1.5 Complex numbers: /—1

We introduce a new number “7” and define i? := —1, thus, i = v/—1.
Let C = {(a+1b) : a,b € R} be the set of complex numbers.

Before we define how to add, subtract, multiply and divide complex numbers, we give
introduce some notation.

Let z = (a + ib) € C be a complex number. The real number a is called the real
part of z and is denoted by Re(z), so, Re(z) = a; the real number b is called the
imaginary part of z and is denoted by Im(z), so, Im(z) = b.

Let again z = (a + ib) € C be a complex number. If the imaginary part of z is 0,
so, if b = 0, then we write just a instead of (a + ¢0). Thus, we consider real numbers
as complex numbers with imaginary part equals to 0, which implies that each real
numbers is also a complex number and therefore, R C C. On the other hand, since
there is no real number r such that r*> = —1, not every complex number is a real
number.

We can represent complex numbers on a 2-dimensional diagram, called Argand di-
agram (or Gaussian plane). An Argand diagram is a Cartesian coordinate system
(also called rectangular coordinate system) where one axis is called the real axis and
the other one is called the imaginary axis.

For a complex number z = (a+ib), we define |z| := v/a? + b? and call |z| the modulus
of z. The modulus of a complex number is the same as the absolute value |r| of a
real number r (where |r| = r for » > 0, and |r| = —r for r <0).

If z= (a+ib) and b < 0, then we write z = (a — i|b|) rather than z = (a + ib). For
example we write (3 — i2) rather than (3 +i(—2)).

Addition in C

Let z; = (ay + iby) and z9 = (ag + iby) be two complex numbers, then
21+ 29 = ((CLl -+ CLQ) -+ Z(bl + bg)) .
In particular, (a + ib) + (0 +i0) = (a + ib), thus, 0 is still neutral with respect to

addition. Further we have (a + ib) + (—a — ib) = (0 4 i0) = 0, so, (—a — ib) is the
inverse element (with respect to addition) of (a + ib), and therefore, we also have
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subtraction in C, defined as follows:

21 — R9 = (((ll — ag) + Z(bl — bg)) .

Multiplication in C

Let z; = (ay + iby) and zo = (ay + iby) be two complex numbers, then
21 Ry = ((a1 '&Q—bl -b2)+i(a1 'b2+b1 '&2>) .

To get this, just expand (a; +1iby) - (ag +1ibg) and remember that i = 1. In particular,
(a4 ib) - (1 +40) = (a + ib), thus, 1 is still neutral with respect to multiplication.
Further we have

(a+1ib) - (% — i) = (1+10) =1,

thus, (=% —i—25) is the inverse element (with respect to multiplication) of (a+ib),
and therefore, we also have division in C, defined as follows (for z5 # 0):

Zl'_ al'CL2+bl'b2 X bl'az—al'bg
7 (( a2 + b3 >+Z( a2 + b3 ))

Conjugates

For a complex number z = (a+1ib), we define Z := (a—ib) and call Z the conjugate of
z. In the Argand diagram, the conjugate of a complex number z is just the reflection

of z on the real axis, therefore, (Z) = 2z (the conjugate of the conjugate of z is equal
to z). Further, if Im(2z) = 0, then Z = z (if r is a real number, then 7 = r).

A simple calculation shows that for any complex number z we have

Z;—Z and Im(z)Z;;Z.

Re(z)

Further, it is also quite easy to see that

itz t.. Fe,=Z+Z+...%

and

2129 ... 2y = 2129 .. 2y -

Thus, the conjugate of a sum is the sum of the conjugates and the conjugate of a
product is the product of the conjugates. Further we get —z = —Z and (%) = %,
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thus, the conjugate of the inverse (w.r.t. addition and multiplication respectively) is
the inverse of the conjugate.

If z = (a+1b), then z-Z = (a+1b) - (a—ib) = ((a®+b*) +1i0) = a*+b*, and therefore,
since |z| = Va2 + b2, we have z - Z = |z]|?. Hence, we get the following: If 2; and
29 # 0 are complex numbers, then

1 2 Z1-29 2122
_ = — . e = — = s
22 22 22 22+ 22 |22’2
~—~
=1

which is in fact the same as above.

The unit circle in C

Let S :={z € C : |z| = 1} be the unit circle in C.

For a zy € Sj, let the argument of zy, denoted by arg(zy), be the length of the
arc from 1 counterclockunse to zy of the unit circle. Counterclockwise is also called
positive direction, and hence, clockwise is also called negative direction.

Remark: We may go around several times, if we like, until we stop at z;. Thus,
arg(zo) is not unique!

The argument of a zp on the unit circle is in fact an angle and we will denote angles
by Greek letters like v, 3, @, .

For a non-zero complex number z € C, let

arg(2) = arg @ ,

c Sl
and let arg(0) := 0.

Since the whole unit circle is of length 27, the angle ¢ is the same as the angle
¢ £ k27 (where k € N). However, we usually consider an angle ¢ as a non-negative
real number less than 27 (this means 0 < ¢ < 27).

For any non-zero complex number z € C, there is a unique zg € C, namely 2y = é,
such that z = r - 2z for some positive r € R (in fact, r = |z]). If z = 0, then we can
write z = 0 - zp, which is also in this form, but the z; € S; is no longer unique.
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For z5 € Sy, let cos (arg(z0)) := Re(z) and sin (arg(zo)) := Im(zo). (Note that this
corresponds to the usual definition of cosine and sine!) Hence, each complex number
z € C can be written in the form z = r - (cos(p) + isin(p)), where r = |z| and

o = arg(2).
By Pythagoras, for each angle ¢ we have cos(¢)?+sin(¢)? = 1 (this is because for any

2o = (a +1b) € Sy with arg(z9) = ¢ we have |z)| = va? + b? = 1, and by definition
we have a = cos(p) and b = sin(p)). Further, for any ¢ we easily get

cos(p +2m) = cos(yp), cos(—p) = cos(yp),
sin(p + 2m) = sin(y), sin(—p) = —sin(y).

el

Above we defined e” := exp(z) = > ", %;. Now, let us replace z by igp:

- (ip)° | (i)' (ip)?*  (ip)®  (ip)! | (ip)°
i
‘ _(0!+1!+2!+31+4!+5!+“'

3903 490 590

= <1+w—|—z 2l+2§—|— 4l+2§+ )
3 4 5

_ Yy Y Y

= <1+zg0 o 13|+4'+5| + +. )
6 3 5 7

_ £y ¢ (P P ¥

- <1+2' Tt )il o)

( l)n 2n+1

Hence, Re (¢%) = >"> % and Im (&%) = > ﬁ'

If we replace i by —iy in the formula e = >~ (’Z,) , we see that ei¥ = e~ Thus,

’ew‘ = Ve . el = \eiv . e—iv = \/eiv—iv = \/e0 = /1 = 1, which implies that for
any o we get € € S;. In other words, for any ¢, the complex number €% lies on the
unit circle.

Further one can show that for any ¢, arg (e*?) = ¢, which implies ¢’ = (cos(¢) +
isin()). In other words, cos(¢) = Re (") and sin(¢) = Im (e?), and therefore, as
a consequence we get

fo%e) _1\n, ,2n
COS(QO) - ano : (IZ)TL;;:
. 0o —_1)" 2n—+1
sin(p) = S0, %
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Therefore, each z € C can be written in the form z = re®, where r = |z| and
p = arg(2).

Transformations:

o (a+ib) ~ re':
b
r =+/a% + b2, and ¢ is such that cos(p) = % and sin(p) = o
o re? ~ (a+1b):
a=r-cos(p) and b =r-sin(p).

Multiplication and division:

Let z; and 29 be two complex numbers and let r = |z1|, ¢ = arg(z), s = |29},
Y = arg(z). Thus, z; = 7€ and 25 = s - €.
Multiplication: Let z; and 25 as above.

sz =r-e¥. 5.V =(r-5)(e¥-e¥)=(r-s5)- ¥tV = (r.s). PtV
Therefore, |21 - 22| = |21] - |22| and arg(z; - 22) = arg(z;) + arg(zz).
Division: Let z; and z5 as above and assume z, # 0.

2 reee  ro e o R
A T Lo ey = L. givmiv = L ile=v)

Z9 s 5 e s S S

—_ =l

Therefore, ‘i—; = 2]

and arg (z—;) = arg(z) — arg(z2).

The equation z" = w:

Let w € C be a complex number and let n € N be a positive natural number. Let
s = |w| and ¢ = arg(w), so, w = s - e¥. Assume 2" = w, what we can say about z?
First, let us write z in the form z = r-e’, where r = |z| and ¢ = arg(z). Now, what we
get for 2" ? Using the facts given above we get 2" = (r-e™)" = rm. ()" = . '),
Thus, if 2® = w, then r™ - (™) = 5. ¢¥, which implies 7" = s and ny = 1. The first
equation gives us

r=1/s
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At a first glance, the second equation gives us ¢ = %, but because the angle ) =
¥+ k- 2m (for any k € N), we get in fact p = £HE2T = £ 4 227 (where k € N). Now,
for k € N, let us define

o = % . k-2 .

n n
It is easy to see that for the angles ¢ we get v, = Yo, Yni1 = ©1, Pnio = @2, and SO
on. Thus, even though we get infinitely many ¢;’s, just n of these angles are distinct.
Now, for 0 < k < n, let

Zp =1 ek,

Since ™ = s and (for all £ € N) the angle nepy is the same as the angle 1, for all
k € N we get (2;)" = s-e¥ = w, and finally, since just n of the angles ¢ are distinct,
the complex numbers zy, 21, ... , 2,1 are the only solutions of the equation z" = w.
Since |zo| = |z1] = ... = |zn—1| = r, all the n solutions are on a circle with radius r.
Further, since arg(zx41) — arg(z;,) = 2%, the n solutions are equally distributed on the
circle, and therefore, the n solutions form a regular n-gon.

Example: Let us find all solutions of z* = —4. In our notation, —4 = w = s-e"¥ and
therefore s = 4 and 1 = 7. Now, the 4 solutions are z, = r - €%, where 0 < k < 4,

r:%:ﬂ:\/ﬁandwk:%%—k%:%jtk'{. Thus,

20 = V2-¢h = (1+9),
2 = V2.elits V26T = (=141),
b= VEORE = V% = (C1-i)
23 = V2. T V2T = (1—1).

Notice that the 4 solutions form a square on the circle with radius V2.

Now, try to find all solutions of the equation 2® = 16 and write them in the form

(a +1b). (Your solutions should form an octagon, did you get it?)
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