
KriSp: An R Package for Covariance Tapered Kriging

of Large Datasets Using Sparse Matrix Techniques

Reinhard Furrer

MCS-06-06 October 2006

Department of Mathematical and Computer Sciences
Colorado School of Mines

Golden, CO 80401-1887, USA
Phone: (303) 273-3860
Fax: (303) 273-3875

Email: rfurrer@mines.edu

KriSp:

An R Package for Covariance Tapered Kriging

of Large Datasets Using Sparse Matrix Techniques

Reinhard Furrer
Mathematical and Computer Sciences Department

Colorado School of Mines
Golden, CO, 80401

rfurrer@mines.edu

December 18, 2006

1 Introduction 2

2 Getting Started 2

3 Included Spatial Models 3

4 Illustration of The Tapering Technique 9

5 Computational Issues 15

6 Outlook 17

7 Disclaimer 18

Acknowledgments 18

References 18

Appendix 19

Index 37

1

http://www.mines.edu/academic/macs
http://www.mines.edu
mailto:rfurrer@mines.edu

1 Introduction

Interpolation of a spatially correlated random process is used in many scientific areas.
The best unbiased linear predictor (BLUP), often called kriging predictor in geostatistics,
requires the solution of a linear system based on the (estimated) covariance matrix of the
observations. Frequently, the most interesting spatial problems involve large datasets and
their analysis overwhelms traditional implementations of spatial statistics. Furrer et al.
(2006) show that tapering the correct covariance matrix with an appropriate compactly
supported covariance function reduces the computational burden significantly and still
results in an asymptotic optimal mean squared error. The effect of tapering is to create a
sparse approximate linear system that can then be solved using sparse matrix algorithms.
This package provides a suite of functions for the R statistical computing software (Ihaka
and Gentleman, 1996; R, 2004) to perform interpolation of large or even massive datasets
using covariance tapering (R is an open source implementation of the S language, Chambers
and Hastie, 1992; Chambers, 1998).

Throughout this document, packages, programs and external functions are written in
sans serif font. R input commands, R functions and their arguments are typed in slanted

typewriter font, corresponding output, if any, in upright typewriter font.

The package KriSp (Kriging with Sparse matrices) is considered as an add-on to the
package fields. KriSp has a similar class to one of fields and uses some of its methods.
Further, KriSp uses the package SparseM to handle the sparse matrix techniques. Thus
the package is not exhaustive in its functionality compared to other geostatistical packages
like geoR. Also, most functions are not fully optimized in order to enhance readability of
the code.

The reader should be familiar with R as well as with standard geostatistical terms
and modeling (see for instance Cressie, 1993 or Stein, 1999, for a detailed discussion on
that topic). Insight of the packages fields and SparseM is beneficial but not mandatory.
This tutorial should give insight in how to use the different functions and methods of
KriSp. Typically, default arguments are used for the function calls. The user is strongly
encouraged to examine the function arguments using the the R functions args and help

(the help files of major functions included in KriSp are given in the Appendix). The com-
mands used in this tutorial are also available at http://www.mines.edu/˜rfurrer/software/
KriSp/KriSp.tutorial.R. Please send any comments concerning this document or the package
to rfurrer@mines.edu.

2 Getting Started

Download the package KriSp 0.4.tar.gz to your local file system and install it using the
following command at your Unix prompt

2

http://cran.r-project.org/src/contrib/Descriptions/fields.html
http://cran.r-project.org/src/contrib/Descriptions/SparseM.html
http://cran.r-project.org/src/contrib/Descriptions/geoR.html
http://www.mines.edu/~rfurrer/software/KriSp/KriSp.tutorial.R
http://www.mines.edu/~rfurrer/software/KriSp/KriSp.tutorial.R
mailto:rfurrer@mines.edu
http://www.mines.edu/~rfurrer/software/KriSp/KriSp_0.4.tar.gz

$ R CMD INSTALL -l /path/to/library KriSp_0.4.tar.gz

For Windows, the equivalent command to be executed at the DOS prompt is

$ Rcmd INSTALL -l /path/to/library KriSp_0.4.tar.gz

Alternatively, the package can also be installed within an R session (see the R manual for
more details). Start by opening an R session (version ≥1.7) and load the package

> library("KriSp", lib.loc="/path/to/library")

The required libraries fields and SparseM are automatically loaded, provided they have
been previously installed.

The main class of KriSp is sparse. In order use the methods defined for the Krig

class in fields, the class sparse has the secondary class Krig. The main functions of the
package KriSP are

> Krig.simple.sparse()

> Krig.sparse()

> predict()

The first function performs simple kriging, the second universal kriging. The third function
is a method to perform predictions on a given set of locations. In order to simplify
the coding, the simple and the universal kriging approach have been separated. Both
approaches are illustrated in the subsequent sections. In Section 4, the tapering technique
is further illustrated with two examples.

3 Included Spatial Models

3.1 Spatial Model with Zero Mean

To illustrate the capacity of sparse matrix techniques, we start with the simple spatial
model

Y (x) = Z(x) + ε(x),

where Z is mean zero process with covariance function K and ε is a white noise with
variance σ2. In other words, we observe the process Z at some locations, say x 1, . . . ,xn,
with a measurement error of variance σ2. Then the best linear unbiased prediction (BLUP)
of Z at an (unobserved) location x ∗ is then

Ẑ(x ∗) = c∗T(C + σ2I)−1Z, (1)

where Z =
(
Z(x 1), . . . , Z(xn)

)
T, Cij = K(x i,x j), c∗i = K(x i,x

∗) and I is the identity
matrix. In geostatistical literature, (1) is referred to as simple kriging (e.g. Cressie, 1993).

3

http://stat.ethz.ch/R-manual/R-patched/library/utils/html/INSTALL.html
http://stat.ethz.ch/R-manual/R-patched/library/utils/html/INSTALL.html

Histogram of Y

−2 −1 0 1 2

0
5

10
15

20
25

Figure 1: Dataset simple.data : locations on the left, histogram of the observations on
the right.

When predicting on many points, a fine regular grid, spatial field or lattice, the vector c∗

in (1) is replaced by a matrix C∗ containing as columns the respective vectors c∗ for the
different points on the grid. The functions Krig.simple.sparse and predict calulate
the BLUP (1) for large datasets and large spatial fields.

There are a few datasets included in the package distribution. To illustrate the simple
kriging approach, we use the dataset simple.data. This artificial dataset consists of 100
locations randomly distributed in a unit longitude-latitude square. The spatial Gaussian
process has an exponential covariance structure with a range of 10 miles and a sill of 1
and no measurement error. The data are loaded with

> data(simple)

> attach(simple.data)

Figure 1 shows the locations and a histogram of the values.

> look <- as.image(Y, x=x)

> image.plot(look)

> hist(Y)

Kriging in KriSp is performed by creating a sparse object with a call to a kriging function
such as Krig.simple.sparse and a subsequent call to a prediction function like predict.

> obj <- Krig.simple.sparse(x, Y)

The variable obj contains among other quantities the vector (C + σ2I)−1Z and the pre-
dictions at the observed locations. As there is no measurement error, the predictions
are identic to the observations. Prediction of the proces Z at an unobserved location
x ∗ = (−105.5, 40.5) is obtained simply by

4

Figure 2: Predictions on a fine grid.

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Predicted Values

Y

Residuals

F
re

qu
en

cy

−5e−06 5e−06

0
10

30
50

Krig.simple.sparse(x = x, Y = Y, cov.fun.args = list(range = 10,
 sill = 1, nugget = 0), taper.fun = "Wu3.cov")

Figure 3: plot method for a sparse object.

> pre <- predict(obj, x=cbind(-105.5,40.5))

For prediction at several points, we just specify the arguments x with the locations in a
m× 2 matrix.

If we want to predict on a fine grid, we use fields function predict.surface (Figure 2).

> surf <- predict.surface(obj)

> image.plot(surf)

There exists a rudimentary plott and print methods for the sparse object (Figure 3).

> plot(obj)

> obj

5

Call:

Krig.simple.sparse(x = x, Y = Y)

Covariance: expo.cov

Taper: Wu3.cov with range 10

Number of obs. = 100

The method summary is just a more extended version of print. Other methods for the
sparse class include residuals, fitted and coef. Those are included, as simple and
universal kriging can be considered as a linear model.

KriSp is not about parameter estimation, thus we use our a priori knowledge for the
parameter specification in the kriging routines. Typically, the covariance parameters are
different to the default values. The exponential covariance and its parameters range=10,
sill=1 and nugget=0 are the default values for the argument cov.fun="expo.cov" and
cov.fun.args respectively. We also used the default taper function and taper parameter.
The previous Krig.simple.sparse is acutally identical to

> obj <- Krig.simple.sparse(x, Y, cov.fun = "expo.cov",

+ cov.fun.args = list(range = 10, sill = 1, nugget = 0),

+ taper.fun = "Wu3.cov", taper.fun.args = list(range = 50))

Note that the variance of the measurement error is given by the nugget argument in
cov.fun.args.

Too small values for the arguments tmpmax (working array for chol) or nnzmax (upper
bound of nonzero elements in C) result in a warning or core dump respectively. Too big
values do not hurt, just consume some computing time (see alse Section 4.2).

A little clean up, prior to the universal kriging example.

> detach(simple.data)

> rm("obj","pre","look","surf")

3.2 Spatial Model with a Drift or Trend

In this section we discuss an example where we have a spatial process of the form

U(x) = m(x)Tβ + Z(x), (2)

where m is a known function in Rp and β is an unknown parameter in Rp. Suppose we
observe the process U at n locations x 1, . . . ,xn with a mesurement error having variance
σ2. Similar to equation (1), the BLUP of U(x ∗) is given by

Û(x ∗) = cT(C + σ2I)−1(Y −Mβ̂) + m(x 0)
Tβ̂, (3)

6

Figure 4: Dataset universal.data.

where

β̂ = (MT(C + σ2I)−1M)−1MT(C + σ2I)−1Y (4)

with M =
(
m(x 1), . . . ,m(xn)

)
T. In geostatistical literature, (3) is referred to as universal

kriging. The sparse matrix approach is used with an iterative procedure illustrated as
follows. We estimate the mean structure, i.e. the vector β in (2), via ordinary least
squares (OLS), then Y −Mβ̂∗ is kriged yielding Z∗. With OLS on Y − Z∗ we obtain a
second estimate β̂∗ and so forth. This convenient back-fitting procedure converges to the
BLUP and a few iterations usually suffice to obtain precise results. Note that (4) is the
solution of the weighted least squares. If p is not too big, the BLUP could be also obtained
by solving p + 2 linear systems as given by equation (3) using a sparse approach.

The function Krig.sparse loops over the regression and simple kriging steps until con-
vergence. Consider the example dataset universal.data. The artificial data is similar to
simple.data except that we have a linear trend (Figure 4).

> data(universal)

> attach(universal.data)

> look <- as.image(Y, x=x)

> image.plot(look)

We create a sparse object by calling

> obj <- Krig.sparse(x, Y,

+ cov.fun.args=list(range=10,sill=.9,nugget=.1))

The error norm between the consecutive coefficients β̂∗ are in out$coef

The universal kriging object obj contains more information than in the simple kriging
case.

7

> summary(obj)

Call:

Krig.sparse(x = x, Y = Y,

cov.fun.args = list(range = 10, sill = 0.9, nugget = 0.1))

Covariance: expo.cov

Taper: spher.cov with range 10

Number of obs. =100

nnz(sigma) =820, (8.2%)

nnz(Chol sigma)=645, (6.45%)

Spatial trend:

order m=2, betahat=(-0.5179,4.319,-166.8438)

convergence with MSE=0.008 after 25 steps

(criterion maxiter>=25, or MSE<0.001)

Residuals:

Min 1Q Median 3Q Max

-0.168041 -0.045088 0.002130 0.047612 0.189869

Timing:

Covariance Cholesky Backsolve Iterations

0.07 0.05 0.00 0.07

The predicted surface is in out$fitted, which is the sum of the trend, out$trend,
and the spatial field, out$spatial.

As in the simple kriging case, the predict method returns a vector, the prediction
on some specified locations. If trend.only=TRUE, predict returns the mean structure of
the field only (Figure 5).

> image.plot(predict.surface(obj))

> image.plot(predict.surface(obj, trend.only=TRUE))

Finally, proper clean up.

> detach(universal.data)

> rm("obj","look","surf")

8

Figure 5: Prediction with universal kriging (left) and fitted trend structure (right) for
universal.data.

4 Illustration of The Tapering Technique

4.1 Comparisation with Other Interpolation Methods

In this section we use the universal dataset to compare interpolation results obtained
from different approaches, namely the straightforward naive approach (i.e. using equa-
tions (3) and (4)), fields’ Krig and KriSps Krig.sparse. Refer to the fields demo for a
detailed discussion of the use of Krig function.

To get started, we load the data and and set the covariance parameters..

> data(universal)

> attach(universal.data)

> range <- 10

> nugget <- 0.1

> sill <- 0.9

Prediction is performed on a 50 × 50 grid (depending on the available computing power,
you might want to lower the grid size to 30× 30).

> nx <- ny <- 50

> xgrid <- make.surface.grid(grid.list=list(lon='x',lat='y'),
+ X=x, nx=nx, ny=ny)

To predict the surface using fields, we type

> out.fields <- Krig(x, Y, expo.earth.cov,

+ sigma2=nugget, rho=sill, lambda=nugget/sill)

> fields <- predict.surface(out.fields, nx=nx, ny=ny)

9

http://www.cgd.ucar.edu/stats/Software/Fields/fields.demo.shtml

The sparse approach (with taper range 30) is

> out.sparse <- Krig.sparse(x, Y,cov.fun.args=list(range = range,

+ sill=sill, nugget=nugget),

+ taper.fun.args = list(range = 30),

+ scale.type ="range")

> sparse <- predict.surface(out.sparse, nx=nx, ny=ny)

We used the scale.type argument to transform the locations to obtain better numerical
stability. The naive approach is somewhat longer to calculate.

> lagC <- rdist.earth(x)

> lagc <- rdist.earth(x, xgrid)

> C <- expo.cov(lagC, range=range, sill=sill, nugget=nugget)

> c <- expo.cov(lagc, range=range, sill=sill, nugget=nugget)

>

> invC <- solve(C)

> M <- out.sparse$xM

> scaledxgrid <- scale(xgrid, center = out.sparse$x.center,

+ scale = out.sparse$x.scale)

>

> m0 <- t(cbind(scaledxgrid, 1))

>

> betahat <- solve(t(M) %*% invC %*% M) %*% t(M) %*% invC %*% Y

> naive <- c(t(c) %*% invC %*% (Y-M%*%betahat)+t(m0)%*%betahat)

The results and the differences in the predicted fields are obtained with the following
commands. (Figures 6 and 7).

> fields.naive <- fields

> fields.naive$z <- fields$z - array(naive, c(nx,ny))

> fields.sparse <- fields

> fields.sparse$z <- fields$z - sparse$z

> sparse.naive <- fields

> sparse.naive$z <- sparse$z - array(naive, c(nx,ny))

>

> image.plot(sparse)

> image.plot(fields)

>

> image.plot(fields.naive)

> image.plot(fields.sparse)

> image.plot(sparse.naive)

10

Figure 6: Predicted ozone on a 50 × 50 grid obtained with fields’ Krig (left) and KriSps
Krig.sparse (right).

The differences seem nevertheless remarkably high. With higher taper ranges, the
difference between approaches KriSp and naive can be considerably lowered. Note the
difference in the fitted coefficients for the mean structure.

> c(betahat)

[1] -0.1607431 4.0057863 60.2022324

> out.sparse$coef

[1] -0.5928071 4.2595088 60.3194296

For this illustrative example we used a small dataset such that the computing perfor-
mance of KriSp is not as impressive as it could be.

4.2 Large Data

In this section we look at the large dataset (anomaly.data) to illustrate the capacity of
KriSp. The data are anomalies of aggregated monthly precipitation for April 1948 at 11,918
stations in the US (for more details about the data refer to Johns et al., 2003 and Furrer et
al., 2006). We assume that the data is second order stationary. To simplify the document,
we also suppose that the underlying isotropic structure is a mixture of two exponential
covariance fucntions with range parameters of 40 and 520 miles with respective sill of 0.28
and 0.72.

> data(anomaly)

> attach(anomaly.data)

> US()

> points(x, pch=".", col=3)

11

Figure 7: Differences in prediction between approaches fields and naive (left), between
approaches fields and KriSp (right) and between approaches KriSp and naive (lower panel).

12

Figure 8: Measurement locations of precipitation anomalies for April 1948.

According to Furrer et al. (2006) a tapering radius with 16 to 24 points within the support
is a sufficiently precise approximation. With our observation density, a tapering range of
40 miles is sufficient (cf. Figure 8 and 10). We first create the covariance function, being
a mixture of two exponential ones. Typical KriSp covariance functions take the arguments
distance, range and eps. If some are not used, just include the “dot” construction ...

in the function definition. The mixture covariance could be defined by

> exp.mix.cov <- function(distance, ...)

+ 0.28 * exp(-abs(distance)/40) + 0.72 * exp(-abs(distance)/520)

The sparse object is created with the following arguments.

> timing <- numeric(3)

> dummy <- gc() # clean up before the heavy work...

> obj <- Krig.simple.sparse(x, Y, cov.fun = "exp.mix.cov",

+ taper.fun.args = list(range=40), covfun = T,

+ nnzmax = 320000, tmpmax = 12000)

> timing[1] <- (proc.time()-prtm)[1]

> summary(obj)

13

Call:

Krig.simple.sparse(x = x, Y = Y, cov.fun = "exp.mix.cov",

taper.fun.args = list(range = 40),

nnzmax = 320000, tmpmax = 15000, covfun = T)

Covariance: exp.mix.cov

Taper: Wu3.cov with range 40

Number of obs. =11918

nnz(sigma) =317832, (0.2238%)

nnz(Chol sigma)=720234, (0.5071%)

Residuals:

Min 1Q Median 3Q Max

-2.146e-04 -2.220e-16 0.000e+00 2.220e-16 5.786e-05

Timing:

Covariance Cholesky Backsolve Fitting

21.38 1.50 0.03 21.06

Note that we had to increase the values of nnzmax and tmpmax to perform the kriging.
Be aware that the next step might be very time consuming. We perform a prediction

and visualisation step (Figure 9).

> prtm <- proc.time()

> lon=seq(-126, -66, length=500)

> lat=seq(24, 50, length=500)

> pred.surf <- predict.surface(obj,

+ grid.list = list(lon=lon, lat=lat), extrap=T)

> timing[2] <- (proc.time()-prtm)[1]

>

> prtm <- proc.time()

> image.plot(pred.surf, xaxt="n", yaxt="n")

> US(add=T)

> timing[3] <- (proc.time()-prtm)[1]

> timing # in seconds

[1] 43.99 308.37 0.98

(The calculations were performed on a Linux powered Xeon processor with 2Gbytes RAM.)

14

Figure 9: Predicted precipitation anomaly for April 1948 (500× 350 grid).

Even if extrap or chull.mask is altered, the computation time is not reduced as
fields’ predict.surface calculates the values for the entire grid and sets the values not
falling in the chull.mask region to NA afterwards.

For readers that are familiar with the storage structure of sparse matrices, the following
lines create Figure 10.

> ia <- slot(obj$sigma, "ia")

> n.tap <- diff(ia) - 1

> hist(n.tap)

As the we have 11.913 observations, the full covariance matrix takes more than 1136
Mbytes compared to 3.86 Mbytes, if we have “typical” precision with 8-byte reals and
4-byte integers.

5 Computational Issues

The function Krig.simple.sparse consists basically in calculating the covariance matrix
C with a Fortran subroutine, using the Cholesky factorization of SparseM and in performing
a backsolve operation with the observations. The function Krig.sparse uses a backfitting
approach that loops over a regression and a kriging step. The regression step, a simple
ordinary least squares estimation, does not use sparse matrix techniques. The kriging step
is essentially identical to a call to Krig.simple.sparse.

15

Histogram of n.tap

0 20 40 60 80 100
0

10
00

30
00

Figure 10: Histogram of the number of observations within the taper range. The median
is 22 observations and the mean is slightly over 26. One location had just one, twelve
locations had two observations within the range.

The method predict is essentially a wrapper to a Fortran function, which loops over
all points at which to predict. For each point it calculates c∗Tv , where v = C−1Z given
by a sparse object. There are several ways to optimize this costly procedure:

• use a fast Fourier transform (FFT) approach similar to the function krig.image in
fields.

• take account of some a priori knowledge of the locations and rewrite the Fortran
functions. For example, if the points are on a regular grid, the operation can be
done in (essentially) O(N) instead of O(N2) operations (N the number of points to
predict).

Evaluating the Matérn covariance function is computationally heavy. R essentially uses
the Netlib function rkbesl.f. Instead of using the same or similar functions in the Fortran
code of KriSp, a linear approximation scheme is used. All covariances are evaluated on a
fine grid with R functions such as mater.cov, expo.cov, etc. Those function values are
then passed to the corresponding Fortran routine in where a linear interpolation is made.
Of course, this method could be refined to a cubic spline approximation (using fields’ css.f)
or some other interpolation scheme. This approach also eliminates the need of providing a
large database of covariance functions coded in Fortran. Note that in Furrer et al. (2006),
no covariance approximations were made. The the following lines display the logarithm of
the maximum error of the linear covariance approximation as a function of the number of
grid points (Figure 11).

16

http://www.netlib.org/
http://www.netlib.org/specfun/rkbesl.f

0 200 600 1000

−
5

−
4

−
3

−
2

nseq
lo

g(
 m

ax
 e

rr
or

),
 b

as
e

10

Figure 11: Error of the linear covariance approximation.

> nseq <- seq(10,1000,by=25)

> maxerr <- sapply(nseq, "covapprox.error")

> plot(nseq, log(unlist(maxerr[1,]),10), type="l",

+ ylab="log(max error), base 10")

The functions of KriSp are written in a linear, sequential way, calling as few functions
as possible in order to save memory. Of course, there would be further gain in “unrolling”
some of the remaining functions. When dealing with massive data sets, I recommend
to use the source of KriSp and to hard code the functions to completely adjust it to the
specific problem. In such cases, it is possible to work with datasets involving up to 400,000
locations (Sain and Furrer, 2004).

6 Outlook

The package KriSp should provide an insight on how to interpolate large or massive spatial
datasets. Current work focuses on applying tapering techniques to microarray data and
to maximum likelihood covariance parameter estimation.

A possible extension might be to uniquely use S4 classes and methods. As the current
version of fields uses S3 classes, KriSp does not entirely use the new class concept.

The next major version of fields (version>3.2) will contain a sparse matrix module and
extends the capacities of KriSp. Therefore, KriSp will no longer be significantly extended
and future releases will most likely consist of bug fixes only.

17

7 Disclaimer

This is software for statistical research and not for commercial uses. The author does not
guarantee the correctness of any function or program in this package. Any changes to the
software should not be made without the authors permission.

Acknowledgments

Many thanks to Doug Nychka, Stephen R. Sain, Tim Hoar and Eva Maria Furrer for many
valuable remarks on the programming of the package and the writing of this document.

References

Chambers, J. M. (1998). Programming with Data: A Guide to the S Language. Springer-
Verlag. 2

Chambers, J. M. and Hastie T. J. (1992). Statistical Models in S. Wadsworth and
Crooks/Cole. 2

Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley & Sons Inc., New York,
revised reprint. 2, 3

Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance Tapering for Interpolation
of Large Spatial Datasets. Journal of Computational and Graphical Statistics, 15, 502–
523. 2, 11, 13, 16

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5, 299–314. 2

Johns, C., Nychka, D., Kittel, T., and Daly, C. (2003). Infilling sparse records of spatial
fields. Journal of the American Statistical Association, 98, 796–806. 11

R Development Core Team. (2004). R: A language and environment for statistical com-
puting, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-
project.org. 2

Sain, S. and Furrer, R., (2004). Fitting Large-Scale Spatial Models with Applications to
Microarray Data Analysis. Proceedings Interface 2004. 17

Stein, M. L. (1999). Interpolation of Spatial Data. Springer-Verlag, New York. 2

18

http://www.R-project.org
http://www.R-project.org

Appendix

KriSp Tools for interpolating large data sets

Description

KriSp is a collection of functions for interpolationg large spatial datasets with covari-
ance tapering.

Details

There are also generic functions that support these methods such as

plot - diagnostic plots of fit
summary - statistical summary of fit
print - shorter version of summary
surface - graphical display of fitted surface
predict - evaluation fit at arbitrary points

To get started, try some of the examples from help files for KriSp. See also the
manual/tutorial at http://www.mines.edu/~rfurrer/software/KriSp.

The theoretical background can be found in the paper:

Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance Tapering for Interpo-
lation of Large Spatial Datasets. Journal of Computational and Graphical Statistics,
15(3), 502–523.

The structure of the functions Krig in fields has changed drastically between versions
2.x and 3.x. To keep sample source code simple, we wrote a function expo.earth.cov

that works like exp.earth.cov in versions 2.x but has the required functionality for
higher versions.

The next major version of fields (version>3.2) will contain a sparse matrix module
and extends the capacities of KriSp. Therefore, KriSp will no longer be significantly
extended and future releases will most likely consist of bug fixes only.

19

http://www.mines.edu/~rfurrer/software/KriSp

Note

DISCLAIMER:

This is software for statistical research and not for commercial uses. The authors do
not guarantee the correctness of any function or program in this package. Any changes
to the software should not be made without the authors permission.

KriSp.methods Accessing Sparse Kriging Fits

Description

These functions are all methods for class sparse objects.

Usage

summary(object, ...)

print(x, digits = max(3, getOption("digits") - 3),...)

residuals(object, ...)

resid(object, ...)

fitted(object, ...)

fitted.values(object, ...)

coef(object, ...)

coefficients(object, ...)

Arguments

object,x an object of class sparse, typically the result of a call to Krig.sparse

or Krig.simple.sparse.

digits a non-null value for digits specifies the minimum number of significant
digits to be printed in values. If digits is NULL, the value of digits

set by options is used.

... further arguments passed to or from other methods.

See Also

Krig.sparse, Krig.simple.sparse.

20

Krig.simple.sparse

Kriging surface estimate

Description

Calculating the BLUP or kriging estimate for large two dimensional spatial datasets.

Usage

Krig.simple.sparse(x,Y,

cov.fun = "expo.cov",

cov.fun.args = list(range = 10, eps = eps),

taper.fun = "spher.cov",

taper.fun.args = list(range = 10),

ncov = 10000, approxhmax = taper.fun.args$range,

miles = TRUE, R = NULL, eps = 1e-5,

save.sigma = TRUE, save.chol = FALSE,

verbose = FALSE, nnzmax = 1e+05, tmpmax = 10000, ...)

Arguments

x a m times 2 matrix containing the locations.

Y the observed values at x.

cov.fun Covariance function in the form of an R function, or its name as a string.

cov.fun.args

A list with the arguments to call the covariance function (in addition
to the locations).

taper.fun Taper function in the form of an R function, or its name as a string.

taper.fun.args

A list with the arguments to call the taper function (in addition to the
locations).

ncov Number of knots to evaluate the approximation

approxhmax Maximum distance over which the covariance is approximated

miles logical. If TRUE (default) distances are in statute miles if FALSE dis-
tances in kilometers.

21

R the radius to use for the sphere to find spherical distances. If NULL the
radius is either in miles or kilometers of the earth depending on the
values of the miles argument. If R=1 then distances are in radians.

eps small value, everything smaller is considered zero.

save.sigma should the covariance matrix be saved (in SparseM format).

save.chol should the Cholesky factor of the covariance matrix be saved (in SparseM

format).

verbose should timing and convergence results be printed.

nnzmax upper bound of non-zero elements in the covariance matrix.

tmpmax working array for the Cholesky factorisation

... supplementary parameters that can be given as arguments to the func-
tion chol.

Details

For computational reasons, we do not call simple the solve function but use chol(...)
and backsolve(...) form the SparseM library. We do not allow missing values. We
only consider two-dimensional domains.

Value

Krig.simple.sparse returns an object of class c("sparse","Krig"). The second
is to reuse many handy functions of the library fields.

An object of the class "sparse" is a list containing at least the following components:

call the matched call.

fitted fitted values at observed values.

solve vector used for prediction on other grid points.

sigma if requested, the covariance matrix.

sigmachol if requested, the Cholesky factor.

timing time needed for the main calculations.

nnz The number of nonzero elements in the covariance matrix and its Cholesky
factor.

Additionally, most input arguments are passed to the object.

22

Note

For REALLY big datasets, it would be wise to dissect the functions.

The radius of the earth is assumed to be 3963.34 miles or 6378.388 kilometers.

approxhmax should be at least as big as the taper range or the domain of the field.

If nnzmax is too small, R may produce a ‘core dumped’.

See Also

Krig.simple.sparse, predict.sparse, plot.sparse;

chol and backsolve from the SparseM library.

Examples

data(simple)
attach(simple.data)

obj <- Krig.simple.sparse(x, Y)
pre <- predict(obj, x=cbind(-104.5,40.5))

surf <- predict.surface(obj)
image.plot(surf)

Krig.sparse Kriging surface estimate

Description

Calculating the BLUP or kriging estimate for large two dimensional spatial datasets.

Usage

Krig.sparse(x,Y,

cov.fun="expo.cov", cov.fun.args=list(range=10,eps=eps),

taper.fun="spher.cov", taper.fun.args=list(range=10),

ncov=10000,approxhmax=taper.fun.args$range,

miles=TRUE,R=NULL, eps=1e-5,

xM=NULL, m=2,scale.type = "user",x.center = rep(0, ncol(x)),

x.scale = rep(1, ncol(x)),

23

maxiter=25,epsiter=1e-3,

save.sigma=TRUE,save.chol=FALSE,verbose=FALSE,

nnzmax=100000,tmpmax=10000,...)

Arguments

x a m times 2 matrix containing the locations.

Y the observed values at x.

cov.fun Covariance function in the form of an R function, or its name as a string.

cov.fun.args

A list with the arguments to call the covariance function (in addition
to the locations).

taper.fun Taper function in the form of an R function, or its name as a string.

taper.fun.args

A list with the arguments to call the taper function (in addition to the
locations).

ncov Number of knots to evaluate the approximation

approxhmax Maximum distance over which the covariance is approximated

miles logical. If TRUE (default) distances are in statute miles if FALSE dis-
tances in kilometers.

R the radius to use for the sphere to find spherical distances. If NULL the
radius is either in miles or kilometers of the earth depending on the
values of the miles argument. If R=1 then distances are in radians.

eps small value, everything smaller is considered zero.

xM a m times 2 matrix containing the values for the spatial drift. By default,
the locations are used.

m A polynomial function of degree (m-1) will be included in the model as
the spatial trend (drift) component.

scale.type A character string among: range, unit.sd, user, unscaled. The in-
dependent variables are scaled to the specified type. See below.

x.center Centering values to be subtracted from each column of the x matrix.

x.scale Scale values that are divided into each column after centering.

maxiter Maximum number of iterations used in the backfitting iteration

epsiter Stop the backfitting as soon as the sum of squares of the coefficients of
two consecutive iterations is smaller.

save.sigma should the covariance matrix be saved (in SparseM format).

24

save.chol should the Cholesky factor of the covariance matrix be saved (in SparseM

format).

verbose should timing and convergence results be printed.

nnzmax upper bound of non-zero elements in the covariance matrix.

tmpmax working array for the Cholesky factorisation

... supplementary parameters that can be given as arguments to the func-
tion chol.

Details

For computational reasons, we do not call simple the solve function but use chol(...)
and backsolve(...) form the SparseM library. We do not allow missing values. We
only consider two-dimensional domains.

Concerning the scaling for the spatial trend. By default no scaling is done. Scale type
of range scales the data to the interval (0,1) by forming (x-min(x))/range(x) for the
x- and y-axis. Scale type of unit.sd subtracts the mean and divides by the standard
deviation. Scale type of user allows specification of an x.center and x.scale by the
user. The default for user is mean 0 and standard deviation 1. Scale type of unscaled
does not scale the data.

Value

Krig.sparse returns an object of class c("sparse","Krig"). The second is to reuse
many handy functions of the library fields.

An object of the class "sparse" is a list containing at least the following components:

call the matched call.

iternorm norm of coefficients for each iteration.

trend fitted trend surface at observed values.

coef coefficients of trend surface.

spatial spatial part of surface at observed values.

solve vector used for prediction on other grid points.

sigma if requested, the covariance matrix.

sigmachol if requested, the Cholesky factor.

timing time needed for the main calculations.

nnz The number of nonzero elements in the covariance matrix and its Cholesky
factor.

Additionally, most input arguments are passed to the object.

25

Note

For REALLY big datasets, it would be wise to dissect the functions.

The radius of the earth is assumed to be 3963.34 miles or 6378.388 kilometers.

approxhmax should be at least as big as the taper range or the domain of the field.

If nnzmax is too small, R may produce a ‘core dumped’.

See Also

Krig.simple.sparse, predict.sparse, plot.sparse;

transformx from the fields library; chol and backsolve from the SparseM library.

Examples

data(universal)
attach(universal.data)

obj <- Krig.sparse(x, Y,
cov.fun.args=list(range=10,sill=.9,nugget=.1))

summary(obj)

image.plot(predict.surface(obj))
image.plot(predict.surface(obj, trend.only=TRUE))

predict.sparse Evaluation of Krig spatial process estimate

Description

Provides predictions from the spatial process estimate at arbitrary points

Usage

predict.sparse(object, x=NULL, trend.only=FALSE, ...)

26

Arguments

object an object of class sparse, typically the result of a call to Krig.sparse

or Krig.simple.sparse.

x Matrix of x-values on which to evaluate the kriging surface. If omitted,
the data x-values, i.e. obj$x will be used.

trend.only for universal kriging, should only the trend be returned.

... only for compatibility reasons.

Details

We evaluate the kriging surface on the given grid.

Value

Vector of predicted responses.

See Also

Krig.sparse, Krig.sparse; predict.surface from the fields package.

Examples

data(universal)
attach(universal.data)

obj <- Krig.sparse(x, Y,
cov.fun.args=list(range=10,sill=.9,nugget=.1))

print(predict(obj, x=cbind(-104.5,40.5)))

xgrid <- expand.grid(lon=seq(min(x[,1]), max(x[,1]), l=50),
lat=seq(min(x[,2]), max(x[,2]), l=50))

older verstions of fields used:
xgrid <- make.surface.grid(grid.list=list(lon='x',lat='y'),
X=x, nx=50, ny=50)

surf <- predict(obj, x=xgrid)

image.plot(predict.surface(obj))
image.plot(predict.surface(obj, trend.only=TRUE))

27

plot.sparse Diagnostic and summary plots of the Krig.sparse object

Description

Plots a series of two diagnostic plots that summarize the fit from Krig.sparse.

Usage

plot.sparse(x, main=NA, which=c(TRUE,TRUE), graphics.reset=TRUE,

...)

Arguments

x an object of class sparse, typically the result of a call to Krig.sparse

or Krig.simple.sparse.

main Title of the plot. Default is the function call.

graphics.reset

Reset to original graphics parameters after plotting. Default is TRUE.

which A vector of 2 logical values. Controls which of the two graphs to plot.

... Optional graphics arguments to pass to each plot.

Details

This function creates two summary plots of the sparse object. The default is to put
these in a 1 times 2 panel. However, if the screen is already divided in some other
fashion the plots will just be added according to that scheme. This option is useful to
compare to compare several different model fits.

The first is a scatterplot of predicted value against observed.

The second plot is a histogram of the residuals.

See Also

Krig.sparse, summary.sparse and plot.Krig from the fields library.

28

Examples

data(universal)
attach(universal.data)
obj <- Krig.sparse(x, Y)
fit <- predict(obj)
fitting a surface to ozone measurements
plot(fit)

covapprox.error Error of linear covariance approximation

Description

Evaluates different error measures of the linear covariance approximation used in the
kriging approach

Usage

covapprox.error(n, cov.fun='expo.cov', cov.fun.args=list(range=1),

taper.fun='spher.cov', taper.fun.args=list(range=1),

hmax=taper.fun.args$range,nres=25)

Arguments

n Number of knots to evaluate the approximation

cov.fun Covariance function in the form of an R function, or its name as a string.

cov.fun.args

A list with the arguments to call the covariance function (in addition
to the locations).

taper.fun Taper function in the form of an R function, or its name as a string.

taper.fun.args

A list with the arguments to call the taper function (in addition to the
locations).

hmax Distance over which the error is calculated.

nres Resolution over which the errors are calculated.

Details

n=1000 usually gives a maximum error smaller than 0.1 percent of the total sill.

29

Value

A list with the elements:

max Maximum of the error.

ise Approximation of the integrated squared error.

iae Approximation of the integrated absolute error.

covapprox Linear approximation of the covariance.

error Error committed using the linear interpolation.

Note

To obtain a ‘small’ tapering effect, the taper range can be set to a large value. In such
a case, hmax should be set to the diameter of the domain.

Using the tophat function as taper, no tapering is done.

See Also

Covariance functions such as expo.cov, mater.cov, etc.

Krig.sparse and Krig.simple.sparse.

Examples

plot the error using the default functions.
nres <- 10
n <- 25
h <- seq(0,to=1, l=n*nres)
plot(h, covapprox.error(n,nres=nres)$error, type='l')

evaluate error for a covariance only.
expoapprox <- covapprox.error(1000,taper.fun=tophat,

taper.fun.args=list(range=5))
all values are negative, as expo.cov is convex.

30

covariance Theoretical Distance Based Covariance Functions

Description

Computes theoretical covariance function at supplied distance values. Models include
exponential, spherical, Matern and compactly supported covariances.

Usage

spher.cov(distance, range, sill=1, nugget=0, eps=1.0e-7,...)

expo.cov(distance, range, sill=1, nugget=0, effect=FALSE, eps=1.0e-7,...)

mater.cov(distance, smooth, range, sill=1, nugget=0, eps=1.0e-7,...)

tri.cov(distance, range, sill=1, nugget=0, eps=1.0e-7,...)

Wu1.cov(distance, range, sill=1, nugget=0, eps=1.0e-7,...)

Wu2.cov(distance, range, sill=1, nugget=0, eps=1.0e-7,...)

Wu3.cov(distance, range, sill=1, nugget=0, eps=1.0e-7,...)

tophat(distance, range, sill=1,...)

Arguments

distance a vector/matrix of distances to compute the covariance for.

range the range value.

smooth smoothness of the Matern covariance.

sill the partial sill value. The absolute sill (the variance or equivalently the
covariance at distance zero) is sill + nugget.

nugget the nugget effect.

effect if TRUE, range is the practial range

eps any distance less than it will be set to nugget + sill.

... see below.

Details

The tophat is NOT an actual covariance function. It is included for illustration pur-
poses only.

The triangular, spherical and the Wu type functions are compactly supported covari-
ance functions, vanishing beyond the range. The triangular and the first Wu type are
not valid in two dimensions and up.

31

Value

a vector/matrix of covariance values at the supplied distances.

Note

To all the covariance functions the ... argument is added to ensure compatibility
between different types of covariance functions. Although this would not be necessary,
it simplifies internal coding and usage considerably.

There is a difference between exp.cov and expo.cov, as well as matern.cov and
mater.cov functions in fields and KriSp.

Examples

distance <- seq(0,2,length=150)
plot(distance, mater.cov(distance,smooth=1,range=.4,sill=.8,nugget=.2))

nnz Nonzero elements of a sparse matrix

Description

Returns the nonzero elements of a sparse matrix.

Usage

nnz(x)

Arguments

x matrix of class matrix.csr.

Value

nonzero elements of a sparse matrix x.

See Also

as.matrix.csr from the SparseM library.

Examples

nnz(as.matrix.csr(diag(5)))

32

cite.KriSp Citing Package KriSp in Publications

Description

How to cite the package KriSp in publications.

Usage

cite.KriSp()

Details

Execute function cite.KriSp() for information on how to cite KriSp in publications.

Examples

cite.KriSp()

datasets Artificial datasets used in the tutorial

Description

The simple.data and universal.data are artifical datasets to illustrate the simple
and universal kriging in the tutorial.

Usage

data(simple)

data(universal)

Format

A list containing the two components. x: 100 longitude-latitude position of locations,
Y: the simulated values.

See Also

anomaly.data.

33

Examples

library(mvtnorm)

simple.data:
set.seed(15)
n <- 100
x <- round(cbind(lon=runif(n)-105,lat=runif(n)+40),3)

lags <- rdist.earth(x)
C <- expo.cov(lags, range=10, sill=1)

Y <- round(c(rmvnorm(1,sigma=C)), 3)
simple.data <- list(x=x,Y=Y)

universal.data:
set.seed(15)
n <- 100
x <- round(cbind(lon=runif(n)-105,lat=runif(n)+40),3)

lagC <- rdist.earth(x)
C <- expo.cov(lagC, range=10, sill=0.9, nugget=0.1)

Y <- round(c(rmvnorm(1,sigma=C))+4*x[,2]-100, 3)
universal.data <- list(x=x,Y=Y)

anomaly Precipitation anomalies of April 1948 in the US

Description

The data are anomalies of aggregated monthly precipitation for April 1948 at 11,918
stations in the US.

Usage

data(anomaly)

Format

A list containing the following components. x: longitude-latitude position of measure-
ment locations, Y: are precipitation anomalies.

34

Source

http://www.image.ucar.edu/GSP/Data/US.monthly.met/

References

Johns, C., Nychka, D., Kittel, T., and Daly, C. (2003). Infilling sparse records of
spatial fields. Journal of the American Statistical Association, 98, 796-806.

See Also

simple.data.

Examples

data(anomaly)
plot(anomaly.data$x)

KriSp-internal KriSp internal and secondary functions

Description

Listed below are supporting functions for KriSp.

Usage

distprep(distance, range, effect)

version.KriSp(verbose=TRUE)

predict.surface.se.sparse(object,...)

predict.se.sparse(object,...)

expo.earth.cov(x1, x2, theta = 1, C = NA)

35

http://www.image.ucar.edu/GSP/Data/US.monthly.met/

Details

distprep is an auxiliary function used in the different covariance functions. effect

can be used if ‘effective’ ranges should be considered.

As all sparse objects are also Krig objects, we need as many methods as defined for
Krig in the fields library.

The structure of the functions Krig in fields has changed drastically between versions
2.x and 3.x. To keep sample source code simple, we wrote a function expo.earth.cov

that works like exp.earth.cov in versions 2.x but has the required functionality for
higher versions.

36

Index

∗Topic datasets
anomaly, 34
datasets, 33

∗Topic internal
KriSp-internal, 35

∗Topic spatial
cite.KriSp, 33
covapprox.error, 29
covariance, 31
Krig.simple.sparse, 21
Krig.sparse, 23
KriSp, 19
KriSp.methods, 20
nnz, 32
plot.sparse, 28
predict.sparse, 26

anomaly, 34
anomaly.data, 33

cite.KriSp, 33
coef (KriSp.methods), 20
coefficients (KriSp.methods), 20
covapprox.error, 29
covariance, 31

datasets, 33
distprep (KriSp-internal), 35

expo.cov, 30
expo.cov (covariance), 31
expo.earth.cov (KriSp-internal), 35

fitted (KriSp.methods), 20
fitted.values.sparse

(KriSp.methods), 20

Krig.simple.sparse, 20, 21, 23, 26, 30

Krig.sparse, 20, 23, 27, 28, 30
KriSp, 19
KriSp-internal, 35
KriSp.methods, 20

mater.cov, 30
mater.cov (covariance), 31

nnz, 32

plot.sparse, 23, 26, 28
predict.se.sparse (KriSp-internal),

35
predict.sparse, 23, 26, 26
predict.surface.se.sparse

(KriSp-internal), 35
print (KriSp.methods), 20
print.summary.sparse

(KriSp.methods), 20

resid (KriSp.methods), 20
residuals (KriSp.methods), 20

simple (datasets), 33
simple.data, 35
spher.cov (covariance), 31
summary (KriSp.methods), 20
summary.sparse, 28

tophat (covariance), 31
tri.cov (covariance), 31

universal (datasets), 33

version.KriSp (KriSp-internal), 35

Wu1.cov (covariance), 31
Wu2.cov (covariance), 31
Wu3.cov (covariance), 31

37

	Contents
	Introduction
	Getting Started
	Included Spatial Models
	Illustration of The Tapering Technique
	Computational Issues
	Outlook
	Disclaimer
	Acknowledgments
	References
	Appendix
	KriSp
	KriSp.methods
	Krig.simple.sparse
	Krig.sparse
	predict.sparse
	plot.sparse
	covapprox.error
	covariance
	nnz
	cite.KriSp
	datasets
	anomaly
	KriSp-internal
	Index

	Index

