Hints¹ for exercise sheet 6

Exercise 1

a. Try the following: write $u(x) = (2\pi)^{n/2} \int_{\mathbb{R}^n} \hat{u}(\xi) e^{ix\cdot\xi} d\xi$ (this is possible, since u is in L^2). Derive an estimate of the form

$$||u||_{L^{\infty}} \le (2\pi)^{n/2} \left(\int_{\mathbb{R}^n} (1+|\xi|^2)^{-m} d\xi \right)^{1/2} \left(\int_{\mathbb{R}^n} (1+|\xi|^2)^m |\hat{u}(\xi)|^2 d\xi \right)^{1/2},$$

(Cauchy-Schwarz!). Then show that the first term is bounded by a constant depending only on n and m, and that the second term is bounded by something involving the H^m norm.

b. Try this: Let $u: \mathbb{R}^2 \to \mathbb{R}$ and $u(x) = \chi(x) \ln |\ln |x||$, where $\chi \in C_c^{\infty}(\mathbb{R}^2)$ and $0 \le \chi(x) \le 1 \ \forall x \in \mathbb{R}^2, \ \chi(x) = 1 \ \text{for} \ |x| \le 1/4 \ \text{and} \ \chi(x) = 0 \ \text{for} \ |x| \ge 1/2$.

Show that $u \notin L^{\infty}(\mathbb{R}^2)$ but that $u \in H^1(\mathbb{R}^2)$.

For the latter, use polar coordinates to get

$$||u||_{L^2(\mathbb{R}^2)} \le 2\pi \int_0^{1/2} (\ln|\ln r|)^2 r dr$$

Since $ln(x) \le 1 - x$ one has for $0 \le r \le 1/2$

$$|\ln |\ln r|| < |1 - |\ln r|| < |\ln r| = -\ln r;$$

this can be used to estimate.

Also one needs to show that the weak derivative of u is in L^2 . Show that the weak derivative is given by the function

$$f = \frac{-x}{x^2 \ln|x|} \chi(x) + \ln|\ln|x||\nabla \chi(x);$$

for this proceed by approximation as we have been doing often the last weeks!

Exercise 2

For E_1 and E_2 , compute $||x^{-\alpha}||_{L^1}$.

Hint for E_3 : it is bounded but not pre-compact. To show that latter, one can try a proof by contradiction using the following fact:

¹Try by yourself first!

Lemma: Let $f: X \to Y$ be a continuous function between metric spaces. Assume that the metric space (X, d_X) is complete. Then:

$$A \subseteq X$$
 precompact $\Rightarrow f(A) \subseteq Y$ precompact.

To apply the lemma, try constructing a continous linear function $F: L^1((0,1)) \to Y$, where Y is some other metric space, and such that $F(E_3) \subseteq Y$ is not precompact. For example, try defining F to be something similar to the Fourier transform...

For E_4 apply Arzela-Ascoli.

Exercise 3

a.

Consider $(f_n)_{n\in\mathbb{N}}$ dense in X^* . Following the hint, for every fixed $n\in\mathbb{N}$ there exists $x_n\in X$ with $||x_n||=1$ and $||f_n(x_n)||\geq ||f||/2$. Then

$$M = \overline{\operatorname{span}\{x_n : n \in \mathbb{N}\}}$$

is separable. To solve the exercise, show that M = X. For this, assume $X \neq M$ and let $x_0 \in X \setminus M$. By Corollary 4.2.9. there exists $f \in X^*$ such that

$$f(x_0) = d > 0$$
 and $f|_M = 0...$

b. Try a proof by contradiction. Let $x \in \Omega$ and $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset \Omega$, and consider the family $f_s = \chi_{B_{s\varepsilon}(x)}$ for $0 < s \le 1$ and a dense subset $(g_k)_{k \in \mathbb{N}} \subset L^{\infty}(\Omega)$.

Show that there exists at most one s = s(k) such that

$$||f_s - g_k||_{L^{\infty}(\Omega)} < 1/2, \tag{1}$$

and conclude that one could thus construct a surjective map $\mathbb{N} \ni k \mapsto s(k) \to \in (0,1]$.

Exercise 4

Define $p(f) := \sup_{x \in E} f_+(x)$, this is a sublinear functional on $B(E, \mathbb{R})$. Use Hahn-Banach!

With
$$f_+ := \max(f, 0)$$
 and $f_- := \max(-f, 0)$, recall that $f = f_+ - f_-$ and $|f| = f_+ + f_- \dots$

Also: note that $\overline{T}(f) \ge 0$ iff $-\overline{T}(f) = \overline{T}(-f) \le 0...$

Exercise 5

You may use the following fact without proof: if $f: X \to Y$ is a bijective map between Banach spaces such that f is continuous, then f^{-1} is also continuous. (This is called the inverse mapping theorem).

A possible strategy: assuming X is reflexive, show that Y is reflexive by showing that f^{**} is surjective and that $f^{**} \circ J_X = J_Y \circ f...$

For the opposite direction (Y reflexive \Rightarrow X reflexive), make use Theorem 4.3.4 from the lecture!