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Abstract

This papers presents a detailed analysis of pseudocodewbi@nner graphs. Pseudocodewords arising on
the iterative decoder’'s computation tree are distingusdhem pseudocodewords arising on finite degree lifts.
Lower bounds on the minimum pseudocodeword weight are pteddor the BEC, BSC, and AWGN channel.
Some structural properties of pseudocodewords are exdnane pseudocodewords and graph properties that
are potentially problematic with min-sum iterative decayliare identified. An upper bound on the minimum
degree lift needed to realize a particular irreduciblerifalizable pseudocodeword is given in terms of its
maximal component, and it is shown that all irreducible-idalizable pseudocodewords have components
upper bounded by a finite valughat is dependent on the graph structure. Examples andaetiff@anner graph
representations of individual codes are examined and thétieg pseudocodeword distributions and iterative
decoding performances are analyzed. The results obtaireddp some insights in relating the structure of
the Tanner graph to the pseudocodeword distribution andesigvays of designing Tanner graphs with good
minimum pseudocodeword weight.

Index Terms

Low density parity check codes, pseudocodewords, iteratecoding, min-sum iterative decoder.

I. INTRODUCTION

Iterative decoders have gained widespread attention dtietoremarkable performance in decoding LDPC
codes. However, analyzing their performance on finite lerigDPC constraint graphs has nevertheless re-

mained a formidable task. Wiberg'’s dissertation [1] was agthe earliest works in characterizing iterative
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decoder convergence on finite-length LDPC constraint graphlanner graphs. Both [1] and [2] examine the
convergence behavior of thmin-sumiterative decoder [3] on cycle codes, a special class of L2B@es
having only degree two variable nodes, and they provide spetessary and sufficient conditions for the
decoder to converge. Analogous works in [4] and [5] explaia behavior of iterative decoders using the lifts
of the base Tanner graph. The common underlying idea in efiettworks is the role gfseudocodewords

determining decoder convergence.

Pseudocodewords of a Tanner graph play an analogous ra¢émuining convergence of an iterative decoder
as codewordsdo for a maximum likelihood decoder. The error performante alecoder can be computed
analytically using the distance distribution of the coded#in the code. Similarly, an iterative decoder’s
performance may be characterized by the pseudocodewdshdés Distance reduces weeight with respect
to the all-zero codeword. Thus, in the context of iteratieeatling, a minimum weight pseudocodeword [4] is
more fundamental than a minimum weight codeword. In thisepaye present lower bounds on the minimum
pseudocodeword weight,,;, for the BSC and AWGN channel, and further, we bound the mininweight

of goodandbad pseudocodewords separately.

Paper [5] characterizes the set of pseudocodewords in renpolytope that includes pseudocodewords that
are realizable on finite degree graph covers of the base Tgnaeh, but does not include all pseudocodewords
that can arise on the decodecemputation treq1], [6]. In this paper, we investigate the usefulness of the
graph-covers-polytope definition of [5], with respect te thin-sum iterative decoder, in characterizing the set
of pseudocodewords of a Tanner graph. In particular, we ghasmples of computation trees that have several
pseudocodeword configurations that may be bad for itera@o®ding whereas the corresponding polytopes of
these graph do not contain these bad pseudocodewords. Waomeever that this does not mean the polytope
definition of pseudocodewords is inaccurate; rather, itxacefor the case of linear programming decoding
[7], but incomplete for min-sum iterative decoding.

As any pseudocodeword is a convex linear combination of gefimimber ofirreducible pseudocodewords,
characterizing irreducible pseudocodewords is sufficiendescribe the set of all pseudocodewords that can
arise. It can be shown that the weight of any pseudocodewdmhier bounded by the minimum weight of its
constituent irreducible pseudocodewords, implying thatitreducible pseudocodewords are the ones that are
more likely to cause the decoder to fail to converge. We foeeeexamine the smallest lift degree needed to
realize irreducible lift-realizable pseudocodewords. dubd on the minimum lift degree needed to realize a
given pseudocodeword is given in terms of its maximal corepbriVe show that all lift-realizable irreducible
pseudocodewords cannot have any component larger thanfsotenumbert which depends on the structure
of the graph. Examples of graphs with knowavalues are presented.

The results presented in the paper are highlighted throwgkral examples. These include an LDPC
constraint graph having all pseudocodewords with weighéas$td,.;,, an LDPC constraint graph with both
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good and low-weight (strictly less thafy,;,) bad pseudocodewords, and an LDPC constraint graph with all
bad non-codeword-pseudocodewords. Furthermore, ditfep@ph representations of individual codes such as
the [7,4,3] and [15,11,3] Hamming codes are examined in order to understand whattstaliqroperties

in the Tanner graph are important for the design of good LDP@es. We observe that despite a very

small girth, redundancy in the Tanner graph represenmtidrihese examples can improve the distribution of

pseudocodewords in the graph and hence, iterative decpairigrmance.

This paper is organized as follows. Definitions and ternugglare introduced in Section 2. Lower bounds
on the pseudocodeword weight of lift-realizable pseudeweands are derived in Section 3, and a bound on the
minimum lift degree needed to realize a particular liftlizble irreducible pseudocodeword is given. Section
4 presents examples of codes to illustrate the differerdgygf pseudocodewords that can arise depending on
the graph structure. Section 5 analyzes the structure efdos®dewords realizable in lifts of general Tanner
graphs. Finally, the importance of the graph represematimsen to represent a code is highlighted in Section
6, where the [7,4,3] and [15,11,3] Hamming codes are use@ses studies. Section 7 summarizes the results

and concludes the paper. For readability, the proofs arengiv the appendix.

[l. BACKGROUND

In this section we establish the necessary terminology atation that will be used in this paper, including
an overview of pseudocodeword interpretations, iteratigeoding algorithms, and pseudocodeword weights.
Let G = (V,U; E) be a bipartite graph comprising of vertex sétsand U, of sizesn andm, respectively,
and edgesr C {(v,u)| v € V,u € U}. Let G represent a binary LDPC codewith minimum distancel,,;,.
ThenG is called a Tanner graph (or, LDPC constraint graphj.of he vertices in/ are calledvariable nodes
and represent the codebits of the LDPC code and the verticEsare calledconstraintnodes and represent
the constraints imposed on the codebits of the LDPC code.

Definition 2.1: A codewordc in an LDPC code represented by a Tanner graghis a binary assignment
to the variable nodes ai such that every constraint node is connected to an even nuohhvariable nodes
having value 1, i.e., all the parity check constraints atesfad.

A. Pseudocodewords

1) Computation Tree InterpretatioriViberg originally formulated pseudocodewords in termshef tompu-
tation tree, as described in [1], and this work was extendeHrby et al in [6]. LetC(G) be the computation
tree, corresponding to thein-sumiterative decoder, of the base LDPC constraint gréplfil]. The tree is
formed by enumerating the Tanner graph from an arbitrarjalibe node, called theoot of the tree, down
through the desired number of layers corresponding to degatérations. A computation tree enumerated for
¢ iterations and having variable node acting as the root node of the tree is denoted’h{G),. The shape
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Fig. 1. A graph and its computation tree after two iteratiohsnessage passing.

of the computation tree is dependent on the scheduling osagespassing used by the iterative decoder on
the Tanner grapld:. In Figure 1, the computation tre€(G), is shown for the flooding schedule [8]. (The
variable nodes are the shaded circles and the constraiesrar@ the square boxes.) Since iterative decoding
is exact on cycle-free graphs, the computation tree is aatddutool in the exact analysis of iterative decoding
on finite-length LDPC codes with cycles.

A binary assignment to all the variable nodes in the comparidtee is said to be&alid if every constraint
node in the tree is connected to an even number of variablesnbdving value 1. A codeword in the
original Tanner grapiG corresponds to a valid assignment on the computation tréeyenfor eachi, all
nodes representing; in the computation tree are assigned the same value. A psedewordp, on the
other hand, is a valid assignment on the computation treerevfor each, the nodes representing in the
computation tree need not be assigned the same value.

For a computation tre€’(G), we define a local configuration at a checkin the original Tanner grapty
as the average of the local codeword configurations at ailesopf ; on C'(G). A valid binary assignment
on C(G) is said to beconsistentf all the local configurations are consistent. That is, if &xigble nodey;
participates in constraint nodeg andwy, then the coordinates that correspond.tin the local configurations
at u, anduy, respectively, are the same. It can be shown that a consigiid binary assignment on the
computation tree is a pseudocodeword that also lies in thgqgpe of [5] (see equation 3), and therefore
realizable on a lift-graph oz. A consistent valid binary assignment 61{G) also has a compact length
vector representatiop = (p1,p2, - .., pn) such that if a check node, has variable nodes,, , v,,, ..., v, as
its neighbors, then projecting onto the coordinateg,, as, . . ., a, Yyields the local configuration af, on the
computation tree”’(G). An inconsistent but valid binary assignment 6G) on the other hand has no such
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(base graph) (a degree 4 cover)
Yol
t= (1,1,1,1l 1,1,1,1,0,0,0,0) ©=(1,1,0,0,1,0,0,0,0,1,0,0)
p=(1,1,0) p = (1/2, 1/4, 1/4)

Fig. 2. A pseudocodeword in the base graph (or a valid codiwon lift).

compact vector representation. The computation tree ftrereontains pseudocodewords some of which lie
in the polytope of [5] and some of which that do not.

2) Graph Covers Definition:A degreel cover (or, lift) G of G is defined in the following manner:

Definition 2.2: A finite degreel coverof G = (V,U; E) is a bipartite graph? where for each vertex
z; € VUU, there is acloud X; = {i;,,4i,,...,4;,} of vertices inG, with deg(z;,) = deg(x;) for all
1 < j < ¢, and for every(z;, z;) € E, there are/ edges fromX; to X; in G connected in @ — 1 manner.

Figure 2 shows a base graghand a degree four cover @f.
A codewordé in a lift graph G of a Tanner graplt: is defined analogously as in Definition 2.1.

Definition 2.3: Suppose that = (¢1.1,¢1.2,...,¢16,C21,-..,C24,...) IS @ codeword in the Tanner graﬁh
representing a degre#lift of G. A pseudocodeworg of GG is a vector(py, po, ..., p,) Obtained by reducing
a codewordz, of the code in the lift grapld, in the following way:

¢=(C11,.-,€10,C215...,C20,...) = (C1a+Cro+ -+, Co1+Coo+ -+, ... ) = (P1,P2,- - s Dn)=Ps
Wherepi = (é@l + éi72 + -+ éi,g).

Note that each component of the pseudocodeword is merelyutheer of 1-valued variable nodes in the
corresponding variable cloud d@f, and that any codeword is trivially a pseudocodeword as is a valid
codeword configuration in a degree-one lift. Pseudocodasvas in this definition are callédt-realizable
pseudocodewords and alsowasscaled pseudocodeworidq9]. We will use this definition of pseudocodewords
throughout the paper unless mentioned otherwise.

Remark 2.1:It can be shown that that the components of a lift-realizgtdeudocodeword satisfy the
following set of inequalities. At every constraint nodg that is connected to variable nodes, v;,, ..., v;, ,
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the pseudocodeword components satisfy

Di, < Pi, +Pi, + - D

Dis < Piy +Piy + -+ D,

Pi, < piy +Pi, 0+ i, 1)

Definition 2.4: A pseudocodeword that does not correspond to a codewore inatbe Tanner graph is called
a non-codeword pseudocodeword,nm-pseudocodewordor short.

3) Polytope Representatiorithe set of all pseudocodewords associated with a given Tegraph G has
an elegant geometric description [5], [7]. In [5], Koettexdaontobel characterize the set of pseudocodewords
via thefundamental coneFor each parity check of degrees;, let C; denote thgd;,d; — 1,2) simple parity
check code, and lePs;, be a2%~! x §; matrix with the rows being the codewords 6f. The fundamental
polytope at checld of a Tanner graplts is then defined as:

PEC(C) ={weRY cw=aP;,x € R 0<2; <1, =1}, )
and thefundamental polytope af is defined as:
PC(GQ)={weR": WN () € PCEY(C)),5 =1,...,m}, (3)

We use the superscript GC to refer to pseudocodewords @risam graph covers and the notatiany ;)
to denote the vectar restricted to the coordinates of the neighbors of checklhe fundamental polytope
gives a compact characterization of all possible liftimsdlle pseudocodewords of a given Tanner gréph
Removing multiplicities of vectors, thiundamental coné’(G) associated withG is obtained as:

F(G) = {uw € R" : w € PY“(G), n > 0}.

A lift-realizable pseudocodeworg as in Definition 2.3 corresponds to a point in the graph-coyelytope
PCC(@).

In [7], Feldman also uses a polytope to characterize the desmdewords in linear programming (LP)
decoding and this polytope has striking similarities witle {polytope of [5]. LetE(C;) denote the set of all
configurations that satisfy the codg (as defined above). Then tifeasible sebf the LP decoder is given by:

PIP(G)={ceR":z; e R*" ', ris=1lc= Y  z5VieN(j),
SeE(C;) SeE(Cy), i€S

0<z;5<1, VS e€EC)),je{l,...,m}}

Remark 2.2:1t can be shown that the polytopes of [5] and [7] are identical, P““(G) = PXP(G) [10].
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Fig. 3. A stopping set5 = {vo,v1,vs,v5} In G.

Definition 2.5: The supportof a vectorx = (z1,...,z,), denotedsupp(x), is the set of indices where
x; # 0.

Definition 2.6: [11] A stopping sein G is a subsetS of V' where for eacts € S, every neighbor of is
connected toS at least twice.

The size of a stopping sét is equal to the number of elements$h A stopping set is said to beinimal
if there is no smaller sized nonempty stopping set contaimgin it. The smallest minimal stopping set is
called aminimumstopping set, and its size is denoted &y.,. Note that a minimum stopping set is not
necessarily unique. Figure 3 shows a stopping set in theng@bserve thafv,, vz, vg} and {vs,vs, v} are
two minimum stopping sets of sizg,;, = 3, whereas{vg, v, vs,v5} is @ minimal stopping set of size 4.

On the erasure channel, pseudocodewords afre essentially stopping setsd@[4], [5], [7] and thus, the
non-convergence of the iterative decoder is attributedhéopresence of stopping sets. Moreover, any stopping
set can potentially prevent the iterative decoder from eaging.

One useful observation is that that the support of a liftzahle pseudocodeword as in Definition 2.3 forms
a stopping set irG. This is also implied in [5] and [7].

Lemma 2.1:The support of a lift-realizable pseudocodewgraf G is the incidence vector of a stopping

setindG.

Definition 2.7: A pseudocodeworg = (p1,...,py,) is irreducibleif it cannot be written as a sum of two
or more codewords or pseudocodewords.

Note that irreducible pseudocodewords are caft@dimal pseudocodewords in [5] as they correspond to
vertices of the polytop@““ (@), and in the scaled definition of pseudocodewords in [5], asgudocodeword
is a convex linear combination of these irreducible pseadewords. We will see in subsequent sections that
the irreducible pseudocodewords, as defined above, arandsetioat can potentially cause the min-sum decoder
to fail to converge.
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B. Pseudocodewords and Iterative Decoding Behavior

The feature that makes LDPC codes attractive is the exist@ihmomputationally simple decoding algorithms.
These algorithms either converge iteratively to a subragitisolution that may or may not be the maximum
likelihood solution, or do not converge at all. The most camnnof these algorithms are the min-sum (MS) and
the sum-product (SP) algorithms [3], [12]. These two alponis are graph-based message-passing algorithms
applied on the LDPC constraint graph. More recently, ling@agramming (LP) decoding has been applied to
decode LDPC codes. Although LP decoding is more complexastthe advantage that when it decodes to a
codeword, the codeword is guaranteed to be the maximurtikided codeword (see [7]).

A message-passing decoder exchanges messages along ¢seoétite code’s constraint graph. For binary
LDPC codes, the variable nodes assume the values one ortmaroe, a message can be represented either
as the probability vectojpy, p1], wherep, is the probability that the variable node assumes a valug ahd
p1 is the probability that the variable node assumes a valug of as a log-likelihood ratio (LLR)og(g—f),
in which case the domain of the message is the entire reaRline

Let ¢ = (c1,...,¢,) be a codeword and lev = (wy,...,w,) be the input to the decoder from the
channel. That is, the log-likelihood ratios (LLR’s) frometichannel for the codebits, ..., v, arews, ..., wy,,
respectively. Then the optimal maximum likelihood (ML) deer estimates the codeword

¢ =arg I&ig(clwl + cowy + -+ + cpwy) = arg IélGIél cw?.

Let P be the set of all pseudocodewords (including all codewoodighe graphG. Then the graph-based
min-sum (MS) decoder essentially estimates [5]

x* = argminxw’ .
x€eP

We will refer to the dot productw”’ as thecost-functiorof the vectorx with respect to the channel input vector
w. Thus, the ML decoder estimates the codeword with the lowest whereas the sub-optimal graph-based
iterative MS decoder estimates the pseudocodeword withothest cost.

The SP decoder, like the MS decoder, is also a message passioder that operates on the constraint graph
of the LDPC code. It is more accurate than the MS decoder akdstinto account all pseudocodewords of
the given graph in its estimate. However, it is still subkmat compared to the ML decoder. Thus, its estimate
may not not always correspond to a single codeword (as the @&tiodker), or a single pseudocodeword (as the
MS decoder). A complete description, along with the updates; of the MS and SP decoders may be found
in [3].

In this paper we will focus our attention on the graph-baséotsum (MS) iterative decoder, since it is
easier to analyze than the sum-product (SP) decoder. Tlogvfiog definition characterizes the iterative decoder
behavior, providing conditions when the MS decoder mayttaitonverge to a valid codeword.
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Definition 2.8: [2] A pseudocodewort=(p1,p2,-..,p,) IS good if for all input weight vectorsw =
(wy,ws,...,w,) to the min-sum iterative decoder, there is a codeworthat has lower overall cost than
p, i.e,cw! < pw’.

Definition 2.9: A pseudocodeworgb is bad if there is a weight vectow such that for all codewords,
cw! > pr.

Note that a pseudocodeword that is bad on one channel is nessarily bad on other channels since the set
of weight vectorsw that are possible depends on the channel.

Suppose the all-zeros codeword is the maximume-likelihddd)(codeword for an input weight vectow,
then all non-zero codewordshave a positive cost, i.ecw’ > 0. In the case where the all-zeros codeword is
the ML codeword, it is equivalent to say that a pseudocodéwois bad if there is a weight vectoxr such
that for all codewords, cw’ > 0 but pw’ < 0.

As in classical coding where the distance between codevadfelsts error correction capabilities, the distance
between pseudocodewords affects iterative decoding dajesb Analogous to the classical case, the distance
between a pseudocodeword and the all-zeros codeword isreddiy weight. The weight of a pseudocodeword
depends on the channel, as noted in the following definition.

Definition 2.10:[4] Let p = (p1,p2, .- .,pn) be a pseudocodeword of the ca@aepresented by the Tanner
graphG, and lete be the smallest number such that the sum ofeth@gestp;’s is at Ieast#. Then the
weightof p is:

e wppc(p) = |supp(p)| for the binary erasure channel (BEC);

« wpsc(p) for the binary symmetric channel (BSC) is:
2e, if > epi= ZLTIP

wpsc(p) = ) oy
2e — 1, if Zepi > Zi?pl

where)_p; is the sum of the: largestp;’s.

o wawan(p) = % for the additive white Gaussian noise (AWGN) channel.

Note that the weight of a pseudocodeword @freduces to the traditional Hamming weight when the
pseudocodeword is a codeword@f and that the weight is invariant under scaling of a pseudeaord. The
minimumpseudocodeword weight @f is the minimum weight over all pseudocodewordsband is denoted
by wBEC for the BEC (and likewise, for other channels).

Remark 2.3:The definition of pseudocodeword and pseudocodeword weigtd the same for general-
ized Tanner graphs, wherein the constraint nodes reprasdmabdes instead of simple parity-check nodes.
The difference is that as the constraints impose more donditto be satisfied, there are fewer possible
nc-pseudocodewords. Therefore, a code represented by &€ ldonstraint graph having stronger subcode
constraints will have a larger minimum pseudocodeword titeigan a code represented by the same LDPC

constraint graph having weaker subcode constraints.
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C. Graph-Covers-Polytope Approximation

In this section, we examine the graph-covers-polytope ftiefinof [5] in characterizing the set of pseu-
docodewords of a Tanner graph with respect to min-sum ieratecoding. Consider thg, 1, 4]-repetition
code which has a Tanner graph representation as shown ineFigurhe corresponding computation tree for
three iterations of message passing is also shown in thefigiae only lift-realizable pseudocodewords for this
graph areg(0,0,0,0) and (k, k, k, k), for some positive integek; thus, this graph has no nc-pseudocodewords.
Even on the computation tree, the only valid assignmengassihe same value for all the nodes on the
computation tree. Therefore, there are no nc-pseudocadsvem the graph’s computation tree as well.

uz us
Vs Vg
V3 V3
us 3
u u
V3 3 2
vy Vo

Fig. 4. A Tanner graph and computation tree (CT) for the #4,tepetition code.

Suppose we add a redundant check node to the graph, then aie albitew LDPC constraint graph, shown
in Figure 5, for the same code. Even on this graph, the onyrdiilizable pseudocodewords &fe 0, 0,0)
and (k, k, k, k), for some positive integet. Therefore the polytope of [5] contairi,0,0,0) and(1,1,1,1)
as the vertex points and has no bad pseudocodewords (as mitidef2.9). However, on the computation tree,
there are several valid assignments that do not have anadguiwepresentation in the graph-covers-polytope.
The assignment where all nodes on the computation tree aignad the same value, say (as highlighted
in Figure 5) corresponds to a codeword in the code. For thegyasient on the computation tree, the local
configuration at check is (1,1) corresponding tv;, v2), at checkus it is (1,1) corresponding tdus, v3),
at checkus it is (1, 1) corresponding td@vs, v4), at checkuy itis (1, 1) corresponding tdv,, v4), and at check
us itis (1,1,1,1) corresponding tduvy, ve, v3,v4). Thus, the pseudocodeword vecfar1,1, 1) corresponding
to (v1,ve2,vs3,v4) IS consistent locally with all the local configurations ag tindividual check nodes.

However, an assignment where some nodes are assigneeiudiffeiues compared to the rest (as highlighted
in Figure 6) corresponds to a nc pseudocodeword on the Tamaph. For the assignment shown in Figure 6,
the local configuration at check; is (1, 1), corresponding tqv;,v2), as there are two check nodes in
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the computation tree witlil, 1) as the local codeword at each of them. Similarly, the localfigoration at
checkusy is (2/3,2/3), corresponding tduvs,vs), as there are three; nodes on the computation tree, two
of which have(1,1) as the local codeword and the third h@s0) as the local codeword. Similarly, the
local configuration at checks is (1/3,1/3) corresponding tdvs,v4), the local configuration at check; is
(1/2,1/2) corresponding tdv;, v4), and the local configuration at cheak is (1/3,1,0,2/3) corresponding
to (v1,v9,v3,v4). Thus, there is no pseudocodeword vector that is consikieally with all the above local
configurations at the individual check nodes.

Clearly, as the computation tree grows with the number obde iterations, the number of nc-pseudocodewords
in the graph grows exponentially with the depth of the trebus even in the simple case of the repetition
code, the graph-covers-polytope of [5] fails to capturenaith-sum-iterative-decoding-pseudocodewords of a
Tanner graph.

Uy U3

VqV3VyV3 V3Vl VoVy V1V3 V3V2V3Vl

Fig. 5. Modified Tanner graph and CT forvthe [4,1,4] repetitzode.
1

Uy U3
V3 g0 60 00 00
V1 V3Vy4V3 V3, VoV vy V3 VaVoVaVy

Fig. 6. Modified Tanner graph and CT for the [4,1,4] repetitonde.

Figure 7 shows the performance of MS iterative decoding @ndbnstraint graphs of Figures 4 and 5
when simulated over the binary input additive white Gaussiaise channel (BIAWGNC) with signal to noise
ratio E;,/N,. The ML performance of the code is also shown as referencth &imaximum ofl0* decoding
iterations, the performance obtained by the iterative decon the single cycle constraint graph of Figure 4 is
the same as the optimal ML performance (the two curves areorep of the other), thereby confirming that
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the graph has no nc-pseudocodewords. The iterative degqdirformance deteriorates when a new degree
four check node is introduced as in Figure 5. (A significaatfion of detected errors, i.e., errors due to the
decoder not being able to converge to any valid codewordnwith’ iterations, were obtained upon simulation

of this new graph.)

[4,1,4] Repetition Code
10" ¢ T T ]

—— original representation (single cycle) f
—o— new representation (new deg 4 check) [|
—a— ML decoding

(10000 decoding iterations)

Bit Error Rate

=
O‘

IS

T T

107

10°F 4

Fig. 7. Performance of different representations of [4,iepetition code over the BIAWGNC.

This example illustrates that the polytof¥’“ (G) does not capture the entire set of MS pseudocodewords
on the computation tree. In general, we state the followegyits:

Claim 2.1: A bipartite graphG representing an LDPC codg&contains no irreducible nc-pseudocodewords
on the computation tre€'(G) of any depth if and only if either (if7 is a tree, or (ii)G contains only degree
two check nodes.

Claim 2.2: A bipartite graphG representing an LDPC codkcontains either exactly one or zero irreducible
lift-realizable nc-pseudocodewords if either () is a tree, or (ii) there is at least one path between any two
variable nodes irG that traverses only via check nodes having degree two.

Note that condition (ii) in Claim 2.2 states that if there isl@ast one path between every pair of variable
nodes that has only degree two check nodes, tienontains at most one irreducible lift-realizable nc-
pseudocodeword. However, condition (ii) in Claim 2.1 regsithatevery path between every pair of variable

nodes has only degree two check nodes.
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For the rest of the paper, unless otherwise mentioned, weregirict our analysis of pseudocodewords to
the set of lift-realizable pseudocodewords as they havelegaet mathematical description in terms of the
polytope P“C(G) that makes the analysis tractable.

[1l. BOUNDS ON MINIMAL PSEUDOCODEWORD WEIGHTS

In this section, we derive lower bounds on the pseudocodeweight for the BSC and AWGN channel,
following Definition 2.10. The support size of a pseudocodelp has been shown to upper bound its weight
on the BSC/AWGN channel [4]. Hence, from Lemma 2.1, it folh)vhatwflic/AWGN < Smin. We establish
the following lower bounds for the minimum pseudocodewosdghit:

Theorem 3.1:Let G be a regular bipartite graph with girghand smallest left degreé Then the minimal
pseudocodeword weight is lower bounded by
psojaway ) LHd+d(d—1)+ -+ d(d- 1), £ odd
i | 14d+ - Fdd-1)T +(d-1)"F, £ even

Note that this lower bound holds analogously for the minimdistanced,,;, of G [13], and also for the size
of the smallest stopping sety.i,, in a graph with girthg and smallest left degre [14].

For generalized LDPC codes, wherein the right nodeS iof degreek represent constraints of[&, &/, ek]
sub-codé, the above result is extended as:

Theorem 3.2:Let G be ak-right-regular bipartite graph with girth and smallest left degre¢ and let the
right nodes represent constraints ofkak’, ek] subcode, and let = (ek — 1). Then:

wBSC/AWGN> 1+d.’lﬁ'+d(d—1)l’2++d(d—1)%l’%2

min

£ odd
l4+de+---+dd—1)7 27 +(d—1)"7 21, $even

e

Definition 3.1: A stopping set for a generalized LDPC code usjhgk’, ek] sub-code constraints may be
defined as a set of variable nodg€svhose neighbors are each connected at l€asimes toS in G.

This definition makes sense since an optimal decoder on aurerahannel can recover at mest— 1
erasures in a linear code of lengthand minimum distancek. Thus if all constraint nodes are connected to
a setS, of variable nodes, at leask times, and if all the bits ir6 are erased, then the iterative decoder will
not be able to recover any erasure bit9n Note that Definition 3.1 assumes there are no idle compsnent
in the subcode, i.e. components that are zero in all the codisaof the subcode. For the above definition
of a stopping set in a generalized Tanner graph, the lowenddwlds fors,,;, also. That is, the minimum

INote thatek ande are the minimum distance and the relative minimum distarespectively of the sub-code.
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stopping set size,,i, in a k-right-regular bipartite graplix with girth ¢ and smallest left degre@& wherein
the right nodes represent constraints dkak’, k] subcode with no idle components, is lower bounded as:

2

14 de+d(d—1)a?+---+dd—-1)FzT, 4 odd

Smin =2 g-8 g-4 g—4 :}
l+de+--4+dd-1)7 27 +(d-1)7 xz+, $ even
wherex = (ek — 1).
The max-fractional weighof a vectorx = [z1,...,x,] is defined aswyax—frac(x) = 2is1% The max-

max; T';

fractional weight of pseudocodewords in LP decoding (sdg¢ ¢haracterizes the performance of the LP
decoder, similar to the role of the pseudocodeword weigh¥$ decoding. It is worth noting that for any
pseudocodeworg, the pseudocodeword weight @f on the BSC and AWGN channel relates to the max-
fractional weight ofp as follows:

Lemma 3.1:For any pseudocodewors, wB5C/AWEN (5) > wav frac(P)-

BSC/AWGN
min

> d12x  the max-fractional distance which is the minimum max4iczal

frac?

weight over allp. Consequently, the bounds established in [7]df. are also lower bounds fap.,i,. One

It follows that w

such bound is given by the following theorem.
Theorem 3.3:(Feldman [7]) Letdeg, (respectively,deg,”) denote the smallest left degree (respectively,
right degree) in a bipartite grapfi. Let G' be a factor graph withleg, > 3,deg,” > 2, and girth g, with
g > 4. Then
dfyae > (deg, — -1,

frac

Corollary 3.4: Let G be a factor graph withleg,” > 3, deg,” > 2, and girthg, with g > 4. Then

BSC/AWGN

min > (deg; — 1)1

Note that Corollary 3.4, which is essentially the resultantd in Theorem 3.1, makes sense due to the
equivalence between the LP polytope and GC polytope (se#oBed).

Recall that any pseudocodeword can be expressed as a suedoicible pseudocodewords, and further, that
the weight of any pseudocodeword is lower bounded by thelestaleight of its constituent pseudocodewords.
Therefore, given a grapty, it is useful to find the smallest lift degree needed to reahil irreducible lift-
realizable pseudocodewords (and hence, also all minimuightvpseudocodewords).

One parameter of interest is the maximum comporenhich can occur in any irreducible lift-realizable
pseudocodeword of a given gragh i.e., if a pseudocodeworgd has a component larger thanthenp is
reducible.

Definition 3.2: Let G be a Tanner graph. Then the maximum component value an aitddypseudocode-
word of G can have is called thevalue of G, and will be denoted by.
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We first show that for any finite bipartite graph, the follogsiholds:
Theorem 3.5:Every finite bipartite grapliz representing a finite length LDPC code has a finite

Theorem 3.6:Let G be an LDPC constraint graph with largest right degigeand¢-valuet . That is, any
irreducible lift-realizable pseudocodewopd= (pi,...,p,) of G has0 < p; <t, fori =1,...,n. Then the
smallest lift degreen.,;, needed to realize all irreducible pseudocodeword§ cfatisfies

Y veNw) Pi _ tdF
Mmin < max 71)"61\2[(%) L < 2T ;

where the maximum is over all check nodesin the graph andV(u;) denotes the variable node neighbors
of u;.

If such at is known, then Theorem 3.6 may be used to obtain the smailtedefree needed to realize all
irreducible lift-realizable pseudocodewords. This hasagmpractical implications, for an upper bound on the
lift degree needed to obtain a pseudocodeword of minimunghtevould significantly lower the complexity
of determining the minimum pseudocodeword weight;, .

Corollary 3.7: If p is any lift-realizable pseudocodeword ang the maximum component, then the smallest
bd:+

T

2

lift degree needed to realize is at most

Example 3.1:Some graphs with knowm-values areit < 2 for cycle codes [1], [2],t = 1 for LDPC
codes whose Tanner graphs are trees, tagd2 for LDPC graphs having a single cycle, and& s for tail-
biting trellis codes represented on Tanner-Wiberg-Laeligraphs [1] with state-space sizes...,s,, and
s=max{s1,...,Sm}

We now bound the weight of a pseudocodewprtiased on its maximal component valuand its support
size | supp(p)|.

Lemma 3.2:Suppose in an LDPC constraint graghevery irreducible lift-realizable pseudocodewgrd=
(p1,p2, .. .,pn) With support setV’ has components < p; < t, for 1 < i < n, then: (a) vV (p) >
%WL and (b) w?5¢(p) > $|V|.

For many graphs, thevalue may be small and this makes the above lower bound.|&igee the support of
any pseudocodeword is a stopping set (Lemma 2u1), can be lower bounded in terms gf;, andt. Thus,
stopping sets are also important in the BSC and the AWGN aann

Further, we can bound the weight of good and bad pseudocadsWgee Definitions 2.8, 2.9) separately,
as shown below:

Theorem 3.8:For an [n, k, dnin] code represented by an LDPC constraint gr&ph(a) if p is a good
pseudocodeword af!, thenwBSC/AWEN 5y > 4 poo(P) > dimin, and(b) if p is a bad pseudocodeword
[2] of G, thenwBSC/AWEN (p) > 4y frac(P) > 22, wheret is as in the previous lemma.
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Fig. 8. A graph with all pseudocodewords having weight astiég,in.

IV. EXAMPLES

In this section we present three different examples of Tagnegphs which give rise to different types of
pseudocodewords and examine their performance on theyhimawt additive white Gaussian noise channel
(BIAWGNC), with signal to noise ratid¥,/N,, with MS, SP, and ML decoding. The MS and SP iterative
decoding is performed for 50 decoding iterations on theeethge LDPC constraint graphs.

Example 4.1:Figure 8 shows a graph that has no pseudocodeword with wigightharnd,,,;, on the BSC
and AWGN channel. For this code (or more precisely, LDPC traitg graph), the minimum distance, the
minimum stopping set size, and the minimum pseudocodeweightvon the AWGN channel, are all equal to
4, 1.e.,dmin = Smin = Wmin = 4, and thet-value (see Definition 3.2) i8. An irreducible nc-pseudocodeword
with a component of value 2 may be observed by assigning Valisethe nodes in the outer and inner rings
and assigning value 2 to exactly one node in the middle ring, zeros elsewhere.

Figure 9 shows the performance of this code on a BIAWGNC with, 8P, and ML decoding. It is evident
that all three algorithms perform almost identically. Thtlss LDPC code does not have low weight (relative
to the minimum distance) bad pseudocodewords, implyingthieaperformance of the MS decoder, under i.i.d.
Gaussian noise, will be close to the optimal ML performance.

Example 4.2:Figure 10 shows a graph that has both good and bad pseudamuidevConsiderp =
(1,0,1,1,1,1,3,0,0,1,1,1,1,0). Letting w = (1,0,0,0,0,0,—1,0,0,0,0,0,0,0), we obtainpw? = —2
andcw’ > 0 for all codewordsc. Thereforep is a bad pseudocodeword for min-sum iterative decoding. In
particular, this pseudocodeword has a weight6F¢/AWEN (p) = 8 on both the BSC and the AWGN channel.
This LDPC graph results in an LDPC code of minimum distadgg, = 8, whereas the minimum stopping
set size and minimum pseudocodeword weight (AWGN chanrfeihe graph are 3, i.€$min = Wmin = 3,
and thet-value is8.
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10"

—— Min-Sum decoding
—6— Sum-Prod decoding
Max-Likld. decoding

bit error rate

7 8
E/N, (dB)

Fig. 9. Performance of Example 4.1 - LDPC code: MS, SP, ML dewpover the BIAWGNC.

Fig. 10. A graph with good and bad pseudocodewords.

Figure 11 shows the performance of this code on a BIAWGNC Wi SP, and ML decoding. It is evident
in the figure that the MS and the SP decoders are inferior ifopeance in comparison to the optimal ML
decoder. Since the minimal pseudocodeword weight, is much less than the minimum distance of the
codedin, the performance of the MS iterative decoder at high sigmaidise ratios (SNRs) is dominated by

low-weight bad pseudocodewords.

Example 4.3:Figure 12 shows a graph om + 1 variable nodes, where the set of all variable nodes

exceptv; form a minimal stopping set of sizen, i.e., spin = m. Whenm is even, the only irreducible

pseudocodewords are of the forfh,1,1,...,1), where0 < k£ < m andk is even, and the only nonzero
codeword is(0,1,1,...,1). Whenm is odd, the irreducible pseudocodewords have the fokm, 1,...,1),
wherel < k < m, andk is odd, or(0,2,2,...,2), and the only nonzero codeword(is, 1,...,1). In general,
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107 T ; .

—*— Min-Sum decoding
: —$— Sum-Prod decoding
Bl Max-Likld. decoding

107

bit error rate
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107
7 8
E,N, (B)

Fig. 11. Performance of Example 4.2 - LDPC code: MS, SP, MLodetwy over the BIAWGNC.

any pseudocodeword of this graph is a linear combinatiorhe$é irreducible pseudocodewords. Wiiers

not O or 1, then these are irreducible nc-pseudocodewdndsyeight vectorw = (wy, ..., wn,+1), Where

w; = —1,we = +1, andws = - - - = w,,+1 = 0, shows that these pseudocodewords are bad. Wheneven

or odd, any reducible pseudocodeword of this graph thatides at least one irreducible nc-pseudocodeword in
its sum, is also bad (according to Definition 2.9). We alsceolrs that for both the BSC and AWGN channel,
all of the irreducible pseudocodewords have weight at mgst = m or m + 1, depending on whethen

is even or odd. The minimum pseudocodeword weight {3 ¢ = 4m/(m + 1), and the LDPC constraint
graph has a-value ofm.

Figures 13 and 14 show the performance of the code for odd eewe, respectively, on a BIAWGNC
with MS, SP, and ML decoding. The performance differencevbenh the MS (respectively, the SP) decoder
and the optimal ML decoder is more pronounced for edd(In the case of evem, (0,2,2...,2) is not a
bad pseudocodeword, since it is twice a codeword, unlikehéndase for oddn; thus, one can argue that,
relatively, there are a fewer number of bad pseudocodewangs m is even.) Since the graph has low weight
bad pseudocodewords, in comparison to the minimum distaheeperformance of the MS decoder in the

high SNR regime is clearly inferior to that of the ML decoder.

Figure 15 shows the performance of Example 3 #or= 10 andm = 11 over the BSC channel with
MS iterative decoding. Since there are on}t! different error patterns possible for the BSC channel, the
performance of MS decoding for each error pattern was détedrand the average number of output errors
were computed. The figure shows that all four-bit or lessrgvedterns were corrected by the MS and the ML
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deg m+l checks deg 2 checks

Fig. 12. A graph with only bad nc-pseudocodewords.

—— Min-Sum decoding
—— Sum-Prod decoding
Max-Likld. decoding

bit error rate
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Fig. 13. Performance of Example 4.3 - LDPC code ifior= 11: MS, SP, ML decoding over the BIAWGNC.
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Fig. 14. Performance of Example 4.3 - LDPC code fior= 10: MS, SP, ML decoding over the BIAWGNC.
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Performance of Example 3 with min-sum decoding and ML decoding
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Ex 3, N=12,m=11, MS dec.
Ex 3, N=12,m=11, ML dec. i
Ex 3, N=11,m=10, MS dec. |- f e o o *
Ex 3, N=11,m=10, ML dec.
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Fig. 15. Performance of Example 4.3-LDPC code #for= 11, m = 12 with MS and ML decoding over the BSC.

decoders. However, the average number of output bit erooréivie-bit error patterns with MS decoding was
around 0.48 for then = 11 code and was around 5.55 for the= 10 code, while the ML decoder corrected
all five-bit error patterns for both the codes. The averagaber of output bit errors for six-bit error patterns
with MS decoding was 6 for then = 11 code and 10.5 for then = 10 code, whereas the ML decoder
corrected all six bit errors for the: = 11 code and yielded an average humber of output bit errors @&f4.5
for them = 10 code. The figure also shows that MS decoding is closer to Mlodieg for them = 10 code
than for them = 11 code.

This section has demonstrated three particular LDPC anstgraphs having different types of pseu-
docodewords, leading to different performances with tteeadecoding in comparison to optimal decoding. In
particular, we observe that the presence of low weight ircdale nc-pseudocodewords, with weight relatively
smaller than the minimum distance of the code, can adveedtdgt the performance of iterative decoding.

V. STRUCTURE OF PSEUDOCODEWORDS

This section examines the structure of lift-realizableyggeodewords and identifies some sufficient condi-
tions for certain pseudocodewords to potentially causentiresum iterative decoder to fail to converge to a
codeword. Some of these conditions relate to subgraphsedbdlse Tanner graph. We recall that we are only
considering the set of lift-realizable pseudocodewords thiat by Definition 2.3, the pseudocodewords have
non-negative integer components, and hence are unscaled.
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Lemma 5.1:Let p = (p1,po,.-.,pn) be a pseudocodeword in the graghthat represents the LDPC code
C. Then the vectox = p mod 2, obtained by reducing the entriesn modulo 2, corresponds to a codeword
in C.

The following implications follow from the above lemma:

« If a pseudocodeworg has at least one odd component, then it has at lkgastodd components.

« If a pseudocodeworg has a support sizesupp(p)| < dmin, then it has no odd components.

« If a pseudocodeworg does not contain the support of any non-zero codeword irupgpart, thenp has

no odd components.

Lemma 5.2:A pseudocodeworg = (p1,...,p,) can be written ap = ¢V +¢c@ + ... +c® 4 r, where
cW, ..., ¢ arek (not necessarily distinct) codewords anig some residual vector, not containing the support
of any nonzero codeword in its support, that remains aftbtraating the codeword vectoes?, . . ., ¢(*) from
p. Eitherr is the all-zeros vector, af is a vector comprising of or even entries only.

This lemma describes a particular composition of a pseuwttgordp. Note that the above result does not
claim thatp is reducible even though thesctorp can be written as a sum of codeword vectors, ..., c®),
andr. Sincer need not be a pseudocodeword, it is not necessanyptia reduciblestructurally as a sum of
codewords and/or pseudocodewords (as in Definition 2.73.diso worth noting that the decomposition of a
pseudocodeword, even that of an irreducible pseudocodevwgonot unique.

Example 5.1:For representation B of tH&, 4, 3] Hamming code as shown in Figure 19 in Section 6, label the
vertices clockwise from the top as, vo, vs, vy, vs, vg, andv;. The vectop = (p1,...,pn) = (1,2,1,1,1,0,2)
is an irreducible pseudocodeword and may be decomposed-as(1,0,1,0,0,0,1) + (0,0,0,1,1,0,1) +
(0,2,0,0,0,0,0) and also ap = (1,0,1,1,1,0,0) + (0,2,0,0,0,0,2). In each of these decompositions, each
vector in the sum is a codeword except for the last vector viicthe residual vectar.

Theorem 5.1:Letp = (p1,...,pn) be a pseudocodeword. If there is a decompositiop aé in Lemma 5.2
such thatr = 0, thenp is a good pseudocodeword as in Definition 2.8.

Theorem 5.2:The following are sufficient conditions for a pseudocodepr= (p1,...,p,) to be bad, as
in Definition 2.9:

1) wBSCIAWGN (b) < gy

2) [supp(p)| < dmin-

3) If p is an irreducible nc-pseudocodeword araipp(p)| > ¢ + 1, where/ is the number of distinct

codewords whose support is containedsipp(p).

Intuitively, it makes sense for good pseudocodewords,these pseudocodewords that are not problematic
for iterative decoding, to have a weight larger than the mum distance of the codé,,;,. However, we note
that bad pseudocodewords can also have weight largerdhgan

Definition 5.1: A stopping setS has property©® if S contains at least one pair of variable nodeandv
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Fig. 16. A minimal stopping set with property.

that are not connected by any path that traverses only vieedew/o check nodes in the subgrapgh of G
induced byS in G.

Example 5.2:In Figure 10 in Section 4, the sy, v, v4} iS @ minimal stopping set and does not have
property ©, whereas the sefv;, vs, v4, v, vs, v7, V10, V11, V12, v13} IS NOt minimal but has propert®. The
graph in Figure 16 is a minimal stopping set that has prop@rtifrhe graph in Example 4.1 has no minimal
stopping sets with propert§, and all stopping sets have size at least the minimum dieténg..

Lemma 5.3:Let S be a stopping set i7. Let tg denote the largest component an irreducible pseudocode-
word with supportS may have inG. If S is a minimal stopping set and does not have propérfythen a
pseudocodeword with suppast has maximal component 1 or 2. Thattg,= 1 or 2.

Subgraphs of the LDPC constraint graph may also give riseatbgseudocodewords, as indicated below.

Definition 5.2: A variable nodev in an LDPC constraint graply is said to beproblematicif there is a
stopping setS containingv that is not minimal but nevertheless has no proper stopptg’sc S for which
veds.

Observe that all graphs in the examples of Section 4 havelgratliic nodes and conditions 1 and 3 in
Theorem 5.2 are met in Examples 4.2 and 4.3. The problematiesnare the variable nodes in the inner
ring in Example 4.1, the nodes, vs in Example 4.2, and; in Example 4.3. Note that if a grapfi has a
problematic node, the&” necessarily contains a stopping set with propéty

The following result classifies bad nc-pseudocodewords, meispect to the AWGN channel, using the graph
structure of the underlying pseudocodeword supports, whhyg Lemma 2.1, are stopping sets in the LDPC
constraint graph.

Theorem 5.3:Let G be an LDPC constraint graph representing an LDPC &hdend letS be a stopping
set inG. Then, the following hold:

1) If there is no non-zero codeword (hwhose support is contained #, then all nc-pseudocodewords of

G, having support equal t§, are bad as in Definition 2.9. Moreover, there exists a badgusmdeword
in G with support equal tc.

2) If there is at least one codewoedwhose support is contained #), then we have the following cases:

(a) if S is minimal,
(i) there exists a nc-pseudocodewgrdvith support equal te5 iff S has propertyo.
(i) all nc-pseudocodewords with support equaldare bad.
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Fig. 17. A non-minimal stopping set as in case 2(b)(ii) of diean 5.3.

Fig. 18. A minimal stopping set as in case 2(a) of Theorem 5.3.

(b) if S is not minimal,
() and S contains a problematic node such thatv ¢ S’ for any proper stopping setS’ C
S, then there exists a bad pseudocodewprdith supportS. Moreover, any irreducible nc-
pseudocodeworg with supportS is bad.
(i) and S does not contain any problematic nodes, then every variadide inS is contained in a
minimal stopping set withinS. Moreover, there exists a bad nc-pseudocodeword with stippo
S iff either one of these minimal stopping sets is not the suppbany non-zero codeword in
C or one of these minimal stopping sets has propérty
The graph in Figure 17 is an example of case 2(b)(ii) in Theose3. Note that the stopping set in the figure
is a disjoint union of two codeword supports and therefdnerd are no irreducible nc-pseudocodewords.
The graph in Figure 18 is an example of case 2(a). The graphptg=erty © and therefore has nc-
pseudocodewords, all of which are bad.

A. Remarks on the weight vector and channels

In [6], Frey et. al show that the max-product iterative desro@@quivalently, the MS iterative decoder) will
always converge to an irreducible pseudocodeword (as imiliefi 2.7) on the AWGN channel. However,
their result does not explicitly show that for a given irreite pseudocodeword, there is a weight vector
w such that the cospw’ is the smallest among all possible pseudocodewords. In riédopns subsection,
we have given sufficient conditions under which such a weigddtor can explicitly be found for certain
irreducible pseudocodewords. We believe, however, thadinfiijnsuch a weight vectow for any irreducible

pseudocodeworgp may not always be possible. In particular, we state theviglig definitions and results.

2A proper stopping ses’ of S is a non-empty stopping set that is a strict subses of
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Definition 5.3: A truncated AWGNhannel, parameterized llyand denoted b’ AW GN (L), is an AWGN
channel whose output log-likelihood ratios correspondmtie received values from the channel are truncated,
or limited, to the interval—L, L].

In light of [15], [16], we believe that there are fewer prabiatic pseudocodewords on the BSC than on the
truncated AWGN channel or the AWGN channel.

Definition 5.4: For an LDPC constraint grap& that defines an LDPC cod® let P, .\ (G) be the set
of lift-realizable pseudocodewords 6f where for each pseudocodewapdin the set, there exists a weight
vector w such that the cospw’ on the AWGN channel is the smallest among all possible diftlizable
pseudocodewords i6v.

Let P5-(G) and P;?AWGN(L)(G) be defined analogously for the BSC and the truncated AWGNraian
respectively. Then, we have the following result:

Theorem 5.4:For an LDPC constraint grapf#, and L > 1, we have

PEsc(G) € PPawan)(G) € Phwan(G).

The above result says that there may be fewer problemagidudible pseudocodewords for the BSC than
over the TAWGN(L) channel and the AWGN channel. In other vepttle above result implies that MS iterative
decoding may be more accurate for the BSC than over the AWGNreH. Thus, quantizing or truncating the
received information from the channel to a smaller intehvgflore performing MS iterative decoding may be
beneficial. (Note that while the above result considers adispble weight vectors that can occur for a given
channel, it does not take into account the probability distion of weight vectors for the different channels,
which is essential when comparing the performance of MS diegoacross different channels.) Since the
set of lift-realizable pseudocodewords for MS iterativeeatting is the set of pseudocodewords for linear-
programming (LP) decoding (see Section 2), the same analagies over to LP decoding as well. Indeed,
at high enough signal to noise ratios, the above observaagrbeen shown true for the case of LP decoding
in [15] and more recently in [16].

VI. GRAPH REPRESENTATIONS ANDWEIGHT DISTRIBUTION

In this section, we examine different representations dividual LDPC codes and analyze the weight
distribution of lift-realizable pseudocodewords in eaepresentation and how it affects the performance of
the MS iterative decoder. We use the class|zal, 3] and[15,11,3] Hamming codes as examples.

Figure 19 shows three different graph representations ef{th, 3] Hamming code. We will call the
representationgl, B, andC, and moreover, for convenience, also refer to the graphkdnhree respective
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Representation A Representation B Representation C

Fig. 19. Three different representations of the [7,4,3] Hang code.

representations ad, B, andC'. The graphA is based on the systematic parity check matrix representati
of the [7,4,3] Hamming code and hence, contains three degree one variadkesnwhereas the graph
has no degree one nodes and is more structured (it resultgincudant parity check matrix) and contains 4
redundant check equations compareditowvhich has none, an@', which has one. In particulad andC' are
subgraphs of3, with the same set of variable nodes. Thus, the set of iitizable pseudocodewords &f is
contained in the set of lift-realizable pseudocodewordd @nd C, individually. Hence,B has fewer number
of lift-realizable pseudocodewords thahor C'. In particular, we state the following result:

Theorem 6.1:The number of lift-realizable pseudocodewords in an LDP&pQtG can only reduce with
the addition of redundant check nodesdo

The proof is obvious since with the introduction of new checddes in the graph, some previously valid
pseudocodewords may not satisfy the new set of inequalitgtcaints imposed by the new check nodes. (Recall
that at a check node having variable node neighbors , ..., v;, , a pseudocodeworg = (p1, ..., p,), Must
set of valid codewords in the graph remains the same, sincarevéntroducing only redundant (or, linearly
dependent) check nodes. Thus, a graph with more check nadesnty have fewer number of lift-realizable
pseudocodewords and possibly a better pseudocodewogidstribution.

If we add all possible redundant check nodes to the graph¢chyhwe note, is an exponential number
in the number of linearly dependent rows of the parity checkrix of the code, then the resulting graph
would have the smallest number of lift-realizable pseudewsrds among all possible representations of the
code. If this graph does not have any bad nc-pseudocodeWlmutts lift-realizable ones and those arising on
the computation tree) then the performance obtained wéttative decoding is the same as the optimal ML
performance.

Remark 6.1:Theorem 6.1 considers only the set of lift-realizable pseodewords of a Tanner graph. On
adding redundant check nodes to a Tanner graph, the shape cbinputation tree is altered and thus, it is
possible that some new pseudocodewords arise in the alberagutation tree, which can possibly have an
adverse effect on iterative decoding. Thel, 4] repetition code example from Section 2.C illustrates this.
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Iterative decoding is optimal on the single cycle represtm of this code. However, on adding a degree
four redundant check node, the iterative decoding perfoomadeteriorates due to the introduction of bad
pseudocodewords to the altered computation tree. (SeeeFigu (The set of lift-realizable pseudocodewords
however remains the same for the new graph with redundamkamedes as for the original graph.)

Returning to the Hamming code example, graBhcan be obtained by adding edges to eiteior C,
and thus,B has more cycles thad or C. The distribution of the weights of the irreducible liftaiezable
pseudocodewords for the three graphsB, and C is showr in Figure 20. (The distribution considers all
irreducible pseudocodewords in the graph, since irredeigibeudocodewords may potentially prevent the MS
decoder to converge to any valid codeword [6].) Althoughtlakee graphs have a pseudocodeword of weight
three!, Figure 20 shows thaB has most of its lift-realizable pseudocodewords of highghti whereas”,
and more particularlyA, have more low-weight lift-realizable pseudocodewordse Torresponding weight
distributions over the BEC and the BSC channels are showngar& 21. B has a better weight distribution
than A andC' over these channels as well.

The performance of MS iterative decoding 4f B, and C' on the BIAWGNC with signal to noise ratio
Ey/N, is shown in Figures 22, 23, and 24, respectively. (The masinmumber of decoding iterations was
fixed at 100.) The performance plots show both the bit errer aad the frame error rate, and further, they also
distinguish between undetected decoding errors, thatauset due to the decoder converging to an incorrect
but valid codeword, and detected errors, that are causedadtiee decoder failing to converge to any valid
codeword within the maximum specified number of decodingaitiens, 100 in this case. The detected errors
can be attributed to the decoder trying to converge to ansecigpocodeword rather than to any valid codeword.

Representatiodd has a significant detected error rate, whereas represemtBtishows no presence of
detected errors at all. All errors in decodif$) were due to the decoder converging to a wrong codeword.
(We note that an optimal ML decoder would yield a performanlmsest to that of the iterative decoder
on representatiorB.) This is interesting since the grapgh is obtained by adding 4 redundant check nodes
to the graphA. The addition of these 4 redundant check nodes to the graploves most of the low-
weight nc-pseudocodewords that were presemt.ifWe note here that representatiBnincludes all possible
redundant parity-check equations there are for the [7H4a3hming code.) Representatiéhhas fewer number

3The plots considered all pseudocodewords in the three grépt had a maximum component value of at most 3. Hence, for
each codeword:, 2c and 3c are also counted in the histogram, and each has weight dtdgas However, each irreducible nc-
pseudocodeworg is counted only once, gs contains at least one entry greater than 1, and any nonzetpleawf p would have a
component greater than 3. Thesalue (see Section 5) is 3 for the grapAs B, and C of the [7, 4, 3] Hamming code.

“Note that this pseudocodeword is a valid codeword in thetgeaq is thus ajood pseudocodeword for iterative decoding.
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[7,4,3] Hamming code
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Fig. 20. Pseudocodeword-weight (AWGN) distribution of negentations A,B,C of the [7,4,3] Hamming code.

of pseudocodewords compared 40 However, the set of irreducible pseudocodeword€’os not a subset
of the set of irreducible pseudocodewordsAf The performance of iterative decoding on representation
indicates a small fraction of detected errors.

Figure 25 compares the performance of min-sum decoding ®thttee representations. Clearly, having
the best pseudocodeword weight distribution among the trepresentations, yields the best performance with
MS decoding, with performance almost matching that of thenmgd ML decoder.

Figure 26 shows the performance of the three different smprations over the BSC channel with MS
iterative decoding. Since there are ofy= 128 different error patterns, the performance of MS decoding fo
each error pattern was determined and the average numbatmft@rrors were computed. Representations A
and C failed to correct any non-zero error pattern whergaesentation B corrected all one-bit error patterns.
The performance of MS decoding using representation B wastichl to the performance of the ML decoder
and the MS decoder always converged to the ML codeword wipneszntation B. This goes to show that
representation B is in fact the optimal representation tier BSC channel.

Similarly, we also analyzed three different representatiof the[15,11,3] Hamming code. Representation
A has its parity check matrix in the standard systematic fonuh #hus, the corresponding Tanner graph has
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[7,4,3] Hamming code [7,4,3] Hamming code
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Fig. 21. Pseudocodeword-weight distribution (BEC and B&&naoels) of representations, B, C of the [7, 4, 3] Hamming code.

4 variable nodes of degree one. Representafioimcludes all possible redundant parity check equations of
representatiomd and has the best pseudocodeword-weight distribution.deptatior' includes up to order-
two redundant parity check equations from the parity cheeltrisn of representatiom, meaning, the parity
check matrix of representatiafi contained all linear combinations of every pair of rows ie farity check
matrix of representatiod. Thus, its (lift-realizable) pseudocodeword-weight dligttion is superior to that of

A but inferior to that ofB. (See Figure 30.)

The analogous performance of MS iterative decoding of sr@ationsA, B, and C' of the [15,11, 3]
Hamming code on a BIAWGNC with signal to noise ratig,/N, is shown in Figures 27, 28, and 29,
respectively. (The maximum number of decoding iteratiores ixed at 100.) We observe similar trends
in the performance curves as in the previous examplshows a prominent detected error rate, wherBas
andC show no presence of detected errors at all. The results sutge merely adding order two redundant
check nodes to the graph df is sufficient to remove most of the low-weight pseudocodelsor

Inferring from the empirical results of this section, we coant that LDPC codes that have structure and
redundant check nodes, for example, the class of LDPC cdatased from finite geometries [17], are likely to
have fewer number of low-weight pseudocodewords in corapario other randomly constructed LDPC graphs
of comparable parameters. Despite the presence of a largberwf short cycles (i.e., 4-cycles and 6-cycles),
the class of LDPC codes in [17] perform very well with itevatidecoding. It is worth investigating how the
set of pseudocodewords among existing LDPC constructiande improved, either by adding redundancy or
modifying the Tanner graphs, so that the number of (bad)gsmadewords, both lift-realizable ones as well

as those occurring on the computation tree, is lowered.
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[7,4,3] Hamming Code: Representation A [7.4,3] Hamming Code: Representation B
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Fig. 24. Representation C. Fig. 25. Comparison between representations.

Performance of the [7,4,3] Hamming code with min-sum ifeeatlecoding over the BIAWGNC.

VIlI. CONCLUSIONS

This paper analyzed pseudocodewords of Tanner graphs,tiétiiocus on the structure, bounds on the
minimum pseudocodeword weight, and iterative decodindopmance. It would be worthwhile to relate the
results in Section 6 to the stopping redundancy, as intredlirc [18]. Since this paper primarily dealt with lift-
realizable pseudocodewords, the results presented ar@jaidicable in the analysis of LP decoding. We hope
the insights gained from this paper will aid in the design BIRC codes with good minimum pseudocodeword
weights.

November 27, 2006 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 30

Performance of [7,4,3] Hamming code representations with min-sum decoding
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Fig. 26. Performance of the [7,4,3] Hamming code represientawith MS decoding over the BSC.
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