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Ensemble Kalman Filter

Tapering and Kriging

Estimating CO2 Fluxes

Reinhard Furrer, GSP-CGD, NCAR

Outline of the Talk

• Ensemble Kalman Filter:

Quantitaive description of the effects of

forecast covariance estimation in the Kalman filter.

• Tapering and Kriging:

Introduce a sparseness structure

in the covariance via tapering.

• Estimating CO2 Fluxes:

Modeling the CO2 cycle with a state-space approach

to gain insight in the uncertainty of the error.
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Ensemble Kalman Filter

Qualitative and quantitative description of the effects on

the forecast and analysis covariance for different ensemble

Kalman filters.
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Prerequisites

Given the state-space model

yt = Htxt + wt wt ∼ Nm(0,Rt)

xt = Gtxt−1 + vt vt ∼ Nn(0,Qt)

the Kalman filter uses the iterative quantities

P
f
t = GtP

a
t−1G

T
t + Qt

Kt = P
f
t H

T
t (HtP

f
t H

T
t + Rt)

−1

Pa
t = (I−KtH

T
t )P

f
t

to filter the state xt given the observations yt, . . . ,y0.
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Approximations to Covariance matrices

The forecast covariance matrix P
f
t is often approximated

with P̃
f
t :

1. P
f
t is estimated with N ensembles

 P̃
f
t = P̂

f
t : the ensemble Kalman filter (EnKF)

2. P
f
t is estimated with N ensembles and tapered with C

 P̃
f
t = P̂

f
t ◦C

We want to quantify the effect of the approximation with
∣∣∣
∣∣∣Pf

t − P̃
f
t

∣∣∣
∣∣∣

∣∣∣
∣∣∣Pa

t − P̃a
t

∣∣∣
∣∣∣

forecast analysis difference

We suppose H = I and R = I ( P̃a
t = (P̃

f
t + I)−1) and

we consider only one-step forecasts ( drop subscript t).
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Goal of the Study

What is the dependence of
∣∣∣
∣∣∣Pf − P̃f

∣∣∣
∣∣∣

∣∣∣
∣∣∣(Pf + I)−1 − (P̃f + I)−1

∣∣∣
∣∣∣

with

P̃f = P̂f P̃f = P̂f ◦C

on ensemble size N , state dimension n and eigenvalues of

λi of Pf?

Supplementary questions:

• can we generalize to other matrices H and R?

• what is an optimal taper matrix C?
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EnKF 1 2 3: Forecast Covariance

Straightforward analysis leads to

E
∣∣∣
∣∣∣Pf − P̂f

∣∣∣
∣∣∣2 =

2

N

∑

i

λ2
i +

2

N

∑

i<j

λiλj

Remarks:

• we do not need Gaussianity,

• off-diagonal terms dominate,

• for polynomial spectra λi ∼ i−θ we get simple

asymptotic results (n → ∞).
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EnKF 1 2 3: Analysis Covariance

We cannot compute the inverses.

If there is a matrix norm such that ||ΛD − Λ̂D|| < 1, then

the following equation holds

∣∣∣
∣∣∣Pa − P̂a

∣∣∣
∣∣∣2 =

∞∑

i=2

(i − 1) tr
(
(ΛD− Λ̂D)iD2

)

To use the approximation
∣∣∣
∣∣∣Pa − P̂a

∣∣∣
∣∣∣2 ≈ tr

(
(ΛD− Λ̂D)2D2

)
− 2 tr

(
(ΛD− Λ̂D)3D2

)

we need to calculate

E
(
λ̂2

ij

)
and E

(
λ̂ijλ̂jkλ̂ki

)
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EnKF 1 2 3: Analysis Covariance

Evaluating the expressions, we have

E
∣∣∣
∣∣∣Pa − P̂a

∣∣∣
∣∣∣2 ≈

1

N

(∑

i

λ2
i

(λi + 1)4
+

∑

i,j

λiλj

(λi + 1)3(λj + 1)

)

+
1

N2

(∑

i

λ3
i

(λi + 1)5
+

∑

i,j

λiλ
2
j

(λi + 1)3(λj + 1)2

+
∑

i,j

λ2
i λj

(λi + 1)4(λj + 1)

+
∑

i,j,`

λiλjλ`

(λi + 1)3(λj + 1)(λ` + 1)

)

For small N the approximation is useless.
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EnKF with tapering 1 2

The Schur product induced by the tapering implies

E
∣∣∣
∣∣∣Pf − P̂

f
◦C

∣∣∣
∣∣∣2 = function

(
{λi}, {γij}

)

If Pf is diagonal we have

E
∣∣∣
∣∣∣Pf − P̃

f
∣∣∣
∣∣∣2 =

∑

i

λ2
i (cii − 1)2 +

1

N

∑

i

c2iiλ
2
i +

1

N

∑

i,j

λiλjc
2
ij

For the ‘analysis’ difference we encounter the same prob-

lems as above.
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EnKF with tapering 1 2

With Pf = (pij), the optimal taper matrix C = (cij) satisfies

∑

i,j

(
−2cijp

2
ij + c2ij

(
p2
ij +

1

N
(p2

ij + piipjj)
))

Without further constraints it is impossible to find the

optimum.

A component-wise minimization leads to a taper matrix,

but C is:

• not a correlation matrix

• not always positive definite

For parameterized Pf we could find optimal parameters.
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Numerical Example

Suppose a regular 12 × 12 grid in [0,1]2 and let

(Pf)ij = exp
(
−0.2|i − j|

)

For 100 MC samples we calculated the spectrum.

0 20 40 60 80 100 120 140

0
5

10
15

20
25

i

S
pe

ct
ru

m
λ i

True spectrum
No tapering                1774.7 − 2237.5 − 3513.2
Exponential tapering  332.18 − 416.46 − 491.16
Naive tapering            297.32 − 382.89 − 465.84
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Further research

• Find optimal C for specific cases.

• Understand the ‘analysis’ case for small N .
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Tapering and Kriging

Introduce a sparseness structure in the covariance

via tapering to gain computational advantages.

• Theoretical justification

• Numerical errors

• Construction of optimal tapers
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Prerequisites

Suppose a zero mean second order stationary parame-

terized spatial process
{
Z(x),x ∈ D ⊂ R

d
}

with observations Z = (Z(x1), . . . , Z(xn)T.

The kriging estimator (BLUP) is

Ẑ(x0) = cTC−1Z

with ci = Cov
(
Z(x0), Z(xi)

)
, cij = Cov

(
Z(xi), Z(xj)

)
.

The mean squared error is

MSE(x0) = c00 − cTC−1c
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Matérn Covariogram 1 2

We need a broad, flexible class of covariograms to

describe spatial processes.

We recommend the Matérn class given by

c(h) ∝
(
α||h||

)
νKν

(
α||h||

)

and with spectral density

f(ω) ∝
1(

α2 + ||ω||2
)
ν+d/2

Differentiability at the origin of the covariogram is

related to the tail behavior of the spectrum.

The process is m times mean squared differentiable iff

m < ν
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Matérn Covariogram 1 2

Two realizations of Matérn spatial fields:

ν = 0.75 ν = 1.25

effective range is 0.2
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Apply M. Steins Results

Stein gives asymptotic results for misspecified covariances.

Tapering is a form of misspecification.

If we choose the taper function such that the tapered

covariance satisfies ‘certain’ conditions, then asymptotically

• the relative increase in the MSE due to tapering

tends to zero

• we have bounds for this relative increase

The taper has to be as differentiable at the origin as the

original covariogram.
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Numerical Studies 1 2 3: Setup

Observe processes on an equispaced 30×30 grid in [0,1]2

with a Matérn covariance structure (ν, θ).

We predict at (0.5,0.5) with:

• ordinary kriging (OK),

• ordinary kriging with tapering

(TK 0.2, 0.15, 0.1),

• nearest neighbor kriging

(NN 4, 16).
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Numerical Studies 1 2 3: Results
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Covariogram parameters ν = 0.75, θ = 0.01.
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Numerical Studies 1 2 3: Results
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Covariogram parameters ν = 1.25, θ = 0.0.
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Further research

• Extend theory to covariances with a nugget,

• Computationally exploit the sparseness,

• Smooth optimal taper at origin.
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Estimating CO2 Fluxes

Examine how atmospheric carbon dioxide concentrations

have changed.

Understand what and how the carbon budget affects the

environment.
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Schematic CO2 Cycle

Observations

Concentrations

Fluxes

Estimating CO2 Fluxes 24



Statistical Model 1 2: Observations

We observe the CO2 concentrations Z(si, t) at time t at

location si with different measurement techniques.
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Statistical Model 1 2:

Concentrations and Fluxes

Further, we model the CO2 cycle with:

X(s, t) actual concentrations (mixing ratios),

are dynamically constrained to X(s, t − δ) and fluxes,

U(s, t) surface CO2 fluxes,

represent the sources and sinks in the model.

We solve for the unknown fluxes U(·, ·)
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Inverse Method 1 2

The CO2 surface flux problem is formulated as an optimality

problem (simplified vector notation)

min
{u}

∑

t

(h(xt) − zt)
TW1(h(xt) − zt)

+
∑

t

(ut − ucon
t )TW2(ut − ucon

t )

+ (x0 − xcon
0 )TW3(x0 − xcon

0 )

subject to dynamical constraints

where:

h(·) is the measurement function,

Wi are weight matrices,

superscript ‘con’ are constraints,

subscript ‘0’ are initial conditions.
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Inverse Method 1 2

Run model forward:

with initial concentrations and forced by a priori fluxes

 obtain modeled measurement history.

Run (adjoint) model backward:

forced by the weighted measurement differences

 get the adjoint to the concentrations,

 get new estimates for the fluxes and

initial concentrations.

Repeat until convergence is achieved.
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Statistical Approach to CO2 Cycle

Questions of Analysis:

• How does a observation network influence the space-

time resolution of the uncertainty?

• Can we improve the knowledge of the state with

inclusion of spatial cofactors?

• . . .
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State-Space Decomposition

We decompose the observed mixing ratios Z(·, ·) as

Z(si, t) = h(X(s, t), si, t) + ε(si, t)

X(s, t + δ) =
∫

D
K(u, s, t)X(u, t) du + U(s, t)

U(s, t) = g(s, t) +
t−δ∑

τ=t−∆

κ(s, τ)U(s, τ) dτ + e(s, t)

where

h(·, ·, ·) is the measurement function

K(·, ·, ·) is the (random) transport function

g(·, ·) and κ(·, ·) are (semi)-parametric functions

ε(·, ·) and e(·, ·) are colored spatio-temporal processes

Estimating CO2 Fluxes 30



State Equation 1 2:

Concentration Model

Discretization of space and time leads to the equation

X(s, t + δ) =
∑

u∈Us

K(u, s, t)X(u, t) + U(s, t)

where Us contains s and its first order neighbors.

We consider a random transport function.

For example add Gaussian perturbations to its elements

 K(·, ·, ·) = k(·, ·, ·) + ν(·, ·, ·)

Estimating CO2 Fluxes 31

State Equation 1 2:

Source and Sink Model

The same discretization leads to

U(s, t) = g(s, t) + κ(s, t)U(s, t − δ) + e(s)

where e(·) is a Gaussian spatial process.

The cofactors g(·, ·) are modeled as

g(s, t) =
∑

k

βkvk(s, t)
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Markov Chain Monte Carlo

The concentrations and fluxes can be simulated with a

Gibbs sampler.

Write U =
(
U(si, tj)

)
, X =

(
X(si, tj)

)
and

Xk, Uk the respective kth column.

Then

Uk

∣∣∣Uk−1 is Gaussian,

Xk

∣∣∣{Xk−1,Uk} is Gaussian.

Apply a Gibbs sampler to get a sequence vec(X)(n) .
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Work in Progress

• Run the Gibbs sampler

• Optimize Gibbs sampler algorithm

• Answer the scientific questions
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Quo Vadis

• Ensemble Kalman Filter

• Tapering and Kriging

• Estimating CO2 Fluxes
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