## Modules 110PMA003 & 110PMA107

## Department of Pure Mathematics

Week 10, 2001

The pdf-file you may download from http://www.math.berkeley.edu/~halbeis/4students/zero.html

Please hand in your solutions (stapled together with your full name on the first page) at the lecture on Thursday, 6 December 2001.

42. The functions sinh and cosh (called *hyperbolic sine* and *hyperbolic cosine* respectively) are defined as follows:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 and  $\cosh(x) = \frac{e^x + e^{-x}}{2}$ .

- (a) Show that for all real numbers x we have  $\cosh(x)^2 \sinh(x)^2 = 1$ .
- (b) Find the derivatives of these two functions. Do you see a relationship?
- 43. Find the derivatives of each of the following functions:
  - (a)  $f(x) = x^{-3} + x^{-1}$  (b)  $f(x) = \ln(2x^2 x)$  (c)  $f(x) = \frac{\ln(x)}{x}$
  - (d)  $f(x) = x^2 \sin(x)$  (e)  $f(x) = e^{\cos(x)}$  (f)  $f(x) = \arctan(x)^2$
- 44. The following is the graph of the function  $f(x) = x^3 2x^2 + x$  between x = -0.5 and x = 1.65.



- (a) Determine for which x the function f'(x) is equal to 0.
- (b) Find the point(s) of inflection of f(x).
- (c) Sketch the graph of the function f'(x) between x = 0 and x = 1.
- 45. Given the function  $f(x) = -\frac{1}{6}(4x^3 15x^2 + 12x)$ .
  - (a) Determine for which x the function f(x) has a local maximum or minimum.
  - (b) Find the point(s) of inflection of f(x).
  - (c) Sketch the graph of the function f(x) between x = 0 and x = 3.

<sup>\*</sup>David Bates Building, Room 1014.