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“We are mean lovers.”

The famous top three reasons to become a statistician:

1. Deviation is considered normal.

2. We feel complete and sufficient.

3. We are ’mean’ lovers.

with the last point referring of course to our obsession with means.

Conceptually, statisticians are obsessed with distributions, but when there
are many distributions to look at simultaneously, we tend to cut some
corners, i.e., higher moments.
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Conditional Transformation Models

– We observe response Y ∈ R and explanatory variables X = x ∈ χ.

– We are interested in the conditional distribution PY |X=x .

– Instead, many regression models focus on the conditional mean
E(Y |X = x).

– Conditional transformation models estimate the conditional
distribution function P(Y ≤ υ|X = x) directly.
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A Scene of Contemporary Regression

– Let Yx = (Y |X = x) ∼ PY |X=x denote the conditional distribution of
response Y given explanatory variables X = x ; PY |X=x (being
dominated by some measure µ) with conditional distribution function
P(Y ≤ υ|X = x).

– A regression model describes the distribution PY |X=x , or certain
characteristics of it, as a function of the explanatory variables x .

– We estimate such models based on random variables (Y ,X ) ∼ PY ,X .

– A regression model consists of signal and noise, i.e. , some error
term Q(U) with U ∼ U [0, 1] and Q : R→ R being a quantile function.
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A Scene of Contemporary Regression

– There are two common ways to look at the problem

Yx = r(Q(U)|x) “mean or quantile regression models” and

h(Yx |x) = Q(U) “transformation models”.

– For each x ∈ χ, the regression function r(·|x) : R→ R transforms
the error term Q(U) in a monotone increasing way.

– The inverse regression function h(·|x) = r−1(·|x) : R→ R is also
monotone increasing. Because h transforms the response, it is
known as a transformation function, and models in the second form
are called transformation models.
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A Scene of Contemporary Regression

– A major assumption underlying almost all mean or quantile
regression models is the additivity of signal and noise:

r(Q(U)|x) = rx (x) + Q(U).

– When E(Q(U)) = 0, we get rx (x) = E(Y |X = x), e.g. linear or
additive models depending on the functional form of rx .

– Model inference is commonly based on the normal error assumption,
i.e. Q(U) = σΦ−1(U), where σ > 0 is a scale parameter and
Φ−1(U) ∼ N (0, 1).

– We often call σ a “nuisance parameter”, but in fact this is an
euphemism for “we simply ignore higher moments”.
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Motivation by Toy Example
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A Scene of Contemporary Regression

Of course we know about models that allow higher moments to depend
on the explanatory variables also:

– Linear heteroscedastic regression models allow describing the
variance as a function of the explanatory variables
Q(U) = σ(x)Q̃(U), where σ(x) is a (usually log-linear) function of x
and Q̃ is the quantile function of a symmetric distribution with
E(Q̃(U)) = 0.

– Generalized autoregressive conditional heteroscedasticity (GARCH)
models share this view.

– Generalised additive models, where additive functions of the
explanatory variables describe location, scale and shape (GAMLSS).

– Quantile regression, where rx describes the τ quantile of Yx when
the quantile function Q is such that Q(τ) = 0 for some τ ∈ (0, 1).
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A Scene of Contemporary Regression

For transformation models, additivity is assumed on the scale of the
inverse regression function h.

– h(Yx |x) = hY (Yx ) + hx (x) = Q(U)

– When E(Q(U)) = 0, we get

−hx (x) = E(hY (Yx )) = E(hY (Y )|X = x).

– The monotone transformation function hY : R→ R does not depend
on x .

– hY might be known in advance (Box-Cox transformation models with
fixed parameters, accelerated failure time models).

– hY is commonly treated as a nuisance parameter (Cox model,
proportional odds model).

– One is usually interested in estimating the function hx : χ→ R, i.e. ,
the negative conditional mean of the transformed response hY (Y ).
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A Scene of Contemporary Regression

The class of transformation models is rich and very actively researched,
most prominently in literature on the analysis of survival data.

– Linear Weibull accelerated failure: hY (Yx ) = log(Yx ), hx (x) = x>α,
and a Weibull-distributed error term Q(U) = σQWeibull(U).

– Cox proportional hazards additive model: hY (Yx ) = log(Λ(Yx )) is
based on the unspecified integrated baseline hazard function Λ,
hx (x) =

∑J
j=1 hx,j (x) is the sum of J smooth terms depending on the

explanatory variables and Q(U) = − log(− log(U)) is the quantile
function of the extreme value distribution.

– Proportional odds model: hY (Yx ) = log(Γ(Yx )), with Γ being an
unknown monotone increasing function, and Q(U) = log(U/(1− U))
is the quantile function of the logistic distribution.

– Unified estimation for linear transformation models (hx (x) = x>α),
treating the transformation function hY as a nuisance available.
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Towards Conditional Transformation Models

Some thoughts about transformation models:

– The transformation function hY is typically treated as an infinite
dimensional nuisance parameter.

– But hY contains information about higher moments of Yx !

– An attractive feature of transformation models is their close
connection to the conditional distribution function:

P(Y ≤ υ|X = x) = P(h(Y |x) ≤ h(υ|x)) = F(h(υ|x)); F = Q−1.
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Towards Conditional Transformation Models

– For additive transformation functions h = hY + hx , we have
F(h(υ|x)) = F(hY (υ) + hx (x)).

– Therefore, higher moments only depend on the transformation hY

and thus cannot be influenced by the explanatory variables.

– Consequently, one has to avoid the additivity in the model
h = hY + hx to allow the explanatory variables to impact also higher
moments.
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Conditional Transformation Models

– To avoid the additivity h = hY + hx in transformation model, we
suggest a novel transformation model based on an alternative
additive decomposition of the transformation function h into J partial
transformation functions for all x ∈ χ:

h(υ|x) =
J∑

j=1

hj (υ|x).

– The transformation function h(Yx |x) and the partial transformation
functions hj (·|x) : R→ R are conditional on x in the sense that not
only the mean of Yx depends on the explanatory variables.

– Therefore, we coin these models Conditional Transformation Models
(CTMs).
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Conditional Transformation Models

A word of warning: There is, of course, an underlying assumption, namely
additivity of the conditional distribution function on the scale of the
quantile function Q:

Q(P(Y ≤ υ|X = x)) =
J∑

j=1

hj (υ|x).

It should be noted that here we assume additivity of the transformation
function h and not additivity on the scale of the regression function r .
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Estimation

– Well-known “trick”: Use the mean regression hammer to nail the
problem:

P(Y ≤ υ|X = x) = E(I(Y ≤ υ)|X = x).

– Fit model E(I(Y ≤ υ)|X = x) for a grid of υ values separately.

– This is similar to fitting multiple quantile regression models.

– Better: find an appropriate risk function that allows the whole
conditional distribution function to be obtained in one step.

University of Zurich, IFSPM 2013-08-19 Conditional Transformation Models Page 15



Estimation: Risk Function

– Let ρ denote a function of measuring the loss of the probability
F(h(υ|X )) for the binary event Y ≤ υ, for example

ρbin((Y ≤ υ,X ), h(υ|X )) := −[I(Y ≤ υ) log{F(h(υ|X ))}+

{1− I(Y ≤ υ)} log{1− F(h(υ|X ))}]

ρsqe((Y ≤ υ,X ), h(υ|X )) :=
1
2
|I(Y ≤ υ)− F(h(υ|X ))|2

ρabe((Y ≤ υ,X ), h(υ|X )) := |I(Y ≤ υ)− F(h(υ|X ))|.

– ρsqe is also known as the Brier score.

– Now define the loss function ` for CTM estimation as integrated loss
ρ with respect to the measure µ dominating the conditional
distribution PY |X=x :

`((Y ,X ), h) :=

∫
ρ((Y ≤ υ,X ), h(υ|X )) dµ(υ).
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Estimation: Risk Function = Scoring Rule

– In the context of scoring rules, the loss ` based on ρsqe is known as
the continuous ranked probability score (CPRS) or integrated Brier
score and is a proper scoring rule for assessing the quality of
probabilistic or distributional forecasts.

– Define the corresponding risk function as

EY ,X `((Y ,X ), h) =

∫ ∫
ρ((y ≤ υ, x), h(υ|x)) dµ(υ) dPY ,X (y, x).

– EY ,X `((Y ,X ), h) is convex in h and attains its minimum for the true
conditional transformation function h with ρ = ρbin and ρ = ρsqe (but
not with ρ = ρabe).
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Estimation: Empirical Risk Function

– The corresponding empirical risk function defined by the data is

ÊY ,X `((Y ,X ), f ) =

∫ ∫
ρ((y ≤ υ, x), h(υ|x)) dµ(υ) dP̂Y ,X (y, x).

– Use i.i.d. random sample (Yi ,X i ) ∼ PY ,X , i = 1, . . . ,N to define P̂Y ,X .

– For computational convenience, approximate the measure µ by the
discrete uniform measure µ̂, which puts mass n−1 on each element
of the equi-distant grid υ1 < · · · < υn ∈ R over the response space.

– The weighted empirical risk is then

ÊY ,X `((Y ,X ), h) =
N∑

i=1

win
−1

n∑
ı=1

ρ((Yi ≤ υı,X i ), h(υı|X i ))

= n−1
N∑

i=1

n∑
ı=1

wiρ((Yi ≤ υı,X i ), h(υı|X i )).

This risk is the weighted empirical risk for loss function ρ evaluated at the
observations (Yi ≤ υı,X i ) for i = 1, . . . ,N and ı = 1, . . . , n.
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Estimation: Empirical Risk Minimisation

– We can now use empirical risk minimisation for fitting ĥ.
– Of course we need to smooth a bit here:

– ĥj (υ|x) should be smooth in υ-direction (no steps in the conditional
distribution function).

– ĥj (υ|x) should also be smooth in x-direction (conditional distribution
varies smoothly in the explanatory variables).

– In principle, any algorithm for minimising risk functions defined by ρ
can be used.

– Componentwise boosting comes in very handy here: Smoothing and
variable / component selection are (almost) free (as in “free beer”).
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Boosting: Base Learners

– Parameterise the partial transformation functions for all j = 1, . . . , J
as

hj (υ|x) =
(

bj (x)> ⊗ b0(υ)>
)
γ j ∈ R, γ j ∈ RKj K0 ,

where bj (x)> ⊗ b0(υ)> denotes the tensor product of two sets of
basis functions bj : χ→ RKj and b0 : R→ RK0 .

– b0 is a basis along the υ values.

– The basis bj defines how this transformation may vary with certain
aspects of the explanatory variables.

– hj needs to be smooth in both arguments; therefore the bases are
supplemented with appropriate, pre-specified penalty matrices
P j ∈ RKj×Kj and P0 ∈ RK0×K0 , inducing the penalty matrix
P0j = (λ0P j ⊗ 1K0 + λj1Kj ⊗ P0) with smoothing parameters λ0 ≥ 0
and λj ≥ 0 for the tensor product basis.

– The base-learners are now Ridge-type linear models with penalty
matrix P0j .
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Boosting: Algorithm

1. Initialise γ
[0]
j ≡ 0 for j = 1, . . . , J, the step-size ν ∈ (0, 1) and the

smoothing parameters λj , j = 0, . . . , J. Define the grid
υ1 < Y(1) < · · · < Y(N) ≤ υn. Set m := 0.

2. Compute the negative gradient:

Uiı := − ∂

∂h
ρ((Yi ≤ υı,X i ), h)

∣∣∣∣
h=ĥ[m]

iı

with ĥ[m]
iı =

∑J
j=1

(
bj (X i )

> ⊗ b0(υı)
>)γ [m]

j . Fit the base-learners for
j = 1, . . . , J:

β̂j = arg min
β∈RKj K0

N∑
i=1

n∑
ı=1

wi

{
Uiı −

(
bj (X i )

> ⊗ b0(υı)
>
)
β
}2

+ β>P0jβ

with penalty matrix P0j . Select the best base-learner j?.

3. Update the parameters γ
[m+1]
j? = γ

[m]
j? + νβ̂j? and keep all other

parameters fixed.

4. Iterate 2. and 3.

5. Stop if m = M.
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Boosting: Computational Issues

– Linear array models can be used to fit the base-learner parameters
βj . It is not necessary to evaluate the Kronecker product ⊗ and to
compute the nN × K0Kj design matrix! There is no need to expand
the observations (Yi ≤ υı,X i ) for i = 1, . . . ,N and ı = 1, . . . , n

– Fix the smoothing parameters λj , j = 0, . . . , J such that the jth
base-learner has low degrees of freedom. Do only tune M.

– ĥ[M] (υ|x) is not automatically monotone in its first argument.
Monotonicity-constraint base-learners can be used, but this is only
seldomly necessary.
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Boosting: Does it work?
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Childhood Nutrition in India

– Childhood undernutrition is one of the most urgent problems in
developing and transition countries.

– Childhood nutrition is usually measured in terms of a Z score that
compares the nutritional status of children in the population of
interest with the nutritional status in a reference population.

– We will focus on stunting, i.e. insufficient height for age, as a
measure of chronic undernutrition and estimate the whole distribution
of this Z score measure for childhood nutrition in India.

– The analysis is based on India’s 1998–1999 Demographic and
Health Survey on 24166 children.
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Childhood Nutrition in India

– The simplest conditional transformation model allowing for
district-specific means and variances reads

P(Z ≤ υ|district = k) = Φ(α0,k + αkυ), k = 1, . . . , 412.

– The base-learner is defined by a linear basis b0(υ) = (1, υ)> for the
grid variable and a dummy-encoding basis
b1(district) = (I(district = 1), . . . , I(district = k))> for the 412
districts.

– The resulting 824-dimensional parameter vector γ1 of the tensor
product base-learner then consists of separate intercept and slope
parameters for each of the districts of India.

– Note that since we assume normality for the linear function
α0,k + αkZ ∼ N (0, 1), also the Z score is assumed to be normal with
both mean and variance depending on the district.
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Childhood Nutrition in India

– We relax the normal assumption on Z by allowing for more flexible
transformations

P(Z ≤ υ|district = k) = Φ(h(υ|district = k)), k = 1, . . . , 412.

– Now b0(υ) is a vector of B-spline basis functions evaluated at υ and
b1 remains as above.

– To achieve smoothness of these non-parametric effects along the
υ-grid, we specify the penalty matrix P0 as P0 = D>D with
second-order difference matrix D.

– It makes sense to induce spatial smoothness on the conditional
distribution functions of neighbouring districts. To implement spatial
smoothness the penalty matrix P1 is chosen as an adjacency matrix
of the districts.

– From the estimated conditional distribution functions, we compute
quantiles of the Z score for each district via

Q̂(τ |district = k) = inf{υ : Φ(ĥ(υ|district = k) ≥ τ}.
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Childhood Nutrition in India
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Head Circumference Growth

– The Fourth Dutch Growth Study is a cross-sectional study that
measures growth and development of the Dutch population between
the ages of 0 and 22 years.

– We look at head circumference (HC) and age of 7040 males and
estimate the whole conditional distribution function via

P(HC ≤ υ|age = x) = Φ(h(υ|age = x)).

– The base-learner is the tensor product of B-spline basis functions
b0(υ) for head circumference and B-spline basis functions for age1/3.

– The penalty matrices P0 and P1 penalise second-order differences,
and thus ĥ will be a smooth bivariate tensor product spline of head
circumference and age.

– It is important to note that smoothing takes place in both dimensions.
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Head Circumference Growth
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Deer-vehicle Collisions

– Collisions of vehicles with roe deer are a serious threat to human
health and animal welfare.

– In Bavaria, Germany, more than 40000 deer-vehicle collisions
(DVCs) take place every year.

– Although the number of DVCs is a discrete random variable, the
distribution of the number of DVCs conditional on the day of the year
can be estimated by means of an appropriate base-learner using the
model

P(DVCs ≤ υ|day = x1, year = x2) =

Φ(h1(υ|day = x1) + h2(υ|day = x1, year = x2)).
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Deer-vehicle Collisions

– Here, µ̂ is the counting measure with support υ1, . . . , υN equal to the
support of the empirical distribution of the response.

– Conceptually, the basis function b0 should allow for n = N
parameters (one for each υı), whose first-order differences should
not become too large.

– To restrict the number of parameters in the base-learners, we use
B-splines to approximate such a discrete function on the υ-grid.

– It should further be noted that the day of year is a discrete cyclic
random variable. Therefore, we chose b1(x1) as cyclic B-splines of
the day.

– A cyclic B-spline is applied to the varying coefficient term
b2(x1, x2) = b1(x1)× I(x2 = 2009), which captures temporal
differences between the two years and yields a cyclic B-spline of the
days in 2009.

– Since the data are discrete, we only penalise first-order differences in
both base-learners.
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Deer-vehicle Collisions
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Odds and Ends

– The corresponding paper will appear in JRSS B 75(5)
http://dx.doi.org/10.1111/rssb.12017.

– The paper establishes the convergence of ĥ to the true h.

– It furthermore contains simulation experiments comparing the
performance of CTMs with GAMLSS, kernel conditional distribution
estimation (package np), and additive quantile regression.

– More examples are contained in the extended paper version available
from http://arxiv.org/abs/1201.5786 and in the IWSM proceedings.
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Odds and Ends

– The conditional density can easily be derived from a fitted conditional
transformation model

f̂Y (υ|x) =
∂F(ĥ(υ|x))

∂υ
= f

 J∑
j=1

(
bj (x)> ⊗ ∂b0(υ)

∂υ

>
)
γ̂ j


with f being the density of F .

– The methodology can be extended to censored observations, details
are under consideration.

– Conditional Transformation Models are implemented in packages ctm

and ctmDevel, both available from http://R-forge.R-project.org.

– The source code for producing the results shown here is contained in
these packages.
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Thank you...

...for your attention!
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