Hints ${ }^{1}$ for exercise sheet 3

Exercise 1

The idea of this exercise is to apply the Stone-Weierstrass theorem.
As mentioned in exercise class, a function of the form $f(z)=\sum_{k=-n}^{n} c_{k} z^{k}$ is equivalent to the data of a sequence $\left(c_{k}\right)_{k \in \mathbb{Z}}$ such that only finitely many elements of this sequence are non-zero. Such a sequence can be viewed as a function $c_{f}: \mathbb{Z} \rightarrow \mathbb{C}$ with finite support (where $c_{f}(k)=c_{k}$ for all $k \in \mathbb{Z}$).

This perspective might be useful for example when showing that the product of two such functions again has such a form; one has the formula $c_{f g}=c_{f} \star c_{g}$, where \star denotes the convolution product.

For treating the conjugate of such a function, remember that $\bar{z}=z^{-1}$ if $z \in S^{1} \ldots$

Exercise 2

a. Try by contradiction using the sequence

$$
x_{n}^{N}= \begin{cases}1 / N, & n \leq N \\ 0, & n>N\end{cases}
$$

b. If you're stuck, try with $X=L^{1}([0,1])$ and $K=\left\{f \in L^{1}([0,1]): \int_{0}^{1} x f(x) d x=0\right\}$.

Exercise 3

a. Compare with exercise 3 from sheet 1 !
b. You can do it!

Exercise 4

a. Go for a proof by contradiction. It's short!
b. Don't panic. Look at $X_{n, j}=\left((j-1) / 2^{n}, j / 2^{n}\right)$ and

$$
\left(Y_{m}\right)_{m \in \mathbb{N}}=\left(X_{1,1}, X_{1,2}, X_{2,1} \cdots X_{2,4}, X_{3,1} \cdots\right) .
$$

Show that $\limsup _{m \rightarrow \infty} \chi_{Y_{m}}(x)=1$ a.e..
Then look at subsequences. Choose a subsubsequence such that the " n " indices (there are " n " and " j ") are monotonely increasing...

[^0]
[^0]: ${ }^{1}$ Try by yourself first!

