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Definition
Application in Finance

What is a BSDE?

Parameters:

I ξ r.v. FT -measurable

I f : Ω× [0,T ]× R× Rd → R predictable mapping

A BSDE with terminal condition ξ and generator/driver f is an
equation of the type

Y t = ξ −
∫ T

t
Z sdWs +

∫ T

t
f (s,Y s ,Z s)ds. (1)

A solution is a pair of adapted processes (Y ,Z ) such that (1)
makes sense.
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Utility maximization

I incomplete financial market, i.e. d < m stocks

dS i
t = S i

t(b
i
tdt + σi

tdWt), i = 1, . . . d ,

where b ∈ Rd and σ ∈ Rd ,m.
I small investor: wealth process (ps := πsσs , θs := σ−1

s bs)

V p
t = v +

∫ t

0
πs

dSs

Ss
= v +

∫ t

0
ps(dWs + θsds)

I utility function

U(x) = − exp−αx (α > 0 risk aversion)

I Optimization problem under constraint C

Val(v) = sup
p∈C

E
[
U(V p

T )
]
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Utility maximization

I incomplete financial market, i.e. d < m stocks

dS i
t = S i

t(b
i
tdt + σi

tdWt), i = 1, . . . d ,

where b ∈ Rd and σ ∈ Rd ,m.
I small investor: wealth process

V p
t = v +

∫ t

0
πs

dSs

Ss
= v +

∫ t

0
ps(dWs + θsds)

I utility function

U(x) = − exp−αx (α > 0 risk aversion)

I ξ European Option
I Optimization problem under constraint C

Val(v) = sup
p∈C

E
[
U(V p

T + ξ)
]
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Utility maximization

Optimization problem: Val(v) = supp∈C E
[
U(V p

T + ξ)
]

Idea: Find a process Y with terminal condition YT = ξ such that

I U(V p
t + Yt) is a supermartingale for all p

I U(V popt

t + Yt) is a martingale for one popt

→ BSDE with terminal condition ξ

Yt = ξ −
∫ T

t
ZsdWs +

∫ T

t
f (s,Zs)ds.
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Utility maximization

Optimization problem: Val(v) = supp∈C E
[
U(V p

T + ξ)
]

Theorem (Hu, Imkeller, Müller 2005)

Val(v) = U(v + Y0)

where (Y ,Z ) is the unique solution of

Yt = ξ −
∫ T

t
ZsdWs +

∫ T

t
f (s,Zs)ds

and f (·, z) = −α

2
dist2(

1

α
θ − z ,C )− zθ +

1

2α
|θ|2.

!f grows quadratically in z!
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What is a RBSDE?

Parameters:

I (ξt)t∈[0,T ] continuous on [0,T [ and limt→T ξt ≤ ξT

I f : Ω× [0,T ]× R× Rd → R predictable mapping

A RBSDE with barrier ξ and generator/driver f is an equation of
the type

Y t = ξT −
∫ T

t
Z sdWs +

∫ T

t
f (s,Y s ,Z s)ds + KT − K t , (2)

Y t ≥ ξt ,

∫ T

0
(Y t − ξt)dK t = 0,

where K is a continuous nondecreasing process.
A solution is a triple of adapted processes (Y ,Z ,K ) such that (2)
makes sense.
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Utility maximization

Same setting as before:

I wealth process V p
t = v +

∫ t
0 ps(dWs + θsds)

I utility function U(x) = −e−αx (α > 0 risk aversion)

Question: What happens if the investor holds an American option
with payoff function (ξt)t∈[0,T ]?

Optimization problem:

Val(v) = sup
ν,p

E
[
U(V p

T + ξν)
]
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Utility maximization

Optimization problem: Val(v) = supν,p E [U(V p
T + ξν)]

Theorem (A.R.)

Val(v) = U(v + Y0)

where (Y ,Z ,K ) is the unique solution of

Yt = ξT −
∫ T

t

ZsdWs +

∫ T

t

f (s,Zs)ds + KT − Kt ,

Yt ≥ ξt ,
∫ T

0
(Yt − ξt)dKt , with K continuous, nondecreasing and

f (·, z) = −α

2
dist2(

1

α
θ − z ,C )− zθ +

1

2α
|θ|2.

!f grows quadratically in z!
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Parameterized RBSDE

Parameter dependence on x ∈ R

Y x
t = ξT (x)−

∫ T

t
Z x

s dWs +

∫ T

t
f (s,Z x

s )ds + K x
T − K x

t .

Y x
t ≥ ξt(x),

∫ T

0
(Y x

t − ξt(x))dK x
t = 0,

Question: Are the solution processes Y x , Z x and K x continuous or
even differentiable with respect to x?
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Our setting: Quadratic RBSDEs

I Consider RBSDE

Yt = ξT −
∫ T

t
ZsdWs +

∫ T

t
f (s,Zs)ds + KT − Kt ,

Yt ≥ ξt ,

∫ T

0
(Yt − ξt)dKt = 0,

with
I ξ bounded adapted process, continuous on [0,T [ and

limt→T ξt ≤ ξT

I f s.t. ∀(t, z): |f (t, z)| ≤ M(1 + |z |2), and continuous in z

I Kobylanski (02) proved solution processes are supt |Yt | < ∞
and E [

∫
Z 2

s ds] < ∞
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BMO Martingales

Definition (BMO)

Uniformly integrable martingales M with M0 = 0 and

‖ M ‖BMO= sup
τ
‖ E [〈M〉T − 〈M〉τ |Fτ ]

1
2 ‖∞< ∞

E(M) := exp{M − 1
2〈M〉}

Theorem (Kazamaki 1994)

I M BMO =⇒ dQ = E(M)TdP is a probability measure

I M BMO =⇒ ∃p > 1 such that E(M) ∈ Lp

Theorem (A.R.)

(Y ,Z ,K ) solution of the above RBSDE =⇒
∫

ZdW is BMO
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Moment estimates

Using Itô formula, the BMO property of
∫

ZdW and inequalities of
Hölder, BDG, Doob,Young, for p > 1:

Theorem (A.R.)

EP

[
sup

t∈[0,T ]
|Y t |2p

]
+ EP

[( ∫ T

0
|Z s |2ds

)p
]

+ EP
[
K 2p

T

]

≤ CEP

[
ξ2pq2

T + sup
t∈[0,T ]

|ξt |2pq2
+

( ∫ T

0
f (s, 0)ds

)2pq2

] 1
q2

.

With similar methods we can estimate the variation in the solution
induced by a variation in the data!
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Results

Theorem (A.R.)

Let ξ be differentiable in x, lipschitz in norm, f be differentiable in
z, ∇z f of linear growth in z,
Then for p > 1 and |x − x ′| < 1

E

[
sup

t∈[0,T ]
|Y x

t − Y x ′
t |2p

]
≤ C |x − x ′|p

E

[(∫ T

0
|Z x

t − Z x ′
t |2ds

)p
]
≤ C |x − x ′|p

E

[
sup

t∈[0,T ]
|K x

t − K x ′
t |2p

]
≤ C |x − x ′|p.
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Spaces:

I Sp space of predictable processes X such that

‖ X ‖Sp= E

[
sup

t
|Xt |p

] 1
p

< ∞

I Hp space of predictable processes X such that

‖ X ‖Hp= E

[(∫ T

0
|Xt |2dt

) p
2

] 1
p

< ∞

Corollary (A.R.)

I (Y x
t ) and (K x

t ) are continuous in t and x.

I R → H2p : x 7→ Z x is Hölder continuous with α = 1
2 .

I R → S2p : x 7→ Y x is Hölder continuous with α = 1
2 .
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Differentiability

BUT:
We can’t prove Differentiability of Y x in x in the classical sense
Reason:

E

[
sup

t∈[0,T ]
|Y x

t − Y x ′
t |2p

]
≤ C |x − x ′|p

We would like to prove:

Theorem
There exists a version of (Y x

t ,Z x
t ,K x

t ) such that a.s.

I Y x continuously differentiable in a weak sense

I Z x is differentiable in a weak sense
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Thank you!
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