8. The Sylow Theorems

In the sequel, G is always a finite group.

Definition. For $a \in G$, the set $C(a) := \{x \in G : xax^{-1} = a\}$ is called the centralizer of a in G.

Note that $x \in C(a)$ iff $xa = ax$, and that for any $a \in G$ we have $a \in C(a)$.

Fact 8.1. For any $a \in G$, $C(a) \leq G$.

Proof. We have to verify the axioms $(A0)$, $(A1)$ and $(A2)$.

(A0) For $x, y \in C(a)$ we have

$$(xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy),$$

hence, $xy \in C(a)$.

(A1) $ea = ae$, thus, $e \in C(a)$.

(A2) If $x \in C(a)$, then

$$x^{-1}a = x^{-1}a(x^{-1}) = x^{-1}(ax)x^{-1} = x^{-1}(xa)x^{-1} = (x^{-1}xa)x^{-1} = ax^{-1},$$

hence, $x^{-1} \in C(a)$. ⊥

Definition. For $a \in G$, the set orbit$(a) := \{xax^{-1} : x \in G\}$ is called the orbit of a.

Fact 8.2. For $a, a' \in G$ we either have orbit$(a) = \text{orbit}(a')$ or orbit$(a) \cap \text{orbit}(a') = \emptyset$.

Further, $|\text{orbit}(a)| = 1$ iff $a \in Z(G)$.

Proof. If orbit$(a) \cap \text{orbit}(a') \neq \emptyset$, then $xax^{-1} = y_{a'}y^{-1}$ (for some $x, y \in G$). Thus, $a' = y^{-1}xax^{-1}y = y^{-1}xa(y^{-1}x)^{-1} \in \text{orbit}(a)$ and $a = x^{-1}ya'y^{-1}x = x^{-1}ya'(x^{-1}y)^{-1} \in \text{orbit}(a')$, which implies that orbit$(a) = \text{orbit}(a')$.

If $|\text{orbit}(a)| = 1$, then for all $x \in G$ we have $xax^{-1} = a$, thus, for all $x \in G$ we have $xa = ax$, which implies $Z(G)$. On the other hand, if $a \in Z(G)$, then $xax^{-1} = a$ (for all $x \in G$), thus, $|\text{orbit}(a)| = 1$. ⊥

Lemma 8.3. For every $a \in G$ we have

$$|\text{orbit}(a)| = |G : C(a)|.$$

Proof. $|G : C(a)| = |G/C(a)| = |\{xC(a) : x \in G\}|$. Further, we have

$$xC(a) = yC(a) \iff x^{-1}y \in C(a) \iff (x^{-1}ya^{-1}x = a \iff yay^{-1} = xax^{-1},$$

which implies that $|\{xax^{-1} : x \in G\}| = |\{xC(a) : x \in G\}|$. ⊥

As a consequence of Fact 8.2 and Lemma 8.3 we get

Corollary 8.4. Let a_1, \ldots, a_n be representatives for the n orbits which have size larger than 1. Then

$$|G| = |Z(G)| + \sum_{i=1}^{n} |\text{orbit}(a_i)| = |Z(G)| + \sum_{i=1}^{n} |G : C(a_i)|.$$

Proposition 8.5. If G is a group of order p^2, where p is prime, then G is abelian.
Proof. Assume that G is not abelian, then, by Corollary 8.4, we can choose some \(a_1, \ldots, a_n \in G \) such that \(|\text{orbit}(a_i)| > 1 \) (for all \(a_i \in \{a_1, \ldots, a_n\} \)) and \(p^2 = |G| = |Z(G)| + \sum_{i=1}^{n} |G : C(a_i)| \). By Lemma 8.3, for each \(a_i \in \{a_1, \ldots, a_n\} \) we get \(1 < |\text{orbit}(a_i)| = |G : C(a_i)| \), so, \(p \mid |C(a_i)| \), and therefore \(p \mid |Z(G)| \) which implies that \(|Z(G)| \geq p \).

If we assume that \(G \) is not abelian, then \(Z(G) \neq G \), thus, \(|Z(G)| = p \).

Choose some \(x \in G \setminus Z(G) \), then \(Z(G) \triangleleft C(x) \), and since \(x \in C(x) \) we get \(|C(x)| \geq p + 1 \). Now, since \(C(x) \leq G \), \(|C(x)| \mid |G| = p^2 \), and because \(|C(x)| \geq p + 1 \) we get \(C(x) = G \), thus \(x \in Z(G) \), which is absurd. Hence, we must have \(Z(G) = G \), which shows that \(G \) is abelian. \(\square \)

Theorem 8.6 (Cauchy). Suppose that \(p \mid |G| \) for some prime number \(p \). Then there is an element \(g \in G \) of order \(p \).

Proof. The proof is by induction on \(|G| \). If \(|G| = 1 \), then the result is vacuously true. Now, let us assume that \(|G| > 1 \) and that for every proper subgroup \(H < G \) we have \(p \nmid |H| \), (in other words, \(p \nmid |G : H| \)), else we are home by induction. By Corollary 8.4 and by our assumptions we get \(p \mid |Z(G)| \), so, \(G = Z(G) \) which implies that \(G \) is abelian. A proper subgroup \(H \triangleleft G \) is called maximal if \(H \leq H' \leq G \) implies \(H' = H \) or \(H' = G \). If \(H, K \) are distinct maximal proper subgroups of \(G \), then \(HK \leq G \) (since \(G \) is abelian) and by maximality of \(H \) and \(K \) we get \(HK = G \) (since \(H, K \leq HK \)).

Now, \(|G| = |HK| = \frac{|H||K|}{|H \cap K|} \), but because \(p \nmid |H| \) and \(p \nmid |K| \), this implies \(p \nmid |G| \), which is a contradiction. Therefore, \(G \) has a unique maximal proper subgroup, say \(M \). Since \(M \) is the only maximal proper subgroup of \(G \), all proper subgroups \(H < G \) are subgroups of \(M \). Choose \(g \in G \) with \(g \notin M \), then \(\langle g \rangle = G \), (since otherwise, \(\leq g \triangleleft M \)), and hence, \(G \) is cyclic. The order of \(g \) is \(|G| \), and if we put \(n = \frac{|G|}{p} \), then \(\langle g^n \rangle \) is a subgroup of \(G \) of order \(p \), which completes the proof. \(\square \)

Definition. Let \(H \leq G \), then the set \(N(H) := \{ x \in G : xHx^{-1} = H \} \) is called the **normalizer** of \(H \) in \(G \), and \(\text{orbit}(H) := \{ xHx^{-1} : x \in G \} \) is called the **orbit** of \(H \).

Fact 8.7. For every \(H \leq G \), \(N(H) \leq G \) and \(|\text{orbit}(H)| = |G : N(H)| \).

Proof. Just follow the proofs of Fact 8.1 and Lemma 8.3. \(\square \)

Fact 8.8. For every \(H \leq G \), \(H \leq N(H) \).

Proof. By definition, for every \(x \in N(H) \) we have \(xHx^{-1} = H \), thus, \(H \leq N(H) \). \(\square \)

Lemma 8.9. Let \(G \) be such that \(|G| = p^m n \), where \(p \) is prime, \(m, n > 0 \) and \(p \nmid n \), and let \(P, Q \leq G \) be such that \(|P| = |Q| = p^m \). Then \(Q \leq N(P) \) if and only if \(Q = P \).

Proof. Of course, \(Q = P \) implies \(Q \leq N(P) \). On the other hand, if \(Q \leq N(P) \), then, since \(P \leq N(P) \) (by Fact 8.8), \(PQ \leq N(P) \leq G \). Thus,

\[
|PQ| = \frac{|P| \cdot |Q|}{|P \cap Q|} = \frac{p^m \cdot p^m}{|P \cap Q|}
\]

must divide \(|G| = p^m n \), which implies \(|P \cap Q| = p^m \), hence, \(Q = P \). \(\square \)
Definition. Let G be a finite group of order $p^m n$, where p is prime and does not divide n. Then any subgroup of G of order p^m is called a Sylow p-subgroup of G, and the set of all such subgroups of G is denoted $\text{Syl}_p(G)$.

In order to state Sylow’s Theorem, we need one more definition.

Definition. Two subgroups H_1 and H_2 of a group G are called conjugate in G if $H_1 = xH_2x^{-1}$ for some $x \in G$.

Theorem 8.10 (Sylow). Let G be a finite group of order $p^m n$, where p is prime and does not divide n.

(i) There is a Sylow p-subgroup P of G.

(ii) All elements of $\text{Syl}_p(G)$ are conjugate in G.

(iii) $|\text{Syl}_p(G)| \equiv 1 \pmod{p}$.

(iv) $|\text{Syl}_p(G)| | n$.

Proof. We prove (i) by induction on $|G|$. If $|G| = 1$, then the result is vacuously true, and therefore we may assume that $|G| > 1$. By Corollary 8.4 we have $|G| = |Z(G)| + \sum_{j=1}^{s} |G : C(x_j)|$, where the x_j are a collection of representatives for those orbits which are not singletons. Thus, each $C(x_j)$ is a proper subgroup of G. If $p \nmid |G : C(x_j)|$ for every $1 \leq j \leq s$, then $p \nmid |Z(G)| \neq 1$. Thanks to Cauchy’s Theorem 8.6 we can choose $z \in Z(G)$ of order p, so, since $z \in Z(G)$, $\langle z \rangle \leq G$. Let $\pi : G \rightarrow G/\langle z \rangle$ be the natural projection. By induction, there is a Sylow p-subgroup P_1 of $G/\langle z \rangle$. This group has order p^{m-1}, since $|G/\langle z \rangle| = p^{m-1} n$. The preimage of P_1 under π is $P \leq G$, where $P/\langle z \rangle$ has order $p^{m-1} = \frac{|P|}{p}$. Thus, $|P| = p^m$ and we have found a Sylow p-subgroup P of G. The other possibility is that there is some x_j with $p \nmid |G : C(x_j)|$, so, $|G : C(x_j)| = p^m k$ with $k < n$ and $p \nmid k$. By induction, $C(x_j)$ has a Sylow p-subgroup P of order p^m, and since $P \leq G$, P is a Sylow p-subgroup of G.

For part (ii) and (iii), let P be a Sylow p-subgroup of G. Let $\Omega = \{xPx^{-1} : x \in G\}$ denote the set of all G-conjugates of P. Now, by Fact 8.7 we have $|\Omega| = |G : N(P)|$.

Further, for $P_i \in \Omega$, let $\Omega_i = \{yP_iy^{-1} : y \in P\}$, then Ω is the disjoint union of some Ω_i’s, so, $|\Omega| = \sum_i |\Omega_i|$. Again by Fact 8.7 we get $|\Omega_i| = |P : N(P_i) \cap P|$, which tells us that the orbits Ω_i have size divisible by p, unless $P \leq N(P_i)$, in which case $|\Omega_i| = 1$ and $P = P_i$ (by Lemma 8.9). Hence, of the orbits Ω_i there is exactly one of length 1 and all the others have size divisible by p, thus, $|\Omega| = \sum_i |\Omega_i| \equiv 1 \pmod{p}$. If we can show that $\Omega = \text{Syl}_p(G)$, then we are done. So, assume towards a contradiction that $\Omega \neq \text{Syl}_p(G)$, which means that there is a Sylow p-subgroup Q which is not a conjugate of P. Now, all Q-orbits $\Omega_i = \{yP_iy^{-1} : y \in Q\}$, where $P_i \in \Omega$ have size divisible by p, since otherwise, $Q \leq N(P_i)$ (for some i) and therefore $Q = P_i$ (by Lemma 8.9), which implies that Q is a conjugate of P. Since Ω is a disjoint union of sets – namely the Ω_i’s – of size divisible by p we deduce that $|\Omega| \equiv 0 \pmod{p}$. However, we already know that $|\Omega| \equiv 1 \pmod{p}$ so this is absurd. Thus, $\Omega = \text{Syl}_p(G)$, which implies that all Sylow p-subgroups of G are conjugate and $|\text{Syl}_p(G)| \equiv 1 \pmod{p}$.

To verify (iv), let $P \in \text{Syl}_p(G)$. Then, by (ii), $\text{Syl}_p(G) = \{xPx^{-1} : x \in G\}$, and by Fact 8.7 we get $|\text{Syl}_p(G)| = |G : N(P)|$. Since $P \leq N(P)$ it follows that $p^m | |N(P)|$, and so $|G : N(P)|$ must divide n. \square
As a consequence of Theorem 8.10 (ii) we get

Corollary 8.11. Let G be a finite group of order p^mn, where $n,m > 0$ and p is prime and does not divide n. Then $|\text{Syl}_p(G)| = 1$ if and only if the unique Sylow p-subgroup is a normal subgroup of G. In particular, $|\text{Syl}_p(G)| = 1$ implies that G is not simple.