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WHAT HAPPENS IN THE LINEAR CASE

Let 
 = (0; 1)� (0; 1) ; " > 0; x = (x1; x2)8><>:�"
2@2x1u" (x1; x2)� @2x2u" (x1; x2) = f (x1; x2) in 
;

u" = 0 on @
;

What happens when "! 0?

The natural limit is u0 solution to8><>:�@
2
x2
u0 (x1; �) = f (x1; �) in !2 = (0; 1) ;

u0 (x1; �) = 0 on @!2:



Convergence results
Let 
a = (a; 1� a)� (0; 1) ; a > 0:

Diagonal structure �! A" =

0@a11 = "2 a12 = 0
a21 = 0 a22 = 1

1A

Theorem 1 We have

ju" � u0jL2(
a) ; j@x2 (u" � u0)jL2(
a) = o (") ;

@x1u" ! @x1u0 in L2 (
a)

)
=) u" ! u0 in H1 (
a)

If f is independent of x1 then 9�;C > 0

ju" � u0jH1(
a) � Ce�
�
"



Non-diagonal structure �! A" =

0@a11 = "2 a12 = "
a21 = " a22 = 1

1A
Theorem 2 We have

ju" � u0jL2(
a) ; j@x2u" � @x2u0jL2(
a) = O (") ;

@x1u" * @x1u0 weakly in L2 (
a) :

Remark 3 We have
1

"
(u" � u0)* 0 in L2 (
a)() j@x2 (u" � u0)jL2(
a) = o (") ; 8a > 0

mZ


a12@x2u0 � @x1v dx+

Z


a21@x1u0 � @x2v dx = 0 8v 2 H10(
):



In the whole domain

Theorem 4 We have

u" �! u0; @x2u" �! @x2u0; "@x1u" �! 0 in L2(
): (1)

If f = f (x2) 6= 0 =) u0 = u0 (x2) =2 H10 (
)

+

u" 9 u0 in H1 (
)
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PHYSICAL MOTIVATION
We consider the linear transport equation for the neutron angular �ux  
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coupled with some boundary conditions.

̂ : the traveling direction of a neutron,
r : the spatial variable.
The scalar �ux � (r) is given by
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Z
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Vladimirov method
To derive the even-parity transport equation let us decompose  
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Then we have
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Rewriting (2) for �
̂ we derive
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Summing (2) and (3) term by term, we get
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then subtracting them leads to
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whence
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where � (r) is assumed di¤erent from 0: Dropping the term  �
�
r; 
̂

�
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Motived by the model above we consider in the following some nonlocal problems.



POSITION OF THE PROBLEM

 = !1 � !2 such that !1 � Rm and !2 � Rn

x = (X1; X2) 2 Rm+n; X1 = (x1; : : : ; xm) and X2 =
�
x01; : : : ; x

0
n

�
:

With this notation we set

ru =
 
rX1u
rX2u

!
=

 
(@x1u; : : : ; @xmu)

T

(@x01
u; : : : ; @x0nu)

T

!
:

Let us consider the integro-di¤erential problem de�ned by8<:�rX2
�
ArX2u

�
+ �u = a(l (u)) in 
;

u(X1; �) = 0 on @!2 a:e: X1 2 !1:
(6)



For some function h 2 L1(!1 � 
);

l (u) =
Z
!1
h
�
X1; X

0
1; X2

�
u
�
X 01; X2

�
dX 01: (7)

Let

A = (aij(x)) n� n�matrix; aij 2 L1(
) 8 i; j = 1; : : : ; n; (8)
A� � � � �j�j2 8 � 2 Rn; a.e. x 2 
; (� > 0) ; (9)

a 2 C (R) a continuous function satis�es

a(r) = O (r) when jrj ! 1; (10)

� > 0 large enough. We set

V :=
�
v 2 L2 (
) j@x0iv 2 L

2 (
) ; i = 1; � � � ; n and v 2 H10(!2) a.e. X1 2 !1
�
:



Let us equipped V with the norm

juj2V =
���rX2u���2L2(
) + juj2L2(
) :

u0 2 V is a weak solution of the problem (6) if we haveZ


ArX2u0 � rX2v + �u0vdx =

Z


a(l (u0))vdx; 8v 2 V:

Note that

V ,! L2 (
) is not compact:

To show the existence of the solution u0, we introduce the following anisotropic
singular perturbation problem ("! 0)8<:�"

2�X1u" �rX2
�
ArX2u"

�
+ �u" = a(l (u")) in 
;

u" = 0 on @
:
(11)



The plan of the study is as follows.

i) Existence of the solutions of the problem (11) when a is bounded.

ii) Existence of the solutions of the problem (11) when a satis�es (10).

iii) Asymptotic behavior of u" solution to (11) when "! 0: (u"! u0) :



Step 1. Nonlocal elliptic problems with bounded data
We assume that

a : R! R is bounded. (12)

Theorem 5 Under the assumptions above, there exists at least one weak solution to
the problem (11).

Proof. " is �xed. For w 2 L2(
); let u 2 H10 (
) be solution to the linear elliptic
problem 8<:�"

2�X1u�rX2
�
ArX2u

�
= a(l (w)) in 
;

u = 0 on @
:
(13)



Since a is bounded the mapping

T : L2 (
) ! L2 (
)
w ! u = T (w)

(14)

is continuous and 9 B � H10 (
) (bounded in H
1
0 (
)) such that

T (B) � B:

By the Schauder �xed point theorem 9 u 2 B

T (u) = u =) u is a solution of (11):



Step 2. More general nonlocal elliptic problems
a satis�es (10). Then we have

Theorem 6 Under the assumptions above, there exists at least one weak solution to
the problem (11).

Proof. " is �xed. Let us introduce a sequence of functions �n : R! R de�ned as

�n (r) =

8><>:
r if jrj � n
n if r � n;

�n if r � �n;
then an de�ned as

an = a � �n



is a continuous and bounded function. According to the previous step there exists

un 2 H10 (
) solution to8<:�"
2�X1u

n �rX2
�
ArX2u

n
�
+ �un = an(l (u

n)) in 
;

un = 0 on (0; T )� @
;
(15)

Testing with un we deduce, by (10), that

un is bounded in H10 (
) .

Then -up to a subsequence- we have

un
0
* u in H1 (
) ;

un
0
! u in L2 (
) ;

un
0
! u a.e. in 
:



Passing to the limit in (15) we getZ


"2rX1u � rX1v +ArX2u � rX2v + �uv dx = lim

n0!1

Z


an0

�
l
�
un

0��
vdx

=
Z


a (l (u)) vdx; 8v 2 H10 (
) ;

since we have

an0
�
l
�
un

0��
! a (l (u)) a.e. in 
:



Step 3. Anisotropic singular perturbations method ("! 0)

Lemma 7 Let wn 2 V be a weakly converging sequence to w in V: Then we have

l (wn)* l (w) in H1 (
) ; l (wn)! l (w) in L2 (
) :

Proof. We can easily show

jl (wn)jH1(
) � C jwnjV =) l (wn) is bounded in H1 (
) :

9 W 2 H1 (
) ; -up to a subsequence

l (wn0) * W in H1 (
) ; (16)

l (wn0) ! W in L2 (
) : (17)



On the other hand we have for every v 2 D (
)Z


l (wn0) vdx =

Z
!1

�Z


h
�
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0
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�
v (X1; X2)wn0

�
X 01; X2

�
dX 01dX2

�
dX1

!
Z
!1

Z


h
�
X1; X
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�
X 01; X2

�
dX 01dX2

=
Z


l (w) vdx )W = l (w) :

De�nition 8 ("� nets) Given a metric space (X; d), a subset Y of X is said to

be an "� net; if for all x 2 X, there exists an a 2 Y such that

d(x; a) < ":



Theorem 9 Under the assumptions above, the set of solutions of (6) is not empty.
Moreover if we consider the metric structure of V corresponding to the norm of V ,
then for every r > 0; there exists "0 > 0 such that the set of solutions of (6) consists
in a r�net of the set

A"0 = fu" solution to (11) for " < "0g ;
and we have "rX1u" �! 0 in L2(
):

Corollary 10 If the problem (6) has only one solution u0 then we have

u" �! u0; rX2u" �! rX2u0 and "rX1u" �! 0 in L2(
):

Proof. Let us take v = u" in the weak formulationZ


"2rX1u" � rX1v +ArX2u" � rX2v + u"v dx =

Z


a (l (u")) vdx: (18)



Then we get

u"; j"rX1u"j; jrX2u"j are bounded in L2(
): (19)

It follows that there exists u0 2 L2(
) such that �up to a subsequence

u" * u0; rX2u" * rX2u0; "rX2u" * 0 in L2(
):

Using Lemma 7,

l (u")! l (u0) a.e. in 
:

The continuity of a gives

a (l (u"))! a (l (u0)) a.e. in 
 =) a (l (u"))! a (l (u0)) in L2(
) (20)

Passing to the limit in (18) we deriveZ


ArX2u0 � rX2v + u0v dx =

Z


a (l (u0)) vdx: (21)



Taking v = u" in (21) and passing to the limit we getZ


ArX2u0 � rX2u0 dx =

Z


a (l (u0))u0dx: (22)

We set

I" :=
Z


"2rX1u" � rX1u" dx+

Z


ArX2(u" � u0) � rX2(u" � u0)dx:

Using (18) we derive

I" =
Z


a (l (u"))u"dx

�
Z


ArX2u0 � rX2u" dx�

Z


ArX2u0 � rX2u" dx

+
Z


ArX2u0 � rX2u0dx:



Passing to the limit in I" we get

lim
"!0

I" =
Z


a (l (u0))u0dx�

Z


ArX2u0 � rX2u0 dx = 0;

since we have (22). Using the coerciveness assumption we getZ


"2jrX1u"j

2 + �jrX2(u" � u0)j2 dx � I":

It follows that

"rX1u" �! 0; rX2u" �! rX2u0; u" �! u0 in L2(
):

It follows that for almost every X1Z
!2
jrX2(u" � u0)j2 dX2 �! 0:



Since (Z
!2
jrX2vj

2 dX2

)1
2

is a norm on H10(!2) and u"(X1; �) 2 H10(!2) we have

u0(X1; �) 2 H10(!2)

for almost every X1. Then u0 is a solution of the intergo-di¤erential problem. Since
the only possible limits are the solutions of our problem the proof is complete.



Thank you for your attention.


