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Approximation of Forecast

Covariances in the

Ensemble Kalman Filter

Reinhard Furrer, Thomas Bengtsson, GSP-CGD, NCAR

Evaluation of

Ensemble Kalman Filter

Qualitative and quantitative description of the effects of

sampling variability on the forecast and analysis covariance

for different ensemble Kalman filters.
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Outline of the Talk

• Introduction and statement of the problem

• Effects in the EnKF

– Forecast difference

– Analysis difference

• Effects in the EnKF with tapering

– Forecast difference

– Analysis difference

• Optimal taper matrices

• Optimal covariance boosting

• Conclusions and open questions
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Kalman Filter

Given the state-space model

yt = Htxt + wt wt ∼ Nm(0,Rt)

xt = Gtxt−1 + vt vt ∼ Nn(0,Qt)

the Kalman filter uses the iterative quantities

P
f
t = GtP

a
t−1G

T
t + Qt

Kt = P
f
t H

T
t (HtP

f
t H

T
t + Rt)

−1

Pa
t = (I−KtH

T
t )P

f
t

to filter the state xt given the observations yt, . . . ,y0.
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Approximations to Covariance matrices

The forecast covariance matrix P
f
t is often approximated

with P̃
f
t :

1. P
f
t is estimated with N ensembles

 P̃
f
t = P̂

f
t : the ensemble Kalman filter (EnKF)

2. P
f
t is estimated with N ensembles and tapered with C

 P̃
f
t = P̂

f
t ◦C

We want to quantify the effect of the approximation with
∣∣∣
∣∣∣Pf

t − P̃
f
t

∣∣∣
∣∣∣

∣∣∣
∣∣∣Pa

t − P̃a
t

∣∣∣
∣∣∣

forecast analysis difference

We suppose H = I and R = I (  P̃a
t = (P̃

f
t + I)−1) and

we consider only one-step forecasts (  drop subscript t).
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Goal of the Study

What is the dependence of
∣∣∣
∣∣∣Pf − P̃f

∣∣∣
∣∣∣

∣∣∣
∣∣∣(Pf + I)−1 − (P̃f + I)−1

∣∣∣
∣∣∣

with

P̃f = P̂f or P̃f = P̂f ◦C

on ensemble size N , state dimension n and eigenvalues

of λi of Pf?

Associated questions:

• how big has the ensemble size N to be?

• what is an optimal taper matrix C?
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Statistical Approach

Most calculations can be summarized by

• Choose a norm: ||A|| = tr(ATA)1/2

• Use the eigenvalue/eigenvector decomposition of Pf :

Pf = ΓΛΓ
T

Γ contains the eigenvectors

Λ = diag(λ1, . . . , λn) contains the eigenvalues

• Simplify the norm to an expression containing {λi}, N :
∣∣∣
∣∣∣Pf

∣∣∣
∣∣∣2 = tr(PfTPf) = tr(ΓTPf

ΓΓ
TPf

Γ)

= tr(ΛΛ) =
n∑

i=1

λ2
i
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EnKF 123: Forecast Covariance

Straightforward analysis leads to

E
∣∣∣
∣∣∣Pf − P̂f

∣∣∣
∣∣∣2 =

2

N

∑

i

λ2
i +

2

N

∑

i<j

λiλj

Remarks:

• we do not need Gaussianity,

• off-diagonal terms dominate,

• for polynomial spectra λi = σ2i−θ we get the

asymptotic results (n → ∞)

≈ σ4

(2θ − 1)N
+

σ4

(θ − 1)2N
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EnKF 123: Analysis Covariance

We cannot evaluate tr
(
(P̂

f
+ I)−1

)
.

If there is a matrix norm such that ||ΛD − Λ̂D|| < 1, then

the following expansion holds

∣∣∣
∣∣∣Pa − P̂a

∣∣∣
∣∣∣2 =

∞∑

i=2

(i − 1) tr
(
(ΛD− Λ̂D)iD2

)

To use the third order approximation
∣∣∣
∣∣∣Pa − P̂a

∣∣∣
∣∣∣2 ≈ tr

(
(ΛD− Λ̂D)2D2

)
− 2 tr

(
(ΛD− Λ̂D)3D2

)

we need to calculate

E
(
λ̂2

ij

)
and E

(
λ̂ijλ̂jkλ̂ki

)
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EnKF 123: Analysis Covariance

Evaluating the expressions, we have

E
∣∣∣
∣∣∣Pa − P̂a

∣∣∣
∣∣∣2 ≈ 1

N

(∑

i

λ2
i

(λi + 1)4
+

∑

i,j

λiλj

(λi + 1)3(λj + 1)

)

− 2

N2

(∑

i

λ3
i

(λi + 1)5
+

∑

i,j

λiλ
2
j

(λi + 1)3(λj + 1)2

+
∑

i,j

2λ2
i λj

(λi + 1)4(λj + 1)

+
∑

i,j,`

λiλjλ`

(λi + 1)3(λj + 1)(λ` + 1)

)

For small N the expansion may not be informative.
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EnKF with tapering 12: Forecast

The Schur product induced by the tapering implies

E
∣∣∣
∣∣∣Pf − P̂

f ◦C
∣∣∣
∣∣∣2 = function

(
{λi}, {γij}, {cij}

)

If Pf is diagonal we have

E
∣∣∣
∣∣∣Pf − P̃

f
∣∣∣
∣∣∣2 =

∑

i

λ2
i (cii − 1)2 +

1

N

∑

i

c2iiλ
2
i +

1

N

∑

i,j

c2ijλiλj

For non-correlation matrices we introduce a bias.
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EnKF with tapering 12: Analysis

For the ‘analysis’ difference we encounter the same

problems as above.

If Pf is diagonal we have the second order approximation

E
∣∣∣
∣∣∣Pf − P̃

f
∣∣∣
∣∣∣2 =

∑

i

(cii − 1)2λ2
i

(λi + 1)4

+
1

N

∑

i

c2iiλ
2
i

(λi + 1)4
+

1

N

∑

i,j

c2ijλiλj

(λi + 1)3(λj + 1)
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Optimal Taper C 12

We want to minimize

E
∣∣∣
∣∣∣Pf − P̂

f ◦C
∣∣∣
∣∣∣2

with respect to all positive definite matrices C

With Pf = (pij), the optimal taper matrix C = (cij)

minimizes

∑

i,j

(
−2cijp

2
ij + c2ij

(
p2
ij +

1

N
(p2

ij + piipjj)
))

Without further constraints it is impossible to find the

optimum.

Note, the expression is in function of the elements of the

forecast matrix and not of its spectrum.
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Optimal Taper C 12

A naive approach is to minimize component-wise

(equivalent to minimum without the constraint)

(Cmin)ij =
p2
ij

p2
ij + (p2

ij + piipjj)/N

But Cmin is

• not a correlation matrix

N/(N + 2) on the diagonal

• not always positive definite

depends on N

As N → ∞, (Cmin)ij =





1 if pij 6= 0

0 if pij = 0
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Optimal Taper with isotropic Pf 12

Suppose we have an “isotropic” forecast matrix

(Pf)ij = p
(
|xi − xj|

)

It is natural to minimize within “isotropic” taper matrices.

The minimization problem could be restated as

min
c(·)

E

un∫

`n

ω(h)
(
p(h) − p̂(h)c(h)

)
2

dh

⇐⇒

min
c(·)

un∫

`n

ω(h)
(
p(h)2(c(h) − 1)2 − 1

N
(p(h)2 + p(0)2)c(h)2

)
dh

Analytic solutions are only available in particular cases.
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Optimal Taper with isotropic Pf 12

Suppose p(h) = α exp(−βh), we minimize within the class

of functions
{
exp(θh)

}
.

With a weight function ω(h) ∝ 1/h,

θopt = β · 5 +
√

9 + 8N

2(N − 2)

For other specific weight functions we also have

θopt = O
(
β/

√
N

)
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Optimal Covariance Boosting 12

In order to avoid filter divergence, the covariance is

boosted with ρ.

The optimal ρ is such that ρP̃
f

mimics best the truth, i.e.

minimizes the bias

min
ρ

B(ρ) = min
ρ

∣∣∣∣E
(
(ρP̃

f
+ I)−1 − (Pf + I)−1

)∣∣∣∣

The bias is a matrix, we reduce it to

bias(ρ) =
∑

i,j

(B)ij
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Optimal Covariance Boosting 12

To find ρopt we apply same approximation techniques.

A second order approximation leads to a quadratic equation

in ρ, which can be solved.

• For given Pf , we can calculate the optimal boosting

factor

• ρopt = O
(
1/

√
N

)

• For small N , the second order approximation is of poor

quality

• Same results hold with covariance tapering
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Numerical Example 12

Suppose a regular 12 × 12 grid in [0,1]2 and let

(Pf)ij = p
(
|i − j|

)
= exp

(
−0.2|i − j|

)

We consider ensemble size N = 10.

For 100 MC samples we calculated the spectrum.

0 20 40 60 80 100 120 140

0
5

10
15

20
25

i

S
pe

ct
ru

m
λ i

True spectrum
No tapering                1774.7 − 2237.5 − 3513.2
Exponential tapering  332.18 − 416.46 − 491.16
Naive tapering            297.32 − 382.89 − 465.84
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Numerical Example 12

Suppose a regular 10 × 10 grid in [0,1]2 and let

p
(
|i − j|

)
= exp

(
−0.2|i − j|

)
c
(
|i − j|

)
= exp

(
−θ|i − j|

)

For 100 MC samples we calculated the MSE of the

spectrum in function of θ for ensemble size N = 10.

0.1 0.2 0.3 0.4 0.5

0
50

10
0

20
0

30
0

θ

E
st

im
at

ed
 M

S
E

Estimated MSE w/o tapering
846.36 − 1103.53 − 1695.22
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Conclusion

• Tapering the forecast matrix reduces significantely the

error due to sampling variablility.

• There exists an optimal taper matrix:

– which is not always practical,

i.e. is not always positive definite,

– the system is not sensitive with respect to the

choice of the taper.
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Further research

• Find optimal C for specific cases.

• Generalize to other matrices H and R.

• Apply to high dimensional problems.
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