Journées de Metz 2009 University of Metz, France.

Anisotropic singular perturbations method for solving some integro-differential problems

Senoussi Guesmia

Angewandte Mathematik, Universität Zürich E-mail: senoussi.guesmia@math.uzh.ch

This is joint work with Prof. Michel Chipot

WHAT HAPPENS IN THE LINEAR CASE
Let
$$\Omega = (0, 1) \times (0, 1)$$
, $\varepsilon > 0$, $x = (x_1, x_2)$
 $\begin{cases} -\varepsilon^2 \partial_{x_1}^2 u_{\varepsilon} (x_1, x_2) - \partial_{x_2}^2 u_{\varepsilon} (x_1, x_2) = f(x_1, x_2) & \text{in } \Omega, \\ u_{\varepsilon} = 0 & \text{on } \partial\Omega, \end{cases}$

What happens when $\varepsilon \rightarrow 0$?

The natural limit is u_0 solution to

$$\begin{cases} -\partial_{x_2}^2 u_0(x_1, \cdot) = f(x_1, \cdot) & \text{in } \omega_2 = (0, 1), \\ u_0(x_1, \cdot) = 0 & \text{on } \partial \omega_2. \end{cases}$$

$$\begin{array}{l} \text{Convergence results}\\ \text{Let }\Omega_a = (a,1-a) \times (0,1) \,, \, a > 0.\\ \text{Diagonal structure } \longrightarrow A_{\varepsilon} = \begin{pmatrix} a_{11} = \varepsilon^2 & a_{12} = 0\\ a_{21} = 0 & a_{22} = 1 \end{pmatrix} \end{array}$$

Theorem 1 We have

$$\begin{array}{c} |u_{\varepsilon} - u_{0}|_{L^{2}(\Omega_{a})}, & |\partial_{x_{2}} (u_{\varepsilon} - u_{0})|_{L^{2}(\Omega_{a})} = o(\varepsilon), \\ \partial_{x_{1}} u_{\varepsilon} \to \partial_{x_{1}} u_{0} & \text{in } L^{2}(\Omega_{a}) \end{array} \right\} \Longrightarrow u_{\varepsilon} \to u_{0} \quad \text{in } H^{1}(\Omega_{a})$$

If f is independent of $\mathbf{x_1}$ then $\exists \alpha, C > \mathbf{0}$

$$|u_{\varepsilon} - u_{0}|_{H^{1}(\Omega_{a})} \leq C e^{-\frac{\alpha}{\varepsilon}}$$

Non-diagonal structure
$$\longrightarrow A_{\varepsilon} = \begin{pmatrix} a_{11} = \varepsilon^2 & a_{12} = \varepsilon \\ a_{21} = \varepsilon & a_{22} = 1 \end{pmatrix}$$

Theorem 2 We have

$$\begin{aligned} |u_{\varepsilon} - u_{0}|_{L^{2}(\Omega_{a})}, & |\partial_{x_{2}}u_{\varepsilon} - \partial_{x_{2}}u_{0}|_{L^{2}(\Omega_{a})} = O(\varepsilon), \\ & \partial_{x_{1}}u_{\varepsilon} \rightharpoonup \partial_{x_{1}}u_{0} & \text{weakly in } L^{2}(\Omega_{a}). \end{aligned}$$

In the whole domain

Theorem 4 We have

REFERENCES

M. Chipot, "Elliptic Equations: An Introductory Course," Birkhäuser, 2009.

M. Chipot and S. Guesmia, <u>On the asymptotic behavior of elliptic, anisotropic</u> singular perturbations problems, Commun. Pure Appl. Anal. 8(1), (2009), 179– 193.

M. Chipot and S. Guesmia, Correctors for some asymptotic problems, (In press).

PHYSICAL MOTIVATION

We consider the linear transport equation for the neutron angular flux $\psi\left(r,\hat{\Omega}
ight)$

$$\hat{\Omega} \cdot \nabla_{r} \psi\left(r, \hat{\Omega}\right) + \sigma\left(r\right) \psi\left(r, \hat{\Omega}\right) - \sigma_{s}\left(r\right) \phi\left(r\right) = s\left(r, \hat{\Omega}\right)$$
(2)

coupled with some boundary conditions.

 $\hat{\Omega}$: the traveling direction of a neutron,

r : the spatial variable.

The scalar flux $\phi(r)$ is given by

$$\phi\left(r
ight)=\int_{\hat{\Omega}}\psi\left(r,\hat{\Omega}
ight)d\hat{\Omega}.$$

Vladimirov method

To derive the even-parity transport equation let us decompose $\psi\left(r,\hat{\Omega}
ight)$ as

$$\psi\left(r,\hat{\Omega}
ight)=\psi^{+}\left(r,\hat{\Omega}
ight)+\psi^{-}\left(r,\hat{\Omega}
ight),$$

where

$$\psi^{+}\left(r,\hat{\Omega}\right) = \frac{1}{2}\left(\psi\left(r,\hat{\Omega}\right) + \psi\left(r,-\hat{\Omega}\right)\right), \quad \psi^{-}\left(r,\hat{\Omega}\right) = \frac{1}{2}\left(\psi\left(r,\hat{\Omega}\right) - \psi\left(r,-\hat{\Omega}\right)\right).$$

Then we have

$$\phi\left(r
ight)=\int_{\hat{\Omega}}\psi\left(r,\hat{\Omega}
ight)d\hat{\Omega}=\int_{\hat{\Omega}}\psi^{+}\left(r,\hat{\Omega}
ight)d\hat{\Omega}.$$

Rewriting (2) for $-\hat{\Omega}$ we derive

$$-\hat{\Omega} \cdot \nabla_{r} \psi\left(r, -\hat{\Omega}\right) + \sigma\left(r\right) \psi\left(r, -\hat{\Omega}\right) - \sigma_{s}\left(r\right) \phi\left(r\right) = s\left(r, -\hat{\Omega}\right).$$
(3)

Summing (2) and (3) term by term, we get

$$\hat{\Omega} \cdot \nabla_r \psi^- \left(r, \hat{\Omega} \right) + \sigma \left(r \right) \psi^+ \left(r, \hat{\Omega} \right) - \sigma_s \left(r \right) \phi \left(r \right) = s^+ \left(r, \hat{\Omega} \right), \quad (4)$$

then subtracting them leads to

$$\hat{\Omega} \cdot \nabla_r \psi^+ \left(r, \hat{\Omega} \right) + \sigma \left(r \right) \psi^- \left(r, \hat{\Omega} \right) = s^- \left(r, \hat{\Omega} \right), \tag{5}$$

whence

$$\psi^{-}\left(r,\hat{\Omega}
ight) = rac{1}{\sigma\left(r
ight)}\left[s^{-}\left(r,\hat{\Omega}
ight) - \hat{\Omega}\cdot
abla_{r}\psi^{+}\left(r,\hat{\Omega}
ight)
ight],$$

where $\sigma(r)$ is assumed different from 0. Dropping the term $\psi^{-}(r, \hat{\Omega})$ in (4) yields

$$\begin{split} &-\hat{\Omega}\cdot\nabla_{r}\left(\frac{1}{\sigma\left(r\right)}\hat{\Omega}\cdot\nabla_{r}\psi^{+}\left(r,\hat{\Omega}\right)\right)+\sigma\left(r\right)\psi^{+}\left(r,\hat{\Omega}\right)=\\ &\sigma_{s}\left(r\right)\int_{\hat{\Omega}}\psi^{+}\left(r,\hat{\Omega}\right)d\hat{\Omega}+s^{+}\left(r,\hat{\Omega}\right)-\hat{\Omega}\cdot\nabla_{r}\frac{s^{-}\left(r,\hat{\Omega}\right)}{\sigma\left(r\right)}.\end{split}$$

REFERENCES

E. Lewis, W. Miller Jr., "Computational Methods of Neutron Transport," John Wiley & Sons, London, 1984.

V. S. Vladimirov, "Mathematical problems in one-speed particle transport theory," Trudy Mat. Inst. Akad. Nauk SSSR, 61 (1961).

Motived by the model above we consider in the following some nonlocal problems.

POSITION OF THE PROBLEM

 $\Omega = \omega_1 imes \omega_2$ such that $\omega_1 \subset \mathbb{R}^m$ and $\omega_2 \subset \mathbb{R}^n$

$$x = (X_1, X_2) \in \mathbb{R}^{m+n}, \quad X_1 = (x_1, \dots, x_m) \text{ and } X_2 = (x'_1, \dots, x'_n).$$

With this notation we set

$$\nabla u = \begin{pmatrix} \nabla_{X_1} u \\ \nabla_{X_2} u \end{pmatrix} = \begin{pmatrix} (\partial_{x_1} u, \dots, \partial_{x_m} u)^T \\ (\partial_{x'_1} u, \dots, \partial_{x'_n} u)^T \end{pmatrix}.$$

Let us consider the integro-differential problem defined by

$$\begin{cases} -\nabla_{X_2} \left(A \nabla_{X_2} u \right) + \chi u = a(l(u)) \text{ in } \Omega, \\ u(X_1, \cdot) = 0 \text{ on } \partial \omega_2 \quad a.e. \ X_1 \in \omega_1. \end{cases}$$
(6)

For some function $h \in L^{\infty}(\omega_1 \times \Omega)$,

$$l(u) = \int_{\omega_1} h(X_1, X_1', X_2) u(X_1', X_2) dX_1'.$$
(7)

Let

$$A = (a_{ij}(x)) \quad n \times n - matrix, \quad a_{ij} \in L^{\infty}(\Omega) \quad \forall i, j = 1, \dots, n, (8)$$
$$A\xi \cdot \xi \geq \lambda |\xi|^2 \quad \forall \xi \in \mathbb{R}^n, \text{ a.e. } x \in \Omega, \quad (\lambda > 0), \qquad (9)$$

 $a \in C(\mathbb{R})$ a continuous function satisfies

$$a(r) = O(r) \quad \text{when} \quad |r| \to \infty,$$
 (10)

 $\chi > 0$ large enough. We set

$$V := \left\{ v \in L^2(\Omega) | \partial_{x'_i} v \in L^2(\Omega), \ i = 1, \cdots, n \text{ and } v \in H^1_0(\omega_2) \text{ a.e. } X_1 \in \omega_1 \right\}.$$

Let us equipped V with the norm

$$|u|_{V}^{2} = \left| \nabla_{X_{2}} u \right|_{L^{2}(\Omega)}^{2} + |u|_{L^{2}(\Omega)}^{2}$$

 $u_0 \in V$ is a weak solution of the problem (6) if we have

$$\int_{\Omega} A \nabla_{X_2} u_0 \cdot \nabla_{X_2} v + \chi u_0 v dx = \int_{\Omega} a(l(u_0)) v dx, \qquad \forall v \in V.$$

Note that

$$V \hookrightarrow L^2(\Omega)$$
 is not compact.

To show the existence of the solution u_0 , we introduce the following anisotropic singular perturbation problem $(\varepsilon \to 0)$

$$\begin{cases} -\varepsilon^{2} \Delta_{X_{1}} u_{\varepsilon} - \nabla_{X_{2}} \left(A \nabla_{X_{2}} u_{\varepsilon} \right) + \chi u_{\varepsilon} = a(l(u_{\varepsilon})) & \text{in } \Omega, \\ u_{\varepsilon} = 0 & \text{on } \partial\Omega. \end{cases}$$
(11)

The plan of the study is as follows.

- i) Existence of the solutions of the problem (11) when a is bounded.
- *ii*) Existence of the solutions of the problem (11) when a satisfies (10).
- *iii*) Asymptotic behavior of u_{ε} solution to (11) when $\varepsilon \to 0$. $(\mathbf{u}_{\varepsilon} \to \mathbf{u}_0)$.

Step 1. Nonlocal elliptic problems with bounded data We assume that

$$a: \mathbb{R} \to \mathbb{R}$$
 is bounded. (12)

Theorem 5 Under the assumptions above, there exists at least one weak solution to the problem (11).

Proof. ε is fixed. For $w \in L^2(\Omega)$, let $u \in H_0^1(\Omega)$ be solution to the linear elliptic problem

$$\begin{cases} -\varepsilon^2 \Delta_{X_1} u - \nabla_{X_2} \left(A \nabla_{X_2} u \right) = a(l(w)) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(13)

Since a is bounded the mapping

$$T: L^{2}(\Omega) \rightarrow L^{2}(\Omega) w \rightarrow u = T(w)$$
(14)

is continuous and $\exists B \subset H_0^1(\Omega)$ (bounded in $H_0^1(\Omega)$) such that

 $T(B) \subset B.$

By the Schauder fixed point theorem $\exists \ u \in B$

 $T(u) = u \implies u$ is a solution of (11).

Step 2. More general nonlocal elliptic problems a satisfies (10). Then we have

Theorem 6 Under the assumptions above, there exists at least one weak solution to the problem (11).

Proof. ε is fixed. Let us introduce a sequence of functions $\theta_n : \mathbb{R} \to \mathbb{R}$ defined as

$$heta_n\left(r
ight) = \left\{ egin{array}{cc} r ext{ if } |r| \leq n \ n ext{ if } r \geq n, \ -n ext{ if } r \leq -n, \end{array}
ight.$$

then a_n defined as

$$a_n = a \circ \theta_n$$

is a continuous and bounded function. According to the previous step there exists $u^{n} \in H_{0}^{1}(\Omega)$ solution to

$$\begin{cases} -\varepsilon^2 \Delta_{X_1} u^n - \nabla_{X_2} \left(A \nabla_{X_2} u^n \right) + \chi u^n = a_n(l(u^n)) \text{ in } \Omega, \\ u^n = 0 \text{ on } (0,T) \times \partial \Omega, \end{cases}$$
(15)

Testing with u^n we deduce, by (10), that

 u^n is bounded in $H_0^1(\Omega)$.

Then -up to a subsequence- we have

$$u^{n'} \rightarrow u \text{ in } H^1(\Omega),$$

 $u^{n'} \rightarrow u \text{ in } L^2(\Omega),$
 $u^{n'} \rightarrow u \text{ a.e. in } \Omega.$

Passing to the limit in (15) we get

$$\begin{split} \int_{\Omega} \varepsilon^{2} \nabla_{X_{1}} u \cdot \nabla_{X_{1}} v + A \nabla_{X_{2}} u \cdot \nabla_{X_{2}} v + \chi u v \, dx &= \lim_{n' \to \infty} \int_{\Omega} a_{n'} \left(l \left(u^{n'} \right) \right) v dx \\ &= \int_{\Omega} a \left(l \left(u \right) \right) v dx, \quad \forall v \in H_{0}^{1} \left(\Omega \right), \end{split}$$

since we have

$$a_{n'}\left(l\left(u^{n'}\right)\right) \to a\left(l\left(u\right)\right)$$
 a.e. in Ω .

Step 3. Anisotropic singular perturbations method ($\varepsilon \rightarrow 0$)

Lemma 7 Let $w_n \in V$ be a weakly converging sequence to w in V. Then we have $l(w_n) \rightarrow l(w)$ in $H^1(\Omega)$, $l(w_n) \rightarrow l(w)$ in $L^2(\Omega)$.

Proof. We can easily show

$$|l(w_n)|_{H^1(\Omega)} \leq C |w_n|_V \Longrightarrow l(w_n)$$
 is bounded in $H^1(\Omega)$.

 $\exists W \in H^{1}(\Omega)$, -up to a subsequence

$$l(w_{n'}) \rightarrow W \text{ in } H^1(\Omega),$$
 (16)

$$l(w_{n'}) \rightarrow W \text{ in } L^2(\Omega).$$
 (17)

On the other hand we have for every $v \in \mathcal{D}(\Omega)$

$$\begin{split} \int_{\Omega} l\left(w_{n'}\right) v dx &= \int_{\omega_{1}} \left(\int_{\Omega} h\left(X_{1}, X_{1}', X_{2}\right) v\left(X_{1}, X_{2}\right) w_{n'}\left(X_{1}', X_{2}\right) dX_{1}' dX_{2} \right) dX_{1} dX_{2} \\ &\to \int_{\omega_{1}} \int_{\Omega} h\left(X_{1}, X_{1}', X_{2}\right) v\left(X_{1}, X_{2}\right) w\left(X_{1}', X_{2}\right) dX_{1}' dX_{2} \\ &= \int_{\Omega} l\left(w\right) v dx \qquad \Rightarrow W = l\left(w\right). \end{split}$$

Definition 8 (ε – nets) Given a metric space (X; d), a subset Y of X is said to be an ε – net, if for all $x \in X$, there exists an $a \in Y$ such that

 $d(x,a) < \varepsilon.$

Theorem 9 Under the assumptions above, the set of solutions of (6) is not empty. Moreover if we consider the metric structure of V corresponding to the norm of V, then for every r > 0, there exists $\varepsilon_0 > 0$ such that the set of solutions of (6) consists in a r-net of the set

and we have
$$A_{\varepsilon_0} = \{u_{\varepsilon} \text{ solution to (11) for } \varepsilon < \varepsilon_0\},$$

 $\varepsilon \nabla_{X_1} u_{\varepsilon} \longrightarrow 0 \quad in \quad L^2(\Omega).$

Corollary 10 If the problem (6) has only one solution u_0 then we have

$$u_{\varepsilon} \longrightarrow u_{0}, \quad \nabla_{X_{2}} u_{\varepsilon} \longrightarrow \nabla_{X_{2}} u_{0} \quad \text{and} \quad \varepsilon \nabla_{X_{1}} u_{\varepsilon} \longrightarrow 0 \quad in \quad L^{2}(\Omega).$$

Proof. Let us take $v = u_{\varepsilon}$ in the weak formulation

$$\int_{\Omega} \varepsilon^2 \nabla_{X_1} u_{\varepsilon} \cdot \nabla_{X_1} v + A \nabla_{X_2} u_{\varepsilon} \cdot \nabla_{X_2} v + \gamma u_{\varepsilon} v \, dx = \int_{\Omega} a \left(l \left(u_{\varepsilon} \right) \right) v \, dx.$$
(18)

Then we get

 $u_{\varepsilon}, \quad |\varepsilon \nabla_{X_1} u_{\varepsilon}|, \quad |\nabla_{X_2} u_{\varepsilon}| \quad \text{are bounded in } L^2(\Omega).$ (19) It follows that there exists $u_0 \in L^2(\Omega)$ such that – up to a subsequence

 $u_{\varepsilon} \rightharpoonup u_{0}, \qquad \nabla_{X_{2}} u_{\varepsilon} \rightharpoonup \nabla_{X_{2}} u_{0}, \qquad \varepsilon \nabla_{X_{2}} u_{\varepsilon} \rightharpoonup 0 \quad \text{in } L^{2}(\Omega).$ Using Lemma 7,

$$l(u_{\varepsilon}) \rightarrow l(u_{0})$$
 a.e. in Ω .

The continuity of a gives

 $a(l(u_{\varepsilon})) \to a(l(u_{0}))$ a.e. in $\Omega \Longrightarrow a(l(u_{\varepsilon})) \to a(l(u_{0}))$ in $L^{2}(\Omega)$ (20) Passing to the limit in (18) we derive

$$\int_{\Omega} A \nabla_{X_2} u_0 \cdot \nabla_{X_2} v + \gamma u_0 v \, dx = \int_{\Omega} a \left(l \left(u_0 \right) \right) v \, dx. \tag{21}$$

Taking $v = u_{\varepsilon}$ in (21) and passing to the limit we get

$$\int_{\Omega} A \nabla_{X_2} u_0 \cdot \nabla_{X_2} u_0 \, dx = \int_{\Omega} a \left(l \left(u_0 \right) \right) u_0 dx. \tag{22}$$

We set

$$I_{\varepsilon} := \int_{\Omega} \varepsilon^2 \nabla_{X_1} u_{\varepsilon} \cdot \nabla_{X_1} u_{\varepsilon} \, dx + \int_{\Omega} A \nabla_{X_2} (u_{\varepsilon} - u_0) \cdot \nabla_{X_2} (u_{\varepsilon} - u_0) dx.$$

Using (18) we derive

$$\begin{split} I_{\varepsilon} &= \int_{\Omega} a \left(l \left(u_{\varepsilon} \right) \right) u_{\varepsilon} dx \\ &- \int_{\Omega} A \nabla_{X_2} u_0 \cdot \nabla_{X_2} u_{\varepsilon} \, dx - \int_{\Omega} A \nabla_{X_2} u_0 \cdot \nabla_{X_2} u_{\varepsilon} \, dx \\ &+ \int_{\Omega} A \nabla_{X_2} u_0 \cdot \nabla_{X_2} u_0 dx. \end{split}$$

Passing to the limit in $I_{\ensuremath{arepsilon}}$ we get

$$\lim_{\varepsilon \to 0} I_{\varepsilon} = \int_{\Omega} a \left(l \left(u_0 \right) \right) u_0 dx - \int_{\Omega} A \nabla_{X_2} u_0 \cdot \nabla_{X_2} u_0 dx = \mathbf{0},$$

since we have (22). Using the coerciveness assumption we get

$$\int_{\Omega} \varepsilon^2 |\nabla_{X_1} u_{\varepsilon}|^2 + \lambda |\nabla_{X_2} (u_{\varepsilon} - u_0)|^2 \, dx \le I_{\varepsilon}.$$

It follows that

$$\varepsilon \nabla_{X_1} u_{\varepsilon} \longrightarrow 0, \qquad \nabla_{X_2} u_{\varepsilon} \longrightarrow \nabla_{X_2} u_0, \qquad u_{\varepsilon} \longrightarrow u_0 \quad \text{in } L^2(\Omega).$$

It follows that for almost every X_1

$$\int_{\omega_2} |\nabla_{X_2}(u_{\varepsilon} - u_0)|^2 \, dX_2 \longrightarrow 0.$$

Since

$$\left\{\int_{\omega_2} |\nabla_{X_2} v|^2 \, dX_2\right\}^{\frac{1}{2}}$$

is a norm on $H_0^1(\omega_2)$ and $u_{\varepsilon}(X_1, \cdot) \in H_0^1(\omega_2)$ we have $u_0(X_1, \cdot) \in H_0^1(\omega_2)$

for almost every X_1 . Then u_0 is a solution of the intergo-differential problem. Since the only possible limits are the solutions of our problem the proof is complete.

Thank you for your attention.