
1.5 Complex numbers:
√
−1

We introduce a new number “i” and define i2 := −1, thus, i =
√
−1.

Let C =
{

(a+ ib) : a, b ∈ R
}

be the set of complex numbers.

Before we define how to add, subtract, multiply and divide complex numbers, we give
introduce some notation.

Let z = (a + ib) ∈ C be a complex number. The real number a is called the real
part of z and is denoted by Re(z), so, Re(z) = a; the real number b is called the
imaginary part of z and is denoted by Im(z), so, Im(z) = b.

Let again z = (a + ib) ∈ C be a complex number. If the imaginary part of z is 0,
so, if b = 0, then we write just a instead of (a+ i0). Thus, we consider real numbers
as complex numbers with imaginary part equals to 0, which implies that each real
numbers is also a complex number and therefore, R ⊆ C. On the other hand, since
there is no real number r such that r2 = −1, not every complex number is a real
number.

We can represent complex numbers on a 2-dimensional diagram, called Argand di-
agram (or Gaussian plane). An Argand diagram is a Cartesian coordinate system
(also called rectangular coordinate system) where one axis is called the real axis and
the other one is called the imaginary axis.

For a complex number z = (a+ib), we define |z| :=
√
a2 + b2 and call |z| the modulus

of z. The modulus of a complex number is the same as the absolute value |r| of a
real number r (where |r| = r for r ≥ 0, and |r| = −r for r ≤ 0).

If z = (a + ib) and b < 0, then we write z = (a − i|b|) rather than z = (a + ib). For
example we write (3− i2) rather than

(
3 + i(−2)

)
.

Addition in C

Let z1 = (a1 + ib1) and z2 = (a2 + ib2) be two complex numbers, then

z1 + z2 :=
(
(a1 + a2) + i(b1 + b2)

)
.

In particular, (a + ib) + (0 + i0) = (a + ib), thus, 0 is still neutral with respect to
addition. Further we have (a + ib) + (−a − ib) = (0 + i0) = 0, so, (−a − ib) is the
inverse element (with respect to addition) of (a + ib), and therefore, we also have
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subtraction in C, defined as follows:

z1 − z2 :=
(
(a1 − a2) + i(b1 − b2)

)
.

Multiplication in C

Let z1 = (a1 + ib1) and z2 = (a2 + ib2) be two complex numbers, then

z1 · z2 :=
(
(a1 · a2 − b1 · b2) + i(a1 · b2 + b1 · a2)

)
.

To get this, just expand (a1 + ib1) · (a2 + ib2) and remember that i2 = 1. In particular,
(a + ib) · (1 + i0) = (a + ib), thus, 1 is still neutral with respect to multiplication.
Further we have

(a+ ib) ·
(

a
a2+b2

− i b
a2+b2

)
= (1 + i0) = 1 ,

thus,
(

a
a2+b2

−i b
a2+b2

)
is the inverse element (with respect to multiplication) of (a+ib),

and therefore, we also have division in C, defined as follows (for z2 6= 0):

z1

z2

:=

((a1 · a2 + b1 · b2
a2

2 + b22

)
+ i
(b1 · a2 − a1 · b2

a2
2 + b22

))
.

Conjugates

For a complex number z = (a+ib), we define z := (a−ib) and call z the conjugate of
z. In the Argand diagram, the conjugate of a complex number z is just the reflection
of z on the real axis, therefore, (z) = z (the conjugate of the conjugate of z is equal
to z). Further, if Im(z) = 0, then z = z (if r is a real number, then r = r).

A simple calculation shows that for any complex number z we have

Re(z)
z + z

2
and Im(z)

z + z

2i
.

Further, it is also quite easy to see that

z1 + z2 + . . .+ zn = z1 + z2 + . . . zn

and
z1 · z2 · . . . · zn = z1 · z2 · . . . · zn .

Thus, the conjugate of a sum is the sum of the conjugates and the conjugate of a

product is the product of the conjugates. Further we get −z = −z and
(

1
z

)
= 1

z
,
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thus, the conjugate of the inverse (w.r.t. addition and multiplication respectively) is
the inverse of the conjugate.

If z = (a+ ib), then z ·z = (a+ ib) · (a− ib) =
(
(a2 + b2)+ i0

)
= a2 + b2, and therefore,

since |z| =
√
a2 + b2, we have z · z = |z|2. Hence, we get the following: If z1 and

z2 6= 0 are complex numbers, then

z1

z2

=
z1

z2

· z2

z2︸︷︷︸
= 1

=
z1 · z2

z2 · z2

=
z1 · z2

|z2|2
,

which is in fact the same as above.

The unit circle in C

Let S1 := {z ∈ C : |z| = 1} be the unit circle in C.

For a z0 ∈ S1, let the argument of z0, denoted by arg(z0), be the length of the
arc from 1 counterclockwise to z0 of the unit circle. Counterclockwise is also called
positive direction, and hence, clockwise is also called negative direction.

Remark: We may go around several times, if we like, until we stop at z0. Thus,
arg(z0) is not unique!

The argument of a z0 on the unit circle is in fact an angle and we will denote angles
by Greek letters like α, β, ϕ, ψ.

For a non-zero complex number z ∈ C, let

arg(z) := arg

(
z

|z|

)
︸ ︷︷ ︸
∈ S1

,

and let arg(0) := 0.

Since the whole unit circle is of length 2π, the angle ϕ is the same as the angle
ϕ ± k2π (where k ∈ N). However, we usually consider an angle ϕ as a non-negative
real number less than 2π (this means 0 ≤ ϕ < 2π).

For any non-zero complex number z ∈ C, there is a unique z0 ∈ C, namely z0 = z
|z| ,

such that z = r · z0 for some positive r ∈ R (in fact, r = |z|). If z = 0, then we can
write z = 0 · z0, which is also in this form, but the z0 ∈ S1 is no longer unique.
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For z0 ∈ S1, let cos
(

arg(z0)
)

:= Re(z0) and sin
(

arg(z0)
)

:= Im(z0). (Note that this
corresponds to the usual definition of cosine and sine!) Hence, each complex number
z ∈ C can be written in the form z = r ·

(
cos(ϕ) + i sin(ϕ)

)
, where r = |z| and

ϕ = arg(z).

By Pythagoras, for each angle ϕ we have cos(ϕ)2 +sin(ϕ)2 = 1 (this is because for any
z0 = (a + ib) ∈ S1 with arg(z0) = ϕ we have |z0| =

√
a2 + b2 = 1, and by definition

we have a = cos(ϕ) and b = sin(ϕ)). Further, for any ϕ we easily get

cos(ϕ+ 2π) = cos(ϕ), cos(−ϕ) = cos(ϕ) ,
sin(ϕ+ 2π) = sin(ϕ), sin(−ϕ) = − sin(ϕ) .

ei':

Above we defined ez := exp(z) =
∑∞

n=0
zn

n!
. Now, let us replace z by iϕ:

eiϕ =

(
(iϕ)0

0!
+

(iϕ)1

1!
+

(iϕ)2

2!
+

(iϕ)3

3!
+

(iϕ)4

4!
+

(iϕ)5

5!
+ . . .

)

=
(

1 + iϕ+ i2
ϕ2

2!
+ i3

ϕ3

3!
+ i4

ϕ4

4!
+ i5

ϕ5

5!
+ . . .

)
=

(
1 + iϕ− ϕ2

2!
− iϕ

3

3!
+
ϕ4

4!
+ i

ϕ5

5!
− − + + . . .

)
=

(
1 +

ϕ2

2!
+
ϕ4

4!
− ϕ6

6!
± . . .

)
+ i
(
ϕ− ϕ3

3!
+
ϕ5

5!
− ϕ7

7!
± . . .

)
Hence, Re

(
eiϕ
)

=
∑∞

n=0
(−1)nϕ2n

(2n)!
, and Im

(
eiϕ
)

=
∑∞

n=0
(−1)nϕ2n+1

(2n+1)!
.

If we replace iϕ by −iϕ in the formula eiϕ =
∑∞

n=0
(iϕ)n

n!
, we see that eiϕ = e−iϕ. Thus,∣∣eiϕ∣∣ =

√
eiϕ · eiϕ =

√
eiϕ · e−iϕ =

√
eiϕ−iϕ =

√
e0 =

√
1 = 1, which implies that for

any ϕ we get eiϕ ∈ S1. In other words, for any ϕ, the complex number eiϕ lies on the
unit circle.

Further one can show that for any ϕ, arg
(
eiϕ
)

= ϕ, which implies eiϕ =
(

cos(ϕ) +
i sin(ϕ)

)
. In other words, cos(ϕ) = Re

(
eiϕ
)

and sin(ϕ) = Im
(
eiϕ
)
, and therefore, as

a consequence we get

cos(ϕ) =
∑∞

n=0
(−1)nϕ2n

(2n)!

sin(ϕ) =
∑∞

n=0
(−1)nϕ2n+1

(2n+1)!
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Therefore, each z ∈ C can be written in the form z = reiϕ, where r = |z| and
ϕ = arg(z).

Transformations:

• (a+ ib) reiϕ:

r =
√
a2 + b2, and ϕ is such that cos(ϕ) =

a

r
and sin(ϕ) =

b

r
.

• reiϕ  (a+ ib):
a = r · cos(ϕ) and b = r · sin(ϕ) .

Multiplication and division:

Let z1 and z2 be two complex numbers and let r = |z1|, ϕ = arg(z1), s = |z2|,
ψ = arg(z2). Thus, z1 = r · eiϕ and z2 = s · eiψ.

Multiplication: Let z1 and z2 as above.

z1 · z2 = r · eiϕ · s · eiψ = (r · s) · (eiϕ · eiψ) = (r · s) · eiϕ+iψ = (r · s) · ei(ϕ+ψ) .

Therefore, |z1 · z2| = |z1| · |z2| and arg(z1 · z2) = arg(z1) + arg(z2).

Division: Let z1 and z2 as above and assume z2 6= 0.

z1

z2

=
r · eiϕ

s · eiψ
=
r

s
· e

iϕ

eiψ
=
r

s
· (eiϕ · e−iψ) =

r

s
· eiϕ−iψ =

r

s
· ei(ϕ−ψ) .

Therefore,
∣∣ z1
z2

∣∣ = |z1|
|z2| and arg

(
z1
z2

)
= arg(z1)− arg(z2).

The equation zn = w:

Let w ∈ C be a complex number and let n ∈ N be a positive natural number. Let
s = |w| and ψ = arg(w), so, w = s · eψ. Assume zn = w, what we can say about z ?
First, let us write z in the form z = r·eiϕ, where r = |z| and ϕ = arg(z). Now, what we
get for zn ? Using the facts given above we get zn =

(
r ·eiϕ

)n
= rn · (eiϕ)n = rn ·ei(nϕ).

Thus, if zn = w, then rn · ei(nϕ) = s · eψ, which implies rn = s and nϕ = ψ. The first
equation gives us

r = n
√
s
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At a first glance, the second equation gives us ϕ = ψ
n

, but because the angle ψ =

ψ+ k · 2π (for any k ∈ N), we get in fact ϕ = ψ+k·2π
n

= ψ
n

+ k·2π
n

(where k ∈ N). Now,
for k ∈ N, let us define

ϕk :=
ψ

n
+
k · 2π
n

.

It is easy to see that for the angles ϕk we get ϕn = ϕ0, ϕn+1 = ϕ1, ϕn+2 = ϕ2, and so
on. Thus, even though we get infinitely many ϕk’s, just n of these angles are distinct.
Now, for 0 ≤ k < n, let

zk := r · eiϕk .

Since rn = s and (for all k ∈ N) the angle nϕk is the same as the angle ψ, for all
k ∈ N we get (zk)

n = s ·eiψ = w, and finally, since just n of the angles ϕk are distinct,
the complex numbers z0, z1, . . . , zn−1 are the only solutions of the equation zn = w.
Since |z0| = |z1| = . . . = |zn−1| = r, all the n solutions are on a circle with radius r.
Further, since arg(zk+1)−arg(zk) = 2π

n
, the n solutions are equally distributed on the

circle, and therefore, the n solutions form a regular n-gon.

Example: Let us find all solutions of z4 = −4. In our notation, −4 = w = s ·eiψ and
therefore s = 4 and ψ = π. Now, the 4 solutions are zk = r · eiϕk , where 0 ≤ k < 4,
r = 4
√
s = 4
√

4 =
√

2 and ϕk = ψ
4

+ k·2π
4

= π
4

+ k·π
2

. Thus,

z0 =
√

2 · eiπ4 = (1 + i),

z1 =
√

2 · eiπ4 +π
2 =

√
2 · ei 3π4 = (−1 + i),

z2 =
√

2 · eiπ4 + 2π
2 =

√
2 · ei 5π4 = (−1− i),

z3 =
√

2 · eiπ4 + 3π
2 =

√
2 · ei 7π4 = (1− i).

Notice that the 4 solutions form a square on the circle with radius
√

2.

Now, try to find all solutions of the equation z8 = 16 and write them in the form
(a+ ib). (Your solutions should form an octagon, did you get it?)

17


