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Indeed, all statistical conclusions are based on
marginality.

Lindsey and Lambert, SiM, 1998
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Setup

Clustered or longitudinal observations

Interested in marginal effects for cluster elements or at
specific times (for example, treatment effects)

Possibly weird response distribution

Possibly discrete or interval-censored data
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Challenge

Obtain a simple analytic model for the marginal distribution.

What does “simple” mean?

simple := transformation model
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Transformation Models ...

... describe whole distributions
P(Y<y|X=X)
not only means

E(Y | X = x)
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Transformation Models ...

P, — Ph( Y)
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The “Normal” Linear Regression Model

Y=a+x'v+0Z Z~N(0,1)

everything but “normal”

most special case
- Y| x~N(a+x"v,02)
no way escaping normal land

Adding a normal random effect u" R, R ~ Ng(0g, G), still
allows marginal inference.
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Generalisation |

Y = a+x'v+0Z, Z~N(0,1)
— E(Y|X=X) = a+x'y ;Y[ X=x~N()
S gEY|[X=X) = a+x'~ , Y| X=x~ ExpFam(,)

Generalized Linear Models

By J. A. NELDER and R. W. M. WEDDERBURN

Rothamsted Experimental Station, Harpenden, Herts
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Generalisation Il

Y = a+x'v+0Z Z~N(0,1)

e Yoo x' T4z, Z~N(O,1)
g g
T R A 29 T %)
g
— h(Y) = x'B+ Z, Z~N(0,1)
h(Y) = xX'B+ Z, Z~

Transformation models, Z ¢ R with absolute continuous
log-concave density f, h: R — R nondecreasing
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An Analysis of Transformations (1964)

An Analysis of Transformations
By G. E. P. Box and D. R. Cox
University of Wisconsin Birkbeck College, University of London

Professor D. V. LINDLEY in the Chair]

Conceptually more powerful but, at the time, hard to
compute and thus restricted to

ik a IS )

) with Z ~ N(0, o®)
log(y) A=

h(y | A) =

“Box-Cox” power transformation
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Conditional Distribution Functions

hY) = x'B+2, Z~F
SP(Y<y|X=x) = F(h(y)-x'p)

also allows discrete models via step-function h

Linear transformation models: Proportional hazards,
proportional odds, ...

aka Probabilistic index models:

P(Y1 < Yg | X1,X2) = mz((X1 — X2)Tﬂ)
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Log-likelihoods

Observed (y, y] C R:

log[F{h(y | x)} — F{h(y [ x)}]

This includes discrete and censored observations and, via
(Y(ky> Y(k+1))> the nonparametric likelihood.

Observed Y € R:

~ log[f{h(y | X)}] + log{N'(y | x)}

10.1111/sjos.12291
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https://doi.org/10.1111/sjos.12291

Correlated Observations

In both GLMs and transformation models, adding random
effects defines conditional models

GLM:

JE(Y|X=x,U=u,R)) = a+x'v+u'R

Transformation model:

F'P(Y<y|X=x,U=uR)) =hy)-x"B-u"R

Except for random effects R from a bridge distribution to F
or g~ ', 3 does not have a marginal interpretation.
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Mixed-effects Transformation Models

Mixed-effects transformation models via conditional
distribution

P(Y<y|X=x,U=u,R) =F(h(y)—x"B—u'R)
with normal random effects R ~ Ng(0gr, G)

— next talk by Balint Tamasi
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Joint Model for Clustered or Longitudinal Data

— i=1,...,Nindependent observational units, each
consisting of N; correlated observations of the response
Yi=(Yi,...,Yn) €=M

— “fixed” effects design matrix X;

— “random” effects design matrix U;

— variance parameters v € RF®*"/2 such that

Ti(v) == UN)A) U + Iy,

with unstructured Cholesky factor A(y) € RR*R
— Dj(v) = diag(%i(v))"2 - Iy,

And the joint distribution function is

P(Y; <y |X;,U) =
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Joint Model for Clustered or Longitudinal Data

P(Yi<y|X;,Uj)=
Pop,x(v) (Di(7) o (FnADi(v) [ (y) — XiB1}))
| —
element-wise trafo

-~

standardise

into[0,1]

make normal

de-standardise

evaluate

Ouch!
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Probit-type Models

With F = &, we get
P(Y; <y | Xi, Uj) = b0y 5,(v) (N (¥) — XiB)
with marginal distribution of some Yin Y,

h(y)—x'B
UTAANA)Tu+1)

P(Y§y|x,u):¢(\/
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General Marginal Distribution

Forsome Yin Y,

IP’(YSyIX,u):F( hly) —x' 3 )

VUTAYAY) Tu+ 1

This is a linear transformation model

Describes whole marginal distribution
Parameter interpretation defined by F

This is almost “simple” (the scaling is a bit nasty)
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Good News

— Analytic log-likelihood and score functions for absolute

continuous responses available

— Log-likelihood for discrete and censored observations
only requires evaluation of R-dimensional normal, not

N;-dimensional normal

— Simultaneous exact maximum likelhood inference for h

(suitably parameterised), 3, and ~ possible and
computationally efficient

— For F = & and linear h, fit is identical to probit
mixed-effects models

— For F = logit~! and binary responses, inference for

marginal log-odds ratio practically identical to GEE
inference

— Analytic marginal distribution close to approximate
marginal distribution from tramME
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Longitudinal Pain Assessment

Baseline 7 weeks 12 weeks
1 1 1

1 1
Placebo Active

0.8 r

0.6 -

0.4 -

0.2 \ L

0.0 L
T T T T T T
Baseline 7 weeks 12 weeks

Neck pain (on visual analog scale)

Examinations
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Longitudinal Pain Assessment

Joint model with marginal distribution function for pain
y €[0,1] attime t:
h(y) + 5(1)
V14+72
h(y) + Ba + B(t) + Ba(1)

V1+92

logit(P(Pain < y | t,Placebo)) =

logit(P(Pain < y | t, Active)) =

Interpretation:

Ba + Ba(t)
REe:)

is marginal odds-ratio at time ¢ for all cut-off points y € [0, 1].

Can be re-formulated as probabilistic index.
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Fitting the Model

R> library("tram")

R> m <- Colr(vas ~ laser * time, data = pain_df,
+ bounds = c(0, 1), support = c(0, 1))
R> mtram(m, ~ (1 | id), data = pain_df)
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Longitudinal Pain Assessment

Placebo
Active

00 02 04 06 08 10

1 1
Baseline

1 1
7 weeks

12 weeks
00 02 04 06 08 Nsz s (o il anctog SCZ:’;) 02 04 06 08 1.0
Time Probabilistic Index ~ 95% Cl
Baseline 0.72 [0.58; 0.83]
7 weeks 0.29 [0.17;0.43]
12 weeks 0.38 [0.24; 0.54]
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Longitudinal Pain Assessment

Placebo
Active

00 02 04 06 08 10

1 1
Baseline

1 1
7 weeks

12 weeks
00 02 04 06 08 NZ:k s (o il anctog Scoa.lf;) 02 04 06 08 1.0
Time Probabilistic Index ~ 95% Cl
Baseline 0.72 [0.58;0.83] hmmm...
7 weeks 0.29 [0.17;0.43] strike!
12 weeks 0.38 [0.24;0.54] well...
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Further Information

— 10.1093/biostatistics/kxac048

— tram: Implementation

— mtram package vignette: Empirical evaluation and
worked examples
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https://doi.org/10.1093/biostatistics/kxac048
https://CRAN.R-project.org/package=mlt
https://CRAN.R-project.org/package=mlt
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