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Machine Learning

Machine Learning methods give

computers the ability to learn without being explicitly
programmed.

(Arthur Samuel, 1959)

Actually: Fit statistical models to data by clever optimisation of
appropriate target functions.

“Learning”: Make statistical model underlying some “learning
machine” explicit.
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Statistical Learning

An oxymoron, like “Statistical Science”.

Either you learn, or you estimate.
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Statistical Modelling

Too dull a term to attract any grant money.

However: Explicitly acknowledges the underlying probabilistic
theory.

Today: Understand the statistical model behind a (special)
random forest.
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Random Forest

What is a random forest?

A model for

P(Y ≤ y | X = x) = PY |X=x(y), ∀x ∈ X
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Parametric (!) Setup

Unconditional model for response

PY ,Θ = {PY ,ϑ | ϑ ∈ Θ}

Conditional model belongs to this family:

PY |X=x = PY ,ϑ(x)

Task: Estimate ϑ function
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Likelihood Contributions

“Learning” Data: (yi , xi ), i = 1, . . . ,N

`i : Θ→ R

`i (ϑ(xi )) gives the unconditional likelihood for observation i
with candidate parameters ϑ(xi )

Handle censoring and truncation appropriately here
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Adaptive Local Likelihood Estimators

ϑ̂N(x) := arg max
ϑ∈Θ

N∑
i=1

wN
i (x)`i (ϑ)

Conditioning works via weight functions wN
i (x) only.
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Unconditional Maximum Likelihood

ϑ̂N
ML := arg max

ϑ∈Θ

N∑
i=1

`i (ϑ)
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Trees

X =
•⋃

b=1,...,B
Bb

wN
Tree,i (x) :=

B∑
b=1

I (x ∈ Bb ∧ xi ∈ Bb)

ϑ̂N
Tree(x) := arg max

ϑ∈Θ

N∑
i=1

wN
Tree,i (x)`i (ϑ)
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Forests

X =
•⋃

b=1,...,Bt

Btb for t = 1, . . . ,T trees

wN
Forest,i (x) :=

T∑
t=1

Bt∑
b=1

I (x ∈ Btb ∧ xi ∈ Btb)

ϑ̂N
Forest(x) := arg max

ϑ∈Θ

N∑
i=1

wN
Forest,i (x)`i (ϑ)
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OK, Done! Really?

These “nearest neighbor weights” have been used before, for
example in conditional inference forests (party, partykit) or
quantile regression forests (quantregForest) with STANDARD
trees.

Unfortunately, there is a catch.
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The Problem
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The Solution

We need splits sensitive to distributional and not just mean
changes.

Transformation model (google “MLT useR! 2016”):

P(Y ≤ y | X = x) = Φ(aBs,d(y)>ϑ(x))

– aBs,d(y)>ϑ(x) is a smooth, monotone Bernstein of degree
d

– d = 1 means PY |X=x = N (µ(x), σ2(x))

– d = 5 is surprisingly flexible

All “classical” distributions: Distribution forests (Lisa, in 20min)
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Transformation Trees (TRT)

– Start with ϑ̂N
ML

– Search for parameter instabilities in ϑ̂N
ML as a function of x

using model-based recursive partitioning (a beefed-up
version)

– Potentially find changes in the mean AND higher moments

– Forests: Aggregate these trees via adaptive local likelihood
estimation
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Transformation Forests (TRF)

P̂(Y ≤ y | X = x) = Φ(aBs,d(y)>ϑ̂N
Forest(x))

makes the forest “parametric” with

– Forest likelihood

– Prediction intervals

– Likelihood-based variable importance

– Parametric bootstrap

– . . .

and applicable to censored and truncated data.

University of Zurich, EBPI useR! 2017, 2017-07-05 Transformation Forests Page 16



Swiss Body Mass Index Distributions

2012 survey (N = 16427) in Switzerland
Explain conditional distribution of BMI given

– Sex,

– Smoking status,

– Age,

– Education,

– Physical activity,

– Alcohol intake,

– Fruit and vegetable consumption,

– Region, and

– Nationality.
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Sex- and Smoking

BMI
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Log-likelihood: −43564.30
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Transformation Tree

Female

Male
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Log-likelihood: −42911.37
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Transformation Forest: Variable Importance

Mean Decrease
Log−Likelihood

Nationality

Region

Fruit and vegetables

Alcohol intake

Smoking

Physical activity

Education

Age

Sex

500 1000 1500 2000 2500 3000

In-bag log-likelihood: −42629.63; out-of-bag: −42856.93

University of Zurich, EBPI useR! 2017, 2017-07-05 Transformation Forests Page 20



Transformation Forest: Partial Deciles
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Summary

– Transformation Trees and Forests are adaptive local
likelihood estimators of a conditional distribution function

– Inherit the nonparametric freedom and the parametric
simplicity

– Great as supermodels to compare simpler ones to

– Can predict distributions, not just means

– Make model evaluation (parametric bootstrap) and
inference (variable importance) easier and more generally
applicable

– Applicable to censored and truncated responses

https://arxiv.org/abs/1701.02110
http://arxiv.org/abs/1706.08269

https://r-forge.r-project.org/projects/ctm/
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