Modules 110PMA003 & 110PMA107

Department of Pure Mathematics

Week 5, 2001

The pdf-file you may download from http://www.math.berkeley.edu/~halbeis/4students/zero.html

Please hand in your solutions (stapled together with your full name on the first page) at the lecture on Thursday, 1 November 2001.

18. Simplify as far as possible:

(a)
$$\frac{1}{7} + \frac{2}{3} + \frac{1}{21}$$
 (b) $\frac{2}{1-\frac{3}{4}}$ (c) $(\frac{2}{9} \cdot \frac{3}{4}) + \frac{1}{2}$ (d) $\frac{(\frac{4\pi}{3})}{2} + \frac{\pi}{3}$ (e) $\frac{6}{7-4}$

- 19. (a) Compute $(99 + 102 + 105 + \ldots + 999)$.
 - (b) Compute (using part (a) or otherwise) (33 + 34 + 35 + ... + 333).
 - (c) Compute (using part (b) or otherwise) $(66 + 68 + 70 + \ldots + 666)$.
- 20. Let a_0, a_1, a_2, \ldots be an arithmetic progression where $a_4 = 10$ and $a_{36} = 2$.
 - (a) Compute the common difference d of this arithmetic progression.
 - (b) Compute the initial term a_0 .
 - (c) Compute $(a_0 + a_1 + \ldots + a_{48})$.
- 21. (a) Compute $(3+6+12+24+\ldots+1536)$.
 - (b) Compute the infinite series $\left(1 \frac{1}{5} + \frac{1}{25} \frac{1}{125} \pm \dots\right)$.
- 22. Let a_0, a_1, a_2, \ldots be a geometric progression where $a_2 = 49$ and $a_6 = \frac{1}{49}$.
 - (a) Compute the common ratio r of this geometric progression.
 - (b) Compute the initial term a_0 .
- 23. Let $2, 2r, 2r^2, \ldots$ be a geometric progression with initial term 2 and infinite series $(2 + 2r + 2r^2 + \ldots) = 8$. What is the common ratio r of this geometric progression?

^{*}David Bates Building, Room 1014.