5. Normal Subgroups

Before we define the notion of a normal subgroup, let us prove the following:

Fact 5.1. Let G be a group. If $H \subseteq G$ and $x \in G$, then
$$xHx^{-1} = \{xhx^{-1} : h \in H\}$$
is a subgroup of G.

Proof. Let xh_1x^{-1} and xh_2x^{-1} be in xHx^{-1}. Then $(xh_2x^{-1})^{-1} = xh_2^{-1}x^{-1}$ and $(xh_1x^{-1})(xh_2^{-1}x^{-1}) = x(h_1h_2^{-1})x^{-1} \in xHx^{-1}$. So, by definition, $xHx^{-1} \subseteq G$. \(\dashv\)

This leads to the following definition.

Definition. Suppose that G is a group and that $N \leq G$, then N is called a normal subgroup of G if for all $x \in G$ we have
$$xNx^{-1} = N,$$
or equivalently, if for all $x \in G$, $xN = Nx$.

In particular, the trivial subgroups are normal and all subgroups of an abelian group are normal.

Notation. If $N \leq G$ ($N < G$) is a normal subgroup of G, then we write $N \trianglelefteq G$ ($N \lhd G$).

The following is just a consequence of Corollary 3.10:

Fact 5.2. If $H < G$ and $|G : H| = 2$, then $H \lhd G$.

Proof. By Corollary 3.10 we know that if $|G : H| = 2$, then for all $x \in G$ we have $xH = Hx$, and therefore $H \lhd G$. \(\dashv\)

Proposition 5.3. If $N \leq G$, then $N \trianglelefteq G$ if and only if for all $x \in G$ and all $n \in N$ we have
$$xnx^{-1} \in N.$$

Proof. If $N \leq G$, then $xNx^{-1} = N$ (for all $x \in G$), thus, $xnx^{-1} \in N$ for all $x \in G$ and $n \in N$.

On the other hand, if $xnx^{-1} \in N$ for all $x \in G$ and $n \in N$, then $xNx^{-1} \subseteq N$ (for all $x \in G$). Further, replacing x by x^{-1} we get
$$N = x \underbrace{(x^{-1}Nx)}_{\subseteq N} x^{-1} \subseteq xNx^{-1}.$$Hence, $xNx^{-1} = N$ (for all $x \in G$). \(\dashv\)

The following Fact is similar to Proposition 3.2:

Fact 5.4. If $K, H \leq G$, then $(K \cap H) \leq G$.

Proof. If $K, H \leq G$, then, by Proposition 5.3, for all $x \in G$ and $n \in K \cap H$ we have $xnx^{-1} \in K$ (since $K \leq G$) and $xnx^{-1} \in H$ (since $H \leq G$), and therefore, $xnx^{-1} \in K \cap H$ (for all $x \in G$ and $n \in K \cap H$). \(\dashv\)
Notice that if \(H \triangleleft K \triangleleft G \), then \(H \) is not necessarily a normal subgroup of \(G \). To see this, let \(T \) be the tetrahedron-group, let \(\rho_1, \rho_2 \) and \(\rho_3 \) be the three elements of \(T \) of order 2, and let \(\iota \) be the neutral element of \(T \). Further, let \(H = \{ \iota, \rho_1 \} \) and \(K = \{ \iota, \rho_1, \rho_2, \rho_3 \} \). Since the group \(K \) is isomorphic to \(C_2 \times C_2 \), it is abelian and therefore we get \(H \triangleleft K \). Further, for each \(\tau \in T \) and \(\rho \in K \), \(\tau \rho \tau^{-1} \) has either order 1 or 2. Thus, \(\tau \rho \tau^{-1} \in K \), which implies by Proposition 5.3 that \(K \triangleleft T \). Finally, it is not hard to see that \(H \) is not a normal subgroup of \(T \).

Let us now give some examples of normal subgroups:

1. \(T \triangleleft C \) (since \(|C : T| = 2 \)).
2. For \(n \geq 3 \), \(C_n \triangleleft D_n \) (since \(|D_n : C_n| = 2 \)).
3. For \(n \geq 1 \), \(\text{SO}(n) \triangleleft \text{O}(n) \) (since \(|\text{O}(n) : \text{SO}(n)| = 2 \)).
4. As we have seen above, \(T \) contains a normal subgroup which is isomorphic to \(C_2 \times C_2 \).
5. For \(n \geq 1 \), \(\text{SL}(n) \triangleleft \text{GL}(n) \): For all \(B \in \text{GL}(n) \) and \(A \in \text{SL}(n) \) we have \(\det(BAB^{-1}) = \det(A) = 1 \), thus, \(BAB^{-1} \in \text{SO}(n) \).

Definition. Suppose that \(G \) is a group. We define the **centre** \(Z(G) \) of \(G \) by

\[
Z(G) := \{ a \in G : \forall x \in G(ax = xa) \}
\]

In other words, \(Z(G) \) consists of those elements of \(G \) which commute with every element of \(G \).

Fact 5.5. \(Z(G) = G \) if and only if \(G \) is abelian.

Proof. If \(G \) is abelian, then for all \(a \in G \) and for all \(x \in G \) we have \(ax = xa \), thus, \(Z(G) = G \). On the other hand, \(Z(G) = G \) implies that for all \(a \in G \) and for all \(x \in G \), \(ax = xa \), thus, \(G \) is abelian. \(\square \)

Fact 5.6.

(a) \(Z(G) \trianglelefteq G \) (see Hw7.Q31.a).

(b) \(Z(G) \trianglelefteq G \) (see Hw7.Q31.b).

(c) \(Z(G) \) is abelian (see Hw7.Q31.c).

(d) If \(H \leq Z(G) \), then \(H \leq G \) (see Hw7.Q31.d).

It is possible that the centre of a group is just the neutral element, e.g., \(Z(T) = \{ \iota \} \).

Definition. Let \(G \) be a group and let \(H \) and \(K \) be subgroups of \(G \). If \(G = HK \), then we say that \(G \) is the **inner product** of \(H \) and \(K \).

Proposition 5.7. Let \(G \) be a finite group and let \(H, K \leq G \). Then

\[
|HK| = \frac{|H| \cdot |K|}{|H \cap K|}.
\]

Proof. First notice that \(HK = \bigcup_{h \in H} hK \) and that \((H \cap K) \leq H \).

Now, for \(h_1, h_2 \in H \) we have

\[
h_1K = h_2K \iff h_1h_2^{-1} \in K,
\]

and further we have

\[
h_1(H \cap K) = h_2(H \cap K) \iff h_1h_2^{-1} \in (H \cap K) \iff h_1h_2^{-1} \in K.
\]
Therefore,

\[|HK| = \sum_{h \in H} hK| = |H : (H \cap K)| \cdot |K| = \frac{|H|}{|H \cap K|} \cdot |K| = \frac{|H| \cdot |K|}{|H \cap K|}. \]

Notice that if \(H \) and \(K \) are subgroups of a group \(G \), then \(HK \) is not necessarily a subgroup of \(G \) (see Hw7.Q34). On the other hand, if at least one of these two subgroups is a normal subgroup, then \(HK \) is a subgroup of \(G \):

Theorem 5.8. If \(K \leq G \) and \(N \unlhd G \), then \(KN = NK \leq G \).

Proof. Let us first show that \(KN = NK \): Let \(k \in K \) and \(n \in N \), and let \(n_1 = knk^{-1} \) and \(n_2 = k^{-1}nk \). Then, since \(N \unlhd G \), \(n_1, n_2 \in N \), and further we have

\[kn = n_1k \quad \text{and} \quad nk = kn_2, \]

which shows that \(KN = NK \). To see that \(KN \leq G \), pick two elements \((k_1n_1) \) and \((k_2n_2) \) of \(KN \). We have to show that \((k_1n_1)(k_2n_2)^{-1} \in KN \):

\[(k_1n_1)(k_2n_2)^{-1} = k_1n_1k_2^{-1} = k_1k_2^{-1}k_2n_2^{-1} = kn \in KN. \]

Let us give an example for Theorem 5.8: Consider the cube-group \(C \). Let \(a, b, \) and \(c \) be the three axes joining centres of opposite faces and let \(\rho_a, \rho_b, \rho_c \in C \) be the rotations about the axes \(a, b, \) and \(c \) respectively through \(\pi \) and let \(\delta \in C \) be the rotation about the axis \(a \) through \(\pi /2 \). Now, let \(N = \langle \{\rho_a, \rho_b, \rho_c\} \rangle \) and let \(K = \langle \delta \rangle \). It is easy to see that \(K \) and \(N \) are both subgroups of \(C \) of order 4. Notice that \(K \cong C_4 \) and that \(N \cong C_2 \times C_2 \), so, \(K \) and \(N \) are not isomorphic, but they are both abelian. Let us now show that \(N \) is a normal subgroup of \(C \): For this, we consider the set of axes \(\{a, b, c\} \). Now, every \(x \in C \) corresponds to a permutation \(\tau_x \) on \(\{a, b, c\} \), and \(n \in N \) if and only if \(\tau_n(a) = a, \tau_n(b) = b, \) and \(\tau_n(c) = c \), or in other words, \(n \in N \) if \(n \) corresponds to the identity permutation on \(\{a, b, c\} \). For any \(x \in C \) and \(n \in N \), the permutation \(\tau_{xn}^{-1} = \tau_x \tau_n \tau_{x^{-1}} \) is the identity permutation on \(\{a, b, c\} \), and hence, \(xn \in N \), which shows that \(N \lhd C \). Thus, by Theorem 5.8, \(KN \leq C \).

Since \(|K \cap N| = 2 \), by Proposition 5.7 we have \(|KN| = \frac{|K| |N|}{|K \cap N|} = 8 \) and it is not hard to see that \(KN \cong D_4 \).

Proposition 5.9. If \(K \) and \(H \) are subgroups of the finite group \(G \), \(|H \cap K| = 1 \) and \(|H| \cdot |K| = |G| \), then \(HK = G = KH \).

Proof. Let us just prove that \(HK = G \) (to show that \(KH = G \) is similar). Since \(HK = \{hk : h \in H \text{ and } k \in K\} \subseteq G \), \(HK = G \) if and only if \(|HK| = |G| \), which implies that \(h_1k_1 = h_2k_2 \) if and only if \(h_1 = h_2 \) and \(k_1 = k_2 \). So, let us assume that \(h_1k_1 = h_2k_2 \), then \(h_1^{-1}(h_1k_1)k_2^{-1} = h_1^{-1}(h_1k_2)k_2^{-1} \), and hence, \(k_1k_2^{-1} = h_1^{-1}h_2 \in H \cap K \), but since \(H \cap K = \{e\} \), this implies that \(h_1 = h_2 \) and \(k_1 = k_2 \).

The following proposition shows that if \(K \) and \(H \) are normal subgroups of \(G \) such that \(|H \cap K| = 1 \), then the elements of \(H \) commute with the elements of \(K \) and vice versa. Notice that this is stronger than just saying \(KH = HK \).
Proposition 5.10. If K and H are normal subgroups of G and $|H \cap K| = 1$, then for all $h \in H$ and all $k \in K$, $hk = kh$.

Proof. Let $h \in H$ and $k \in K$. Consider the element $hkh^{-1}k^{-1}$: On the one hand we have

\[
\{hkh^{-1}k^{-1} \in H \mid e \in H\}
\]

and on the other hand we have

\[
\{hkh^{-1}k^{-1} \in K \mid e \in K\}
\]

Thus, $hkh^{-1}k^{-1} \in H \cap K$, and since $|H \cap K| = 1$, $hkh^{-1}k^{-1} = e$, which implies $kh = hkh^{-1}k^{-1}(kh) = hk$. \[\]

Proposition 5.11. If K and H are normal subgroups of G, then $KH \trianglelefteq G$.

Proof. For any $x \in G$, $xkhx^{-1} = (xkx^{-1})(xhx^{-1}) \in KH$, thus, $xKHx^{-1} = KH$. \[\]

Definition. A group G is called simple if it does not contain any non-trivial normal subgroup.

In particular, any abelian group which has a non-trivial subgroup cannot be simple, but there are also simple abelian groups, e.g., the cyclic groups C_p, where p is prime (see Hw7.Q35). An example of a simple group which is not abelian is the dodecahedron-group D (as we will see later). On the other hand, there are many non-abelian groups which are not simple groups:

1. The cube-group C, because $T \triangleleft C$.
2. D_n for $n \geq 3$, because $C_n \triangleleft D_n$.
3. $O(n)$ for $n \geq 2$, because $SO(n) \triangleleft O(n)$.
4. The tetrahedron-group T, because T contains a normal subgroup which is isomorphic to $C_2 \times C_2$.
5. $GL(n)$ for $n \geq 2$, because $SL(n) \triangleleft GL(n)$.