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Machine Learning

Machine Learning methods give

computers the ability to learn without being explicitly
programmed.

(Arthur Samuel, 1959)

Actually: Fit statistical models to data by clever optimisation of
appropriate target functions
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Machine Learning

THIS 15 YOUR MACHINE LERRNING SYSTET?

YUP! YaU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.

WHAT IF THE ANSIJERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START [OOKING RIGHT

Source: https://xkcd.com/1838/
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Statistical Learning

An oxymoron, like “Statistical Science”

Either you learn, or you estimate
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Statistical Modelling

Too dull a term to attract any grant money

However: Explicitly acknowledges the underlying probabilistic
theory
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Statistical Models

What is a statistical model?

Y ~ Py

What is a regression model?

Y | X=x~Pyjx=x
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Random Forest

What is a random forest (in general, not only B&C)?

Classical:
E(Y | X=x)=f(x), ¥xeX
Here:

P(Y <y |[X=x)=Pyx—x(y) =f(y |x), ¥xeiX
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Parametric (!) Setup

Unconditional model for response

Py,@ = {Pyﬁ ‘ J e 9}

Assumption: Regression model belongs to this family:

Pyix=x = Py 9(x)

Task: Estimate 99 function
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Likelihood Contributions

“Learning” data (y;,x;),i =1,..., N plus family Py g defines
likelihood function

f;:@—)R

£;(V¥(x;)) gives the likelihood for observation i with candidate
parameters 9(x;)

Handle censoring and truncation appropriately here
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Adaptive Local Likelihood Estimators

A

N N
9 (x) : —argergaXZW (x)4i(9)

"_

Conditioning works via weight functions W,-N(x) only
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Unconditional Maximum Likelihood

I, = arg mafo;(ﬂ)
de0 =
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Trees

X= U Bp
b=1...B
B
W'Ilyree,i(x) = Z I(X € Bb A Xj € Bb)
b=1
N
9N (x) = arg maxz W{Vree,,-(x)ﬁ,-(ﬂ)
CASICR—
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Forests

X= U Bwfort=1,...,T trees

b=1,...,B:
T B:
Wlé\cl)rest,i(x) = Z I(x € B A Xj € Byp)
t=1 b=1
4N .
ﬂForest(x) = argen;)axz WForest I(X)E (1'9)

I'_
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OK, Done! Really?

These “nearest neighbor weights” have been used before, first in
— “bagging survival trees” (2004), in

— “conditional inference forests” (party(kit), since 2005) and
in

— “quantile regression forests” (quantregForest, since 2006)
with standard trees (CART- or CTree-like).

Unfortunately, there is a catch.
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The Problem

0.0 0.2 0.4 0.6 0.8 1.0
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The Problem

—— Quantile Regression Forest
— — Transformation Tree ®

w -] — Transformation Forest .~ o

0.0 0.2 0.4 0.6 0.8 1.0
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The Solution

We need splits sensitive to distributional and not just mean
changes.

Generic approach (“Distribution trees and forests”):

P(Y <y | X =x)=Pyyx()

Here: Use transformation model

P(Y <y | X =x) = Fz(a(y) 9(x))
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Why Transformation Models?

With
P(Y <y) =P(h(Y) < h(y)) = Fz(h(y))

we can generate all distributions Py from some Fz and a
corresponding h.

Suitable parameterisations of h(y) = a(y)' ¥ preserve much of
this generality.
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Why Transformation Models?

As we always observe intervals (y, y] the exact likelihood is

LY € (y.7]) = Fz(a(y) ' 9) — Fz(a(y)"9)

Always defined, always a probability (Lindsey, 1999,
JRSS-D)

Applicable to discrete responses

Covers all types of random censoring and truncation

For a precise datum y of some continuous Y, the
likelihood can be approximated by the density

fr(v) = fz(a(y)"9)a'(y) "9
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Why Transformation Models?

Three ways to look at a normal linear model:

1.
Y = a+%'B+40e, e~N(0,1)
E(Y —aX=x) = %'
2
P(Y <y|X=x) = ¢(y_“;m>
3.
P(Y <y|]X=x) = (a1 +dy—% B)

E(d1+ @Y X=x) = %'3

with & = —a/o,82 =1/0 > 0 and 3 = 3/0.
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Why Transformation Models?

View (3) allows us to see that the normal linear model is of the
form

P(Y <y[X=x) = Fz(hy(y)—%'B)
E(hy(Y)X=x) = %'B

with Fz a cdf of an absolutely continuous rv Z and hy a
monotone “baseline transformation function”.

With Fz(z) = 1 — exp(—exp(z)) and “unspecified” hy we get
the continuous proportional hazards, or Cox, model.

Other choices of Fz and hy generate all linear transformation
models.
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Why Transformation Models?

“Linear” transformation models
o T ST
P(Y <y|X=x)=Fz(a(y) 9% B)
“Non-linear” transformation models
P(Y <y |X=x)=Fz(a(y) 9 — B(x))
Conditional transformation models
P(Y <y|X=x)=Fz(a(y) 9(x))

with additive structure of 19(x)
Transformation trees/forests

P(Y <y | X =x) = Fz(a(y) 9(x))

with non-linear structure of ¥(x)
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Parameterisation

Transformation trees and forests based on parameterisation

P(Y <y | X =x) = Fz(apsa(y) 9(x))

— aps.4(y) T9(x) is a smooth, monotonic Bernstein
polynomial of degree d

- d =1 with Fz = ® means Py x_, = N(u(x), 02(x))
— d = 5 is surprisingly flexible
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Model-based Recursive Partitioning (MOB)

Core idea

— Fit parameters 1A9M|_ in unconditional model Py

Compute individual gradient contributions (“scores”)

_04i(9)

S; =

oY S=DnL

Select predictor from x with strongest parameter instability
as indicated by highest association to s;,i=1,..., N

— Find "best” binary split; repeat recursively
Implemented for many models, including (G)LM(M)s,
parametric survival, 5-regression, spatial lag,

Bradley-Terry-Luce, various Item Response Theory models,
subgroup analyses, etc.
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Transformation Trees (TTree)

Start with Oy,

Search for parameter instabilities in 90y, as a function of x
using (a beefed-up version) of MOB

Potentially find changes in the mean AND higher moments

Forests: Aggregate these trees via adaptive local likelihood
estimation
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Transformation Forests (TForest)

B(Y <y | X =x)=0(@8sa(y) Dforest(x))

makes the forest “parametric” (one model for each x) with

Forest likelihood

Prediction intervals

Likelihood-based variable importance

Parametric bootstrap

and applicable to censored and truncated data.
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Swiss Body Mass Index Distributions

2012 survey (N = 16427) in Switzerland
Explain conditional distribution of BMI given

— Sex,

Smoking status,

- Age,

Education,

Physical activity,
Alcohol intake,

— Fruit and vegetable consumption,

Region, and

Nationality.
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BMI by Sex and Smoking

152025 30 35 40
I I O O T

152025 30 35 40
I T

| S I |

Male Male Male Male Male
Never Former Light Medium Heavy
B - 0.10
- - 0.05
> — - 0.00
@ Female Female Female Female Female
g Never Former Light Medium Heavy
0.10 | -
0.05 | -
0.00 L
1 o+ rr 1+ 1 11111 rro— 1 1 T+ T° °T1T T T T TT
15 20 25 30 35 40 15 20 25 30 35 40 15 20 25 30 35 40
H H . BMI
Log-likelihood: —43564.30
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Transformation Tree

n=1759
-
n ’ 14 physcat >0
p<0.001 <0
n = 5566 "
edu n =555
p<0.001 ]
pop—————————
n=7777 >36 L,
age n=3252
p<0.001 n=1197
<36
Male 5 age >25
. p<0.001 <25
16427
sex n=1014
p <0001 n=1815
n 72804 2374
agramtag_____ >2.
p<0.001 <2374
Female n=a421 [N B—
edu n =989
q p<0.001 1
>51
age n=617
R :50 p<0.001 n=2852
<51 " :47 edu ]
p<0.001 |
>34
3 age n=295
nasrg  P<0001 1 n=568
i physcat >1-2
p<0.001 <1-2

n=2082

Log-likelihood: —43079.42
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Transformation Forest: Variable Importance

Sex

Age

Education
Physical activity
Smoking
Alcohol intake
Nationality
Region

Fruit and vegetables

T T T T T
200 400 600 800 1000
Mean Decrease
Log-Likelihood

Log-likelihood: —42520.18
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Transformation Forest: Partial Deciles

BMI
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More Complex Models

For example: Subgroup analysis, stratified / personalised
medicine, ...

Conditional transformation model

P(Y <y | treatment, X = x) = Fz(aps 4(y) 9(x) — A(x)l (treated))

Both the “intercept function” ags 4(y) ' 9(x) and
the treatment effect §(x) may depend on x

Fz() =1 — exp(—exp()) makes § a log-hazard ratio

Include J in search for parameter instabilities
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Stratified Medicine

Partition log-hazard ratio 8 from a fully parametric Cox model
P(T > t | treatment) = exp(— exp(aps.q(t) "9 — B/(treated))

for a randomised controlled clinical trial on hormonal treatment
of breast-cancer patients

> library("tram")
> cmod <- Coxph(ctime ~ horTh, data = GBSG2)

> library("trtf")

> tmod <- trafotree(cmod,

+ formula = ctime ~ horTh | .,
+ data = GBSG2)
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Stratified Medicine

Node 5 (n = 74)

0.8 4

0.6 4
0.4
0.2

__ Node 2 (n = 433)
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University of Zurich, EBPI

0

500 1000 1500 2000 2500

0

500 1000 1500 2000 2500

Roche Advanced Analytics, 2019 Random Forest Models for Distributions

Page 36



Survival Forests

Log-rank splitting implicitly assumes proportional hazards model

P(T >t | X = x) = exp(—exp(h(y) — 5(x)))

= cforest, ranger, randomForestSRF are insensitive to
non-proportional hazards effects.

Switching to transformation forests based on
P(T >t | X =x) = exp(—exp(a(y) ' 9(x)))

relaxes this restriction.
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Discussion

The “two cultures” of statistical modelling come closer

With Y = BMI, rain, house prices, survival time etc.

A

FE(YIX=x)=f(x)=x'j3

not interesting (or even harmful)

- ]P’Y’@(X) more informative

Flexibility (non-linear interactions) of B&C random forests
preserved

Simplicity of B&C random forests preserved

Large sample behaviour?

High dimensional?
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Low and High

¥ = N(u(x). °(x))
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Resources

“(Survival) Transformation Forests”, trtf,
https://arxiv.org/abs/1701.02110,
https://arxiv.org/abs/1902.01587

— “Top-Down Transformation Choice” (with BMI example), SM,
trtf, http://arxiv.org/abs/1706.08269

— "Most Likely Transformations”, SJoS, mlt, tram,
http://dx.doi.org/10.1111 /sjos.12291

— “Conditional Transformation Models”, JRSS-B,
http://dx.doi.org/10.1111/rssb.12017

— “"Model-based Recursive Partitioning”, JCGS, partykit
http://dx.doi.org/10.1198/106186008X319331,

— “Model-based Recursive Partitioning for Subgroup Analyses”,
IJB, modeldyou http://dx.doi.org/10.1515/ijb-2015-0032

— “Model-based Forests”, SMMR, model4you,
http://dx.doi.org/10.1177,/0962280217693034, AOAS
https://arxiv.org/abs/1804.02921
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Low

and High: 10% Quantile

Y~ N(u(x), 6*(x))
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Low and High: 90% Quantile

Y~ N(u(x), 6*(x))
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