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Machine Learning

Machine Learning methods give

computers the ability to learn without being explicitly
programmed.

(Arthur Samuel, 1959)

Actually: Fit statistical models to data by clever optimisation of
appropriate target functions
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Machine Learning

Source: https://xkcd.com/1838/
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Statistical Learning

An oxymoron, like “Statistical Science”

Either you learn, or you estimate
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Statistical Modelling

Too dull a term to attract any grant money

However: Explicitly acknowledges the underlying probabilistic
theory
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Statistical Models

What is a statistical model?

Y ∼ PY

What is a regression model?

Y | X = x ∼ PY |X=x
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Random Forest

What is a random forest (in general, not only B&C)?

Classical:

E(Y | X = x) = f (x), ∀x ∈ X

Here:

P(Y ≤ y | X = x) = PY |X=x(y) = f (y | x), ∀x ∈ X
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Parametric (!) Setup

Unconditional model for response

PY ,Θ = {PY ,ϑ | ϑ ∈ Θ}

Assumption: Regression model belongs to this family:

PY |X=x = PY ,ϑ(x)

Task: Estimate ϑ function
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Likelihood Contributions

“Learning” data (yi , xi ), i = 1, . . . ,N plus family PY ,Θ defines
likelihood function

`i : Θ→ R

`i (ϑ(xi )) gives the likelihood for observation i with candidate
parameters ϑ(xi )

Handle censoring and truncation appropriately here
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Adaptive Local Likelihood Estimators

ϑ̂N(x) := arg max
ϑ∈Θ

N∑
i=1

wN
i (x)`i (ϑ)

Conditioning works via weight functions wN
i (x) only
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Unconditional Maximum Likelihood

ϑ̂N
ML := arg max

ϑ∈Θ

N∑
i=1

`i (ϑ)
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Trees

X =
•⋃

b=1,...,B
Bb

wN
Tree,i (x) :=

B∑
b=1

I (x ∈ Bb ∧ xi ∈ Bb)

ϑ̂N
Tree(x) := arg max

ϑ∈Θ

N∑
i=1

wN
Tree,i (x)`i (ϑ)
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Forests

X =
•⋃

b=1,...,Bt

Btb for t = 1, . . . ,T trees

wN
Forest,i (x) :=

T∑
t=1

Bt∑
b=1

I (x ∈ Btb ∧ xi ∈ Btb)

ϑ̂N
Forest(x) := arg max

ϑ∈Θ

N∑
i=1

wN
Forest,i (x)`i (ϑ)
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OK, Done! Really?

These“nearest neighbor weights”have been used before, first in

– “bagging survival trees” (2004), in

– “conditional inference forests” (party(kit), since 2005) and
in

– “quantile regression forests” (quantregForest, since 2006)

with standard trees (CART- or CTree-like).

Unfortunately, there is a catch.
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The Problem
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The Problem
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The Solution

We need splits sensitive to distributional and not just mean
changes.

Generic approach (“Distribution trees and forests”):

P(Y ≤ y | X = x) = PY ,ϑ(x)(y)

Here: Use transformation model

P(Y ≤ y | X = x) = FZ (a(y)>ϑ(x))
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Why Transformation Models?

With

P(Y ≤ y) = P(h(Y ) ≤ h(y)) = FZ (h(y))

we can generate all distributions PY from some FZ and a
corresponding h.

Suitable parameterisations of h(y) = a(y)>ϑ preserve much of
this generality.
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Why Transformation Models?

As we always observe intervals (
¯
y , ȳ ] the exact likelihood is

L(ϑ|Y ∈ (
¯
y , ȳ ]) := FZ (a(ȳ)>ϑ)− FZ (a(

¯
y)>ϑ)

– Always defined, always a probability (Lindsey, 1999,
JRSS-D)

– Applicable to discrete responses

– Covers all types of random censoring and truncation

– For a precise datum y of some continuous Y , the
likelihood can be approximated by the density

fY (y) = fZ (a(y)>ϑ)a′(y)>ϑ
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Why Transformation Models?

Three ways to look at a normal linear model:

1.

Y = α + x̃>β + σε, ε ∼ N(0, 1)

E(Y − α|X = x) = x̃>β

2.

P(Y ≤ y |X = x) = Φ

(
y − α− x̃>β

σ

)
3.

P(Y ≤ y |X = x) = Φ(α̃1 + α̃2y − x̃>β̃)

E(α̃1 + α̃2Y |X = x) = x̃>β̃

with α̃1 = −α/σ, α̃2 = 1/σ > 0 and β̃ = β/σ.
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Why Transformation Models?

View (3) allows us to see that the normal linear model is of the
form

P(Y ≤ y |X = x) = FZ (hY (y)− x̃>β̃)

E(hY (Y )|X = x) = x̃>β̃

with FZ a cdf of an absolutely continuous rv Z and hY a
monotone “baseline transformation function”.

With FZ (z) = 1− exp(− exp(z)) and “unspecified”hY we get
the continuous proportional hazards, or Cox, model.

Other choices of FZ and hY generate all linear transformation
models.
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Why Transformation Models?

“Linear” transformation models

P(Y ≤ y | X = x) = FZ (a(y)>ϑ− x̃>β)

“Non-linear” transformation models

P(Y ≤ y | X = x) = FZ (a(y)>ϑ− β(x))

Conditional transformation models

P(Y ≤ y | X = x) = FZ (a(y)>ϑ(x))

with additive structure of ϑ(x)
Transformation trees/forests

P(Y ≤ y | X = x) = FZ (a(y)>ϑ(x))

with non-linear structure of ϑ(x)
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Parameterisation

Transformation trees and forests based on parameterisation

P(Y ≤ y | X = x) = FZ (aBs,d(y)>ϑ(x))

– aBs,d(y)>ϑ(x) is a smooth, monotonic Bernstein
polynomial of degree d

– d = 1 with FZ = Φ means PY |X=x = N (µ(x), σ2(x))

– d = 5 is surprisingly flexible
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Model-based Recursive Partitioning (MOB)

Core idea

– Fit parameters ϑ̂ML in unconditional model PY ,ϑ

– Compute individual gradient contributions (“scores”)

si =
∂`i (ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ̂ML

– Select predictor from x with strongest parameter instability
as indicated by highest association to si , i = 1, . . . ,N

– Find “best” binary split; repeat recursively

Implemented for many models, including (G)LM(M)s,
parametric survival, β-regression, spatial lag,
Bradley-Terry-Luce, various Item Response Theory models,
subgroup analyses, etc.
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Transformation Trees (TTree)

– Start with ϑ̂N
ML

– Search for parameter instabilities in ϑ̂N
ML as a function of x

using (a beefed-up version) of MOB

– Potentially find changes in the mean AND higher moments

– Forests: Aggregate these trees via adaptive local likelihood
estimation
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Transformation Forests (TForest)

P̂(Y ≤ y | X = x) = Φ(aBs,d(y)>ϑ̂N
Forest(x))

makes the forest “parametric” (one model for each x) with

– Forest likelihood

– Prediction intervals

– Likelihood-based variable importance

– Parametric bootstrap

– . . .

and applicable to censored and truncated data.
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Swiss Body Mass Index Distributions

2012 survey (N = 16427) in Switzerland
Explain conditional distribution of BMI given

– Sex,

– Smoking status,

– Age,

– Education,

– Physical activity,

– Alcohol intake,

– Fruit and vegetable consumption,

– Region, and

– Nationality.
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BMI by Sex and Smoking

BMI

D
en

si
ty

0.00
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0.10

15 20 25 30 35 40

Never
Female

Former
Female

15 20 25 30 35 40

Light
Female

Medium
Female

15 20 25 30 35 40

Heavy
Female

Never
Male

15 20 25 30 35 40

Former
Male

Light
Male

15 20 25 30 35 40

Medium
Male

0.00

0.05

0.10

Heavy
Male

Log-likelihood: −43564.30
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Transformation Tree

Female

Male
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University of Zurich, EBPI Erasmus University Rotterdam, 2019-03-22 Transformation Forests Page 31



Transformation Forest: Variable Importance

Mean Decrease
Log−Likelihood

Fruit and vegetables

Region

Nationality

Alcohol intake

Smoking

Physical activity

Education

Age

Sex

200 400 600 800 1000 1200

Log-likelihood: −42520.18
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Transformation Forest: Partial Deciles
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More Complex Models

For example: Subgroup analysis, stratified / personalised
medicine, ...

Conditional transformation model

P(Y ≤ y | treatment,X = x) = FZ (aBs,d(y)>ϑ(x)− β(x)I (treated))

– Both the “intercept function” aBs,d(y)>ϑ(x) and

– the treatment effect β(x) may depend on x

– FZ () = 1− exp(− exp()) makes β a log-hazard ratio

– Include β̂ in search for parameter instabilities
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Stratified Medicine

Partition log-hazard ratio β from a fully parametric Cox model

P(T > t | treatment) = exp(− exp(aBs,d(t)>ϑ− βI (treated))

for a randomised controlled clinical trial on hormonal treatment
of breast-cancer patients

> library("tram")

> cmod <- Coxph(ctime ~ horTh, data = GBSG2)

> library("trtf")

> tmod <- trafotree(cmod,

+ formula = ctime ~ horTh | .,

+ data = GBSG2)
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Stratified Medicine
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Survival Forests

Log-rank splitting implicitly assumes proportional hazards model

P(T > t | X = x) = exp(− exp(h(y)− β(x)))

⇒ cforest, ranger, randomForestSRF are insensitive to
non-proportional hazards effects.

Switching to transformation forests based on

P(T > t | X = x) = exp(− exp(a(y)>ϑ(x)))

relaxes this restriction.
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Discussion

– The “two cultures” of statistical modelling come closer

– With Y = BMI, rain, house prices, survival time etc.

Ê(Y |X = x) = f̂ (x) = x>β̂

not interesting (or even harmful)

– PY ,ϑ̂(x) more informative

– Flexibility (non-linear interactions) of B&C random forests
preserved

– Simplicity of B&C random forests preserved

– Large sample behaviour?

– High dimensional?
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Y ~ N(µ(x), σ2(x))

University of Zurich, EBPI Erasmus University Rotterdam, 2019-03-22 Transformation Forests Page 39



Resources

– “(Survival) Transformation Forests”, trtf,
https://arxiv.org/abs/1701.02110,
https://arxiv.org/abs/1902.01587

– “Top-Down Transformation Choice” (with BMI example), SM,
trtf, http://arxiv.org/abs/1706.08269

– “Most Likely Transformations”, SJoS, mlt, tram,
http://dx.doi.org/10.1111/sjos.12291

– “Conditional Transformation Models”, JRSS-B,
http://dx.doi.org/10.1111/rssb.12017

– “Model-based Recursive Partitioning”, JCGS, partykit
http://dx.doi.org/10.1198/106186008X319331,

– “Model-based Recursive Partitioning for Subgroup Analyses”,
IJB, model4you http://dx.doi.org/10.1515/ijb-2015-0032

– “Model-based Forests”, SMMR, model4you,
http://dx.doi.org/10.1177/0962280217693034, AOAS
https://arxiv.org/abs/1804.02921
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Y ~ N(µ(x), σ2(x))
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Low and High: 10% Quantile
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Y ~ N(µ(x), σ2(x))
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Low and High: 90% Quantile
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