
Mathematical Assoc. of America American Mathematical Monthly 121:1 September 1, 2014 3:29 p.m. poncelet˙AMM.tex page 1

A Simple Proof of Poncelet’s Theorem
(on the occasion of its bicentennial)

Lorenz Halbeisen and Norbert Hungerbühler

Abstract. We present a proof of Poncelet’s Theorem in the real projective plane which relies

only on Pascal’s Theorem.

1. INTRODUCTION In 1813, while Poncelet was in captivity as a war prisoner in

the Russian city of Saratov, he discovered the following theorem.

Theorem 1.1 (Poncelet’s Theorem). Let K and C be nondegenerate conics in gen-

eral position. Suppose there is an n-sided polygon inscribed in K and circumscribed

about C such that none of its vertices belongs to C (in the case when K and C inter-

sect or meet). Further suppose there is an (n− 1)-sided polygonal chain with vertices

on K such that all its sides are tangent to C and none of its vertices belongs to C .

Then the side, which closes the polygonal chain, is also tangent to C .

An immediate consequence is the following more popular version of Poncelet’s

Theorem.

Corollary 1.2. Let K and C be nondegenerate conics in general position which nei-

ther meet nor intersect. Suppose there is an n-sided polygon inscribed in K and cir-

cumscribed about C . Then for any point P of K , there exists an n-sided polygon, also

inscribed in K and circumscribed about C , which has P as one of its vertices.

After his return to France, Poncelet published a proof in his book [17], which ap-

peared in 1822. He derived the version displayed above from a more general statement,

where the sides of the polygon are tangent to conics Ci from a pencil containingK . He

first proved the statement for a pencil of circles, thus generalizing theorems of Chap-

ple [5] and Euler [9] for triangles and of Fuss [10] for bicentric polygons. In order to

extend his main theorem from circles to conics, Poncelet then invoked a projection

theorem which states that every pair of conics with no more than two intersections can

be considered as the projective image of a pair of circles. Poncelet finished by arguing

that the case of more than two intersections followed by the “principle of continuity.”

Poncelet’s treatise was a milestone in the development of projective geometry, and his

theorem is widely considered the deepest and most beautiful result about conics.

Poncelet’s Theorem gained immediately the attention of the mathematical commu-

nity. Already in 1828, Jacobi gave in [13] an analytic proof for pairs of nested circles

by using the addition theorem for elliptic functions. In the sequel, Cayley investigated

algebraic conditions for two conics to be in Poncelet position. Using the theory of

Abelian integrals, he formulated a criterion in [4]. Cayley actually published a series

of papers dealing with Poncelet’s porism. In the early 20th century, Lebesgue revis-

ited Cayley’s work and formulated the proof in the language of projective geometry

and algebra, see [15]. He used an observation by Hart who gave in [12] an elegant

argument for Poncelet’s Theorem for triangles. In recent times, Griffiths and Harris
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used Abel’s Theorem and the representation of elliptic curves by means of the Weier-

strass ℘-function to establish the equivalence of Poncelet’s Theorem and the group

structure on elliptic curves, see [11]. Poncelet’s Theorem has a surprising mechani-

cal interpretation for elliptic billiards in the language of dynamical systems: see [8]

or [7] for an overview of this facet. A common approach to all four classical closing

theorems (the Poncelet porism, Steiner’s Theorem, the Zigzag Theorem, and Emch’s

Theorem) has recently been established by Protasov in [18]. King showed in [14], that

Poncelet’s porism is isomorphic to Tarski’s plank problem (a problem about geometric

set-inclusion) and to Gelfand’s question (a number theoretic problem) via the con-

struction of an invariant measure. However, according to Berger [1, p. 203], all known

proofs of Poncelet’s Theorem are rather long and recondite.

The aim of this paper is to give a simple proof of Poncelet’s Theorem in the real

projective plane. More precisely, we will show that Poncelet’s Theorem is a purely

combinatorial consequence of Pascal’s Theorem. Before we give several forms of the

latter, let us introduce some notation. For two points a and b, let a− b denote the line

through a and b, and for two lines ℓ1 and ℓ2, let ℓ1 ∧ ℓ2 denote the intersection point

of these lines in the projective plane. In abuse of notation, we often write a− b− c in

order to emphasize that the points a, b, c are collinear. In the sequel, points are often

labeled with numbers, and lines with encircled numbers like ③.

In this terminology, Pascal’s Theorem and its equivalent forms read as follows.

Pascal’s Theorem (cf. [16])

bc 3

bc1

bc 4

bc

2

bc
5

bc

6

bc

bc

bc

Any six points 1, . . . , 6 lie on a conic

if and only if

(1− 2) ∧ (4− 5)
(2− 3) ∧ (5− 6)
(3− 4) ∧ (6− 1)

are collinear.

Carnot’s Theorem (cf. [3, no. 396])

bc 5

bc1

bc 4

bc

2

bc
3

bc

6

b

bc

b

Any six points 1, . . . , 6 lie on a conic

if and only if

[(1− 2) ∧ (3− 4)]− [(4− 5) ∧ (6− 1)]
(2− 5)
(3− 6)

are concurrent.
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Brianchon’s Theorem (cf. [2])

bc ①

②

bc

③

④

bc

⑤

⑥

bc

bc
bc

bc

Any six lines ①, . . . , ⑥ are tangent to a conic

if and only if

(① ∧ ②)− (④ ∧ ⑤)
(② ∧ ③)− (⑤ ∧ ⑥)
(③ ∧ ④)− (⑥ ∧ ①)

are concurrent.

Carnot’s Theorem∗

bc ①

②

bc

⑤

④

bc

③

⑥

bc

bc
bc

bc

Any six lines ①, . . . , ⑥ are tangent to a conic

if and only if

[(① ∧ ②)− (③ ∧ ④)] ∧ [(④ ∧ ⑤)− (⑥ ∧ ①)]
(② ∧ ⑤)
(③ ∧ ⑥)

are collinear.

As a matter of fact, we would like to mention that if the conic is not degenerate,

then the collinear points in Pascal’s Theorem are always pairwise distinct (the same

applies to the concurrent lines in Brianchon’s Theorem).

Since the real projective plane is self-dual, Pascal’s Theorem and Brianchon’s The-

orem are equivalent. Moreover Carnot’s Theorem and its dual Carnot’s Theorem∗ are

just reformulations of Pascal’s Theorem and Brianchon’s Theorem by exchanging the

points 3 and 5, and the lines ③ and ⑤, respectively. Recall that if two adjacent points,

say 1 and 2, coincide, then the corresponding line 1− 2 becomes a tangent with 1 as

contact point. Similarly, if two lines, say ① and ②, coincide, then ① ∧ ② becomes the

contact point of the tangent ①. As a last remark, we would like to mention that a conic

is in general determined by five points, by five tangents, or by a combination like three

tangents and two contact points of these tangents.

The paper is organized as follows. In Section 2, we prove Poncelet’s Theorem for

the special case of triangles and at the same time we develop the kind of combinato-

rial arguments we shall use later. Section 3 contains the crucial tool which allows to

show that Poncelet’s Theorem holds for an arbitrary number of edges. Finally, in Sec-

tion 4, we use the developed combinatorial technics in order to prove some additional

symmetry properties of Poncelet-polygons.

2. PONCELET’S THEOREM FOR TRIANGLES In order to prove Poncelet’s

Theorem for triangles, we will show that if the six vertices of two triangles lie on

a conic K , then the six sides of the triangles are tangents to some conic C .

The crucial point in the proof of the following theorem (as well as in the proofs

of the other theorems of this paper) is to find the suitable numbering of points and

edges, and to apply some form of Pascal’s Theorem in order to find collinear points or

concurrent lines.

Theorem 2.1. If two triangles are inscribed in a conic and the two triangles do not

have a common vertex, then the six sides of the triangles are tangent to a conic.

January 2014] A SIMPLE PROOF OF PONCELET’S THEOREM 3



Mathematical Assoc. of America American Mathematical Monthly 121:1 September 1, 2014 3:29 p.m. poncelet˙AMM.tex page 4

bca1
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bc a3

bc
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bc
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Proof. Let K be a conic in which two triangles △a1a2a3 and △b1b2b3 are inscribed

where the two triangles do not have a common vertex.

First, we introduce the following three intersection points:

I := (a1 − a2) ∧ (b1 − b2) ,

X := (a2 − b3) ∧ (b2 − a3) ,

I ′ := (a3 − a1) ∧ (b3 − b1) .

In order to visualize the intersection points I , X , and I ′, we break up the conic K and

draw it as two straight lines, one for each triangle as follows.

b

b
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b

b

b

bc

I
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X
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I ′
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I
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bc
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a2

Now, we number the six points a1, a2, a3, b1, b2, b3 on the conic K as shown by the

following figure.
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By Pascal’s Theorem we get that the three intersection points

(1− 2) ∧ (4− 5) , (2− 3) ∧ (5− 6) , and (3− 4) ∧ (6− 1)

are collinear, which is the same as saying that the points I −X − I ′ are collinear.

In the next step, we label the sides of the triangles as shown in the following figure.

b

b

b

b

b

b

bc

I
bc

X
bc

I ′
bc

I

bc

b1

bc
a1

bc

b2

bc
a2

bc

b3

bc
a3

bc

b1

bc
a1

bc

b2

bc
a2② ① ⑥ ②

⑤ ④ ③ ⑤

By Carnot’s Theorem∗ we get that the six sides ①, . . . , ⑥ of the two triangles are

tangents to a conic if and only if

[(① ∧ ②)− (③ ∧ ④)] ∧ [(④ ∧ ⑤)− (⑥ ∧ ①)] ,

(② ∧ ⑤) , and

(③ ∧ ⑥)

are collinear. Now, this is the same as saying that the points X − I − I ′ are collinear,

which, as we have seen above, is equivalent to a1, a2, a3, b1, b2, b3 lying on a conic.

bca1

bc a2

bca3

bc
b3

bc
b2

bc
b1

q.e.d.

As an immediate consequence we get Poncelet’s Theorem for triangles.

Corollary 2.2 (Poncelet’s Theorem for triangles). Let K and C be nondegenerate

conics. Suppose there is a triangle △a1a2a3 inscribed in K and circumscribed about

C . Then for any point b1 of K for which two tangents to C exist, there is a triangle

△b1b2b3 which is also inscribed in K and circumscribed about C .
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Proof. Let K and C be two conics with a triangle △a1a2a3 inscribed in K and

circumscribed about C . Let b1 be an arbitrary point on K which is distinct from

a1, a2, a3, and let b2 and b3 be distinct points on K such that b1 − b2 and b1 − b3
are two tangents to C . By construction, we get that five sides of the triangles △a1a2a3

and △b1b2b3 are tangents to C . On the other hand, by Theorem 2.1, we know that all

six sides of these triangles are tangents to some conic C ′. Now, since a conic is deter-

mined by five tangents, C ′ and C coincide, which implies that the triangle △b1b2b3 is

circumscribed about C . q.e.d.

As a special case of Brianchon’s Theorem we get the following.

Fact 2.3. Let C be a conic and let the triangle △a1a2a3 be circumscribed about C .

Furthermore, let t1, t2, t3 be the contact points of the three tangents a2 − a3, a3 −
a1, a1 − a2. Then the three lines a1 − t1, a2 − t2, and a3 − t3 meet in a point.

Proof. Label the three sides of the triangles as follows:

① = a2 − a3 = ② , ③ = a3 − a1 = ④ , ⑤ = a1 − a2 = ⑥ .

Then ① ∧ ② = t1, ③ ∧ ④ = t2, ⑤ ∧ ⑥ = t3, and by Brianchon’s Theorem we get

that a1 − t1, a2 − t2, a3 − t3 meet in a point. q.e.d.

In general, for arbitrary n-gons tangent to C the analogous statement will be false.

However, if n is even and if the n-gon is at the same time inscribed in a conic K , a

similar phenomenon occurs (see Theorem 4.2).

3. THE GENERAL CASE Let K and C be nondegenerate conics in general posi-

tion. We assume that there is an n-sided polygon a1, . . . , an which is inscribed in K
such that all its n sides a1 − a2, a2 − a3, . . . , an − a1 are tangent to C and none of its

vertices belongs to C . Let us assume that n is minimal with this property (thus, in par-

ticular, the points a1, . . . , an are pairwise distinct). Further, let b1, . . . , bn be an (n −
1)-sided polygonal chain on K where all n− 1 sides b1 − b2, b2 − b3, . . . , bn−1 − bn
are tangent to C and none of its vertices is one of a1, . . . , an or belongs to C . We do

not yet know that bn − b1 is tangent to C too. If we break up the conic K and draw it

as two straight lines, one for the polygon and one for the polygonal chain, we get the

following situation.

bc

bn−1

bc

bn

bc

b1

bc

b2

bc

bn−1

bc

bn

bc

b1

bc

b2

bc
an−1

bc
an

bc
a1

bc
a2

bc
an−1

bc
an

bc
a1

bc
a2

In order to prove Poncelet’s Theorem, we have to show that bn − b1 is also tangent to

C . This will follow easily from the following result.

Lemma 3.1. For n ≥ 4, the three intersection points

I := (a1 − a2) ∧ (b1 − b2) ,

X := (a2 − bn−1) ∧ (b2 − an−1) , and

I ′ := (an−1 − an) ∧ (bn−1 − bn) ,
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b

b

b

b

bcI bc

X

bc I ′

bc

b1

bc

b2

bc bc bc

bn−1

bc

bn

bc
a1 bc

a2 bc bc bc
an−1

bc
an

are pairwise distinct and collinear, which is visualized above by the dashed line.

Proof. Depending on the parity of n, we have one of the following anchorings, from

which we will work step by step outwards.

n even, with k = n

2
:

b

b

b

b

bcI bc

X

bc I ′

bc

bk−1

bc
ak−1

bc

bk

bc
ak

bc

bk+1

bc
ak+1

bc

bk+2

bc
ak+2② ① ⑥

⑤ ④ ③

By Carnot’s Theorem∗ we have that

I − X − I ′ are collinear, which

proves the lemma for n = 4.

n odd, with k = n+1

2
:

b

b

b

b

bcI bc

X

bc I ′

bc

bk−1

bc
ak−1

bc

bk

bc
ak

bc

bk+1

bc
ak+1

1 2 3

4 5 6

By Pascal’s Theorem we have that

I −X − I ′ are collinear.

For n ≥ 5, the lemma will follow from the following two claims.

Claim 1. Let p and q be integers with 2 ≤ p < q ≤ n− 1. Further, let

Ip−1 := (ap−1 − ap) ∧ (bp−1 − bp) , Ip := (ap − ap+1) ∧ (bp − bp+1) ,

Iq := (aq−1 − aq) ∧ (bq−1 − bq) , Iq+1 := (aq − aq+1) ∧ (bq − bq+1) ,

and let

X := (ap − bq) ∧ (bp − aq) .

If Ip −X − Iq are pairwise distinct and collinear, then Ip−1 −X − Iq+1 are also

pairwise distinct and collinear. This implication is visualized by the following figure.

b

b

b

b

bcIp
bc

X

bc Iq

bc

bp−1

bc

bp

bc

bp+1

bc

bq−1

bc

bq

bc

bq+1

bc
ap−1

bc
ap

bc
ap+1

bc
aq−1

bc
aq

bc
aq+1

⇓
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b

b
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X
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bq
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bq+1
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Proof of Claim 1.

b

b b

b

b b

ε

b

b
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b

bcIp
bc bc Iqγ

α

bc bc

bp

bc bc bc

bq

bc

bc bc
ap

bc bc bc
aq

bc

④ ③

②

⑤

⑥ ①

(a) By Brianchon’s Theorem, the lines α, γ, ε are pairwise distinct and concurrent.

b

b
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b

bcIp
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X

bc Iq

β

γ

α

bc bc

bp

bc bc bc

bq

bc

bc bc
ap

bc bc bc
aq

bc

(b) The lines α, β, γ meet, by assumption, in X , and they are pairwise distinct.

By (a), we have that α and γ are distinct, and by symmetry also β and γ are distinct.

Since a straight line meets a nondegenerate conic in at most two points, α and β are

also distinct.

b

b b

b

b b

ε

b

b

b

b

bcIp−1
bc bc Iq+1

β

δ

bc

bp−1

bc

bp

bc bc

bq−1

bc

bq

bc

bq+1

bc
ap−1

bc
ap

bc
ap+1

bc bc
aq

bc
aq+1

⑥

① ②

⑤ ④

③

(c) By Brianchon’s Theorem, the lines β, ε, δ are pairwise distinct and concurrent.

By (a) & (b) we get that α, β, and ε meet in X , and by (c) we get that also α, β, and

δ meet in X , which implies that Ip−1 −X − Iq+1 are collinear and pairwise distinct.

If Ip−1 = Iq+1, then the four lines ap−1 − ap, bp−1 − bp, aq − aq+1, bq − bq+1, which

are all tangent to C , would be concurrent. But then these four lines are not pairwise

distinct, and since the eight points ap−1, ap, aq, aq+1, bp−1, bp, bq, bq+1 are pairwise

distinct (recall that 1 ≤ p− 1 < q + 1 ≤ n), this contradicts our assumption that the
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conic K is nondegenerate. By similar arguments it follows that both Ip−1 and Iq+1 are

distinct from X . q.e.d.

Claim 2. Let Ip−1, Iq+1, and X be as above, and let

X ′ := (ap−1 − bq+1) ∧ (bp−1 − aq+1) .

If Ip−1 −X − Iq+1 are pairwise distinct and collinear, then Ip−1 −X ′ − Iq+1 are

pairwise distinct and collinear too. This implication is visualized by the following

figure.
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⇓
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Proof of Claim 2.
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bc Iq+1
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bc bc
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(a) By assumption, the points Ip−1 −X − Iq+1 are pairwise distinct and collinear.
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bc bc bc
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1 2

34 5

6

(b) By Pascal’s Theorem, the points Ip−1 − X − J are pairwise distinct and

collinear.
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b

b

b

b
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bc Iq+1
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bc bc bc

bq

bc

bc bc
ap

bc bc bc
aq

bc

1 2

64 5

3

(c) By Pascal’s Theorem, the points X ′ − J − Iq+1 are pairwise distinct and

collinear.

By (a) & (b) we get that Ip−1 − J − Iq+1 are collinear, and by (c) we get that X ′

lies on J − Iq+1. Hence, Ip−1 −X ′ − Iq+1 are collinear. By (a), (c) and a symmetric

version of (c), the three points Ip−1,X
′, Iq+1 are pairwise distinct. q.e.d.

By an iterative application of Claim 1 & 2, we finally get the situation

b
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bcI bc

X

bc I ′

bc

b1

bc

b2

bc bc bc

bn−1

bc

bn

bc
a1

bc
a2

bc bc bc
an−1

bc
an

in which I −X − I ′ are pairwise distinct and collinear. q.e.d.

With similar arguments as in the proof of Poncelet’s Theorem for triangles (Corol-

lary 2.2), we can now prove the general case of Poncelet’s Theorem (Theorem 1.1):

Proof of Poncelet’s Theorem. Let K and C be nondegenerate conics in general posi-

tion. We assume that there is an n-sided polygon a1, . . . , an which is inscribed in K
such that all its n sides a1 − a2, a2 − a3, . . . , an − a1 are tangent to C and none of its

vertices belongs to C . Let us assume that n is minimal with this property. Further we

assume that there is an (n − 1)-sided polygonal chain b1, . . . , bn whose n− 1 sides

are tangent to C and none of its vertices is one of a1, . . . , an or belongs to C . We have

to show that bn − b1 is tangent to C .

! !
bc

bn−1

bc

bn

bc

b1

bc

b2

bc

bn−1

bc

bn

bc

b1

bc

b2

bc
an−1

bc
an bc

a1 bc
a2 bc

an−1
bc
an bc

a1 bc
a2

By Lemma 3.1 we know that I − X − I ′ are pairwise distinct and collinear,

where I = (a1 − a2) ∧ (b1 − b2), I ′ = (an−1 − an) ∧ (bn−1 − bn), and X =
(a2 − bn−1) ∧ (b2 − an−1). In order to show that bn − b1 is tangent to C , we have to

introduce two more intersection points:

J := (an−1 − a1) ∧ (bn−1 − b1) ,

X ′ := (an − b1) ∧ (bn − a1) .
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bc
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bc bc
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a1 bc

a2 bc bc
a1 bc

a2bc bc
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bc
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We now apply Pascal’s Theorem twice as illustrated below.

b

b

b

b

b

b

bc JbcI bc

X

bc I

bc

b1

bc

b2

bc bc

b1

bc

b2

bc bc

bn−1

bc

bn

bc
a1 bc

a2 bc bc
a1 bc

a2bc bc
an−1

bc
an

1 12 2

34 45 5

6

(a) By Pascal’s Theorem, the points I −X − J are pairwise distinct and collinear.

b

b

b

b

bc JbcI ′ bc X ′

bc

b1

bc

b2

bc bc

b1

bc

b2

bc bc

bn−1

bc

bn

bc
a1

bc
a2

bc bc
a1

bc
a2

bc bc
an−1

bc
an

1 2 6

34 5

(b) By Pascal’s Theorem, the points I ′ − J −X ′ are pairwise distinct and collinear.

Since, by Lemma 3.1, I −X − I ′ are pairwise distinct and collinear, by (a) we get

that I −X − J − I ′ are collinear, and by (b) we finally get that I −X ′ − I ′ are

collinear.

For the last step, we apply Carnot’s Theorem∗.

b

b

b

b

bcI ′ bc X ′ bc I

bc

b1

bc

b2

bc bc

bn−1

bc

bn

bc
a1

bc
a2

bc
an−1

bc
an② ① ⑥

⑤ ④ ③

Since I −X ′ − I ′ are collinear, by Carnot’s Theorem∗ we get that the six lines ①, . . . ,

⑥ are tangent to some conic C ′. Now, since a conic is determined by five tangents, and

the five lines ①,②,③,⑤,⑥ are tangent to C , C ′ and C coincide. This implies that ④ is

tangent to C , which is what we had to show. q.e.d.
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4. SYMMETRIES IN PONCELET-POLYGONS In this section we present some

symmetries in 2n-sided polygons which are inscribed in some conic K and circum-

scribed about another conic C . To keep the terminology short, we shall call such a

polygon a 2n-Poncelet-polygon with respect to K &C .

Theorem 4.1. LetK andC be nondegenerate conics in general position which neither

meet nor intersect and let a1, . . . , a2n be the vertices of a 2n-Poncelet-polygon with

respect to K &C . Further let t1, . . . , t2n be the contact points of the tangents a1 −
a2, . . . , a2n − a1.

(a) All the n diagonals a1 − an+1, a2 − an+2, . . . , an − a2n meet in a point H0.

(b) All the n lines t1 − tn+1, t2 − tn+2, . . . , tn − t2n meet in the same point H0.

Proof. (a) By the proof of Lemma 3.1, we get that the three points a1, an+1, and

(a2 − an+2) ∧ (an − a2n) are collinear.

b

b

b

b

bca1
bc bc an+1

bc

a1

bc

a2n

bc bc bc

an+2

bc

an+1

bc
a1 bc

a2 bc bc bc
an bc

an+1

This is the same as saying that the three diagonals a1 − an+1, a2 − an+2, and an −
a2n meet in a point, say H0. Now, by cyclic permutation we get that all n diagonals

meet in H0.

(b) By the proof of Lemma 3.1, we get that the three points t1 −H0 − tn+1 are

collinear.

b

b

b

b

bct1 bc

H0

bc tn+1

bc

a2

bc

a1

bc

a2n

bc

an+3

bc

an+2

bc

an+1

bc
a1

bc
a2

bc
a3

bc
an

bc
an+1

bc
an+2

Thus, by cyclic permutation we get that all n lines t1 − tn+1, t2 − tn+2, . . . , tn − t2n
pass through H0, which implies that all n lines meet in H0. q.e.d.

In the last result, we show that the point H0 is independent of the particular 2n-

Poncelet-polygon (compare with Poncelet’s results no. 570 & 571 in [17]).

Theorem 4.2. Let K and C be nondegenerate conics in general position which nei-

ther meet nor intersect and let a1, . . . , a2n and b1, . . . , b2n be the vertices of two

2n-Poncelet-polygons with respect to K &C . Further let t1, . . . , t2n and t′
1
, . . . , t′

2n

be the contact points of the Poncelet-polygons. Then all 4n lines a1 − an+1, . . .,
t1 − tn+1, . . ., b1 − bn+1, . . ., t

′

1 − t′n+1, . . . meet in a point H0. Moreover, opposite

sides of the Poncelet-polygons meet on a fixed line h, where h is the polar of H0, both

with respect to C and K .

Proof. By Theorem 4.1 we know that the 2n lines a1 − an+1, . . ., t1 − tn+1, . . . meet

in a point H0. First, we show that the polar h of the pole H0 with respect to C is the

same as the polar h′ of H0 with respect to K , and then we show that the point H0 is

independent of the choice of the 2n-Poncelet-polygon.
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bc
ai+1

bc
ak+1

bc ai+n

bc
ak+n

bc
ai

bc
ak+n+1

bcak

bc
ai+n+1

bc
tk

bc

tk+n

bc
ti

bc ti+n

bcH0

bc
P

bcQ

First notice that in the figure above, H0 is on the polar p of P with respect to the

conic C and that H0 is also on the polar p′ of P with respect to the conic K (see for

example Coxeter and Greitzer [6, Theorem 6.51]). Thus, P lies on the polar h of H0

with respect to C , as well as on the polar h′ of H0 with respect ot K . Since the same

applies to the point Q, the polars h and h′ coincide, which shows that the pole H0 has

the same polar with respect to both conics.

The fact that H0 is independent of the choice of the 2n-Poncelet-polygon is just a

consequence of the following.

Claim. Let H0 be as above and let h be the polar of H0 (with respect to K or C).

Choose an arbitrary point P on h. Let s1 & s2 be the two tangents from P to C and

let A&A′ and B &B′ be the intersection points of s1 and s2 with K .

bc H0

bc P

bc B
bc

A

bc B′

bc

A′

s1 s2

Then H0 = (A−B′) ∧ (B −A′).

Proof of Claim. By a projective transformation, we may assume that h is the line at

infinity. Then, the pole H0 becomes the common center of both conics and the claim

follows by symmetry. q.e.d.
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Now, let a1, . . . , a2n and b1, . . . , b2n be the vertices of two 2n-Poncelet-polygons

with respect to K &C . Furthermore, let H0 = (a1 − an+1) ∧ (a2 − an+2) and H ′

0
=

(b1 − bn+1) ∧ (b2 − bn+2), and let h and h′ be their respective polars. Choose any

point P which lies on both h and h′, and draw the two tangents from P to C which

intersect K in the points A,A′, B,B′. If the conics K and C do not meet (what

we assume), then these points are pairwise distinct and by the Claim we get H0 =
(A−B′) ∧ (B −A′) = H ′

0
. q.e.d.

Notice, that for n = 3, H0 is the Brianchon point with respect to C of the Poncelet-

hexagon, and h its Pascal line with respect to K . So, for n > 3, the point H0 is the

generalized Brianchon point with respect to C of the 2n-Poncelet-polygon, and h its

generalized Pascal line with respect to K .
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1994. After research positions in Germany and the US he became assistant professor at the University of

Alabama at Birmingham and later professor at the University of Fribourg. Currently he is professor at ETH.

His interests range across analysis, geometry, discrete mathematics and number theory.

Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
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