Statistical Approach

Most calculations can be summarized by

- Choose a norm: $\|\mathbf{A}\|_{\mathbf{E}}=\left(E \operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)\right)^{1 / 2}$ or \ldots
- Use the eigenvalue/eigenvector decomposition of $\widehat{\mathbf{P}}$:

$$
\widehat{\mathbf{P}}^{f}=\Gamma \widehat{\Lambda} \Gamma^{\top}
$$

Γ contains the eigenvectors

$$
\widehat{\Lambda}=\left(\widehat{\lambda}_{i j}\right)
$$

- Simplify the norm to an expression containing $\left\{\lambda_{i}\right\}, n$: $\left\|\widehat{\mathbf{P}}^{f}\right\|_{\mathrm{E}}^{2}=E \operatorname{tr}\left(\widehat{\mathbf{P}}^{f \top} \widehat{\mathbf{P}}^{f}\right)=E \operatorname{tr}\left(\Gamma^{\top} \widehat{\mathbf{P}}^{f} \Gamma \Gamma^{\top} \widehat{\mathbf{P}}^{f} \Gamma\right)=E \operatorname{tr}(\widehat{\Lambda} \widehat{\Lambda})=\ldots$

