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Chapter 5

Determinants

In the following we will define a determinant function on n×n matrices as a function
which assigns to each real-valued n × n matrix a real number, such that the deter-
minant function is linear as a function of each of the rows and the columns of the
matrix, and its value is 0 only in the case when the row vectors (or equivalently the
column vectors) are linearly dependent. If we further require that the determinant
function takes the value 1 on the n×n identity matrix, then the determinant function
is even unique. As we prove the uniqueness, an explicit formula for the determinant
will be obtained along with many of its useful properties. So, let us start with a
formal definition of a determinant function:

Definition. A determination function in an arbitrary n-dimensional real vector
space V is a function

∆ : V n −→ R
(x1, . . . , xn) 7−→ ∆(x1, . . . , xn)

with the following properties:

(1) ∆(x1, . . . , xn) is a linear function of each argument, i.e., for all i with 1 ≤ i ≤ n,
for all x, y ∈ V , and for all λ, µ ∈ R we have

∆(x1, . . . , xi−1, λx + µy, xi+1, . . . , xn) =

= λ∆(x1, . . . , xi−1, x, xi+1, . . . , xn) + µ∆(x1, . . . , xi−1, y, xi+1, . . . , xn) .

(2) If the vectors x1, . . . , xn are linearly dependent, then

∆(x1, . . . , xn) = 0 .
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Some properties of determinant functions:

Let {v1, . . . , vn} ⊆ V be a basis of V and let x1, . . . , xn be arbitrary vectors of V .
Each vector xi (1 ≤ i ≤ n) can be written in a unique way as a linear combination of
the vi’s, so, for each 1 ≤ i ≤ n let

xi =
n∑

ki=1

ξki
i vki

.

If ∆ is a determinant function, then we have the following:

∆(x1, . . . , xn) = ∆
( ∑n

k1=1 ξk1
1 vk1 ,

∑n
k2=1 ξk2

2 vk2 , . . .
∑n

kn=1 ξkn
n vkn

)

=
∑n

k1=1 ξk1
1 ∆

(
vk1 ,

∑n
k2=1 ξk2

2 vk2 , . . .
∑n

kn=1 ξkn
n vkn

)

=
∑n

k1=1 ξk1
1 ·∑n

k2=1 ξk2
2 ∆

(
vk1 , vk2 ,

∑n
k3=1 ξk3

3 vk3 , . . .
∑n

kn=1 ξkn
n vkn

)

=
∑

1≤k1,k2≤n ξk1
1 · ξk2

2 ∆
(
vk1 , vk2 ,

∑n
k3=1 ξk3

3 vk3 , . . .
∑n

kn=1 ξkn
n vkn

)

. . .

=
∑

1≤k1,...,kn≤n ξk1
1 · ξk2

2 · . . . · ξkn
n ∆

(
vk1 , vk2 , . . . , vkn

)

By property (2) of determinant functions, all terms in which ki = kj (for any distinct
i and j with 1 ≤ i, j ≤ j) are equal to 0, since the vector vki

appears twice in
the sequence (vk1 , . . . , vkn) which implies that the vectors vk1 , . . . , vkn are linearly
dependent. So we just have to take care of all permutations of {1, . . . , n}. Let Sn

be the set of all permutations of {1, . . . , n}, or in other words, Sn is the set of all
bijections π : {1, . . . , n} → {1, . . . , n}. This leads to the following:

∆(x1, . . . , xn) =
∑
π∈Sn

ξ
π(1)
1 · ξπ(2)

2 · . . . · ξπ(n)
n ∆

(
vπ(1), . . . , vπ(n)

)
.

Take any i, j such that 1 ≤ i < j ≤ n and put x := xi and y := xj. Consider for the
moment the determinant function ∆ just as a function of the ith and jth argument,
i.e.,

∆(x1, . . . , xn) =: ∆i,j(x, y) .

We get

0 = ∆i,j(x + y, x + y) = ∆i,j(x, x) + ∆i,j(x, y) + ∆i,j(y, x) + ∆i,j(y, y) =

= ∆i,j(x, y) + ∆i,j(y, x)

which implies that
∆i,j(x, y) = −∆i,j(y, x) .

Thus, if we swap any two vectors in (x1, . . . , xn), we change the sign of ∆.
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A permutation of {1, . . . , n} which just swaps two numbers is called a transposition.
One can show that each permutation π ∈ Sn can be written as a product of transpo-
sitions. Even though this representation is not unique, for a given π ∈ Sn, we need
either always an even number of transpositions or always an odd number of transpo-
sitions to represent π. In the former case we call π even and define sgn(π) = 1, in
the latter case we call π odd and define sgn(π) = −1.

Therefore we have:

∆(x1, . . . , xn) = ∆(v1, . . . , vn) ·
∑
π∈Sn

sgn(π) · ξπ(1)
1 · . . . · ξπ(n)

n

If ∆(x1, . . . , xn) 6= 0 for some fixed n-tuple (x1, . . . , xn), then also ∆(v1, . . . , vn) 6= 0
for any basis {v1, . . . , vn} of V . In particular, if ∆(x1, . . . , xn) 6= 0 for some n-tuple
(x1, . . . , xn), then ∆(v1, . . . , vn) 6= 0 for any linearly independent vectors v1, . . . , vn.

We conclude that any determinant function ∆ is determined by the value ∆(v1, . . . , vn).
So, if we stipulate

∆1(e1, . . . , en) = 1

then the determinant function is unique and for xi = (ξ1
i , ξ

2
i , . . . , ξ

n
i ), where 1 ≤ i ≤ n,

we get

∆1(x1, . . . , xn) =
∑
π∈Sn

sgn(π) · ξπ(1)
1 · . . . · ξπ(n)

n .

Determinants of Matrices. Let ϕ : V → V be a linear mapping from the n-
dimensional vector space V into itself, let {v1, . . . , vn} be a basis of V , and let A be
the matrix which corresponds to ϕ (with respect to the basis v1, . . . , vn). Then

∆ϕ(v1, . . . , vn) :=
∆1

(
ϕ(v1), . . . , ϕ(vn)

)

∆1(v1, . . . , vn)

is the determinant of the mapping ϕ and we define

det(A) := ∆ϕ(v1, . . . , vn) .

In particular, for the standard basis e1, . . . , en and for

A =




ξ1
1 ξ1

2 . . . ξ1
n

ξ2
1 ξ2

2 . . . ξ2
n

...
...

. . .
...

ξn
1 ξn

2 . . . ξn
n




we get

det(A) =
∑
π∈Sn

sgn(π) · ξπ(1)
1 · . . . · ξπ(n)

n .
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Computing Determinants of Matrices. In general, if we compute the determi-
nant of an n× n matrix, we have to add and subtract n! products of n numbers. For
n = 3, one can do it by hand, but for say n = 5, it is very likely that we make a
mistake somewhere. So, let us check if there are better methods than just using the
formula given above.

First notice that for an n× n matrix A = (ai,j)1≤i,j≤n we have

det(A) =
∑
π∈Sn

sgn(π) · aπ(1),1 · . . . · aπ(n),n =
∑
π∈Sn

sgn(π) · a1,π(1) · . . . · an,π(n)

which shows that det(A) = det(At). Further notice that by linearity of the determi-
nant, no elementary row or column operation on A changes the value of det(A), and
finally notice that the determinant of a triangular matrix of the form




a1,1 a1,2 a1,3 · · · a1,n

0 a2,2 a2,3 · · · a2,n

0 0 a3,3 · · · a3,n

...
...

. . . . . .
...

0 0 · · · 0 an,n




is equal to a1,1 · a2,2 · . . . · an,n. So, in order to compute the determinant of an n× n
matrix A, by elementary row and column operations we can bring first the matrix A
in triangular form and then just compute the product of the elements on the diagonal.

However, this procedure does not work if some of the entries of A are variables. In
this case there is no other way as to compute the determinant of A by the formula
given above (but at least there are some techniques which make the computation
easier).

Defining Properies of Determinants. A function “det” which assigns to each
n× n matrix A a real number det(A) is a determinant function if it is:

(1) Multi-linear, i.e., linear as a function of each column and of each row.

(2) If two columns (or equivalently two rows) of A are equal, then det(A) = 0.

(3) det(In) = 1, where In denotes the n× n identity matrix.

As a consequence we get that det(A) = 0 if and only if the column vectors (or equiv-
alently the row vectors) are linearly dependent, and that if A′ is a matrix obtained
from A by interchanging two columns (or two rows) of A, then det(A′) = − det(A).



Chapter 6

Eigenvalues and Eigenvectors of
Matrices

In the sequel let V be an n-dimensional vector space and let A be an n× n matrix.

Definition. A real number λ is called an Eigenvalue of A if there is a non-zero vec-
tor x ∈ V such that A.x = λx, and a non-zero vector x ∈ V is called an Eigenvector
of A if there is a real number λ such that A.x = λx.

Notice that λx = (λ · In).x, and therefore, A.x = λx is equivalent to A.x = (λ · In).x,
and since A is linear, this is equivalent to (A− λ · In).x = 0, which implies that the
matrix (A− λ · In) is not regular. So, for n× n matrices A, non-zero vectors x ∈ V
and real numbers λ, the following are equivalent:

A.x = λx

(A− λ · In).x = 0

det(A− λ · In) = 0

Thus, for a given matrix A, in order to find the Eigenvalues of A, we have to write
det(A−λ·In) as a polynomial in λ and compute its roots. This gives us the Eigenvalues
of A and with these values we can compute the corresponding Eigenvectors.

As we will see later, not every matrix has real Eigenvalues, and so, not every matrix
has real Eigenvectors. Further we will see that Eigenvectors which correspond to
different Eigenvalues are always linearly independent. But first let us consider an
example:
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Let us compute the Eigenvalues and corresponding Eigenvectors of the following 3×3
matrix:

A =



−1 0 2
0 −7 8
4 0 −3




The determinant of the matrix (A− λ · I3) is the following polynomial in λ, which is
called the characteristic polynomial of A:

charA(λ) = −λ3 − 11λ2 − 23λ + 35

The roots of this polynomial give us the Eigenvalues of A. It is not hard to see that

λ1 = 1

is a root of the polynomial charA(λ), and therefore, (1− λ) divides charA(λ). Now,

charA(λ) : (1− λ) = λ2 + 12λ + 35

which gives us the other two roots of charA(λ):

λ2 = −7 , λ3 = −5

To each of these three different Eigenvalues of A we find an Eigenvector by solving
the equation A.xi = λixi for i = 1, 2, 3, and get for example

x1 = (1, 1, 1) , x2 = (0, 1, 0) , x3 = (−1, 8, 2) .

Notice that not every matrix has real Eigenvalues, and thus, not every matrix has
real Eigenvectors. For example the characteristic polynomial of the rotation matrix

(
cos(α) − sin(α)
sin(α) cos(α)

)

is λ2 − 2 cos(α)λ + 1, with roots

λ1,2 =
2 cos(α)±

√
4 cos2(α)− 4

2
.

Now, these roots are real numbers if and only if α is a multiple of π, and we get
λ1 = λ2 = cos(α) (which is either 1 or −1). If α is not a multiple of π, then the roots
of the characteristic polynomial are complex and in this case, the matrix has no real
Eigenvalue and consequently no real Eigenvector.
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Let us now show that Eigenvectors which correspond to distinct Eigenvalues are lin-
early independent. For this assume that λ1, . . . , λk are k pairwise distinct Eigenvalues
of some n × n matrix A (where n ≥ k) with corresponding Eigenvectors x1, . . . , xk.
So, for all i with 1 ≤ i ≤ k we have A.xi = λixi.

The proof is by induction on k: For k = 1 the statement is obvious. So, let us
assume that the statement is true for some k0 and let k = k0 + 1. Assume towards
a contradiction that the xi’s are linearly dependent. Thus, there are real numbers
ξ1, . . . , ξk such that

k∑
i=1

ξixi = 0 .

Notice that by induction hypothesis, all ξi’s are non-zero. Now A.0 = 0, which implies
that

A.
( k∑

i=1

ξixi

)
= 0 .

Since A is linear and the xi’s are Eigenvectors of A we get

A.
( k∑

i=1

ξixi

)
=

k∑
i=1

λiξixi

which implies that
k∑

i=1

λiξixi = 0 .

On the other hand, since
∑k

i=1 ξixi = 0, we have

λ1 ·
k∑

i=1

ξixi = 0

and therefore,

k∑
i=1

λiξixi − λ1 ·
k∑

i=1

ξixi =
k∑

i=2

(λi − λ1)ξixi = 0 .

In particular, since all the λi’s are distinct and all ξi’s are non-zero, we can write
the zero-vector as an non-trivial linear combination of the vectors x2, . . . , xk, which
contradicts our induction hypothesis and completes the proof.
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Chapter 7

Inner Products and Orthogonality

As usual, let V = Rn for some n ≥ 1.

Definition. An inner product on V is function which assigns to each ordered pair
of vectors x, y in V a real number 〈x, y〉 in such a way that

(1) 〈x, y〉 = 〈y, x〉,
(2) 〈αx + βx′, y〉 = α〈x, y〉+ β〈x′, y〉,
(3) If x 6= 0, then 〈x, x〉 > 0.

Notice that by (2), 〈x, x〉 = 0 if and only if x = 0.

Property (3) leads to the notion of length or norm of a vector x defined by

‖x‖ :=
√
〈x, x〉 .

Unlike determinants, inner products are by no means unique. For example we can
define an inner product 〈 · , · 〉 on R2 as follows: For x = (x1, x2) and y = (y1, y2) let

〈x, y〉 = x1y1 − x2y1 − x1y2 + 4x2y2 .

However, there is a standard inner product on Rn, called the dot product, defined
as follows: For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn let

x • y := x1y1 + . . . + xnyn .

Two vectors x and y are called orthogonal if x • y = 0. Notice that the zero-vector
is orthogonal to every vector. A set X of vectors is orthonormal if whenever both
x and y are in X, then either x • y = 0 (if x 6= y) or x • y = 1 (if x = y).

Now, an n × n matrix is called orthogonal if the set of its column vectors is or-
thonormal. Orthogonal matrices can be characterized as follows:
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(1) A is orthogonal iff the column vectors of A are orthonormal.

(2) A is orthogonal iff At.A = In.

(3) A is orthogonal iff A.At = In.

(4) A is orthogonal iff the row vectors of A are orthonormal.

(5) A is orthogonal iff for all x ∈ Rn, ‖A.x‖ = ‖x‖.
(6) A is orthogonal iff for all x, y ∈ Rn, A.x •A.y = x • y.

Notice that (2) implies At = A−1 and that for any n × n matrices B and C and for
any vectors x, y ∈ Rn we have

B.x •C.y = x • (Bt.C).y .

As a consequence we get the following:

(a) The transpose of an orthogonal matrix is orthogonal.

(b) The inverse of an orthogonal matrix is orthogonal.

(c) A product of orthogonal matrices is orthogonal.

(d) If A is orthogonal, then det(A) = 1 or det(A) = −1.

For (d) notice that for any n× n matrices B and C we have

det(B.C) = det(B) · det(C) .

Example: Let us consider R2. Since rotations about the origin and reflections about
lines through the origin preserve length and orthogonality, the standard matrices
of these linear mappings must be orthogonal. In fact, the matrices corresponding
to these mappings are the only orthogonal 2 × 2 matrices. In other words, every
orthogonal 2× 2 matrix is expressible in the form

Rα =

(
cos(α) − sin(α)
sin(α) cos(α)

)
or Hα/2 =

(
cos(α) sin(α)
sin(α) − cos(α)

)

That is, every orthogonal 2 × 2 matrix A is either a rotation through some angle α
about the origin, in which case det(A) = 1, or a reflection about the straight line
t · ( cos(α/2), sin(α/2)

)
, in which case det(A) = −1.


