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U-Statistics and PWM in

Modeling Extremes

Reinhard Furrer, GSP-CGD, NCAR

• Motivation for the project

• Description of the project

• Outline of the talk
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Motivation for the Project

To model extremes, we often use the distributions

GEV(µ, σ, ξ) GP(σ, ξ)

The parameters can be estimated with:

Maximum likelihood (ML):

can be generalized, seasonality in parameters,

dependence structure, well established theory,

non-regular setting, . . .

Probability weighted moments (PWM):

used in hydrology, simple and works well for small n,

not well elaborated theory, . . .

What if the data are dependent?
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Description of the Project

We consider PWM estimators as U-statistics.

Then we proceed:

• familiarize with U-statistics

• use existing literature to derive

— asymptotic properties in iid case

— asymptotic properties in stationary case

• develop theory to ‘extreme’ context

• . . .
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Outline of the Talk

U-statistics

• Motivation with questions and answers

• Definition of an U-statistic

• Variance of an U-statistic

• H-Decomposition

• Asymptotics for iid and stationary case

• Conclusion and outlook
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Fundamental Questions

Consider a functional θ defined on a set F of distributions:

θ = θ(F ), F ∈ F .
Suppose we wish to estimate θ based on a random sample

X1, . . . , Xn iid F , with F unknown, but F known.

1. Does there exist an unbiased estimator of θ, indepen-

dent of the distribution F?

Can we characterize the sets F and the functionals θ

for which the answer is yes?

2. If such an estimator exists, what is it?

If several exist, which is the best?
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Surprising Answers

Theorem

A functional θ admits an unbiased estimator if and only if

there exists a function ψ of k variables such that

θ(F ) =
∫

· · ·
∫

ψ(x1, . . . , xk) dF (x1) · · · dF (xk)

Theorem

There exists an unique symmetric unbiased estimator ψ[n].

Theorem

For any other unbiased estimator φ, Var(φ) ≥ Var(ψ[n]).

U-Statistics 7

Definition of a U-Statistic

Suppose there exists a function ψ(x1, . . . , xk), called kernel

of degree k.

The estimate

ψ[n](x1, . . . , xn) =
(n− k)!

n!

∑

S
ψ(xi1, . . . , xik),

is unbiased and essentially unique.

Symmetrize the kernel ψ[k](x1, . . . , xk) =
∑

ψ(xi1, . . . , xik),

then the unique unbiased symmetric estimators of θ are

θ̂ = Un =
(n

k

)−1 ∑

(n,k)

ψ[k](Xi1, . . . , Xik)

 U-statistics
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Examples 123: Mean

The functional

θ(F ) =
∫

xf(x) dx

suggests the kernel ψ(x) = x.

We note that

θ̂ =
(n

k

)−1 ∑

i

ψ(Xi) =
1

n

∑

i

Xi = X̄
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Examples 123: Variance

We can define the variance by
∫ ∫

1

2
(x1 − x2)

2
dF (x1) dF (x2)

which is estimated by

Un =
(n

2

)−1 ∑

1≤i<j≤n

1

2
(X1 −X2)

2

No surprises: Un = s2n.
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Examples 123: PWM

The density of max(X1, . . . , Xr+1) is (r+1)F (x)rf(x), thus

βr = E
(

XF (X)r
)

=
∫

xF (x)rf(x) dx

=
1

r+ 1
E

(

max(X1, . . . , Xr+1)
)

And we have the U-statistic

Un = β̂r =
( n

r+ 1

)−1 ∑

(n,r+1)

1

r+ 1
max(Xi1, . . . , Xir)
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Variance of an U-Statistic

Define

ψc(x1, . . . , xc) = E
(

ψ(x1, . . . , xc, Xc+1, . . . , Xk)
)

c = 1, . . . , k

σ2
c = Var

(

ψc(X1, . . . , Xc)
)

Theorem

Var(Un) =
(n

k

)−1 k
∑

c=1

(k

c

)(n− k

k − c

)

σ2
c .

• Proof is based on enumeration techniques

• Same techniques to calculate covariances

• Upper bounds for higher moments
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Examples 12: Variance

Recall that ψ(x1, x2) =
1

2
(x1 − x2)

2.

ψ1(x1) =
1

2

(

σ2 + (x1 − µ)2
)

σ2
1 =

1

4
(µ4 − σ4)

σ2
2 =

1

2
(µ4 + σ4)

which leads to

Var(s2n) =
(n

2

)−1
(

2(n− 2)σ2
1 + σ2

2

)

=
µ4

n
− (n− 3)σ4

n(n− 1)
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Examples 12: PWM

Recall that ψ(x1, x2) =
1

2
max(x1, x2).

ψ1(x1) =
1

2

(

x1F (x1) +
∫ ∞

x1
x2 dF (x2)

)

=
1

2

(

x1F (x1) + g(x1)

)

Then

σ2
1 =

1

4
Var

(

XF (X) + g(X)
)

Many distributions do not have an analytic form for g(·).
For the GPD we have

∫ ∞

x
y dF (y) =

σ+ x

1 − ξ

(

1 − F (x)
)
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H-Decomposition 12: Definition

Define recursively the kernels

h(1)(x1) = ψ1(x1) − θ

h(c)(x1, . . . , xc) = ψc(x1, . . . , xc) −
c−1
∑

j=1

∑

(c,j)

h(j)(xi1, . . . , xij) − θ

To each kernel h(c) we let H
(c)
n be the associated U-statistic.

Theorem

Un = θ+
k

∑

j=1

(k

j

)

H
(j)
n .
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H-Decomposition 12: Properties

• Is a representation of a U-statistic of degree k in terms

of uncorrelated U-statistics of degree 1, . . . , k

• The terms have variances of decreasing order in n.

• Defining δ2j = Var
(

h(j)(X1, . . . , Xj)
)

= 0, we have

Var(Un) =
k

∑

j=1

(k

j

)
2
(n

j

)−1
δ2j

• σ2
c are a linear combination of δ2j .
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Example: Variance

Recall that ψ(x1, x2) =
1

2
(x1 − x2)

2.

h(1)(x1) = ψ1(x1) − θ =
1

2

(

σ2 + (x1 − µ)2
)

− σ2

=
1

2

(

(x1 − µ)2 − σ2
)

h(2)(x1, x2) = ψ(x1, x2) − ψ1(x1) − ψ1(x2) + θ

= −(x1 − µ)(x2 − µ)

Thus

s2n = σ2 +

(

1

n

n
∑

i=1

(Xi − µ)2 − σ2
)

+
(n

2

)−1 ∑

i<j

(Xi − µ)(Xj − µ)
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Asymptotics 12: iid Case

Theorem

Let σ2
1 > 0. Then

√
n(Un − θ)

D,n→∞−−−−−→ N (0, k2σ2
1).

• The proof is based on the H-decomposition:

√
n(Un − θ) =

√
n(kH

(1)
n +Rn)

=
k√
n

n
∑

i=1

kh(1)(Xi) +
√
nRn

• Multivariate version exists.
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Asymptotics 12ab: Stationary Case

We need to characterize the type of stationarity.

For example absolutely regular processes:

The stationary process is said to be absolutely regular if

β(n) = E sup
A∈M(t+n,∞)

∣

∣

∣P{A|M(−∞, t)} − P{A}
∣

∣

∣

n→∞−−−−→ 0

with M(a, b) the σ-field generated by events of the form
{

ω :
(

Xt1(ω), . . . , Xtk(ω)
)

∈ B
}

, where a ≤ t1 < · · · < tk = b

for k = 1, . . . ,1 + b− a and B is a k-dimensional Borel set.
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Asymptotics 12ab: Stationary Case

Theorem

Let Xt be a stationary process satisfying β(n) =

O(n−(2+ε)/ε), ε > 0, and let Un be a U-statistic based on a

kernel of degree 2 satisfying

sup
i,j

E
∣

∣

∣ψ(Xi, Xj)
∣

∣

∣

2+δ
<∞

∫ ∫

∣

∣

∣ψ(x1, x2)
∣

∣

∣

2+δ
dF (x1) dF (x2) <∞

δ < ε

Then
√
n(Un − θ)/(2σ) tends asymptotically to a standard

normal distribution.

• The proof is based on the H-decomposition.

• Can be extended to strong mixing processes.
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Further Research

• Apply asymptotics to PWM

• Rewrite theorem for D(u) and D′(u)

• Lets get started . . .
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