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Abstract. In this paper we deal with singular perturbations of nonlin-

ear problems depending on a small parameter ε > 0. First we consider

the abstract theory of singular perturbations of variational inequalities

involving some nonlinear operators, defined in Banach spaces, and de-

scribe the asymptotic behaviour of these solutions when ε → 0. Then

these abstract results are applied to some boundary value problems.

1. Introduction

The goal of this paper is to study the asymptotic behaviour of singular
perturbations problems when a parameter ε goes towards 0. Our results are
very general but we have more particularly in mind anisotropic cases where
ε only acts on some variables of a domain Ω ⊂ Rn (n is an integer) where we
consider the partial differential equations. To be more precise we can take,
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as a model, the diffusion problem defined in the unit square Ω = (0, 1)×(0, 1){
−ε2∂2

x1uε − ∂
2
x2uε = f in Ω,

uε = 0 on ∂Ω,
(1.1)

where ε > 0 and f represents the source term. We assume that the diffusion
in the x1-direction is negligible with respect to the other direction when
ε → 0. Formally the natural limit of uε is a function u0 defined on the
sections {x1} × (0, 1) for a.e. x1 ∈ (0, 1) as a solution of{

−∂2
x2u0 (x1, ·) = f (x1, ·) in (0, 1) ,

u0 (x1, ·) = 0 on {0, 1} .
(1.2)

Note that the variable x1 plays a role of a parameter. It is clear that if
f (not identically equal to 0) is independent of x1, i.e. f = f (x2), then
u0 /∈ H1

0 (Ω). This prevents the convergence uε → u0 to occur in H1 (Ω).
From this remark we may discuss many issues concerning this convergence.

In this note we begin by dealing with abstract singular perturbations
problems of variational inequalities. Our approach has the advantage to
include in a short theory a wide class of problems spread in the literature.
We give then some applications of it.

In the literature, linear elliptic, parabolic and hyperbolic problems defined
on arbitrary domains are analyzed in different contexts and the convergence
uε → u0 is obtained in different norms. A boundary layer may occur at
the lateral boundary of cylindrical domains ({0, 1} × (0, 1) for the above
example). The convergence in Sobolev spaces may be shown in regions far
from this lateral boundary. We may see this clearly when our perturbed
problem satisfies some cylindrical symmetries. This means that f = f (x2)
in the above example. In this case uε converges towards u0 at an exponential
rate. For more details we refer the reader to [1, 2, 3, 5, 6, 7, 8, 9, 10, 11].

An abstract approach to this theory was also given in [14, 16] where the
following operator equation is considered

εAuε +Buε = f, (1.3)

with A and B linear operators defined on Hilbert spaces. This approach cov-
ers diagonal structure problems as problem (1.1). The authors also showed,
as in the case of partial differential equations, that uε converges towards u0

solution to

Bu0 = f,
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when ε→ 0. There are also some previous works on singular perturbations
of variational inequalities, i.e. when (1.3) is replaced by

(εAuε, v − uε) + (Buε, v − uε) ≥ (f, v − uε) , ∀v ∈ K (1.4)

where K is some nonempty closed convex set (cf. [12, 13, 15]). In [15]
this abstract approach is established to investigate the isotropic singular
perturbations problems.

In order to cover a larger class of problems by an abstract theory, we
will deal with the variational inequality (1.4) when A and B are nonlinear
operators defined on different Banach spaces V and W respectively, which in
particular applies to the anisotropic singular perturbations problems. This
is what we will see in the next section. In the last section, the first example is
devoted to show that these results also cover the isotropic case. Then some
examples of anisotropic singular perturbations problems are introduced in
order to illustrate some points of the theory as, for instance, the lack of
compactness.

2. Abstract singular perturbations problems

Let V and W be two reflexive separable Banach spaces equipped with the
norms | · |V and | · |W respectively. We suppose that the space V ∩W is
dense in V and W , and is equipped with the norm

| · |V ∩W = | · |V + | · |W .

Of course the V ∩W is a Banach space equipped with the previous norm.
For any space X, we denote by 〈·, ·〉X the duality pairing between X ′ and X
where X ′ is the dual of X. It is clear that

V ∩W ⊂ V,W and V ′,W ′ ⊂ (V ∩W )′ .

Moreover one can check that (V ∩W )′ = V ′+W ′. We consider two nonlinear
operators A and B such that

A : V → V ′, B : W →W ′.

We suppose that A, B are monotone, that is to say that

〈Au−Av, u− v〉V ≥ 0, ∀u, v ∈ V, (2.1)

〈Bu−Bv, u− v〉W ≥ 0, ∀u, v ∈W. (2.2)

We denote by K 6= ∅ a closed convex set of V ∩W and for A,B we make
the following coerciveness assumption. We suppose that for some v0 ∈ K
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one has

〈Au−Av0, u− v0〉V
|u− v0|V

→ +∞ when |u− v0|V → +∞, u ∈ K, (2.3)

〈Bu−Bv0, u− v0〉W
|u− v0|W

→ +∞ when |u− v0|W → +∞, u ∈ K. (2.4)

Remark 1. If K is bounded in V (resp. in W ) we will not need the assump-
tion (2.3) (resp. (2.4)). Note also that for some v0 ∈ K they are equivalent
with

〈Au, u− v0〉V
|u− v0|V

→ +∞ when |u− v0|V → +∞, u ∈ K, (2.5)

〈Bu, u− v0〉W
|u− v0|W

→ +∞ when |u− v0|W → +∞, u ∈ K. (2.6)

In addition we assume that

A sends bounded sets of V in bounded sets of V ′, (2.7)

B sends bounded sets of W in bounded sets of W ′, (2.8)

A,B are hemicontinuous on V and W respectively. (2.9)

This last assumption means that - for instance for A -

t 7→ 〈A(u+ tv), w〉V is continuous on R, ∀u, v, w ∈ V.
Under the assumptions above we have:

Theorem 1. For f ∈ (V ∩W )′ and ε > 0 there exists uε solution to{
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f, v − uε〉V ∩W , ∀v ∈ K,
uε ∈ K.

(2.10)

Moreover if A or B is strictly monotone (i.e. if one of the inequalities (2.1),
(2.2) is strict for u 6= v) the solution is unique.

Proof. We consider Aε the operator defined by

Aε : V ∩W → (V ∩W )′ = V ′ +W ′,

v 7→ εAv +Bv.

This operator is monotone, hemicontinuous and coercive on K. For this last
point, by the coerciveness assumptions of A and B, for every M > 0 there
exist δ1 (M) , δ2 (M) ≥ 1 such that

|u− v0|V ≥ δ1 (M)⇒
〈εAu, u− v0〉V
|u− v0|V

≥M, (2.11)
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|u− v0|W ≥ δ2 (M)⇒
〈Bu, u− v0〉W
|u− v0|W

≥M. (2.12)

Since A,B are bounded there exist constants CA, CB such that

|u− v0|V ≤ δ1 (M)⇒ |〈εAu, u− v0〉V | ≤ CA (M) ,

|u− v0|W ≤ δ2 (M)⇒ |〈Bu, u− v0〉W | ≤ CB (M) .

Choose

|u− v0|V + |u− v0|W ≥ 2δ1 (M) + 2δ2 (M) + δ1 (2M + 2CB (M))

+δ2 (2M + 2CA (M)) .

Of course one has either |u− v0|V ≥ δ1 (M) or |u− v0|W ≥ δ2 (M) . Suppose
for instance that |u− v0|V ≥ δ1 (M) , the other case being the same. If
moreover |u− v0|W ≥ δ2 (M) , from (2.11), (2.12) one has

〈εAu, u− v0〉V + 〈Bu, u− v0〉W
|u− v0|V + |u− v0|W

=
|u− v0|V

|u− v0|V + |u− v0|W
·
〈εAu, u− v0〉V
|u− v0|V

+
|u− v0|W

|u− v0|V + |u− v0|W
·
〈Bu, u− v0〉W
|u− v0|W

≥M.

If |u− v0|W ≤ δ2 (M) then one has

|u− v0|V ≥ δ2 (M) , δ1 (2M + 2CB (M)) ,

so that

〈εAu, u− v0〉V + 〈Bu, u− v0〉W
|u− v0|V + |u− v0|W

≥
|u− v0|V

|u− v0|V + |u− v0|W
{2M + 2CB (M)} − CB (M)

≥ 1

2
{2M + 2CB (M)} − CB (M) ≥M.

This shows the coerciveness of Aε. The existence of uε follows from the
classical theory of variational inequalities. �

Remark 2. When K = V ∩W one sees by taking v = uε ± w,w ∈ K that
uε is solution to {

εAuε +Buε = f,
uε ∈ V ∩W.

(2.13)
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We are now interested in studying the behaviour of uε when ε→ 0. Note
that this is not possible in general. Indeed, taking for instance V a Hilbert
space, A = the identity, B = 0, f ∈ V ′ = V we can see that the solution of
(2.13) is given by uε = f/ε and (uε)ε has no limit. In what follows we will
assume that

f ∈W ′. (2.14)

The essential convergences are given as follows:

Theorem 2. Suppose that f ∈ W ′ and let uε be solution to (2.10). Then
we have when ε→ 0

(i) uε is bounded in W independently of ε, (2.15)

(ii) εuε → 0 in V, (2.16)

(iii) εAuε → 0 in V ′, (2.17)

(iv) 〈εAuε, uε〉V → 0. (2.18)

Proof. Proof of (i). Choose v0 ∈ K, such that (2.5) and (2.6) hold. Suppose
that |uε − v0|W is unbounded. For some sequence εk → 0 one has then

|uεk − v0|W → +∞.

Taking v = v0 in (2.10) we derive

εk 〈Auεk , uεk − v0〉V + 〈Buεk , uεk − v0〉W ≤ 〈f, uεk − v0〉W
≤ |f |W ′ |uεk − v0|W .

It follows that

εk 〈Auεk , uεk − v0〉V
|uεk − v0|W

+
〈Buεk , uεk − v0〉W
|uεk − v0|W

≤ |f |W ′ . (2.19)

If |uεk − v0|V is bounded then

εk 〈Auεk , uεk − v0〉V
|uεk − v0|W

→ 0

else by the coerciveness of A this term is nonnegative for some k large enough.
In both cases, due to the coerciveness of B, the left hand side of (2.19) is
unbounded which is impossible. This proves (2.15).

Proof of (ii). Since uε is bounded in W , and by consequence Buε is
bounded in W ′, we derive from (2.10) written for v = v0 that

ε 〈Auε, uε − v0〉V ≤ C (2.20)
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for some constant C independent of ε. If (uε − v0) is bounded in V it is clear
that εuε = ε (uε − v0) + εv0 → 0. Else we have from (2.5), (2.20) -up to a
subsequence-

ε |uε − v0|V ≤ C
|uε − v0|V

〈Auε, uε − v0〉V
→ 0

and the result follows as in the previous case.
Proof of (iii) and (iv). We first show that εAuε ⇀ 0 in V ′. Let v ∈ V.

From the monotonicity of A we have

ε 〈Auε −Av, uε − v〉V ≥ 0, (2.21)

whence

ε 〈Auε, v〉V ≤ ε 〈Auε, uε〉V + 〈Av, ε (v − uε)〉V . (2.22)

For v0 ∈ K we derive from (2.20) that

ε 〈Auε, uε〉V ≤ 〈εAuε, v0〉V + C

and thus, using (2.22), we get

ε 〈Auε, v − v0〉V ≤ C + 〈Av, ε (v − uε)〉V , (2.23)

where C is a constant independent of ε. Choosing v ∈ v0 + B1, where B1 is
the unit ball of V, we arrive to

ε 〈Auε, v1〉V ≤ C
′, ∀v1 ∈ B1,

where C ′ is independent of ε. Thus εAε is bounded in V ′ and -for some
subsequence-

εAuε ⇀ ψ in V ′.

Passing to the limit in (2.23) we derive

〈ψ, v − v0〉V ≤ C, ∀v ∈ V

and thus ψ = 0. By the uniqueness of the possible limits we have shown that

εAuε ⇀ 0 in V ′.

For any v ∈ K we have by (2.10) and the monotonicity of B

ε 〈Auε, uε〉V ≤ 〈εAuε, v〉V + 〈f, uε − v〉W + 〈Buε, v − uε〉W
≤ 〈εAuε, v〉V + 〈f, uε − v〉W + 〈Bv, v − uε〉W . (2.24)

Let (εk)k be a sequence such that

εk 〈Auεk , uεk〉V → lim
ε→0

sup ε 〈Auε, uε〉V .
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Since uεk is bounded in W - extracting if necessary another subsequence -
one can suppose that

uεk ⇀ ũ in W.

Then passing to the limit in (2.24) written for εk we get

lim
ε→0

sup ε 〈Auε, uε〉V ≤ 〈f, ũ− v〉W + 〈Bv, v − ũ〉W ,∀v ∈ K. (2.25)

It is clear that ũ belongs to K̄W , the weak closure of K in W which coincides
with its strong closure since K is convex. Thus, there exists a sequence
vn ∈ K such that

vn → ũ in W.

Taking v = vn in (2.25) and passing to the limit we derive

lim
ε→0

sup ε 〈Auε, uε〉V ≤ 0.

Passing to the limit in (2.22) we also have

lim
ε→0

inf ε 〈Auε, uε〉V ≥ 0,

which proves (iv).
To complete the proof, going back to (2.22) one has for every v1 ∈ B1

ε 〈Auε, v1〉V ≤ ε 〈Auε, uε〉V + |Av1|V ′ (ε+ |εuε|V )

≤ ε 〈Auε, uε〉V + C (ε+ |εuε|V )→ 0

where C is independent of v1. This completes the proof of the theorem. �

Remark 3. In the case where K = V ∩W, from the equation (2.13) one
derives that

Buε − f → 0 in V ′. (2.26)

In addition we have

Theorem 3. Suppose that for some sequence εk → 0 one has

uεk ⇀ ũ in W. (2.27)

Then ũ is a solution to the variational inequality{
〈Bũ, v − ũ〉W ≥ 〈f, v − ũ〉W , ∀v ∈ K̄W ,
ũ ∈ K̄W .

(2.28)

Moreover one has

Buεk ⇀ Bũ in W ′, 〈Buεk , uεk〉W → 〈Bũ, ũ〉W . (2.29)
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Proof. Up to a subsequence - still labelled εk - one can assume that

Buεk ⇀ χ in W ′.

Passing to the limit in (2.10) written for εk we obtain (see Theorem 2)

lim
εk→0

sup 〈Buεk , uεk〉W ≤ 〈χ, v〉W + 〈f, ũ− v〉W , ∀v ∈ K. (2.30)

Considering a sequence v = vn → ũ as above we obtain

lim
εk→0

sup 〈Buεk , uεk〉W ≤ 〈χ, ũ〉W .

From the monotonicity of B we have

〈Buεk , uεk〉W ≥ 〈Buεk , v〉W + 〈Bv, uεk − v〉W , ∀v ∈W.
Then

lim
εk→0

inf 〈Buεk , uεk〉W ≥ 〈χ, v〉W + 〈Bv, ũ− v〉W , ∀v ∈W. (2.31)

It follows - taking v = ũ - that

lim
εk→0

〈Buεk , uεk〉W = 〈χ, ũ〉W .

From (2.31) we derive

〈χ−Bv, ũ− v〉W ≥ 0, ∀v ∈W.
Replacing v by ũ+ tw and letting t→ 0 we obtain

〈χ−Bũ,w〉W ≥ 0, ∀w ∈W,
i.e. χ = Bũ. It follows that the whole sequence Buεk converges toward Bũ.
Moreover (2.30) becomes

〈Bũ, v − ũ〉W ≥ 〈f, v − ũ〉W , ∀v ∈ K.

Since K̄W is closed - weakly closed - one has ũ ∈ K̄W and the above inequal-
ity holds also for every v ∈ K̄W . This completes the proof of the theorem. �

Remark 4. (i) We have proved that the only possible limits for the subse-
quences of (uε)ε are solutions of the variational inequality (2.28). In partic-
ular if the solution is unique one has

uε ⇀ ũ in W, Buε ⇀ Bũ in W ′.

This is the case when B is strictly monotone.
(ii) In the case where K = V ∩W then K̄W = W and ũ is solution

to the equation
Bũ = f.
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As a corollary we have

Corollary 1. (i) Suppose that A is strongly coercive in the sense that

〈Av, v〉V ≥ λ |v|
α
V , ∀v ∈ V, (2.32)

for some constants λ > 0 and α > 1, then one has

ε1/αuε → 0 in V. (2.33)

(ii) If B is strongly monotone in the sense that for some δ > 0 and
β > 1

〈Bu−Bv, u− v〉W ≥ δ |u− v|
β
W , ∀v, u ∈W (2.34)

then the solution ũ of (2.28) is unique and one has

uε → ũ in W.

Proof. (i) follows directly from

ε 〈Auε, uε〉V ≥ λε |uε|
α
V

and Theorem 2-(iv).
For (ii) one has by (2.34) and since uε ∈ K

δ |ũ− uε|βW ≤ 〈Bũ−Buε, ũ− uε〉W
≤ 〈f, ũ− uε〉W − 〈Buε, ũ− uε〉W
= 〈f, ũ− uε〉W + 〈Buε, uε〉W − 〈Buε, ũ〉W → 0

by (2.29). �

Remark 5. Assuming only the basic coerciveness (2.3) of A, the convergence
result (2.16) is sharp since if α approaches 1 in (2.33) the exponent of ε tends
to 1.

In the following corollary some monotonicity property of (uε)ε is shown.

Corollary 2. Let ε > ε′ > 0 then

〈Auε, uε〉V ≤ 〈Auε, uε′〉V . (2.35)

Proof. Indeed, set v = uε (resp. v = uε′) in (2.10), written for ε (resp. ε′),
we get

ε 〈Auε, uε − uε′〉V − ε
′ 〈Auε′ , uε − uε′〉V + 〈Buε −Buε′ , uε − uε′〉W ≤ 0.

Using the monotonicity of A and B, it comes

ε 〈Auε, uε − uε′〉V ≤ ε
′ 〈Auε, uε − uε′〉V − ε

′ 〈Auε −Auε′ , uε − uε′〉V
≤ ε′ 〈Auε, uε − uε′〉V .
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Then (2.35) follows, since ε > ε′. �

Remark 6. The above characterization is more clear if A is linear. For
instance if V is a Hilbert space and A = Id then (2.35) yields

|uε|V ≤ |uε′ |V , for ε′ < ε.

Next we pay attention to more regular problems, i.e. when some solutions
of (2.28) are in V.

Corollary 3. If the variational inequality (2.28) has a solution û ∈ K sat-
isfying

lim inf 〈Au, u− û〉V > 0 when |u|V → +∞, u ∈ K, (2.36)

then uε is bounded in V and there exists always a sequence uεk such that

uεk ⇀ ũ in V and W, (2.37)

where ũ ∈ K is solution to (2.28), i.e. the accumulation points of (uε)ε are
all in K and solutions to (2.28).

In addition if B satisfies (2.34), one has

|uε − ũ|W = o
(
ε1/β

)
. (2.38)

Proof. Taking v = û in (2.10) we derive

ε 〈Auε, uε − û〉V ≤ 〈f, uε − û〉W − 〈Buε, uε − û〉W
≤ −〈Buε −Bû, uε − û〉W ≤ 0. (2.39)

Thus 〈Auε, uε − û〉V ≤ 0 for all ε > 0, and

lim
ε→0

sup 〈Auε, uε − û〉V ≤ 0.

By (2.36), uε must be bounded in V and one can find a sequence εk such
that

uεk ⇀ ũ in W, V and V ∩W.
In fact, since uεk is bounded in V,W and W ∩ V one can assume that -up
to a subsequence-

uεk ⇀ u in V, uεk ⇀ u′ in W, uεk ⇀ u′′ in V ∩W.
If h ∈ V ′ ⊂ V ′ +W ′ one has

〈h, uεk〉V ∩W → 〈h, u〉V ∩W , 〈h, uεk〉V ∩W →
〈
h, u′′

〉
V ∩W

whence

〈h, u〉V =
〈
h, u′′

〉
V
, ∀h ∈ V ′.
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Similarly one can show that〈
h, u′

〉
W

=
〈
h, u′′

〉
W
, ∀h ∈W ′.

It follows that

u = u′ = u′′ = ũ, (2.40)

and ũ is necessarily a solution to (2.28).
For the last part of the theorem, since by the uniqueness of the solution

of (2.28), û = ũ, one has from (2.39)

δ |ũ− uε|βW ≤ 〈Bũ−Buε, ũ− uε〉W
≤ −ε 〈Auε, uε − ũ〉V
= −ε 〈Auε −Aũ, uε − ũ〉V + ε 〈Aũ, uε − ũ〉V
≤ ε 〈Aũ, uε − ũ〉V = o (ε)

and the result follows. �

Remark 7. If we assume that f = 0, B (0) = 0, 0 ∈ K and B satisfies a
hypothesis as (2.32) then

uε → 0 in W.

Indeed, taking v = 0 in (2.10)

ε 〈Auε, uε〉V + 〈Buε, uε〉W ≤ 0,

and by the monotonicity of A we have

λ |uε|βW ≤ ε 〈Auε −A (0) , uε〉V + 〈Buε, uε〉W ≤ −ε 〈A (0) , uε〉V .

The convergence follows by Theorem 2.

3. Some applications

It is interesting to note that, using a priori estimates in the previous
section, there is no need to have some compactness assumptions to pass to
the limit in the nonlinear terms. In order to illustrate this we will consider
here three nonlinear elliptic boundary value problems as examples of the
abstract theory above. We will apply the theory to some anisotropic singular
perturbations problems in the last two examples. To also see the power of
our abstract analysis in general, we consider a very classical case of nonlinear
obstacle problems.
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3.1. Nonlinear obstacle problems. We denote by a (ξ) = (ai (ξ)) a con-
tinuous vector field in Rn. We suppose that a is such that for some λ,Λ > 0
and c ∈ R

a (ξ) · ξ ≥ λ |ξ|2 + c, |a (ξ)| ≤ Λ |ξ| , ∀ξ ∈ Rn (3.1)

and in addition that

(a (ξ)− a (ζ)) . (ξ − ζ) ≥ 0, ∀ξ, ζ ∈ Rn. (3.2)

Then, for f ∈ L2 (Ω) there exists a unique uε solution to
uε ∈ K0 =

{
v ∈ H1

0 (Ω) |v (x) ≥ 0, a.e. x ∈ Ω
}
,

ε

∫
Ω
a (∇uε) · ∇ (v − uε) dx+

∫
Ω
uε (v − uε) dx

≥
∫

Ω
f (v − uε) dx, ∀v ∈ K0,

(3.3)

where Ω is a bounded open subset in Rn. Then setting

V = H1
0 (Ω) , W = L2 (Ω) , Au = −div (a (∇u)) , B = Id,

our results apply and we get that

uε → f+ in L2 (Ω)

where f+ (resp. f−) denotes the positive (resp. negative) part of f. Indeed,
thanks to Theorems 2, 3 and Corollary 1 we see that uε → ũ in L2 (Ω) where
ũ is the unique solution to

ũ ∈ K̄0 =
{
v ∈ L2 (Ω) |v (x) ≥ 0, a.e. x ∈ Ω

}
,∫

Ω
ũ (v − ũ) dx ≥

∫
Ω
f (v − ũ) dx, ∀v ∈ K̄0.

(3.4)

But clearly∫
Ω
f+
(
v − f+

)
dx =

∫
Ω

(
f + f−

) (
v − f+

)
dx

=

∫
Ω
f
(
v − f+

)
dx+

∫
Ω
f−vdx

≥
∫

Ω
f
(
v − f+

)
dx, ∀v ∈ K̄0

and ũ = f+. As a corollary of Theorems 2, 3 and Corollary 1 we can state
the following.
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Corollary 4. When ε→ 0, we have

uε → f+ in L2 (Ω) , εuε → 0 in H1
0 (Ω) ,

− ε∂xi (a (∇uε))→ 0 in H−1 (Ω) , i = 1, · · · , n.

ε

∫
Ω
a (∇uε) · ∇uεdx→ 0.

Remark 8. Note that, as in (3.1), we may add a constant c ∈ R in (2.32)
since it will be neglected once it is multiplied by ε i.e.

〈Av, v〉V ≥ λ |v|
α
V + c, ∀v ∈ V.

Of course, here the strong convergence of
√
ε∇uε comes from the last con-

vergence in the above corollary, i.e.
√
ε∇uε → 0 in L2 (Ω) .

3.2. Semilinear elliptic problems. Let Ω be a bounded open subset of
Rn with sufficiently smooth boundary. We split the components of a point
x ∈ Rn into the q first components and the n− q last ones i.e.

X1 = (x1, . . . , xq) and X2 = (xq+1, . . . , xn) ,

where q is a positive integer such that q < n. We denote by ΠX1 (resp. ΠX2)
the orthogonal projection from Rn onto the space X2 = 0 (resp. X1 = 0).
For any X1 ∈ Π1 := ΠX1(Ω) and X2 ∈ Π2 := ΠX2(Ω) we denote by ΩX1

(resp. ΩX2) the section of Ω above X1 (resp. X2) i.e.

ΩX1 = {X2 | (X1, X2) ∈ Ω }, ΩX2 = {X1 | (X1, X2) ∈ Ω }.

With this notation we set

∇u = (∂x1u, . . . , ∂xnu)T =

(
(∂x1u, . . . , ∂xqu)T

(∂xq+1u, . . . , ∂xnu)T

)
=

(
∇X1u
∇X2u

)
.

We consider the following semilinear elliptic problem{
−ε∆X1uε −∆X2uε + g (x, uε) = f in Ω,

uε ∈ H1
0 (Ω) ∩ Lp (Ω) ,

(3.5)

where

∆X1 =

i=q∑
i=1

∂2

∂2xi
, ∆X2 =

i=n∑
i=q+1

∂2

∂2xi
,

p > 1, f ∈ L2 (Ω) + Lp
′
(Ω) ,
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where p′ is the conjugate of p. In order to apply the abstract approach we
assume that g : Ω × R → R is a Carathédeory function and nondecreasing
in the second variable i.e.

x 7→ g(x, t) is measurable on Ω, ∀t ∈ R,
t 7→ g(x, t) is continuous and nondecreasing on R for a.e. x ∈ Ω

and there exist c, c′ ≥ 0, such that

|g (x, t)| ≤ c |t|p−1 + c′, ∀t ∈ R, a.e. x ∈ Ω, (3.6)

g (x, t) t ≥ |t|p , ∀t ∈ R, a.e. x ∈ Ω. (3.7)

It is clear that if u ∈ Lp (Ω) then g (·, u (·)) ∈ Lp
′
(Ω). So g defines an

operator (still labelled by g) from Lp (Ω) into Lp
′
(Ω) by

u 7→ g (·, u (·)) , (3.8)

which is bounded, monotone and hemicontinuous. Then we choose the sui-
table Banach spaces

V =

{
u ∈ L2 (Ω)

∣∣∣∣ ∇X1u ∈
[
L2 (Ω)

]q
,

u(·, X2) ∈ H1
0 (ΩX2) , a.e. X2 ∈ Π2

}
, (3.9)

equipped with the norm

|v|V := |∇X1v|L2(Ω)

and

W =

{
u ∈ L2 (Ω) ∩ Lp (Ω)

∣∣∣∣∣ ∇X2u ∈
[
L2 (Ω)

]n−q
,

u (X1, ·) ∈ H1
0 (ΩX1) , a.e. X1 ∈ Π1

}
, (3.10)

equipped with the norm

|v|W := |∇X2v|L2(Ω) + |v|Lp(Ω) .

We can easily check that V and W are separable reflexive Banach spaces.
Next we set

A = −∆X1 and B = −∆X2 + g (x, ·) .
Then the operator A : V → V ′ is linear, bounded and coercive. Since the
operator B : W → W ′ is a sum of a linear operator, satisfying the same
properties as A, and the operator defined in (3.8), it is bounded, monotone
and coercive. In this example the limit problem is defined for a.e. X1 ∈ Π1

as {
−∆X2 ũ (X1, ·) + g ((X1, ·) , ũ (X1, ·)) = f (X1, ·) in ΩX1 ,

ũ (X1, ·) = 0 on ∂ΩX1 .
(3.11)
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Then it remains to precise the connection between the boundary conditions,
which is the subject of the following proposition.

Proposition 1. Let V and W be the spaces defined in (3.9) and (3.10)
respectively, then if the boundary of Ω is smooth we have

V ∩W = H1
0 (Ω) ∩ Lp (Ω) .

Proof. The first inclusion H1
0 (Ω)∩Lp (Ω) ⊂ V ∩W is easy. For u ∈ H1

0 (Ω)∩
Lp (Ω) there exists a sequence (un)n ⊂ D (Ω) such that un → u in H1

0 (Ω) ∩
Lp (Ω) . In particular we have

|∇ (un − u)|L2(Ω) → 0.

By the Lebesgue theorem we get - up to a subsequence - for a.e. X1 ∈ Π1 and
X2 ∈ Π2

|∇ (un (X1, ·)− u (X1, ·))|L2(ΩX1) → 0,

|∇ (un (·, X2)− u (·, X2))|L2(ΩX2) → 0.

This means that u ∈ V and u ∈W.
For the converse inclusion, let u ∈ V ∩ W and consider the following

elliptic problem {
−ε∆vε + vε = u in Ω,
vε = 0 on ∂Ω.

(3.12)

Since Ω is sufficiently regular and of course V ∩W ⊂ H1 (Ω) ∩ Lp (Ω) , we
have vε ∈ H2 (Ω). According to Corollary 1, we derive

vε → u in L2 (Ω) . (3.13)

Then applying the Laplace operator to the first equation in (3.12) and taking
−vε as a test function, we obtain

ε
〈
∆2vε, vε

〉
H1

0 (Ω)
−
∫

Ω
∆vεvεdx = −〈∆u, vε〉H1

0 (Ω) .

It is clear that ∆u ∈ H−1 (Ω) , ∆2vε ∈ H−1 (Ω) since

−∆vε =
u− vε
ε
∈ H1 (Ω) . (3.14)

It follows that

−ε
∫

Ω
∇ (∆vε) · ∇vεdx+ |∇vε|2L2(Ω) =

∫
Ω
∇u · ∇vεdx,
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whence

−ε
∫

Π1

∫
ΩX2

∇X1 (∆vε) · ∇X1vεdX1dX2

− ε
∫

Π2

∫
ΩX1

∇X2 (∆vε) · ∇X2vεdX2dX1 + |∇vε|2L2(Ω)

=

∫
Ω
∇u · ∇vεdx ≤

1

2
|∇u|2L2(Ω) +

1

2
|∇vε|2L2(Ω) . (3.15)

Since vε ∈ H1
0 (Ω) and u ∈ V ∩W in (3.14), we deduce for a.e. X1 ∈ Π1 and

a.e. X2 ∈ Π2 (see [5])

∆vε (X1, ·) ∈ H1
0 (ΩX2) , ∆vε (·, X2) ∈ H1

0 (ΩX1) .

Thus we can rewrite (3.15) as

2ε

∫
Π1

∫
ΩX2

∆vε∆X1vεdX1dX2

+ 2ε

∫
Π2

∫
ΩX1

∆vε∆X2vεdX2dX1 + |∇vε|2L2(Ω) ≤ |∇u|
2
L2(Ω) ,

whence

2ε |∆vε|2L2(Ω) + |∇vε|2L2(Ω) ≤ |∇u|
2
L2(Ω) . (3.16)

It follows that vε is bounded in H1
0 (Ω), then -up to a subsequence- its weak

limit is in H1
0 (Ω) and due to (3.13) this limit is u. Thus u ∈ H1

0 (Ω) , which
ends the proof of the proposition. �

As it is known, we need a pointwise convergence to pass to the limit in
the nonlinear term g (·, uε) . But the estimates that one has, i.e.

|∇X2uε|L2(Ω) , |uε|Lp(Ω) are bounded,

are not sufficient to get the pointwise limit of (uε)ε since the embedding

W ⊂ L2 (Ω)

is not compact. So in this case the monotonicity hypothesis is necessary and
as an obvious consequence of Theorems 2, 3 and Corollary 1 we have

Corollary 5. When ε→ 0, we have

uε → ũ, ∇X2uε → ∇X2 ũ and
√
ε∇X1uε → 0 in L2 (Ω)
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where ũ and uε are the solutions of (3.11) and (3.5) respectively. Moreover
if g is strongly monotone then we obtain.

uε → ũ in Lp (Ω) .

Remark 9. Note that, even if B is not strongly monotone, the first two
convergences hold strongly. This is due to the following monotone type in-
equality

〈∆X2v −∆X2u, v − u〉W +

∫
Ω

(g (x, v)− g (x, u)) (v − u) dx

≥ |∇X2 (v − u)|2L2(Ω) , ∀u, v ∈W.

3.3. p−Laplacian type problem. The second application of the abstract
theory, in the anisotropic case, is the following quasilinear elliptic equation{

−ε∆p1,X1uε −∆p2,X2uε = f in Ω,
uε = 0 on ∂Ω

(3.17)

where p1, p2 > 1 are real constants and ∆p1,X1 , ∆p2,X2 are the pi−Laplace
operators in X1 and X2 respectively i.e.

∆p1,X1 · = ∇X1 ·
(
|∇X1 · |

p1−2∇X1 ·
)
,

∆p2,X2 · = ∇X2 ·
(
|∇X2 · |

p2−2∇X2 ·
)
.

We assume that

f ∈ Lp′2 (Ω) ,

(p′2 is the conjugate of p2). In this case we set

V =

{
u ∈ Lp1 (Ω)

∣∣∣∣∣ ∇X1u ∈ [Lp1 (Ω)]q ,

u(·, X2) ∈W 1,p1
0 (ΩX2) , a.e. X2 ∈ Π2

}
,

equipped with the norm

|v|V = |∇X1v|Lp1 (Ω)

and

W =

{
u ∈ Lp2 (Ω)

∣∣∣∣∣ ∇X2u ∈ [Lp2 (Ω)]n−q ,

u(X1, ·) ∈W 1,p2
0 (ΩX1) , a.e. X1 ∈ Π1

}
,

equipped with the norm

|v|W = |∇X2v|Lp2 (Ω) .
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We can easily show that V and W are separable reflexive Banach spaces.
Then we define the operators A : V → V ′ and B : W →W ′ as

A = −∆p1,X1 , B = −∆p2,X2 .

It is easy to see that A and B are coercive, bounded and hemicontinuous.
The monotonicity of A and B is shown by the following lemma (see [2, 12]).

Lemma 1. For all p > 1 and ξ, η ∈ Rn, we have, for a constant cp > 0,(
|ξ|p−2 ξ − |η|p−2 η

)
· (ξ − η) ≥ cp {|ξ|+ |η|}p−2 |ξ − η|2 .

If p ≥ 2, then (
|ξ|p−2 ξ − |η|p−2 η

)
· (ξ − η) ≥ cp |ξ − η|p ,

where | · | is the usual Euclidean norm in Rn and “ · ” is the scalar product.

Thus the operator A (resp. B) is strictly monotone for all p1 > 1 (resp.
p2 > 1) and strongly monotone if p1 ≥ 2 (resp. p2 ≥ 2). The limit problem
is defined, for a.e. X1 ∈ Π1, as{

−∆p2,X2 ũ (X1, ·) = f (X1, ·) in ΩX1 ,

ũ (X1, ·) = 0 on ∂ΩX1 .
(3.18)

Finally as in the previous subsection we can show that

(V ∩W ) ⊂W 1,min(p1,p2)
0 (Ω) .

More precisely we have

V ∩W =

{
u ∈ Lmax(p1,p2) (Ω)

∣∣∣∣ ∇X1u ∈ [Lp1 (Ω)]q , ∇X2u ∈ [Lp2 (Ω)]n−q ,
u|∂Ω = 0

}
,

which gives a sense to the boundary conditions. Then by Theorem 2, 3 and
Corollary 1 we have

Corollary 6. For all p1, p2 > 1,

uε ⇀ ũ in W,
ε∇X1uε → 0 in Lp1 (Ω) ,

ε∆p1,X1uε → 0 in V ′,
∆p2,X2uε ⇀ f in W ′,

(3.19)

where uε and ũ are the solutions of (3.17) and (3.18) respectively. Moreover
if p1 ≥ 2 then

ε1/p1∇X1uε → 0 in Lp1 (Ω) , (3.20)
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and if p2 ≥ 2 then

uε → ũ,∇X2uε → ∇X2 ũ in Lp2 (Ω) . (3.21)
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