 2$. Then

$$
M=\overline{\operatorname{span}\left\{x_{n}: n \in \mathbb{N}\right\}}
$$

is separable. To solve the exercise, show that $M=X$. For this, assume $X \neq M$ and let $x_{0} \in X \backslash M$. By Corollary 4.2.9. there exists $f \in X^{*}$ such that

$$
f\left(x_{0}\right)=d>0 \text { and }\left.f\right|_{M}=0 \ldots
$$

b. Try a proof by contradiction. Let $x \in \Omega$ and $\varepsilon>0$ such that $B_{\varepsilon}(x) \subset \Omega$, and consider the family $f_{s}=\chi_{B_{s \varepsilon}(x)}$ for $0<s \leq 1$ and a dense subset $\left(g_{k}\right)_{k \in \mathbb{N}} \subset L^{\infty}(\Omega)$.

Show that there exists at most one $s=s(k)$ such that

$$
\begin{equation*}
\left\|f_{s}-g_{k}\right\|_{L^{\infty}(\Omega)}<1 / 2, \tag{1}
\end{equation*}
$$

and conclude that one could thus construct a surjective map $\mathbb{N} \ni k \mapsto s(k) \rightarrow \in(0,1]$.

## Exercise 4

Define $p(f):=\sup _{x \in E} f_{+}(x)$, this is a sublinear functional on $B(E, \mathbb{R})$. Use Hahn-Banach!
With $f_{+}:=\max (f, 0)$ and $f_{-}:=\max (-f, 0)$, recall that $f=f_{+}-f_{-}$and $|f|=f_{+}+f_{-} \ldots$
Also: note that $\bar{T}(f) \geq 0$ iff $-\bar{T}(f)=\bar{T}(-f) \leq 0 \ldots$

## Exercise 5

You may use the following fact without proof: if $f: X \rightarrow Y$ is a bijective map between Banach spaces such that $f$ is continuous, then $f^{-1}$ is also continuous. (This is called the inverse mapping theorem).

A possible strategy: assuming $X$ is reflexive, show that $Y$ is reflexive by showing that $f^{* *}$ is surjective and that $f^{* *} \circ J_{X}=J_{Y} \circ f \ldots$

For the opposite direction ( $Y$ reflexive $\Rightarrow X$ reflexive), make use Theorem 4.3.4 from the lecture!


[^0]:    ${ }^{1}$ Try by yourself first!

