
Statistical Modeling:

An Excursion Through 14 Topics

Reinhard Furrer
and the Applied Statistics Group

Version September 11, 2023
Git b91ab56

Contents

Preface v

1 Resampling and Model Validation 1
1.1 What is a Statistical Model? . 1
1.2 Sampling . 5
1.3 Cross-Validation . 6
1.4 Bootstrap . 13
1.5 Example: Description of Antarctic Ice Shelves . 16
1.6 Bibliographic remarks . 20
1.7 Exercises and Problems . 20

2 Principal Component Analysis 25
2.1 Finding some Representative Dimensions . 25
2.2 PCA as a functional Decomposition: EOF . 30
2.3 Theoretical Aspects of PCA . 31
2.4 PCA and Related Decompositions and Concepts 35
2.5 Example: Sea-Level Pressure Over the Northern Atlantic 43
2.6 Bibliographic remarks . 47
2.7 Exercises and Problems . 48

3 Clustering 51
3.1 Hierarchical Clustering . 51
3.2 The k-Means Algorithm . 59
3.3 Model-Based Clustering . 63
3.4 Longitudinal Clustering . 65
3.5 Example: A Bioinformatics Data Analysis . 69
3.6 Bibliographic remarks . 74
3.7 Exercises and Problems . 75

4 Discrimination and Classification 77
4.1 Classification in the Gaussian Case . 77
4.2 Classification Trees . 85
4.3 Bagging, Boosting and More . 86

i

ii CONTENTS

4.4 Machine Learning and Data Mining . 93
4.5 Example: Optical Character Recognition . 94
4.6 Bibliographic remarks . 96
4.7 Exercises and Problems . 98

5 Linear Models 99
5.1 Multiple Regression . 100
5.2 Analysis of Variance . 106
5.3 Extensions of the Linear Model . 108
5.4 Bibliographic remarks . 112
5.5 Exercises and Problems . 113

6 Mixed Models 115
6.1 Motivation . 115
6.2 Mixed Effects Models . 116
6.3 Linear Mixed Models for Longitudinal Data . 118
6.4 Additional Examples . 126
6.5 Bibliographic remarks . 130
6.6 Exercises and Problems . 133

7 Non-Parametric Regression 135
7.1 Motivation . 135
7.2 Kernel Approaches . 137
7.3 Splines . 141
7.4 Locally Adaptive Approaches . 145
7.5 Example: Image Compression . 148
7.6 Bibliographic remarks . 153
7.7 Exercises and Problems . 153

8 Generalized Linear Models 155
8.1 Motivation . 156
8.2 Logistic Regression . 157
8.3 Poisson Regression . 163
8.4 Generalized Linear Models . 166
8.5 Bibliographic remarks . 168
8.6 Exercises and Problems . 168

9 Survival Analysis 171
9.1 Censoring . 172
9.2 Survivor and Hazard Function . 172
9.3 Non-Parametric Methods for Survival Data . 175
9.4 Parametric Modeling of Survival Data . 180
9.5 Bibliographic remarks . 187
9.6 Exercises and Problems . 187

CONTENTS iii

10 Time Series 189

10.1 Introduction . 189

10.2 ARMA Models . 191

10.3 ACF and PACF and Their Estimation . 192

10.4 Prediction . 196

10.5 Example: Car Drivers Accidents . 198

10.6 Bibliographic remarks . 200

10.7 Exercises and Problems . 201

11 Spatial Statistics 203

11.1 Introduction . 203

11.2 Geostatistical Data . 204

11.3 Lattice Data . 216

11.4 Bibliographic remarks . 216

11.5 Exercises and Problems . 217

12 Extreme Value Theory 219

12.1 Motivation . 219

12.2 Modeling the Maxima . 221

12.3 Modeling Peaks over Thresholds . 223

12.4*Comparing the Approaches Through Profile Estimates 228

12.5 Bibliographic remarks . 229

12.6 Exercises and Problems . 229

13 Neural Networks and Deep Learning 231

13.1 Learning as in Machine Learning . 232

13.2 Concept of Neural Networks . 235

13.3 Deep Learning . 241

13.4 Tensorflow and Keras . 244

13.5 Bibliographic remarks . 250

13.6 Exercises and Problems . 251

Postscript 253

A Calculus 255

A.1 Functions . 255

A.2 Functions in Higher Dimensions . 258

A.3 Approximating Functions . 259

iv CONTENTS

B Linear Algebra 261
B.1 Vectors, Matrices and Operations . 261
B.2 Linear Spaces and Basis . 262
B.3 Projections . 263
B.4 Matrix Decompositions . 264
B.5 Positive Definite Matrices . 265

C Random Variables 267
C.1 Basics of Probability Theory . 267
C.2 Discrete Distributions . 268
C.3 Continuous Distributions . 270
C.4 Expectation, Variance and Moments . 272
C.5 Independent Random Variables . 273
C.6 Common Discrete Distributions . 274
C.7 Common Continuous Distributions . 275
C.8 Functions of Random Variables . 281

D Multivariate Normal Distribution 285
D.1 Random Vectors . 285
D.2 Multivariate Normal Distribution . 287

References 293

Glossary 299

Dataset Index 303

Command Index 305

Package Index 307

Video Index 309

Preface

This document accompanies the lecture STA121 Statistical Modeling that is read each fall
semester since 2013. The lecture is given in the framework of the minor in Applied Probabil-
ity and Statistics (www.math.uzh.ch/aws) and comprises 14 weeks of two hours of lecture and
one hour of exercises per week. As the lecture’s topics are structured on a week by week basis,
the script contains thirteen chapters, each covering “one” topic.

The lecture builds upon the module STA120 Introduction to Statistics and thus we do not
start from scratch but may refer to relevant chapters. The script of STA120 Introduction to
Statistics is available at www.math.uzh.ch /furrer/download/sta120/. Additionally, the appendix
gives a concise summary of relevant concepts, definitions and results in calculus, linear algebra
and probability theory. The multivariate Gaussian distribution is used quite extensively and we
present its properties in a separate, last appendix.

I have thought long and hard about an optimal structure for this script. Let me quickly
summarize my thoughts. It is very important that the document contains a structure that is
tailored to the content I cover(ed) in class each week. This inherently leads to 13 “chapters”
(last week is a review week). Instead of covering linear models over four weeks, I have cast
the material in four seemingly different chapters. This structure helped me to better frame the
lectures: each week having a start, a set of learning goals and a predetermined end.

So to speak, the script covers not fourteen but essentially only three topics:

1. Background and foundations;

2. Unsupervised models;

3. Supervised models.

Dedicating two hours to each “new topic” does not allow us to discuss the subjects in depth.
Notice that there are often entire lectures based on the topics we cover (‘Generalized Regression’,
‘Time Series Analysis’, ‘Survival Analysis’, ‘Modeling Dependent Data’, . . .). I have therefore
augmented this script with short video sequences giving additional – often more technical –
insight. These videos are indicated in the margins with a ‘video’ symbol as here.

6 min

At the beginning of each chapter, there is a direct link to an R file, that contains all the
code to re-create the analysis and figures of the chapter. Moreover, some of these files contain
additional very short illustrations, marked with ### Code not shown in script. To not clutter

v

http://www.math.uzh.ch/aws
http://user.math.uzh.ch/furrer/download/sta120/
https://tube.switch.ch/download/video/4cfd0ba4
https://tube.switch.ch/download/video/4cfd0ba4

vi Preface

the script with plenty of par() commands, we do not include them here and in the available R
files. Datasets that are not part of regular CRAN packages are available at www.math.uzh.ch
/furrer/download/sta121/. In the electronic version of the document there is, whenever possible,
a link to the corresponding data set.

The script uses as “classical” notation consistently as possible: upper case for random quan-
tities, lower case for realizations, boldface for vectors (lower case) and matrices (upper case).
Inherently, a matrix can not be differentiated from a random vector based on notation only, see
also Appendix B. The context and, if necessary, explanations will clarify. We have summarized
other notation in a glossary at the end of the script.

Many have contributed to this document: Julia Braun (chapters ‘Survival Analysis’ and
‘Mixed Models’), David Masson (chapter ‘Principal Component Analysis’), Zofia Baranczuk
(reading the class and through assisting the exercises), Florian Gerber, Gilles Kratzer, Marta
Pittavino and Simone Tiberi (through assisting the exercises), Kelly Reeve (English), Ruben
Scherrer (general comments and suggestions), Carolin Strobl and Eva Furrer (through critical
suggestions) and Franziska Robmann (for administrative support). Without their help, you
would not be reading these lines. No textbook material is perfect. Please let me know of any
necessary improvements and I highly appreciate all forms of contributions in form of errata,
examples, or text blocks. Contributions can be deposited directly in the following Google Doc
sheet.

Major errors that were corrected after the lecture of the corresponding semester are listed
www.math.uzh.ch/furrer/download/sta121/errata.txt. I try hard that after the lecture, the pagi-
nation of the document does not change anymore.

Reinhard Furrer
Summer 2023

http://user.math.uzh.ch/furrer/download/sta121/
http://user.math.uzh.ch/furrer/download/sta121/
https://docs.google.com/document/d/1IyR7ZfyTLpBefGI7iTJKmNjpTHW1qsGme33uITUGHEs/edit?usp=sharing
http://user.math.uzh.ch/furrer/download/sta121/errata.txt

Chapter 1

Resampling and Model Validation

This chapter covers two closely related techniques based on sampling. Cross-
validation is a resampling technique to tune methods, balancing bias and variance
contributions towards a small mean squared error.
Closed form expressions of distributions of estimators are rarely known. Bootstrap-
ping is a resampling technique to approximate distributions based on an empirical
sample.
Both tools are illustrated under the umbrella of model validation.

Learning goals for this chapter:

⋄ Understand the conceptual idea of statistical modeling and workflow

⋄ Understand how resampling can help us in understanding variability of esti-
mators

⋄ Understand how prediction error helps us understand how well a prediction
model fits the data

⋄ Explain and apply cross-validation

⋄ Understand the leave-one-out statistics and leave-one-out cross-validation
and its applications

⋄ Explain and apply bootstrap

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter01.R.

1.1 What is a Statistical Model?

We are often interested in describing a certain phenomena or in predicting a future or unknown
state. Typically we do not have a precise understanding of the physical underlying processes or

1

http://www.math.uzh.ch/furrer/download/sta121/chapter01.R

2 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

mechanisms and thus we have no means of a precise (error free) description of the system. In
many situations we can observe the system or state in a similar setting, at a different time or
location etc. These observations lead to data that are then used with inferential (describing)
or predictive statistical tools to get a statistical answer to our questions about the unobserved
system. The statistical tools are essentially models, a description of the unknown state where
all complex or unknown elements are captured with by stochastic elements.

Example 1.1. Physical laws allow to formally describe how a tossed coin moves and under
ideal settings what side should show up. In practical settings, such a physical description is too
complex and we simply model the result with using a Bernoulli random variable. ♣

A statistical model tries to mimic reality and hence, “Essentially, all models are wrong, but
some are useful” (Box and Draper, 1987 page 424), leading to one of the most cited quotes in
statistics.

The question is thus how to measure usefulness of a statistical model. Figure 1.1 illustrates
the general, abstract flow of a statistical analysis, starting from a hypothesis and ending at the
communication of the scientific conclusion. The “usefulness” of a model determines if we should
proceed after ‘Model validation’ or move back to ‘Propose an (alternative) statistical model’
(back loop in Figure 1.1). In this chapter we discuss several ideas of measuring usefulness,
whereas many of the remaining chapters will cover different models.

validation

Hypothesis to investigate

Phenomena to study

Design

experiment

Propose statistical Fit the

model model

Data collection

Model

Exploratory

Data Analysis

Summarizing

results

Scientific conclusions

Communication

Figure 1.1: Representation of a statistical workflow. In an ideal setting, a statistician
should be involved in all the rectangular boxes.

The following example illustrates one of the most important concepts of model fit.

Example 1.2. Figure 1.2 shows the annual bituminous coal production in the USA between
1920 and 1960 (Makridakis et al., 1998, Exercise 7.7). Three different models have been used to
describe the data and the resulting fits are added in the panel. The black line is the linear fit
of a linear regression, describing the consumption overall with a possible linear change over the
years. The other two “follow” the data much better, almost to a degree of interpolation, loosing
any predictive capabilities. Predictions based on the green and blue fit outside the observed time
span would be very delicate.

Depending on the precise research question, different models are useful. We come back to
this example in Chapter 7, where we discuss in details how the fits have been constructed.

As a footnote, all three models are “optimal” in a certain view. ♣

1.1. WHAT IS A STATISTICAL MODEL? 3

1920 1930 1940 1950 1960

30
0

35
0

40
0

45
0

50
0

55
0

60
0

year

co
al

Figure 1.2: Dataset bicoal (from the R-package fma) with three model fits super-
imposed. The black line is a simple linear regression fit. The magenta line represents
a polynomial model with 11 parameters. Models underlying the cyan fit are so-called
non-parametric models and are discussed in Chapter 7.

Suppose that a data collection yields the observations (x 1, y1), . . . , (xn, yn), where yi is a
response variable and x i is a covariate with, say, p components. For the sake of illustration, we
propose the statistical model

Y = g(x) + ε, (1.1)

where g is some function of (known) covariate x and ε represents a zero mean white noise (i.e., iid)
and with variance σ2. For the discussion here, it is not necessary to further discuss properties of
g or the distribution of ε. Note, however, that the proposal entails the exploratory data analysis
(EDA), as shown in Figure 1.1.

Based on the observations (x 1, y1), . . . , (xn, yn) the goal is to predict g from our hypothesized
model (1.1), i.e., to find ĝ. Of course the technique and approach “find” depends on the details
of the precise model assumptions, on the one hand on the g and the distribution of ε. The first
few chapters assume almost exclusively an iid setting, moreover εi

iid∼ N (0, σ2). In later chapters,
foremost Chapters 10 to 12, we relax this assumption. The function g is often specified up to
some unknown parameter vector θ and “finding” the function ĝ means finding the parameter
θ̂. Of course, statisticians or scientists may specify the function g different or may use different
approaches to obtain the associated parameter.

In such a parametric model, with iid noise, the estimation of parameters is straightforward
(based on a method of moments approach like least squares or a likelihood setting), and we
have a good understanding of the theoretical properties of the estimators in many situations.
The estimation of “arbitrary” functions g as represented by the cyan line in Figure 1.2 will be
discussed in Chapter 7.

Independent of the precise fitting approach and based on week assumptions only, it is possible
to decompose the mean squared error of the prediction ĝ(x) into

E
(
(Y − ĝ(x))2

)
=
(
E(ĝ(x))− g(x)

)2
+ E

(
(ĝ(x)− E(ĝ(x))2

)
+ E

(
(Y − g(x))2

)
(1.2)

= bias
(
ĝ(x)

)2
+Var

(
ĝ(x)

)
+ σ2, (1.3)

4 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

i.e., a decomposition in positive terms consisting of squared bias, variance and variance of the
noise. The latter is inherently present, that is irreducible, and cannot be reduced by a different
model. However, different choices of ĝ lead to smaller or larger squared bias and variance term
but it is not possible to simultaneously reduce both arbitrarily.

In general, complex model capture more of the structure in the data, i.e., smaller residuals. On
the other hand residuals of simpler models are larger. Assuming the truth g(x) to be reasonably
smooth, only a reasonably complex model is necessary. For example, the black regression line
in Figure 1.2 is has low model complexity and high bias as it does not capture g well. The
variability of the curve is low because Var

(
ĝ(x)

)
is with respect to the prediction error. On the

other hand, the magenta line of Figure 1.2 is has high model complexity, captures the trend well
(low bias

(
ĝ(x)

)
2) but does not have a prediction variance as high as the cyan fit. With such an

two component bias-variance interpretation, we do not properly quantify the three terms in (1.3)
of course: the irreducible noise term is unknown.

An optimal model is somewhere in between a simple and a complex model. The bias–variance
trade-off is illustrated in Figure 1.3. Using a criteria like the mean squared prediction error, we
can find “optimal models”.

high

Model complexity

low

high

low

irreducible

in terms of prediction error

Model fit

Bias

Mean squared prediction error

Variance

Figure 1.3: Schematic illustration of the bias–variance trade-off in statistical model
fitting. The gray line indicates the irreducible error. The optimal model (based on
mean squared prediction error) is indicated with a red tick; models on the left thereof
underfit, on the right they overfit.

We use the term overfitting when our model captures part of the noise in the data. Such a
model typically has a low bias and high variance. The model captures the available data (too)
well and does not generalize to new and unobserved cases. An example is an interpolation,
where connected line segments pass through all points. The opposite is called underfitting and
represents the case where our model is not sufficiently flexible, is too simplistic. An example is
a simple constant line.

Independent of the type of statistical models or the fitting procedure, model validation is
crucial. In this chapter we use multiple regression as a model, to illustrate different validation
techniques. Subsequent chapters will illustrate further models for which the tools discussed here
apply accordingly.

1.2. SAMPLING 5

1.2 Sampling

In statistics, the term sampling is quite ubiquitous and may have different meanings according to
the context. In its basic meaning, sampling is the process of selecting a subset of individuals from
a population in order to make inference about the whole population. Of course the discussion of
the process of selecting fills entire books. The most important one is simple random sampling,
where each individual has the same probability of being chosen. The situation is getting delicate
if we have to sample from two different populations to compare a trait or characteristic between
the two; especially if the two populations have a different size or if the trait depends on other
characteristics of the individual.

In this chapter, we consider sampling as the process of generating “new” data based on
observations or other existing data and possibly on some additional statistical assumptions. Here,
we do not collect more data from individuals of a population or conduct further experiments,
but we assume a hypothetical distribution of the “population”. Later we discuss sampling, when
we do not even have such a hypothetical distribution and generate new samples based on the
observed one only (like in a permutation test framework).

Many simulation studies in statistics are based on such a sampling principle. Starting from
a hypothesized model, we repeatedly draw samples thereof and derive sample properties or
statistics from the samples. These statistics represent empirical distributions of often intractable
theoretical ones. The following example illustrates how sampling can be used to determine the
distribution of a statistic.

In R we draw the samples by generating (pseudo) random numbers with appropriate func-
tions, like rnorm(), rpois(), runif() etc. Conceptually, this is equivalent as having an infinite
population and selecting random individuals thereof.

Example 1.3. The variance estimate σ̂2 = 1/n
∑n

i=1(yi −y)2 is biased. Therefore, we typically
use s2 = 1/(n− 1)

∑n
i=1(yi − y)2. But what is the (empirical) variance of σ̂2 or even the

distribution of associated estimator for a fixed sample size n?

For large n (with almost no additional assumptions on the original distribution of the random
sample), we can invoke the central limit and argue that asymptotically (hence with a finite n
approximately), σ̂2 is normally distributed, with appropriate means and variances. To calculate
these two quantities exactly, we would have to work a bit. In a Gaussian setting, we are able to
derive the theoretical distribution (in closed form) for σ̂2.

R-Code 1.1 illustrates how to quantify the distribution (including bias, variance) with simula-
tions in the setting of a Gaussian and a Poisson distribution. The results are shown in Figure 1.1.
Both histograms resemble somewhat a Gaussian density, but are right skewed. The empirical
bias is roughly 0.22 and changing to a different seed, varies the bias. The magnitude of the fluc-
tuations of the empirical bias around the theoretical value of 0.2 is determined by the variable
R, the number of samples drawn. ♣

6 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

R-Code 1.1 Assessing the distribution and bias of σ̂2. (See Figure 1.4.)

n <- 10 # sample size

R <- 1000 # result weakly dependents on R, histograms get smoother

set.seed(16) # to work reproducible

variance <- 2

sigma2s <- numeric(R)

for (i in 1:R) {

x <- rnorm(n, mean=0, sd=sqrt(variance)) # sampling from X ~ N(0,2)

sigma2s[i] <- sum((x-mean(x))^2)/n # manual calculation of variance

}

hist(sigma2s, prob=TRUE, main="", ylim=c(0, .6), xlim=c(0, 8))

lines(density(sigma2s))

abline(v=c(variance, mean(sigma2s)), col=2:3)

variance - mean(sigma2s) # theoretical value is variance/n, here 0.2

[1] 0.22384

similar for Poisson: `x <- rpois(n, variance)`, e.g., X ~ Pois(2)

sigma2s

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

sigma2s

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 1.4: Empirical density of σ̂2 with underlying Gaussian (left) and Poisson (right)
distributions (sample size n = 10, R = 1000 independent samples). True mean is in
red, sample mean in green. (See R-Code 1.1.)

1.3 Cross-Validation

Occam’s principle states that we should strive for the simplest model that best explains the
data, i.e., one should balance model complexity and model fit. Typically, many predictors lead
to a better fit of the observed data but overfitting may be observed when the model is used for
prediction, as discussed earlier in the chapter.

1.3. CROSS-VALIDATION 7

To find a suitable model, we often divide the data into a training and a validation set. The
training set is used to fit the model, the validation set is used to probe and assess the fitted
model (through prediction). To avoid the strong dependency on the training set, we can repeat
and sample a new training and validation set we select the optimal model based on validation
results. This approach is often termed cross-validation. There is no general rule on how to divide
the sample, often 70% to 80% of the data is used in the training step. There may be situations,
where it is better to not use a random sample for the validation set (we will discuss this in
Chapter 11).

Cross-validation is typically used in nonparametric smoothing, where the fitting paradigm is
presented under the a bias–variance tradeoff (we will discuss this in Chapter 7). The tradeoff
refers to the problem of simultaneously minimizing different sources of error (bias and variance)
that prevent models from generalizing beyond their training data.

Reporting prediction error of a method based on the best training set is overly optimistic:
the model with the smallest prediction error has been selected. We can overcome this issue by
dividing the data in three sets: a training, a validation set and a test set. The test set is set aside
and not used in the fitting and validation procedure. After the best model has been selected, we
take the test set and calculate the prediction error.

In machine learning literature it is often recommended to split the observations with pro-
portions 1/2, 1/4, 1/4 to these sets. Of course such a generous handling of data is not always
possible, nor the guideline for a training and validation split given above. We now discuss an
approach to obtain a training and validation set for small samples.

Leave-one-out cross-validation (LOOCV) is a technique to assess the optimum fit by omitting
one observation at a time, fitting the model with the remaining observations and comparing the
prediction against the omitted observation. A natural choice for a model selection criterion is
to choose the model which minimizes the mean squared prediction error. Note that instead of
using the prediction itself, we can construct many other measures as discussed further below.

In settings with large datasets or complex models, it is often impractical or impossible to
refit the model for each omitted observation. A “leave-n-out” approach is chosen to balance
computing time and assessment quality.

1.3.1 Leave-One-Out Statistics for Linear Models

In the case of a regression model with least squares estimate, several statistics can be constructed
based on the leave-one-out procedure and are helpful for model diagnostics.

We see the regression model in more details in Chapter 5 but summarize the necessary
equations here. We write the linear regression model with p predictors:

Yi = β0 + β1xi1 + · · ·+ βpxip + εi (1.4)

= x⊤
i β + εi, i = 1, . . . , n, n > p, (1.5)

where

• Yi: dependent variable, modeling the observation, data yi,

8 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

• x i = (1, xi1, . . . , xip)
⊤: free variables, predictors, (known),

• β = (β0, . . . , βp)
⊤: parameter vector (unknown),

• εi
iid∼ N (0, σ2): error (unknown).

To write the linear model in matrix notation we stack the equations (1.5) to get

Y = Xβ + ε, (1.6)

where X is the so-called design matrix. Under some weak assumptions (again discussed in
Chapter 5, we have the least squares estimate

β̂ = (X⊤X)−1X⊤y , (1.7)

and the ith fitted value and ith residual are ŷi = x⊤
i β̂ and ei = yi − ŷi, respectively.

Natural questions include: what is the effect of the ith observation on the estimate, i.e.,
what is my estimate (1.7) when I do not consider the ith observation? On the prediction? On
the estimated standard errors? These quantities lead to different statistics, including Cook’s D
statistic and the predicted residual error sum of squares (PRESS) statistic.

The precise meaning of the individual leave-one-out statistics as well as their interpretation
are more important than derivation thereof. For the understanding of the statistics, we need
to introduce some notation. We start from (1.6) and denote vectors without the ith case as
y–i and a matrix without the ith row as X–i. Omitting the ith case means that we estimate
the parameter β of the model y–i = X–iβ + ε–i. Quantities that result from such deletion
cases will be denoted with the subscript {–i}. For example, β̂{–i} is the estimate obtained from
fitting the model without the ith case, i.e., the least squares estimate of y–i = X–iβ{–i} + ε–i.
Further, we denote with hii the ith diagonal element of the hat matrix H = X(X⊤X)−1X⊤, i.e.,
hii = x i

⊤(X⊤X)−1x i. Note that 0 ≤ hii ≤ 1.
Using straightforward linear algebra properties, it can be shown that

β̂{–i} = β − ei
1− hii

(X⊤X)−1x i. (1.8)

The interesting fact is that for β̂{–i}, we do not need to refit the model for each omitted
observation i. The estimate can be obtained as a byproduct of the usual regression output.

Summary statistics based on quantities from omitting observations are simply called leave-
one-out statistics. They all start with the identity (1.8) and proceed with simplifications. We
now enumerate the most important leave-one-out statistics:

• PRESS residuals are based on the fitted model by omitting the ith observations and are
given by

e{–i} = yi − ŷ{–i} = ei +
hiiei
1− hii

=
ei

1− hii
, (1.9)

where ŷ{–i} = x⊤
i β̂{–i}, i.e., the prediction of the ith observation based on the estimate ob-

tained without the ith one. The predicted residual error sum of squares (PRESS) statistics,
sometimes also PREdictive Sum of Squares statistic, is simply

∑n
i=1 e

2
{–i}.

1.3. CROSS-VALIDATION 9

• DFFIT (differences in fit) is the difference in prediction

ŷi − ŷ{–i} = e{–i} − ei =
eihii
1− hii

, (1.10)

and quantifies the effect of omitting the ith observation on the fit. This difference is small
if hii is close to zero (small leverage).

• DFFITS (differences in fits) is the standardized difference in prediction, see (1.10):

ŷi − ŷ{–i}√
s2{–i}hii

=

√
hii ei

(1− hii)s{–i}
. (1.11)

Values of DFFITS larger than 2
√

(p+ 2)/(n− p− 2) indicate that the ith observation is
influential.

• DFBETAS (differences in betas), naming in analogy to (1.11) and a restating of equa-
tion (1.8)

β − β̂{–i} =
ei

1− hii
(X⊤X)−1x i . (1.12)

• Cook’s Di statistic:

Di =
1

(p+ 1)s2
(β̂{–i} − β)⊤(X⊤X)(β̂{–i} − β). (1.13)

There are several alternative ways to represent Cook’s Di statistic. For example based on
residuals we have

Di =
hii

(1− hii)2
· e2i
(p+ 1)s2

. (1.14)

There is no universal consensus of what a large Di value is. Most use the threshold one,
state that values above 0.5 or just very particular values should be scrutinized.

• LOOMSE (my creation) is the unbiased estimator of σ2 based on all but the ith observation

s2{–i} =
1

n− p− 2

n∑
j=1,j ̸=i

(yj − x⊤
j β̂{–i})

2 =
n− p− 1

n− p− 2
s2 − 1

n− p− 2
· e2i
1− hii

. (1.15)

• COVRATIO measures the influence of a single observation on the precision of the estimates

Ci =
det
(
s2{–i}(X–i

⊤X–i)
−1
)

det
(
s2(X⊤X)−1

) =

(s2{–i}
s2

)p+1 1

1− hii
. (1.16)

A value of Ci near one indicates that the observation has little effect on the precision of
the estimates. Observations outside the interval 1± 3p/n need for further investigation.

In R, help(influence) and help(cooks.distance) give the relevant information about all
the implemented functions. We illustrate these leave-one-out statistics in the following example.

10 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

Example 1.4. (LifeCycleSavings data) Under the life-cycle savings hypothesis developed by
Franco Modigliani, the savings ratio (aggregate personal savings divided by disposable income) is
explained by per-capita disposable income, the percentage rate of change in per-capita disposable
income, and two demographic variables: the percentage of the population less than 15 years old
and the percentage of the population over 75 years old.

The dataset LifeCycleSavings from the datasets package consists of the following five
variables observed for 50 countries:

sr aggregate personal savings ratio,
pop15 % of population under 15,
pop75 % of population over 75,
dpi real per-capita disposable income,
ddpi % growth rate of dpi.

The data are averaged over the decade 1960–1970 to remove the business cycle or other short-term
fluctuations.

Scatterplots or formally scatterplot matrix, of the data are shown in the top panel of Fig-
ure 1.5. R-Code 1.2 illustrates the fitting of a multiple linear regression model using all possible
covariates and the bottom panel of Figure 1.5 gives the associated graphical diagnostics pan-
els. Some countries are highlighted therein due to large residuals or large Cook’s distances, also
recognizable by the leave-one-out characteristics for a selection of these countries. Libya’s large
Cook’s distance is due to its large ddpi value of 16.71. Japan and Zambia are flagged because
of their high sr values. ♣

R-Code 1.2: Leverages of the LifeCycleSavings example. (See Figure 1.5.)

pairs(LifeCycleSavings, upper.panel=panel.smooth, lower.panel=NULL, gap=0)

summary(lcs <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data=LifeCycleSavings))

##

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

##

Residuals:

Min 1Q Median 3Q Max

-8.242 -2.686 -0.249 2.428 9.751

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.566087 7.354516 3.88 0.00033 ***

pop15 -0.461193 0.144642 -3.19 0.00260 **

pop75 -1.691498 1.083599 -1.56 0.12553

dpi -0.000337 0.000931 -0.36 0.71917

1.3. CROSS-VALIDATION 11

ddpi 0.409695 0.196197 2.09 0.04247 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 3.8 on 45 degrees of freedom

Multiple R-squared: 0.338,Adjusted R-squared: 0.28

F-statistic: 5.76 on 4 and 45 DF, p-value: 0.00079

plot(lcs, which=1:4)

rbind(resid=residuals(lcs), standard=rstandard(lcs), PRESSresid=

rstandard(lcs, type="pred"), hii=hatvalues(lcs),

CooksDist=cooks.distance(lcs))[,c(40, 2, 7, 23, 46, 49)]

Switzerland Austria Chile Japan Zambia Libya

resid 2.4868259 0.6163860 -8.242231 5.28149 9.750914 -2.82953

standard 0.6794481 0.1728294 -2.209074 1.57595 2.650915 -1.08705

PRESSresid 2.6843808 0.7007443 -8.561559 6.79999 10.421335 -6.03899

hii 0.0735942 0.1203839 0.037298 0.22331 0.064332 0.53146

CooksDist 0.0073347 0.0008176 0.037813 0.14282 0.096633 0.26807

LifeCycleSavings[c("Chile","Japan","Zambia","Libya"),]

sr pop15 pop75 dpi ddpi

Chile 0.60 39.74 1.34 662.86 2.67

Japan 21.10 27.01 1.91 1257.28 8.21

Zambia 18.56 45.25 0.56 138.33 5.14

Libya 8.89 43.69 2.07 123.58 16.71

1.3.2 Leave-One-Out Cross-Validation for Linear Models

Cross-validation in regression or other models can be used for model fitting or model selection.
For example, in a regression model, we choose β̂ such that the PRESS statistic is minimal.

In brief, cross-validation chooses the model having a smallest error. We typically choose
a mean squared error criterion based on, for example, leave-one-out statistics. As shown un-
der (1.9), this minimization is equivalent to minimizing weighted residuals. The weights are
given by 1/(1 + hii). A minimization is not always straightforward, for example when using
Cook’s distances, we would have to implement the non-linear optimization manually or itera-
tively.

In more complex situations than regression models it would be possible to use cross-validation
as an estimation procedure. Depending on the model, model assumptions we may find the same
estimate as the least squares estimate.

12 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

0 5 10 20

0
5

10
20

sr

25 35 45

pop15

1 2 3 4

pop75

0 2000 4000

dpi

0 5 10 15

0
5

10
20

25
35

45
1

2
3

4
0

20
00

40
00

0 5 10 15

0
5

10
15

ddpi

6 8 10 12 14 16

−
10

−
5

0
5

10

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

Zambia

Chile

Philippines

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

Zambia

Chile

Philippines

6 8 10 12 14 16

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
Zambia

Chile

Philippines

0 10 20 30 40 50

0.
00

0.
10

0.
20

Obs. number

C
oo

k'
s

di
st

an
ce

Cook's distance
Libya

Japan

Zambia

Figure 1.5: LifeCycleSavings data. Top: scatterplots of the data. The red line
indicates a smooth line. Bottom: model diagnostics. (See R-Code 1.2.)

1.4. BOOTSTRAP 13

1.4 Bootstrap

Bootstrapping is a sampling technique to query models or properties of an estimator (such as
its variance) by calculating these properties when sampling from an approximating distribution.
Typically, the computational cost of sampling is (relatively) cheap and thus we draw a large
number of samples.

One standard choice for an approximating distribution is the empirical distribution of the
observed data. In other words we sample the observations with replacement, keeping sample size
fixed. Another choice is a parametric distribution, where we assume an underlying parametric
model and where the parameters have been estimated from the data.

1.4.1 Non-parametric Bootstrap

In the non-parametric bootstrap or sample bootstrap setting, new samples are drawn with re-
placement from the available sample. Suppose we want to study a quantity of interest or an
estimator θ̂, in both situations represented by the statistic θ̂ = g(Y1, . . . , Yn) for some func-
tion g. The non-parametric bootstrap based on data y1, . . . , yn can be schematized as follows:

1. Sample y∗1, . . . , y∗n with replacement from y1, . . . , yn and calculate θ̂
∗
= g(y∗1, . . . , y

∗
n);

2. Repeat Step 1 R times to get θ̂
∗
1, . . . , θ̂

∗
R;

3. Summarize the estimator based on the R estimates θ̂
∗
i .

The algorithm has very few assumptions and seems somewhat magic, i.e., pulling oneself up of
a swamp by one’s bootstraps.

We illustrate the concept by calculating properties of a ratio in Example 1.5, with a manual
implementation of the bootstrap. For more complex settings, we recommend the R package boot.

Example 1.5. We reconsider dataset LifeCycleSavings and would like to investigate un-
certainty of the ratio estimate of the population over 75 to the population under 15 (i.e.,
pop75/pop15). The proportions of population under 15 and over 75 have no simple distribu-
tion and, moreover, are not independent (see the corresponding scatterplot in the top panel of
Figure 1.5).

R-Code 1.3 samples with replacement from pop75/pop15 and calculates its mean. The his-
togram of the bootstrapped means is given in Figure 1.6).

The histogram is symmetric and suggests that a Gaussian approximation might be sufficient:
a smooth density estimate is very close to a Gaussian density. The reason for this good approx-
imation is because the central limit theorem applies with almost arbitrary distributions. Here,
we do not know the distribution of the ratio, but if we have a sample thereof, the distribution of
the empirical mean can safely be approximated with a Gaussian distribution. The same would
not hold if we work with the ratios of expectations! ♣

14 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

R-Code 1.3 Bootstrap distribution of the LifeCycleSavings ratio of pop75 to pop15. (See
Figure 1.6.)

set.seed(14) # here bootstrap results do not depend much on this seed

R <- 9999 # nr of replicates

sam <- LifeCycleSavings$pop75/LifeCycleSavings$pop15 # ratio

summary(sam) # summary thereof

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0123 0.0250 0.0710 0.0797 0.1289 0.2118

ratio <- numeric(R)

for (i in 1:R) # try to vectorize this loop

ratio[i] <- mean(sample(sam, replace=TRUE))

hist(ratio, prob=TRUE, main="")

lines(density(ratio))

curve(dnorm(x, mean=mean(ratio), sd=sd(ratio)), add=TRUE, col=2)

abline(v=c(mean(sam), mean(ratio)), col=c(4,3), lty=c(1,2))

ratio

D
en

si
ty

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

0
10

20
30

40

Figure 1.6: Histogram and smooth density estimate of bootstrap ratio of the propor-
tions of population under 15 and over 75. Average of observations is in dashed green,
averages of bootstrap means in blue (hardly visible). Gaussian density with matched
mean and variance in red. (See R-Code 1.3.)

Especially for very small samples the discreteness of empirical bootstrap distribution is visible.
If the sample size is very small, it is possible to consider all possible combinations instead of the
sampling the observations (via sample()). However, for sample sizes four, five and six, there exist
44 = 265, 3125 and 46656 possibilities based sampling with replacement, respectively. Hence, in
all practical situations, bootstrapping is preferable.

1.4. BOOTSTRAP 15

1.4.2 Parametric Bootstrap

The parametric bootstrap requires an underlying (parametric) model. The original data is used
to estimate parameters of the model and additional samples are drawn from the fitted model
using the original estimate.

Hence, parametric bootstrap is similar to the sampling idea introduced at the beginning of
the chapter with the difference that the distribution is not entirely known here.

Example 1.6. On a rainy day you get out from the Polybahn and would like to take a tram
from the station Central to the main train station because of heavy rain. What is your mean
waiting time?

To estimate the frequency of the trams you start to measure the time until you see the
first tram from each line departing. Suppose you observe (rounded) 3’, 9’, 9’45”, 14’30”. For
simplicity, assume that the trams lines depart at the same frequencies and arrive independently
of each other, that means, each the departure of each tram after your arrival can be modeled by
a uniform random variable U(0, θ).

We first start by estimating θ and then draw from that density to calculate the mean waiting
time and a confidence interval of the waiting time; all illustrated in R-Code 1.4.

In this specific setting, it is possible to derive the density of the waiting time

Z = min(X1, X2, X3, X4), with Xi
iid∼ U(0, θ), (1.17)

being fZ(z) = n(θ − z)n−1/θn. Additionally, the expected waiting time is E(Z) = θ/5. ♣

R-Code 1.4 Parametric bootstrap and resulting mean waiting time. (See Figure 1.7.)

set.seed(15) # set the seed to get the same starting data

n <- 4 # trams

R <- 999 # replicates

print(round((sam <- runif(n , max=1/4))*60, 2)) # observations!

[1] 9.03 2.93 14.50 9.76

Estimate is max(sam) or even better max(sam)*(n+1)/n

estim <- max(sam)*(n+1)/n

res1 <- apply(matrix(runif(n*R, max=estim), R, n), 1, min)

hist(res1*60, prob=TRUE, main="", xlab="Waiting time [min]")

abline(v=mean(res1*60))

round(mean(res1)*60,2) # mean waiting time in minutes

[1] 3.76

round(quantile(res1*60, c(.025,.975)), 2) # CI for waiting time

2.5% 97.5%

0.13 11.15

16 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

Waiting time [min]

D
en

si
ty

0 5 10 15

0.
00

0.
05

0.
10

0.
15

Figure 1.7: Parametric bootstrap distribution of the waiting time. Empirical mean is
indicated by the vertical line. (See R-Code 1.4.)

1.5 Example: Description of Antarctic Ice Shelves

Kirchner et al. (2013) used characteristics of 17 Antarctic ice shelves and ice tongues to construct
simple models of specific characteristics thereof for predictive purposes. For simplicity, we use
the term ice shelves only. Here, we use the same data to illustrate various concepts of this
chapter: (i) effect of omitting influential observations on the residuals and/or the fitted values
(ii) distribution of the median.

R-Code 1.5 starts loading the data consisting of relevant information of the ice sheets and
ice tongues. Major ice-shelves are indicated in the left panel of Figure 1.8 and further, detailed
information can be found through https://en.wikipedia.org/wiki/List_of_Antarctic_ice_shelves.
There are vast differences in sizes of the ice shelves and thus a transformation is necessary. We
opt for a log-transformation.

◦

Figure 1.8: Left: major ice shelves in Antarctica (figure adapted and modified from
http://en.wikipedia.org). Right: Drygalsky ice-tongue (red circle on the left) with
grounding line (red) and calving front (blue).

https://en.wikipedia.org/wiki/List_of_Antarctic_ice_shelves
http://en.wikipedia.org

1.5. EXAMPLE: DESCRIPTION OF ANTARCTIC ICE SHELVES 17

One of the main goals of the original study was to describe ice-shelf area as a function of the
grounding line, i.e., the line where the ice stream starts to “flow" on the water and is “detached
from the ground”, and possibly other predictors. The right panel of Figure 1.8 illustrates the
grounding line and calving front for the Drygalsky ice-tongue. The grounding line remains
relatively stable over time as it (essentially) depends on the ice thickness in the vicinity of that
line, whereas the calving front and maximal thickness at calving front greatly vary over time
(short and long term). We leave the discussion of the model selection process as an exercise and
continue with the simplest possible model.

There was considerable concern that individual shelves (e.g., Ross) could have a strong in-
fluence on the fit and thus leave-one-out diagonostics were performed. Figure 1.9 illustrates
the effect of omitting influential observations on the fit and on the residuals. (Notice how the
individual names have been placed. This takes time but an Adobe post-processing of the figure
is no alternative!) The four observations with the largest leverages are the ones with the most
extreme grounding length (no surprise because we have only one predictor). There is virtually
no difference between the studentized and standardized residuals.

R-Code 1.5: Explaining the ice-shelf area as a function of the grounding line. The fits
resulting from the estimates without the observations are calculated. (See Figure 1.9.)

aa <- read.csv("download/sta121/AAshelves.csv")

str(aa, strict.width="cut")

'data.frame': 17 obs. of 8 variables:

$ length_of_grounding_line.km. : int 901 2404 471 501 158 480..

$ length_of_calving_front.km. : int 1032 473 664 61 359 282 ..

$ area_ice_shelf_with_ice_rises.km2. : int 47265 62984 30759 4675 2..

$ total_area_of_ice_rises.km2. : int 14132 942 -9999 -9999 -9..

$ number_of_ice_rises... : int 7 5 0 0 0 1 3 6 8 0 ...

$ max_iceshelf_draft_at_calving_front.m.: int 190 200 110 150 110 180 ..

$ water_temp_at_calving_front.degC. : num -1.36 -1.72 -1.75 -1.63 ..

$ max_ice_thickness_at_grounding_line.m.: int 1500 3000 1800 2200 4500..

print(icenames <- rownames(aa))

[1] "Abbot" "Amery" "Brunt"

[4] "Dotson" "Drygalski" "Ekstrom"

[7] "Filchner" "Fimbul" "Getz"

[10] "Mertz Glacier" "Ninnis Glacier" "Pine Island Glacier"

[13] "Riiser-Larsen" "Ronne" "Ross"

[16] "Shackleton" "West"

logarea <- log(aa[[3]])

loglen <- log(aa[[1]])

n <- length(logarea)

cor(aa[[3]], aa[[1]])

18 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

[1] 0.98302

cor(logarea, loglen)

[1] 0.95739

lm1 <- lm(logarea~loglen)

hii <- hatvalues(lm1) # equivalent to `influence(lm1)$hat`

names(hii) <- rownames(aa)

sort(hii, decreasing=TRUE)[1:4] # threshold is roughly .235

Ross Ronne Ninnis Glacier Drygalski

0.30918 0.22820 0.22301 0.20837

plot(logarea~loglen, xlim=c(4.5, 9.5))

abline(lm1)

points(loglen, dffits(lm1)+fitted(lm1), col=2)

sel <- c(2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17)

text(loglen[sel]+.1, logarea[sel], icenames[sel], adj=c(0,.5))

sel <- c(10, 8)

text(loglen[sel]-.1, logarea[sel], icenames[sel], adj=c(1,.5))

sel <- c(1, 9)

text(loglen[sel], logarea[sel]+.1, icenames[sel], adj=c(1,.5), srt=-90)

plot(rstandard(lm1), rstudent(lm1), xlim=c(-2,2.8))

abline(c(0,1), col="gray")

sel <- c(2,4,12,1,3)

text(rstandard(lm1)[sel]+.1, rstudent(lm1)[sel], icenames[sel], adj=c(0,.2))

As a bootstrapping example, we would like to determine a 90% confidence interval of the
median from the log-transformed areas of the 17 ice shelves. As a crude CI one could use the
median in conjunction with the standard error of the mean, here [10.49±z95%0.41] = [9.82, 11.16].
Mixing properties of different estimators is not ideal; we should use such approaches only if there
is no alternative available. Based on a bootstrap sample, we find in R-Code 1.6 the interval
[8.87, 10.76]. Note that the distribution of the median is multimodal due to the small sample size
and the discreteness of the median. Both aspects are emphasized by the bootstrap procedure.

1.5. EXAMPLE: DESCRIPTION OF ANTARCTIC ICE SHELVES 19

5 6 7 8 9

7
8

9
10

11
12

13

loglen

lo
ga

re
a

Amery

Brunt

Dotson

Drygalski

Ekstrom

Filchner

Ninnis Glacier

Pine Island Glacier

Riiser−Larsen

Ronne
Ross

Shackleton

West

Mertz Glacier

Fimbul

A
bbot
G

etz

−2 −1 0 1 2

−
2

−
1

0
1

2

rstandard(lm1)
rs

tu
de

nt
(lm

1)

Amery

Dotson

Pine Island Glacier

Abbot

Brunt

Figure 1.9: Left: Explaining the ice-shelf area as a function of the grounding line
(black line). Black dots are observations; red dots are fitted values plus difference in
fits. Right: studentized residuals as a function of the standardized residuals, zero-one
line in gray. (See R-Code 1.5.)

R-Code 1.6 Bootstrap distribution of the median. (See Figure 1.10.)

set.seed(12)

n <- 17

R <- 5000

sam <- array(sample(logarea, R*n, replace=TRUE), c(R, n))

meds <- apply(sam, 1, median)

means <- apply(sam, 1, mean)

hist(logarea, prob=TRUE, col="gray", ylim=c(0,2.), main="", border=NA)

rug(logarea, ticksize=.1)

hist(meds, add=T, prob=T, col=rgb(1,0,0,.2), border=NA)

lines(density(meds, adjust=2), col=2)

hist(means, add=T, prob=T, col=rgb(0,0,1,.2), border=NA)

curve(dnorm(x, mean(logarea), sd(logarea)/sqrt(n)), add=T, col=4)

abline(v=c(mean(logarea), median(logarea)), col=c(4,2), lwd=3)

median(logarea)+qnorm(c(.05,.95))*sd(logarea)/sqrt(n)

[1] 9.8163 11.1568

quantile(meds, c(.05,.95)) # better

5% 95%

8.8701 10.7635

20 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

logarea

D
en

si
ty

7 8 9 10 11 12 13 14

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 1.10: Bootstrap distriubtion of the median and mean. Data is given by the
red tick marks and the gray histogram. Bootstrap medians in the red histogram with a
smooth density estimate, bootstrap means with the blue histogram. The blue density
is the theoretical density of the bootstrap means. Vertical lines indicate sample median
(red) and mean (blue). (See R-Code 1.6.)

1.6 Bibliographic remarks

The derivation of the leave-one-out statistics for linear models is comprehensively given in Abra-
ham and Ledolter (2006), for example.

Chapter 7 of Hastie et al. (2009) is a good reference for cross-validation. Note that the first
author also provides a pdf copy of the book on the webpage https://web.stanford.edu/~hastie/
ElemStatLearn/.

The bootstrap has been introduced by Efron (1979) and is an extension of the Jackknife.
The term is understood as a large class of resampling techniques. For a general overview, see
Davison and Hinkley (1997).

1.7 Exercises and Problems

Problem 1.1 (Sampling uncertainty) In this problem, we want to quantify the uncertainty of
the bias estimate in Example 1.1.

a) Visualize and summarize the sampling variability of the bias estimate (variance - mean(

sigma2s) in R Code 1.1).

b) The variance of the empirical bias decreases with increasing number of samples (R in
R Code 1.1). Illustrate with a simulation study that the reduction is proportional to
1/R.

https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/ElemStatLearn/

1.7. EXERCISES AND PROBLEMS 21

Problem 1.2 (Mean squared error and model selection) In this problem, we want to select the
’best’ model in terms of the mean squared error using different techniques. For this, we are going
to fit two models using the cars dataset: dist~speed, and dist~speed+I(speedˆ2).

a) Take a look to the cars dataset using the functions help(), head() and plot().

b) (Using all the sample) Fit the models using all the sample and compute the mean squared
errors.

c) (Training and validation set) Split the data into training and validation sets (80% and
20%), and for each of the given models, compute the mean squared error.

d) (Training, validation, and test set) Split the data into training, validation, and test sets
(70%, 20%, and 10%, respectively). For each of the proposed models, compute the mean
squared error using the training, and validation sets. Select the ’best’ model and compute
the mean squared error using the test set.

e) (Leave-one-out cross-validation). Take a look to the following r function to compute the
mean squared error using leave-one-out cross-validation. Explain the function.

LOOCV <- function(df,formula){

mse_values <- numeric(nrow(df))

for(i in 1:nrow(df)){

validation_data_point <- df[i,]

train_set <- df[-i,]

model_to_fit <- lm(formula,data=train_set)

mse_values[i] <- (predict(model_to_fit,validation_data_point) -

validation_data_point[,as.character(formula[2])])^2

}

return(mean(mse_values))

}

f) Now, for each of the models, compute the mean squared error using leave-one-out cross-
validation.

loocv_fit1 <- LOOCV(cars, dist ~ speed)

loocv_fit2 <- LOOCV(cars, dist ~ speed + I(speed^2))

loocv_fit1

[1] 246.4054

loocv_fit2

[1] 243.0292

g) Compare the results obtained on each of the previous items.

22 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

Problem 1.3 (Bootstrap) Consider the simple linear regression Yi = β0+β1xi+εi, i = 1, . . . , n

and with εi ∼ N (0, σ2). Since we have an artifical situation, we do not know x1, . . . , xn and thus
we propose to draw these from Xi ∼ N (µ, σ2x), Xi and εi independent. Note that our model is
not quite Yi = β0 + β1Xi + εi as we fit the model conditionally on having observed xi.

a) Simulate n = 15 data points from that model with β0 = 1, β1 = 2, µ = 4, σx = 4 and
σ = 2. Then estimate the regression coefficients β0 and β1. Plot the data in a scatter plot
and add the true and the estimated regression lines.

b) For the same values of xi, repeat the simulation of yi and the estimation of β0 and β1 many
(R = 1000) times. Look at numerical and graphical summaries of the distribution of β̂0
and β̂1. Are β̂0 and β̂1 good estimates of β0 and β1?

c) Similar as in b) but now also draw xi for every simulation. Compare the two simulation
settings and comment.

Problem 1.4 (Optional: training, validation and test sets) We use the bicoal data set provided
in the package fma and fit a polynomial model, i.e., a linear regression with predictor year,
yearˆ2, yearˆ3 and so forth up to degree eight. In R this can be achieved with poly(year, 8).

a) Subset the data in training and validation (80% and 20%) and fit a polynomial model.
Repeat the subsetting 100 times and visualize the fits. Which is the best model according
to the residual sums of squares?

b) We now further reserve a test set, consisting of the first and last five years. The intermediate
years are split in training and validation (26 and 10 data points). Build an “optimal” model
as above and use the predict function for the test years. Comment.

Problem 1.5 (Optional: Error in variables) Consider the simple linear regression Yi = β0 +

β1X̃i + εi with X̃i = Xi + εω , where Xi ∼ U(−1, 3) and εω ∼ N (0, σ2ω), and εi ∼ N (0, σ2). X̃i

and εi are independent and i = 1, . . . , n. In this problem we investigate the effect of observing
Xi with an error based on sampling (X̃i).

a) Simulate n = 15 data points from that model with β0 = 1, β1 = 2, , σ = 2, and σϵ = 1.
Then estimate the regression coefficients β0 and β1. Repeat the simulation many times
and look at numerical and graphical summaries of the distribution of β̂0 and β̂1. Are β̂0
and β̂1 good estimates of β0 and β1? What is the effect on the estimated parameters when
σω increases?

b) For two random variables Y1 and Y2 and scalars a, b, c and d, show that have Cov(a +

b Y1, c+ d Y2) = b d Cov(Y1, Y2).

c) Let X1 and X2 be independent standard normal random variables. Define the random
variables Y1 and Y2 by

Y1 = 2X1 +X2, Y2 = X1 −X2.

Find E(Y1), E(Y2), Cov(Y1, Y2), and the joint probability density function fY1,Y2(y1, y2).

1.7. EXERCISES AND PROBLEMS 23

Problem 1.6 (Optional: Model selection) Consider the powerplant.txt data available on the
web page https://www.math.uzh.ch/furrer/download/sta121/powerplant.txt. Contains information
about 32 light water reactor (LWR) power plants. The variables are:

C: Costs in dollars ×10−6 adjusted to 1967 base

D: Date construction permit issued

T1: Time between application for permit and issue of permit

T2: Time between issue of operating license and construction permit

S: Power plant net capacity (MWe)

PR: Prior existence of a LWR at same site

NE: Powerplant constructed in the north-east area of the USA

CT: Use of cooling tower

BW: Nuclear steam supply system manufactured by Babcock–Wilcox

N: Cumulative number of power plants constructed by each architect

PT: Partial turnkey plant; spatial feature in the contract

Find a good linear model that explains the costs of the power plants. Discuss the leave-one-
out statistics.

https://www.math.uzh.ch/furrer/download/sta121/powerplant.txt

24 CHAPTER 1. RESAMPLING AND MODEL VALIDATION

Chapter 2

Principal Component Analysis

The idea of principal component analysis is to construct a low dimensional repre-
sentation of the data that explains as much structure as possible.

Learning goals for this chapter:

⋄ Carry out a principal components analysis using R

⋄ Explain PCA (including eigendecomposition)

⋄ Assess how many principal components are needed

⋄ Interpret principal component scores and loadings

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter02.R.

2.1 Finding some Representative Dimensions

As motivation, consider the scatterplots of 500 data points in R3 on the left panel of Figure 2.1.
Nothing striking is visible, the correlations between the variables are 0.85, 0.6 and 0.1. Such
a pairs() plot is only visualizing the marginal scatterplots. When using a three-dimensional
visualization, it becomes quickly clear, that the data lives in a two dimensional subspace. As
shown in the top panel on the right of Figure 2.1. That means, we can represent the data with
two coordinate variables and not three. In other words, we realign the coordinate system and use
the corresponding two dimensions only (lower panel on the right of Figure 2.1) without loosing
information.

In practice, we often have often many dimensions, such that we need a formal algorithmic
approach to determine the optimal realignment of the coordinate system. One such approach
is principal components analysis (PCA) that we discuss in this chapter. For an intuitive under-
standing of PCA, we consider noisy data. Typically, noise is present in all dimensions and the
data matrix lives in all dimensions. In the context of the previous dataset, the data points in

25

http://www.math.uzh.ch/furrer/download/sta121/chapter02.R

26 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

var 1

−
1.

0
−

0.
5

0.
0

0.
5

−0.5 0.0 0.5

−1.0 −0.5 0.0 0.5

var 2

−
0.

5
0.

0
0.

5
−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

var 3

Figure 2.1: Scatterplot of the artifical data hmd (left) and snapshots of particular
three dimensional visualization with rgl::plot3d() (right).

top right representation of Figure 2.1 are not completely aligned but jittered. Directions with
low variability likely contain only noise and thus can be omitted. Or, we would like to keep the
dimensions with highest variability, preserving as much structure as possible.

More formally, let y be p-vector. PCA finds an orthogonal basis in Rp, e1, . . . , ep, and
represents the vector y as

y =

p∑
j=1

uj · ej . (2.1)

In PCA terminology, the vectors ej are known as loadings and the coefficients uj as (princi-
pal component) scores. For a different vector, the same loadings are used and new scores are
determined. Of course, we consider y as the realization of a random vector.

Dimension reduction is achieved when the reconstruction of y is build on fewer loadings and
the vector is approximated by

y ≈
k∑

j=1

uj · ej , k < p. (2.2)

Hence, instead of using p vectors ej , the number of loadings is limited to k. In other words,
the dimension is reduced from p to k. This dimension reduction can be interpreted as data
compression. Good compression is (naturally) achieved when k ≪ p. This is only possible when
the data (i.e., the system) is dominated by few directions (i.e., modes) of variability e1, . . . , ek,
that explain most of the total variance.

2.1. FINDING SOME REPRESENTATIVE DIMENSIONS 27

We now put forth a formal statistical framework, by assuming a random vector Y with
realization y , such that the scores Uj are random as well. In the framework of PCA, the
decomposition

Y =

p∑
j=1

Uj · ej , (2.3)

fulfills the following criteria:

• Orthogonality of the basis: e⊤
j eℓ = δj,ℓ, where the Kronecker symbol δj,ℓ = 1 if j = ℓ and

0 if j ̸= ℓ. Hence, we should rather talk about orthonormality. This assumption was also
used in (2.1).

• The principal component scores are mutually uncorrelated: Cov(Uj , Uℓ) = 0, if j ̸= ℓ. This
reflects the independence of the new variables Uj in the new basis.

• The variance of the scores Uj has been successively maximized: λj = Var(Uj), with λ1 ≥
λ2 ≥ · · · ≥ λp.

This decomposition creates a new random vector U = (U1, . . . , Up)
⊤, which is the projection of

Y onto the new basis {e1, . . . , ep}. Note that the above criteria define the scores only up to a
sign, as directly seen by (2.3) (or by (2.1)).

From a data compression point of view, we require an integer k such that
∑k

j=1Var(Uj) =∑k
j=1 λj is close to the total variation, namely

∑p
j=1Var(Yj).

We will proceed with a simple example, where we observe several realizations, i.e., vectors
y1, . . . ,yn. Typically, we subscript the vectors with i, the components of the vector with j and
we arrange the vectors in a so-called data matrix Y, with rows the (transposed) observations.
The context will determine if Y is a n× p data matrix or a p dimensional random vector. PCA
can help with interpretation of datasets, as illustrated in the next example.

Example 2.1. (Socioeconomic data) The ‘European Jobs’ table reports the population per-
centage employed in different sectors of the economy in 1979. It includes n = 26 nations and
p = 9 variables that give the percentages of employment in: agriculture (Agr), mining (Min),
manufacturing (Man), power supply industries (PS), construction (Con), service industries (SI),
finance (Fin), social and personal services (SPS), and transport and communications (TC), source:
Euromonitor (1979). See R-Code 2.1.

How can one efficiently interpret the data? Intuitively, one could compute all pairwise cor-
relations between two countries to find which national economies are more related. Fortunately,
PCA provides a more efficient and comprehensive solution. Let Y ∈ R26×9 be the data matrix
with country dimension n = 26 and economic sector dimension p = 9. Let us apply PCA to
the corresponding data matrix. The structure of the output is given in R-Code 2.1. The matrix
rotation are the loadings and matrix x the scores. The vector sdev contains the square roots
of the variances λj .

The left panel of Figure 2.2 shows the explained variability by each PC. This plot is called
the ‘scree plot’. It appears that the first two PCs already explain more than 62% of the total
variability and that the data essentially lives in a seven dimensional subspace. Remember that

28 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

the PC loadings form the new basis ej , j = 1, . . . , 9 on which to represent the data. Because the
first two modes ej , j = 1, 2 explain 62% of the variability, they can be used to efficiently visualize
the table. Instead of using all 9 dimensions (i.e., the 9 economic sectors), the data matrix Y is
projected onto a bi-dimensional space. The right panel of Figure 2.2 shows the first two PCs as
a scatter plot using country names as labels. Different groups are easily identified, for example,
eastern European countries cluster in the top part of the panel. ♣

R-Code 2.1 PCA of jobs dataset. (See Figure 2.2.)

jobs <- read.csv(header=TRUE, "download/sta121/europejobs.csv")

head(jobs, n=4)

Agr Min Man PS Con SI Fin SPS TC

Belgium 3.3 0.9 27.6 0.9 8.2 19.1 6.2 26.6 7.2

Denmark 9.2 0.1 21.8 0.6 8.3 14.6 6.5 32.2 7.1

France 10.8 0.8 27.5 0.9 8.9 16.8 6.0 22.6 5.7

W.Germany 6.7 1.3 35.8 0.9 7.3 14.4 5.0 22.3 6.1

rownames(jobs)[5:20]

[1] "Ireland" "Italy" "Luxembourg" "Netherlands"

[5] "UnitedKingdom" "Austria" "Finland" "Greece"

[9] "Norway" "Portugal" "Spain" "Sweden"

[13] "Switzerland" "Turkey" "Bulgaria" "Czechoslovakia"

pca <- prcomp(jobs, scale=TRUE)

str(pca, give.attr=FALSE)

List of 5

$ sdev : num [1:9] 1.867 1.46 1.048 0.997 0.737 ...

$ rotation: num [1:9, 1:9] 0.52379 0.00132 -0.3475 -0.25572 -0.32518 ...

$ center : Named num [1:9] 19.131 1.254 27.008 0.908 8.165 ...

$ scale : Named num [1:9] 15.547 0.97 7.008 0.376 1.646 ...

$ x : num [1:26, 1:9] -1.677 -0.934 -0.74 -0.836 0.101 ...

round(cumsum(pca$sdev^2)/sum(pca$sdev^2), 3)

[1] 0.387 0.624 0.746 0.857 0.917 0.960 0.985 1.000 1.000

plot(pca) # equivalent to `screeplot(pca)`

plot(pca$x[,1:2], type="n", ylim=c(-2.7, 3.7), xlim=c(-3, 7))

text(pca$x[,1:2], rownames(jobs))

Typically, the data is centered before performing a PCA. Moreover, we typically scale the
variables scale=TRUE in prcomp(). This addresses the issue that variables are unit independent
and comparable. Otherwise, one of the variables may dominate all others due to its huge variance
and thus PCA may not acheive its goals.

As shown in the last example, the PCs allow groups to be identified. The actual individual
scales are not relevant, but how they relate to one another is. Through the transformation

2.1. FINDING SOME REPRESENTATIVE DIMENSIONS 29

pca
V

ar
ia

nc
es

0.
0

1.
0

2.
0

3.
0

−2 0 2 4 6

−
2

−
1

0
1

2
3

PC1

P
C

2

Belgium

Denmark

France

W.Germany
Ireland

Italy

Luxembourg

Netherlands

UnitedKingdom
Austria

Finland
Greece

Norway
PortugalSpain

Sweden

Switzerland
Turkey

Bulgaria

CzechoslovakiaE.Germany
Hungary

Poland
Rumania

USSR

Yugoslavia

Figure 2.2: Scree plot of the PCA on jobs data (right) and socioeconomic data from
26 European countries projected on the subspace spanned by the first two PCs (right).
(See R-Code 2.1.)

(scaling with scale=TRUE and rotation) the PCs do not necessary possess interpretative units.
The relation of the scales are linked to the corresponding λjs.

For a better interpretation, we also project the “variables”, i.e., the original basis, on the PCs.
The variables can be seen as p additional observations with values (1, 0, . . . , 0)⊤, (0, 1, 0, . . .)⊤

and so forth. To differentiate between the individuals and the “variables” we use arrows for the
latter. The observations and variables are typically on a different “scale” and need to be scaled
for to improve visualization and ease interpretation. However, there is no unique choice for how
to best scale the variables. This plot is called a biplot and illustrates which variables contribute
to the PCs. Hence, a biplot is a particularly convenient way to understand the essence of the
data in a glance, as discussed in the continued example below.

Example 2.2. We retake the PCA decomposition of the jobs dataset. Figure 2.3 shows a
classical biplot, constructed with the command biplot(pca). Compared to Figure 2.2, arrows
have been added and scores have been scaled. The first PC has a high positive loading on
the agriculture variable and negative or small loadings on all other variables. This PC may
be interpreted as distinguishing between countries with agricultural and industrial economies.
Turkey and Yugoslavia have the highest values compared to the other countries, suggesting that
their economies were more agricultural than the economies of the other nations. The second PC
has negative loadings on service industries, finance, and social and personal services, but has
positive loadings on all others. This PC may be interpreted as distinguishing between nations
with large and small service sectors. The “capitalist” Western nations have lower scores than the
“communist” Eastern nations, suggesting that economies in the West have larger service sectors.

Such an interpretation makes sense only if the two first PCs explain a sufficiently large portion
of the variability. Here the first two PCs explain 62.4% of the total variability. ♣

30 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

−0.2 0.0 0.2 0.4 0.6

−
0.

2
0.

0
0.

2
0.

4
0.

6

PC1

P
C

2

Belgium

Denmark

France

W.Germany
Ireland

Italy

Luxembourg

Netherlands

UnitedKingdom
Austria

Finland
Greece

Norway
PortugalSpain

Sweden

Switzerland
Turkey

Bulgaria

CzechoslovakiaE.Germany
Hungary

Poland
Rumania

USSR

Yugoslavia

−4 −2 0 2 4 6 8

−
4

−
2

0
2

4
6

8

Agr

Min

Man
PS

Con

SI
Fin

SPS

TC

Figure 2.3: Biplot of the socioeconomic data, created with biplot(pca).

2.2 PCA as a functional Decomposition: EOF

2.2.1 Motivation

We now consider an alternative approach to introduce PCA. To illustrate, consider a (sufficiently)
smooth function f : [0, 2π] → R. Based on Fourier analysis theory, it is possible to re-express
the function as a sum of sine and cosine functions, i.e.,

f(x) = a0 +
∞∑
j=1

aj · cos(j · x) +
∞∑
j=1

bj · sin(j · x), 0 < x < 2π. (2.4)

We have equality because of the infinite sums. Quite often, a limited amount of basis functions
are required for a sufficiently good approximation. Moreover, we often observe the function f

at finite number of locations, further justifying a limited number of basis functions. In later
chapters we encounter further particular basis functions, which can be written generically by ϕj .
Hence, consider the approximation

f(x) ≈
p∑

j=0

ajϕj(x). (2.5)

In the case of PCA, the basis functions ϕj are not pre-existing, but are entirely characterized
by the data itself. However, PCA constructs an orthogonal basis. This is the reason PCA is also
known as empirical orthogonal function (EOF) analysis in certain sciences. More precisely, as-
sume that we observe the function f at n locations x1, . . . , xn. We write y =

(
f(x1), . . . , f(xn)

)⊤
and along equation (2.2), ej =

(
ϕj(x1), . . . , ϕj(xn)

)⊤.

2.2.2 Empirical Orthogonal Functions

We can apply a similar approach to space-time datasets such as those found in climate science.
Climate data often contains grids of hundreds of locations, and each location corresponds to

2.3. THEORETICAL ASPECTS OF PCA 31

a time series of a physical variable (e.g. temperature, precipitation, sea-level pressure, etc.).
Neither a visual examination of the time evolution of the field, nor simple statistical summaries
(mean, or variance) are much help in analyzing the overall dynamics. When the size of the
phase space is a serious difficulty for the interpretation of the data, PCA is a popular tool to
discriminate between fewer, but significant components, and a myriad of second-order processes
with less relevance. In such contexts of gridded space-time data, we often talk about an empirical
orthogonal function (EOF) decomposition instead of PCA.

The main difference between PCA and EOF is notational in nature. Thus, we introduce
some notation. The state of the system at L locations at any time t can be represented by vector
y(t) = (y1(t), . . . , yL(t))

⊤. We consider this vector a realization of a random vector Y(t). Thus,
the decomposition (2.3) into principal components reads:

Y(t) = µ+

L∑
i=1

Ui(t)e i . (2.6)

In this case we have spatial index i = 1, . . . , L, (discrete) time index t = 1, . . . , T , a mean
(or climatic) field µ, and e i, i = 1, . . . , L, the typical fields representing the main modes of
variability of the system. Of course these fields are orthogonal. The basis functions {e1, . . . , eL}
are time-independent but are modulated by time-dependent principal component scores Ui(t).

We now consider the data matrix Y containing all observations,

Y =

y1(t1) . . . yL(t1)

y1(t2) . . . yL(t2)
...

...
y1(tT) . . . yL(tT)

 =

y(t1)⊤

y(t2)⊤
...

y(tT)⊤

 ∈ RT×L. (2.7)

We work with centered data and define the centered data matrix as

Yc =

(y(t1)− µ̂)⊤

...
(y(tT)− µ̂)⊤

 , (2.8)

where µ̂ = (µ̂1, µ̂2, . . . , µ̂L)
⊤ is the empirical mean of Y. The lth component thereof is µ̂l =

1/T
∑T

t=1 yl(t). The empirical variance-covariance matrix is simply S = 1/(T − 1) · Yc⊤Yc.
EOF analysis now applies “PCA” to the centered data matrix. EOFs are now the counterpart to
PCs and are — in the case of gridded data — often visualized as image plots. Individual scores
receive less attention. Similarly, the classical biplot is not used. We will further illustrate this
approach with an extensive example in Section 2.5.

2.3 Theoretical Aspects of PCA

2.3.1 PCA in Terms of Projections

In this section, we describe a procedure on how to find a new basis system that satisfies the
criteria presented in Section 2.1. We will skip over some technical details. The first step in PCA

32 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

is to find the leading mode of variability e1 (subject to ||e1|| = 1) that minimizes the “error”, say
ϵ1, made by ignoring the other dimension 2, . . . , p. More specifically, this error is the difference
between the original data and its projection on the sub-space spanned by e1, i.e.:

ϵ1 = ||y − (y⊤e1) · e1||2,

where y⊤e1 is a scalar representing the length of the projection on the unit vector e1 (see
Appendix B.3). After some calculations, one can show that ϵ1 is minimized if and only if e1

is the eigenvector of the variance/covariance matrix Σ = Var(y) associated with its largest
eigenvalue λ1.

By iterating this procedure for the other modes of variability, one finds that the eigenvectors
of the covariance matrix Σ build a basis system ej , j = 1, . . . , p, corresponding to the desired
principal modes of variability. In other words, one (successively) finds normed vectors ej such
that the projections of the data onto ej are maximized while ensuring each successive vector
ej+1 is orthogonal to all other vectors eℓ, ℓ = 1, . . . , j.

2.3.2 PCA in Terms of Random Vectors

We consider (continuous) random vectors Y having expectation E(Y) = µ and variance Σ,
denoted Y ∼ (µ,Σ), without specifying a distribution. Denote the eigenvalue-eigenvector de-
composition of Σ as Σ = ΓΛΓ⊤. That means that Γ is the matrix containing the eigenvectors
as columns and Λ is a diagonal matrix containing the eigenvalues. We order the eigenvalues in
descending order, i.e., Λ = diag(λi ≥ · · · ≥ λp > 0). Then PCA can be formally defined as
follows.

Definition 2.1. Let Y ∼ (µ,Σ). The transformation C = Γ⊤(Y − µ), where Σ = ΓΛΓ⊤, is
the principal component transformation.

The principal components have the following (intuitive) property.

Property 2.1. C ∼ (0,Λ).

If we do not know the moments of Y we use estimates and obtain (strictly speaking) the
empirical principal component transformation. Under weak assumptions, the sample principal
components and eigenvalues are the corresponding maximum likelihood estimates.

Hence, PCA can be seen as an eigen decomposition (also called spectral decomposition) of
the empirical covariance matrix. The loadings represent the eigenvectors and sdev gives the
standard deviations, i.e., the square root of the eigenvalues.

It is important to reiterate that in practice the variables have vastly different variances and
thus should be rescaled (with the argument scale=TRUE of the function prcomp(), for example).
If not, the PCs essentially retrieve the individual variables. With rescaling, PCA then translates
to an eigenvalue decomposition of the empirical correlation matrix.

It is possible to manually perform PCA and create a biplot. As already mentioned, the scales
for the latter are somewhat arbitrary. There might also be differences in the sign of the PC. This
results from the undetermined sign of the eigen decomposition.

2.3. THEORETICAL ASPECTS OF PCA 33

Example 2.3. The dataset swiss contains standardized fertility measure and socio-economic
indicators for each of 47 French-speaking provinces of Switzerland at about 1888. R-Code 2.2
performs a PCA constructs manually a biplot, which is compared in Figure 2.4 with the standard
version. ♣

R-Code 2.2 Applying PCA to swiss dataset. Automatic and manual PCA and biplot.
(See Figure 2.4.)

apply(swiss, 2, sd)

Fertility Agriculture Examination Education

12.4917 22.7112 7.9779 9.6154

Catholic Infant.Mortality

41.7049 2.9127

pca <- prcomp(swiss, scale=TRUE)

print(pca, digits=3)

Standard deviations (1, .., p=6):

[1] 1.789 1.090 0.921 0.663 0.452 0.348

##

Rotation (n x k) = (6 x 6):

PC1 PC2 PC3 PC4 PC5 PC6

Fertility -0.457 0.322 -0.1738 0.5356 0.3831 -0.4730

Agriculture -0.424 -0.412 0.0383 -0.6429 0.3750 -0.3087

Examination 0.510 0.125 -0.0912 -0.0545 0.8143 0.2240

Education 0.454 0.179 0.5324 -0.0974 -0.0714 -0.6808

Catholic -0.350 0.146 0.8068 0.0995 0.1832 0.4022

Infant.Mortality -0.150 0.811 -0.1601 -0.5268 -0.1045 0.0746

print(cumsum(pca$sdev^2)/6, digits=3) # see also screeplot(pca)

[1] 0.533 0.731 0.873 0.946 0.980 1.000

biplot(pca, scale=0) # no other scaling here!

This argument is not well documented (?biplot.princomp).

Now the manual decomposition:

manu <- eigen(cor(swiss)) # manually performing PCA

manu$sdev <- sqrt(manu$values)

cswiss <- scale(swiss)

plot(cswiss %*% manu$vect[,1:2], xlab="PC1", ylab="PC2", ylim=c(-3, 5))

transposes cancel

text(cswiss %*% manu$vect[,1:2], rownames(swiss), col=3)

arrows(0, 0, manu$vect[,1]*5, manu$vect[,2]*5, col=2)

or some other scaling of the vectors

An eigen decomposition is not the only approach for extracting the relevant quantities (load-

34 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

−2 0 2 4

−
2

0
2

4

PC1

P
C

2 Courtelary
Delemont

Franches−MntMoutierNeuveville

Porrentruy

Broye

Glane

Gruyere

Sarine
Veveyse

Aigle
Aubonne

Avenches

Cossonay

Echallens
Grandson

Lausanne

La Vallee

Lavaux
Morges

Moudon

Nyone

Orbe

Oron

Payerne

Paysd'enhaut
Rolle

Vevey
Yverdon

Conthey

Entremont
Herens

Martigwy

Monthey

St MauriceSierre

Sion

Boudry

La Chauxdfnd

Le Locle

Neuchatel

Val de RuzValdeTravers
V. De Geneve

Rive Droite

Rive Gauche

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Fertility

Agriculture

Examination
Education

Catholic

Infant.Mortality

−2 0 2 4

−
2

0
2

4

PC1

P
C

2 Courtelary
Delemont

Franches−MntMoutierNeuveville

Porrentruy

Broye

Glane

Gruyere

Sarine
Veveyse

Aigle
Aubonne

Avenches

Cossonay

Echallens

Grandson

Lausanne

La Vallee

Lavaux
Morges

Moudon

Nyone

Orbe

Oron

Payerne

Paysd'enhaut
Rolle

Vevey
Yverdon

Conthey

Entremont
Herens

Martigwy

Monthey

St MauriceSierre

Sion

Boudry

La Chauxdfnd

Le Locle

Neuchatel

Val de RuzValdeTravers
V. De Geneve

Rive Droite

Rive Gauche

Figure 2.4: Automatic (left) and manual (right) biplot of swiss dataset. (See R-
Code 2.2.)

ings and scores) from the data. As a matter of fact, it is advisable to use the singular value
decomposition (SVD) method found in prcomp(), instead of the eigen decomposition-based
princomp() because of its computational efficiency and flexibility. SVD avoids explicitly com-
puting the covariance matrix and instead computes singular vectors and singular values based
on the data.

2.3.3 Truncation

In order to use PCA for dimension reduction, a value k at which to truncate the decomposition
y ≈

∑k
j=1 ujej must be chosen. Unfortunately, no unambiguous rule exists to find k. One

method is to use the k PCs that account for an arbitrary threshold for the fraction of explained
variance R2 =

∑k
ℓ=1 λℓ

/∑p
j=1 λj , say 0.75. Other approaches less prone to subjectivity exist.

The first technique relies on the fact that the variance λj of Gaussian noise decays in an
exponential manner. In Figure 2.5, the spectrum starts to decay as random noise around k = 10.
The second technique is called North’s rule of thumb. The uncertainty of the eigenvalues due to
measurement errors can be approximated by ∆λj ≈

√
2/nλj . The idea of the North’s rule is to

truncate the expansion when the sampling error becomes larger than the distance between two
eigenvalues, i.e., when λj − λj+1 < ∆λj (North et al., 1982).

Example 2.4. For the europejobs and swiss dataset example, we would need three and two
PCs respectively to explain roughly 75% or the total variation. North’s rule does not work well
here, likely because we have a very small n and p. ♣

2.4. PCA AND RELATED DECOMPOSITIONS AND CONCEPTS 35

Figure 2.5: PCA variances plotted on a logarithmic scale. A Gaussian noise would
decay exponentially, as indicated by the black line.

2.4 PCA and Related Decompositions and Concepts

In this section we discuss two alternative decompositions or projection approaches that are quite
similar to PCA.

2.4.1 Canonical Correlation Analysis

PCA can be seen as finding a vector b such that Var(bY) is maximized, constrained to unitary
vectors ||b|| = 1. We now consider two random vectors X and Y (or a decomposition of Y in
two components). In canonical correlation analysis (CCA), we want to determine vectors a and
b such that Corr(a⊤X, b⊤Y) is maximized. Naturally, we need to constrain the vectors a and
b by choosing vectors that have a predefined norm.

Example 2.5. CCA for LifeCycleSavings data might seek a linear combination of the economic
(sr, dpi and ddpi) variables that is highly correlated with different age strata of the population
(pop15 and pop75).

The output of the function cancor (see R-Code 2.3) shows the normalized vectors in the first
column of the components xcoef and ycoef. The successive columns represent linear combina-
tions that are orthogonal to the previous one and successively maximize the correlation. They
are rarely used in practice and thus not considered here. The correlation induced by the (first)
canonical vectors a and b is Corr(a⊤X, b⊤Y) = 82.5%.

The values of the components of the canonical vectors are not a surprise. Both pop15 and
pop75 are highly negatively correlated and the respective correlations with all other variables
have the same sign. Hence, it suffices to pick just one of the two.

The components of the canonical vectors are normed, as shown at the end of the code. This
normalization is now further elaborated. ♣

36 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

R-Code 2.3 Sensible CCA for LifeCycleSavings data.

pop <- LifeCycleSavings[, 2:3] # data.frames here...

eco <- LifeCycleSavings[, -(2:3)]

(out <- cancor(pop, eco)) # in package:stats

$cor

[1] 0.82480 0.36528

##

$xcoef

[,1] [,2]

pop15 -0.0091109 -0.036222

pop75 0.0486475 -0.260312

##

$ycoef

[,1] [,2] [,3]

sr 0.00847102 3.3379e-02 -5.1571e-03

dpi 0.00013074 -7.5882e-05 4.5437e-06

ddpi 0.00417060 -1.2268e-02 5.1883e-02

##

$xcenter

pop15 pop75

35.090 2.293

##

$ycenter

sr dpi ddpi

9.6710 1106.7584 3.7576

cor(c(as.matrix(pop) %*% out$xcoef[,1]), # we need vectors!

c(as.matrix(eco) %*% out$ycoef[,1]))

[1] 0.8248

cor(LifeCycleSavings[,c(2,3,1,4,5)]) # reoder for better interpretability

pop15 pop75 sr dpi ddpi

pop15 1.000000 -0.908479 -0.45554 -0.75619 -0.047826

pop75 -0.908479 1.000000 0.31652 0.78700 0.025321

sr -0.455538 0.316521 1.00000 0.22036 0.304787

dpi -0.756188 0.787000 0.22036 1.00000 -0.129486

ddpi -0.047826 0.025321 0.30479 -0.12949 1.000000

cov(as.matrix(pop) %*% out$xcoef)*(nrow(pop)-1) # normalization!

[,1] [,2]

[1,] 1.000e+00 4.221e-16

[2,] 4.221e-16 1.000e+00

2.4. PCA AND RELATED DECOMPOSITIONS AND CONCEPTS 37

The vectors a and b are calculated based on eigenvectors of products of the underlying
covariance matrices. More specifically, let ΣXX = Var(X), ΣYY = Var(Y), and ΣXY =

Cov(X,Y). The parameter to maximize is

ρ =
a⊤ΣXYb√

a⊤ΣXXa
√

b⊤ΣYYb
=

c⊤Σ
−1/2
XX ΣXYΣ

−1/2
YY d√

c⊤c
√

d⊤d
, (2.9)

where c = Σ
1/2
XXa and d = Σ

1/2
YYb. The next steps require the use of the Cauchy-Schwarz

inequality and the solution is based on the eigenvectors from the Rayleigh quotient. Further,
a⊤ΣXXa = b⊤ΣYYb = 1. Some other constant works as well; R uses n−1, see last line of code
in R-Code 2.3.

Naturally, the correlation is larger than the largest entry of “Corr(X,Y)”, otherwise we would
pick the corresponding variables having largest correlation.

Example 2.6. If one of the dimension of X or Y is one, canonical correlation is equivalent to
linear least-squares regression, illustrated in R-Code 2.4. We get more details in Chapter 5 but
the idea is as follows. Minimizing the squared residuals is equivalent to minimizing the angle
between y and ŷ and to maximizing the correlation between y and ŷ . ♣

R-Code 2.4 Linking CCA to multiple linear regression.

rcc <- cancor(LifeCycleSavings[,1], LifeCycleSavings[,-1]) # CCA

str(rcc, give.attr=FALSE, strict.width="cut")

List of 5

$ cor : num 0.582

$ xcoef : num [1, 1] 0.0319

$ ycoef : num [1:4, 1:4] -2.53e-02 -9.27e-02 -1.85e-05 2.25e-02 -2.48e..

$ xcenter: num 9.67

$ ycenter: Named num [1:4] 35.09 2.29 1106.76 3.76

print(rcc)

rlm <- lm(sr ~ ., data=LifeCycleSavings) # regression with all variables

summary(rlm)

coef(rlm)[-1]/rcc$ycoef[,1] # betas equal to weights, up to constant

pop15 pop75 dpi ddpi

18.246 18.246 18.246 18.246

rcc$cor/sqrt(summary(rlm)$r.squared) # correlation equal to square root of R^2

[1] 1

2.4.2 Factor Analysis

Factor analysis is useful for investigating variable relationships for complex concepts. It tries to
explain the variability among observed, correlated variables in terms of a few underlying factors.
For example, socioeconomic status may be of interest but this is hard to measure directly. There

38 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

are many variables we can measure, however, that we believe relate to socioeconomic status,
such as occupation, education, and home ownership. The underlying factors (also called latent
variables) are hard/impossible to measure directly but we believe some observed variables (also
called manifest variables) to be indicators of the factors.

Before we describe the exact model, we look at a very classical example.

Example 2.7. The dataset scor consists of the scores earned by 88 students on five exams,
some of which were open book exams and others closed book exams (Mardia et al., 1979). The
variables are:

mec: mechanics, closed book
vec: vectors, closed book
alg: algebra, open book
ana: analysis, open book
sta: statistics, open book

A short illustration of the data is given at the beginning of R-Code 2.5. All variables seem to
be quite related. However, a single explanatory variable would not be sufficient to explain the
performance of the student in all of the variables.

A factor analysis tries to explain the underlying correlation in the scores in terms of “unknown”
and “unobservable” factors, like “intelligence” (overall component), “recitation ability” (for closed
book exams), etc. The factor analysis is performed in R-Code 2.5. The first factor explains an
overall effect and the second discriminates between closed book and not (loadings). ♣

R-Code 2.5: EDA and factor analysis using the scor dataset.. (See Figure 2.6.)

data(scor, package="bootstrap")

apply(scor, 2, summary)

mec vec alg ana sta

Min. 0.000 9.000 15.000 9.000 9.000

1st Qu. 30.000 42.000 45.000 35.750 31.000

Median 41.500 51.000 50.000 49.000 40.000

Mean 38.955 50.591 50.602 46.682 42.307

3rd Qu. 49.250 60.000 57.250 57.000 51.500

Max. 77.000 82.000 80.000 70.000 81.000

apply(scor, 2, sd)

mec vec alg ana sta

17.486 13.147 10.625 14.845 17.256

pairs(scor, gap=0, pch=20)

fa <- factanal(scor, factors=2, rotation="none") # no rotation

fa

2.4. PCA AND RELATED DECOMPOSITIONS AND CONCEPTS 39

##

Call:

factanal(x = scor, factors = 2, rotation = "none")

##

Uniquenesses:

mec vec alg ana sta

0.466 0.419 0.189 0.352 0.431

##

Loadings:

Factor1 Factor2

mec 0.628 0.373

vec 0.695 0.312

alg 0.899

ana 0.780 -0.201

sta 0.727 -0.200

##

Factor1 Factor2

SS loadings 2.824 0.319

Proportion Var 0.565 0.064

Cumulative Var 0.565 0.629

##

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 0.07 on 1 degree of freedom.

The p-value is 0.785

Similar to PCA, factor analysis is a dimension reduction tool. In contrast, to PCA we group
variables into fewer sets of new variables (called factors). These factors can be interpreted and
typically help to gain insights the underlying mechanism driving the observed process.

For a factor analysis we need to assume a distribution for our observations. As typically done
in this context, we assume Y ∼ Np(µ,Σ), i.e., p-variate Gaussian distribution. Similar to PCA,
the mean µ is not of interest and focus is on a “decomposition” of Σ. The underlying model of
factor analysis is as follows:

Y = µ+ΛF+U,
6 min

(2.10)

where µ is a p-vector of means, Λ a p × k-matrix (k < p) of unknown constants. Further, F is
k-variate Gaussian and U is p-variate Gaussian with

E(F) = 0, E(U) = 0, (2.11)

Var(F) = I, Var(U) = Ψ = diag(ψ1, . . . , ψp), Cov(F,U) = 0 (2.12)

Hence,

Var(Y) = Σ = ΛΛ⊤ +Ψ (2.13)

https://tube.switch.ch/download/video/759f5868
https://tube.switch.ch/download/video/759f5868

40 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

mec

20
40

60
80

10
30

50
70

0 20 40 60 80

20 40 60 80

vec

alg

20 40 60 80

10 30 50 70

ana

0
20

40
60

80
20

40
60

80

10 30 50 70

10
30

50
70

sta

Figure 2.6: Scatter plot of the scor dataset. (See R-Code 2.5.)

and a factor analysis consists of decomposing Σ into Λ and Ψ. Similar to PCA, it is possible
to decompose the covariance matrix or the associated correlation matrix. The second is more
common and done here and the function factanal().

The elements of Λ are called loadings, the diagonal elements of Ψ determine the so-called
uniquenesses and the elements F are called factors or scores. Estimation of the parameters is
done using maximum likelihood, the number of factors is fixed before the decomposition. But
because of the distributional assumption on the data, tests can be constructed as indicated at
the end of R Code 2.5.

Notice that the factors Λ and Ψ are not uniquely determined. For example, let C be an
orthogonal k × k-matrix (CC⊤ = I) and set F = CF̃. The resulting variance of Y remains
the same. This can be resolved by imposing an extra condition, such as Λ⊤Ψ−1Λ is diagonal
with its elements in decreasing order. Instead of imposing more conditions, one could also use
the non-uniqueness of the solution to aid in interpretation. Results of a factor analysis may be
difficult to interpret, but rotating the results may simplify them. After the number of factors has

2.4. PCA AND RELATED DECOMPOSITIONS AND CONCEPTS 41

been chosen we can rotate the factors such that loadings on various factors tend to be very high
(–1, 1) or very low (0). The default rotation in factanal() is varimax, an orthogonal rotation
in which rotated factors are restricted to being uncorrelated.

Example 2.8. In this example, we illustrate the factor analysis decomposition of the correla-
tion matrix of LifeCycleSavings data. R-Code 2.6 reconstructs the correlation matrix for two
factors, based on the five variables. The decomposition is quite good, as the degrees of freedom
of the factor analysis match the degrees of freedom of the correlation matrix. Using a varimax

rotation results in a coordinate system rotated by 11 degrees; but the rotation the factors does
not improve the fit.

Figure 2.7 illustrates that the two factors are quite similar to first two principal components
in relative terms. ♣

R-Code 2.6: Comparison of factor analysis results with a PCA biplot. (See Figure 2.7.)

fa <- factanal(LifeCycleSavings, factors=2, rotation="none")

fa$loadings

##

Loadings:

Factor1 Factor2

sr 0.436 0.760

pop15 -0.959

pop75 0.953 -0.125

dpi 0.800 -0.187

ddpi 0.375

##

Factor1 Factor2

SS loadings 2.661 0.771

Proportion Var 0.532 0.154

Cumulative Var 0.532 0.686

diag(fa$uniquenesses) + (fa$loadings)%*%t(fa$loadings) - cor(LifeCycleSavings)

sr pop15 pop75 dpi ddpi

sr -6.9915e-08 1.3603e-03 3.9851e-03 -1.3514e-02 -8.8157e-04

pop15 1.3603e-03 -7.4334e-08 3.2707e-04 -2.4475e-03 -1.2147e-02

pop75 3.9851e-03 3.2707e-04 5.3404e-08 -7.6601e-04 -3.0301e-02

dpi -1.3514e-02 -2.4475e-03 -7.6601e-04 2.0830e-06 9.4581e-02

ddpi -8.8157e-04 -1.2147e-02 -3.0301e-02 9.4581e-02 -5.3645e-06

plot(-fa$loadings, ylim=c(-1,1), xlim=c(-1,1), type="n")

arrows(0,0, -fa$loadings[,1],-fa$loadings[,2], col=2, length=0.1)

text(-fa$loadings*1.1, names(LifeCycleSavings))

abline(h=0,v=0, col=7) # unrotated coordinate system

42 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

fa2 <- factanal(LifeCycleSavings, factors=2) # varimax rotation

acos(fa2$rotmat[1,1])*180/pi # rotation angle

[1] 11.802

abline(a=0, b=fa2$rotmat[1,1]/fa2$rotmat[2,1], col=3) # rotated

abline(a=0, b=fa2$rotmat[1,2]/fa2$rotmat[2,2], col=3) # coordinate system

biplot(pc <- prcomp(LifeCycleSavings, scale=TRUE)) # PCA and biplot

pc

Standard deviations (1, .., p=5):

[1] 1.67990 1.12074 0.77751 0.48954 0.27872

##

Rotation (n x k) = (5 x 5):

PC1 PC2 PC3 PC4 PC5

sr -0.308462 -0.554246 0.750144 -0.13015 -0.134196

pop15 0.570653 -0.012673 0.026549 -0.41621 -0.707291

pop75 -0.560431 0.100994 -0.211830 0.39043 -0.691674

dpi -0.513506 0.266302 -0.145016 -0.80134 0.047034

ddpi -0.037872 -0.782007 -0.608833 -0.12348 0.033263

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Factor1

Fa
ct

or
2

sr

pop15
pop75

dpi

ddpi

−0.4 −0.2 0.0 0.2

−
0.

4
−

0.
2

0.
0

0.
2

PC1

P
C

2

Australia
AustriaBelgium

Bolivia

Brazil

Canada
Chile

China

Colombia

Costa Rica
Denmark

Ecuador

FinlandFrance
Germany

Greece

Guatamala

Honduras

Iceland

IndiaIreland
Italy

Japan

Korea

Luxembourg

Malta

Norway

Netherlands

New Zealand
NicaraguaPanama

Paraguay

Peru
Philippines

Portugal

South Africa
South RhodesiaSpain

Sweden

Switzerland
Turkey

TunisiaUnited Kingdom
United States

Venezuela

ZambiaJamaica

Uruguay

Libya

Malaysia

−10 −5 0 5

−
10

−
5

0
5

sr

pop15
pop75

dpi

ddpi

Figure 2.7: Left: factors in unrotated (yellow) and rotated (green) coordinate system
of a factor analysis of the LifeCycleSavings dataset. Right: biplot of a PCA of the
same dataset. (See R-Code 2.6.)

PCA is quite similar to factor analysis. A complete discussion of the similarities and difference
is beyond the scope of this course but browsing the web yields many opinions — typically
somewhat biased towards the writer’s background; see, e.g., Suhr (2009).

2.5. EXAMPLE: SEA-LEVEL PRESSURE OVER THE NORTHERN ATLANTIC 43

2.5 Example: Sea-Level Pressure Over the Northern Atlantic

The spatial distribution of atmospheric pressure over the northern Atlantic Ocean plays an
important role in European climate. Here, the ERA Interim sea-level pressure dataset provided
by the European Centre for Medium-Range Weather Forecasts (ECMWF) is used. A subset
of 225 winter monthly averages (November, December, January, February, and March) between
1957–2002 is analyzed. The data is represented on a regular 2.5◦ grid covering the region of
interest and involves 43 × 19 = 817 locations. A map of the winter climatic field is shown in
Figure 2.8 and shows the typical contrast between the Icelandic low and Canaries high pressure
systems. This field corresponds to µ in the nomenclature presented in the previous section.
R-Code 2.7 loads the data, indicate how to construct an animation of the pressure and plots the
mean climatic field. As the data is stored in a so-called netCDF format, data preparation seems
lengthy.

R-Code 2.7: Visualizing the pressure and climatic field of the ECMWF data. (See Figure 2.8.)

library(ncdf4)

library(fields) # package maps is available through package fields

nc <- nc_open("download/sta121/ERA40_slp.nc") # Load pressure data

str(nc) # uncomment only if you are brave!

tmp <- ncvar_get(nc)

Geographic selection:

LON <- ncdimlon$vals

LAT <- ncdimlat$vals

ilon <- (LON>=300)| (LON<=45) # Restrict to 300--45 degrees

ilat <- (LAT>=30) & (LAT<=75) # 30--75 degrees

lon <- LON[ilon]

lat <- LAT[ilat]

Select NDJFM winter months:

time <- as.vector(unlist(read.table(

file="download/sta121/ERA40_slp_time.dat",sep=",")))

months <- as.numeric(substr(time,5,6))

tsel <- months %in% c(11,12,1,2,3)

time <- time[tsel]

dat <- tmp[ilon, ilat, tsel]

Some manipulations, so we can simply plot with `image.plot`:

olat <- order(lat)

lat <- lat[olat]

dat <- dat[,olat,]

iilon <- lon>50

lon[iilon] <- lon[iilon]-360

olon <- order(lon)

lon <- lon[olon]

44 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

dat <- dat[olon,,]/1000 # work with kPa

dim(dat) # lon, lat, time

[1] 43 19 225

Extract the mean and sd:

mu <- apply(dat, MAR=c(1,2), FUN=mean)

image.plot(lon, lat, mu, horizontal=TRUE, main="Mean field")

map("world", add=T)

image.plot(lon, lat, apply(dat, MAR=c(1,2), FUN=sd), horizontal=TRUE,

main="Standard deviations")

map("world", add=T)

Visualize time evolution:

for (t in seq(dim(dat)[3])){

image.plot(lon, lat,dat[,,t], main=time[t], zlim=range(dat))

map("world", add=T)

Sys.sleep(0.05)

}

−60 −40 −20 0 20 40

30
40

50
60

70

Mean field

lon

la
t

100.0 100.5 101.0 101.5 102.0

−60 −40 −20 0 20 40

30
40

50
60

70

Standard deviations

lon

la
t

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 2.8: Average winter sea-level pressure (in kPa) for the period 1957–2002. Stan-
dard deviations in the right panel. (See R-Code 2.7.)

Here, we have a data matrix Y ∈ RT×L with T = 225 months and L = 817 locations, based
on a 19 × 43 latitude/longitude grid. Notice that T corresponds to n and L corresponds to p.
That means that we have more “dimensions” than observations! A decomposition of the empirical
variance-covariance matrix S has to be based on an singular value decomposition (instead of an
eigen-decomposition).

As the relevant quantities are used later on, we manually subtract the mean. The function
prcomp() is applied to the centered data matrix Yc. The first four modes of variability ej ,
j = 1, . . . , 4, are shown in Figure 2.9, and explain 41%, 20%, 15% and 10% of the total variability

2.5. EXAMPLE: SEA-LEVEL PRESSURE OVER THE NORTHERN ATLANTIC 45

(see Figure 2.9, lower row). The first loading (PC1) corresponds to a north-south contrast,
the second loading (PC2) corresponds to an east-west contrast, while the third loading (PC3)
corresponds to a pressure dipole between the British Isles and Greenland. The forth loading
(PC4) is dipole like with a strong center over the north western part of the north Atlantic and
secondary center located over north eastern Siberia and opposite center over western Europe.

R-Code 2.8 Loadings and (normalized) scree plot. (See Figure 2.9.)

Y <- dat - array(mu, dim=dim(dat)) # Centering the data

Y <- t(array(Y, dim=c(dim(dat)[1]*dim(dat)[2], dim(dat)[3])))

pca <- prcomp(Y)

for (i in (1:4)){ ## Plot the first modes of variabilty

ei <- pca$rotation[,i]

ei <- array(ei, dim=dim(dat)[c(1,2)])

image.plot(lon, lat, ei, main=dimnames(pca$x)[[2]][i], horizontal=TRUE)

map("world",add=T)

}

npcs <- 21

screeplot(pca, type="l", main="", npcs=npcs)

plot(log(pca$sdev[1:npcs]^2), type="b") # Screeplot on log scale

plot(cumsum(pca$sdev[1:npcs]^2)/sum(pca$sdev^2), type="b",

ylim=c(0,1), axes=FALSE, ylab="% variance explained", xlab="")

abline(h=1, col="gray")

axis(2)

axis(1, at=1:npcs, labels=paste(1:npcs))

print(rbind(explained.var=pca$sdev[1:10]^2/sum(pca$sdev^2),

cumulative.var=cumsum(pca$sdev[1:10]^2)/sum(pca$sdev^2)), 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

explained.var 0.41 0.20 0.15 0.10 0.03 0.026 0.02 0.016 0.011 0.0066

cumulative.var 0.41 0.61 0.75 0.86 0.89 0.912 0.93 0.948 0.959 0.9657

The fraction of variance explained by the first four principal modes is
∑4

ℓ=1 λℓ

/∑L
j=1 λj =

0.86. This result indicates that 86% of the information can be reconstructed using only 4 PCs.
In other words, only 4 time series are because the transformed variables uj(t), j = 1, . . . , 4, make
for a fairly good approximation of the original data. In contrast, the original contains 817 time
series yj(t), j = 1, . . . , 817. Therefore, the compression achieved by PCA decomposition is very
large. As an illustration, the left panel of Figure 2.10 shows a reconstructed pressure field for
January 1960. The reconstruction is very close to the original field (R-Code 2.9 and right panel
of Figure 2.10). This indicates that the PCA helps to filter redundancy and/or noise contained
in the original data. Hence, PCA can also be seen as a very rudimentary data compression.

Of course here in this EOF approach, we use our classical PCA decomposition. Here, it is

46 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

−60 −40 −20 0 20 40

30
40

50
60

70

PC1

lon

la
t

−0.06 −0.04 −0.02 0.00 0.02 0.04

−60 −40 −20 0 20 40

30
40

50
60

70

PC2

lon

la
t

−0.06 −0.04 −0.02 0.00 0.02 0.04

−60 −40 −20 0 20 40

30
40

50
60

70

PC3

lon

la
t

−0.08 −0.06 −0.04 −0.02 0.00 0.02

−60 −40 −20 0 20 40

30
40

50
60

70

PC4

lon

la
t

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

V
ar

ia
nc

es

0
20

40
60

80
10

0

1 3 5 7 9 11 13 15 17 19 21

%
 v

ar
ia

nc
e

ex
pl

ai
ne

d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 11 13 15 17 19 21

Figure 2.9: First four principal components (loadings). Bottom row shows a scree
plot and the explained fraction of total variability. (See R-Code 2.8.)

easier to directly “attach” the dimensions to the corresponding matrix and we write, for example,
YT×L instead of Y ∈ RT×L. Using matrix notation, the decomposition (2.6) can be conveniently
rewritten as Yc

T×L = UT×LE
⊤
L×L, where matrix U contains the scores and matrix e contains the

basis vectors arranged in columns, i.e., E = (e1, e2, . . . , eL). A reconstruction of the data with

2.6. BIBLIOGRAPHIC REMARKS 47

a limited set of k PCs is written in matrix notation as Yc
T×L ≈ UT×kE

⊤
L×k, where the matrices

are truncated after k columns.

R-Code 2.9 Reconstructing a field using the first four principal components. (See Fig-
ure 2.10.)

trunc <- 4

E <- pca$rotation

U <- pca$x

Y.rec <- U[,1:trunc] %*% t(E[,1:trunc]) # vector

Y.rec <- array(t(Y.rec), dim=dim(dat)) # to visualize we need a grid

t <- 13

time[t] # January 1960

[1] 196001

orig <- dat[,,t]

rec <- mu + Y.rec[,,t]

image.plot(lon, lat, orig, main="Original")

map("world", add=T)

image.plot(lon, lat, rec, main="Reconstructed", horizontal=TRUE)

map("world", add=T)

image.plot(lon, lat, rec-orig, main="Error", horizontal=TRUE)

map("world", add=T)

summary(c(rec-orig)/c(rec)) # look how small the relative error is!

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.004633 -0.002303 -0.000691 -0.000702 0.000861 0.004156

2.6 Bibliographic remarks

We mention Jolliffe (2002) and Mardia et al. (1979) for general and accessible accounts of PCA.
Many other books treat the subject.

Detailed discussions about EOFs, including examples beyond meteorological and climate
data, can be found in von Storch and Zwiers (1999); Wilks (2005). Information about the North
Atlantic Oscillation can be found in, e.g., Barnston and Livezey (1987) or Hurrell et al. (2013).

Selecting the number of relevant PC is still an unsolved problem. Minka (2000); Gavish and
Donoho (2014); Choi et al. (2015) are recent (technical) attempts towards some solution, all
relying of formal model assumptions. The link https://stats.stackexchange.com/questions/33917
contains detailed information and some helpful simulations on how to determine k, the number
of necessary PC to reconstruct a signal.

Nice blog about CCA is found at http://gregorygundersen.com/blog/2018/07/17/cca/.

https://stats.stackexchange.com/questions/33917
http://gregorygundersen.com/blog/2018/07/17/cca/

48 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

−60 −40 −20 0 20 40

30
40

50
60

70

Reconstructed

lon

la
t

100.5 101.0 101.5 102.0

−60 −40 −20 0 20 40

30
40

50
60

70

Error

lon

la
t

−0.4 −0.2 0.0 0.2 0.4

Figure 2.10: Sea-level pressure (in kPa) for January 1960: reconstructed field using
the first four principal components (left) and error (right). Relative error ranges is
within ±0.005. (See R-Code 2.9.)

2.7 Exercises and Problems

Problem 2.1 (PCA with a classical dataframe) The dataset protein.txt, available from https:
//www.math.uzh.ch/furrer/download/sta121/protein.txt, gives measured protein consumption in
twenty-five European countries for nine food groups. The variables are:

Country: Country name
RdMeat: Red meat
WhMeat: White meat
Eggs: Eggs
Milk: Milk
Fish: Fish
Cereal: Cereals
Starch: Starchy foods
Nuts: Pulses, nuts, and oil-seeds
Fr&Veg: Fruits and vegetables

(Weber, A. (1973) Agrarpolitik im Spannungsfeld der internationalen Ernaehrungspolitik, Insti-
tut fuer Agrarpolitik und Marktlehre, Kiel.)

Use multivariate methods to determine whether there are groupings of countries and whether
meat consumption is related to that of other foods.

a) Perform a exploratory data analysis. Look at the correlations. (hint: use the function
cor(), or corrplot() from the package corrplot). Do you think that applying PCA
will lead to a important reduction in the number of dimension, while explaining a high
percentage of the total variability?

https://www.math.uzh.ch/furrer/download/sta121/protein.txt
https://www.math.uzh.ch/furrer/download/sta121/protein.txt

2.7. EXERCISES AND PROBLEMS 49

b) Perform a PCA using the function princomp(). Did you perform PCA using the correlation
or covariance matrix? Comment.

c) How many PC dimensions would you keep? Why?

d) Given this information, subset the number of PC dimensions and write down their estima-
tions. What do the components represent?

e) Plot a biplot on the first two PC dimensions. Interpret the plot.

Problem 2.2 (EOF) The dataset prec_jan_feb.RData is available on the web page https:
//www.math.uzh.ch/furrer/download/sta121/prec_jan_feb.RData. In contains the precipitable
water content of the atmosphere in Europe from the first 60 days (approximately January and
February) for 2012 (NCEP Reanalysis 2). Images are recorded every 6 hours. The variables are:

pre: is an array with dimensions c(lon, lat, time) = c(31, 19, 240)

lon: is a vector with the corresponding longitudes in degree
lat: is a vector with the corresponding latitudes in degree

a) Look at the data. Display the four images of the 1st January. Display a map of the mean
field and the variance field of the data. Add the contours of the countries.
Hint: load(), image.plot() from package fields, map() from package maps.

b) Use PCA and display maps of the pattern that explain most of the variance of the data.

c) Display the variance (eigenvalues) of the principal components. How many principal com-
ponents are relevant?

d) According to the “North et al. rule of thumb”, it is recommended to truncate the numbers
of components at i, if

λi − λi+1

λi
<

√
2

N
, i = 1, 2, . . . , N

where N is the number of eigenvalues λi (i.e., N = 240 in our example). At which locations
could you truncate? Visualize the findings in a plot.

Problem 2.3 (PCA) Let X = (X1, X2)
⊤ follow a multivariate normal distribution with µ =

(2, 1)⊤ and Σ =

(
1 1/2

1/2 1

)
.

a) What are the eigenvalues of Σ? What are the eigenvectors?

b) Draw 100 realizations of N (µ,Σ) and depict them in a scatter plot. Then add one arrow
for each eigenvector of Σ to the plot. The lengths of the arrows should be proportional to
the corresponding eigenvalues.

c) Calculate the principal components of the simulated data. Add the vectors based on the
PCA to the previous plot. Why are the eigenvalues in the PCA not exactly the same as in
b? Compare the original data with the one based on the rotated points.

https://www.math.uzh.ch/furrer/download/sta121/prec_jan_feb.RData
https://www.math.uzh.ch/furrer/download/sta121/prec_jan_feb.RData

50 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

Chapter 3

Clustering

The idea of cluster analysis is to group n observations into k homogeneous classes
where k is possibly also unknown (but usually assumed to be much smaller than n).

Learning goals for this chapter:

⋄ Describe different clustering methods

⋄ Carry out cluster analysis using R

⋄ Use a dendrogram to partition the data into clusters of known composition

⋄ Interpret the outcome of clustering

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter03.R.

3.1 Hierarchical Clustering

As a motivation, consider the penguin dataset (available from the package palmerpenguins) bill
length, bill depth, flipper length, (all in millimeters) and body mass (in gram) of three penguin
species Adelie, Chinstrap, Gentoo. Suppose that we do not have knowledge of the species and
we wonder how many different morphological groups are present, in the sense how many clusters
are in the data and might indicate an different species. Figure 3.1 illustrates the raw data that
we will use extensively in this chapter. For clustering per se, knowledge of the species is not
necessary, i.e., we can work with the top right panels. For comparison and quality assessment,
we often use species information, as shown in the lower left panels.

In this particluar example, some panels of Figure 3.1 show that for some variables some species
cluster well (e.g., Gentoo with flipper length), whereas other variables can be less separated (e.g.,
Adelie and Chinstrap with bill depth). Of course we will look at methods that go beyond this
marginal description.

51

http://www.math.uzh.ch/furrer/download/sta121/chapter03.R

52 CHAPTER 3. CLUSTERING

bill_length

14
16

18
20

35 45 55

30
00

45
00

60
00

14 16 18 20

bill_depth

flipper_length

170 190 210 230

3000 4500 6000

35
45

55
17

0
19

0
21

0
23

0

body_mass

Figure 3.1: Selection of the variables of Penguin dataset. Lower part colored according
to species. (black ◦: Adelie, red ∆: Chinstrap, green +: Gentoo).

More formally, let us consider a dataset consisting of n observations and p variables. Based
on such a data matrix, we assign each observation to one of k different clusters or groups or
classes. The clustering assignment is based on some measure of similarity, with observations
within a group displaying high similarity (or equivalently, a low dissimilarity). In some sense we
maximize the similarity within each group (or equivalently, minimize the dissimilarity).

In other words, clustering defines classes of observations that are homogeneous and separate
from other classes. For example, looking at the panel, of bill depth and body mass in Figure 3.1
we see two groups (Gentoo vs. all others). Clustering is typically an exploratory tool to discover
patterns, features or even details in the data. The result of clustering is typically used in further
more detailed analysis.

The process of clustering is equivalent to find for all individuals an allocation defining their
classes. Formally, an allocation is defined as follows.

Definition 3.1. The function γ : {1, . . . , n} → {1, . . . , k} such that γ(i) = ℓ is called an
allocation. If γi = ℓ, the ith individual belong to the ℓth class.

We denote the individual classes with Cℓ, ℓ = 1, . . . , k and the size of the class with |Cℓ|. ♢

That means Cℓ contain all individuals of class ℓ. Each individual is in one and only one class,
which can possibly be empty:

Cℓ = {i : γi = ℓ}, Cℓ ∩ Cj = ∅,
k⋃

ℓ=1

Cℓ = {1, . . . , n}, 0 ≤ |Cℓ| ≤ n. (3.1)

The clustering algorithms should be ideally optimal (finding the best possible allocation)
according to a predefined loss function or at least greedy (finding a very good solution in many
cases).

3.1. HIERARCHICAL CLUSTERING 53

In hierarchical clustering algorithms, we build the clusters from bottom up, that means we
construct the clusters from “scratch”. We start with n class, where each individual forms a
single cluster and we successively merge two classes. More specifically, we start with the identity
allocation Ci = {i}, for i = 1, . . . , n and at each step we unify two clusters in order to arrive at a
simpler classification, containing one class less. Ultimately, all individuals are in the same class
(k = 1).

Example 3.1. Let n = 4. A possible path of hierarchical clustering could be the following one:
{1}, {2}, {3}, {4} ↪→ {1, 3}, {2}, {4} ↪→ {1, 2, 3}, {4} ↪→ {1, 2, 3, 4}. ♣

It is possible to represent the agglomeration path, seen in the Example 3.1, in the form
of a classification tree called a dendrogram. On the x-axis of a dendrogram one finds the n

observations that are grouped together into different clusters based on their dissimilarity. The
y-axis represents the dissimilarity between clusters.

Example 3.1 illustrated a clustering without any formal rule. In practice we need an agglom-
eration criteria, or some way to measure the dissimilarity between the clusters, that determine
which classes to merge (e.g., why to merge {1} and {3} and not {1} and {2}). Formally, a
dissimilarity function d(a, b) of the objects a and b assigns a value that expresses how dissimilar
two observations are, the smaller the value the more alike. A dissimilarity has the following
properties:

1. symmetry: d(a, b) = d(b, a),

2. non-negativity: d(a, b) ≥ 0,

3. identification mark: d(a, a) = 0,

We further assume that the dissimilarity increases as the dissimilarity between a and b increases.
A distance function satisfies the properties above (and more, like the triangular inequality) and
is thus a dissimilarity function as well. By working with dissimilarities instead of distances (like
the Euclidean distance), we have the advantage of being able to work with datasets containing
interval, ordinal and nominal scales. For example, if a and b are nominal variables, d(a, b) =

I(a = b) with I being the indicator function, is a dissimilarity function.
In our setting we will also define the dissimilarity between two clusters, d(Ci, Cj).

For the simplicity we assume for the moment that we have interval scaled observations and
that ||y i|| denotes the Euclidean norm, i.e., the length of the vector y i. The quality of a classifi-
cation can be measured by the (total) homogeneity within each group:

k∑
ℓ=1

{homogeneity measure within group ℓ}

=

k∑
ℓ=1

∑
i∈Cℓ

||y i − y ℓ||2 =
k∑

ℓ=1

(1

|Cℓ|
∑

i,j∈Cℓ,i<j

||y i − y j ||2
)
,

(3.2)

where we define the mean of the objects in group ℓ by y ℓ =
1

|Cℓ|
∑

i∈Cℓ

y i. Having less groups

results in larger values of total homogeneity and the quality is reduced.

54 CHAPTER 3. CLUSTERING

Assume an allocation for k groups C1, . . . , Ck. If we agglomerate, say, C1 and C2, we obtain:
C̃1 = C1 ∪ C2, C̃2 = C3, . . . , C̃k−1 = Ck. The difference on the quality is:

k−1∑
ℓ=1

∑
i∈C̃ℓ

||y i − y ℓ||2 −
k∑

l=1

∑
i∈Cℓ

||y i − y ℓ||2 =
1

1
|C1| +

1
|C2|
||y1 − y2||2. (3.3)

where we used (3.2). A (possible) fusion criteria, based on the previous reasoning, may read: At
each step we agglomerate Cm and Cℓ such that (3.3) is minimized.

We now describe several possible methods of hierarchical clustering.

3.1.1 The Ward Method

We start by defining a dissimilarity that is then used to form the clusters, by minimizing it.

Definition 3.2. The Ward dissimilarity, corresponding to the fusion criteria seen in (3.3), is
defined as d(Cℓ, Cm) = |Cm||Cℓ|

|Cm|+|Cℓ| ||ym − y ℓ||2.
The hierarchical algorithm that corresponds to the choice of the Ward dissimilarity is called

Ward algorithm. ♢

The Ward dissimilarity also implies that d(i, j) = 1/2 ||y i − y j ||2.

Once a hierarchical clustering has been performed, we need choose the optimal number of
clusters (or groups), i.e., to prune the tree. While there are formal ways of determining this
number, a hierarchical clustering approach has as appealing feature the opportunity to explore
and to select the number of clusters. Ideally, we want a few, well formed clusters. Hence fusing
(or “un-fusing”) groups leads to large changes in dissimilarities. We illustrate that in an example
where we use (again) the Penguin data.

Example 3.2. We pretend that we do not know the species of the Penguin data and apply
a hierarchical clustering approach as indicated in R-Code 3.1. The variables are at different
scales (variance of the variables are different) thus we do scale them first! Here, scaling means
standardizing with scale() although centering would not be necessary.

Figure 3.2 shows the resulting dendrogram which suggest that we have two clear groups. The
similarity decreases by 222.4 and by 41.6 if we go from 2 to 1 and from 3 to 2 groups, respectively.
Two clusters would group (essentially) Gentoo in one cluster and all others in the second cluster.
If we use three clusters (still justified by the similarity values), the second and third contain
both Adelie and Chinstrap. The function out <- identify() might be used to help to identify
clusters and individuals therein.

The huge jump in dissimilarity between two and three groups is because Gentoo penguins
are straightforward to cluster (see Figure 3.2). Adelie and Chinstrap can be separated well only
when we scale the observations first. ♣

3.1. HIERARCHICAL CLUSTERING 55

R-Code 3.1 Applying Ward method hierarchical clustering to the Penguin data. (See
Figure 3.2.)

load("download/sta121/Penguins.RData") # Essentially from pkg palmerpenguins

hc <- hclust(dist(scale(Penguins[,3:6])), method="ward.D")

dend <- as.dendrogram(hc)

str(dend) # a text description of the dendrogram

plot(dend) # is virtually similar to plot(hc)

plot(hc, labels=c("-", "--", "---")[Penguins$num_species], hang=-1, main="")

rect.hclust(hc, k=3, border=2:4) # visualizing 3 clusters

round(rev(hc$height)[1:10], 1) # height of last ten merges

[1] 313.8 91.4 49.8 47.0 20.0 15.0 13.6 10.2 9.8 8.6

round(-diff(rev(hc$height))[1:10], 1) # differences in last ten merges

[1] 222.4 41.6 2.8 27.0 5.0 1.4 3.4 0.4 1.2 0.2

dd1 <- cutree(hc, 3) # getting the three clusters

table(data.frame(cluster=dd1, Penguins$species)) # confusion matrix

Penguins.species

cluster Adelie Chinstrap Gentoo

1 149 4 0

2 2 64 0

3 0 0 123

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

− −
−

−
−

− −
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

− −
−

− −
−

−
−

− −
−

− −

0
10

0
25

0

hclust (*, "ward.D")
dist(scale(Penguins[, 3:6]))

H
ei

gh
t

Figure 3.2: Ward method clustering dendrogram for the Penguin data. The ticks
indicate the (unknown) species and the boxes the three clusters identified. (See R-
Code 3.1.)

3.1.2 The Complete Linkage Method

Another possible method to cluster the observations into different groups is complete linkage
clustering, also known as the method of the diameter of maximum jump. This clustering method
is based on the following dissimilarity criteria:

Definition 3.3. The complete dissimilarity, is defined as: d(Cℓ, Cm) = maxu∈Cℓ,v∈Cm d(u, v).
Thus d(Cℓ ∪Cm, Ck) = max(d(Cℓ, Ck), d(Cm, Ck)). The hierarchical algorithm that corresponds
to the choice of the complete linkage dissimilarity is called complete algorithm. ♢

56 CHAPTER 3. CLUSTERING

Dissimilarity is based on the maximum possible dissimilarity between clusters. In general, it
yields more compact clusters than the Ward linkage method.

Example 3.3. Applying the complete linkage algorithm to the Penguin data shows qualitatively
a similar dendrogram as the Ward algorithm. In more details, the algorithm suggest two clusters
only. But the allocation is quite similar between these two algorithms for k = 2 and 3 clusters,
as shown in Figure 3.3. The group attributes are arbitrary, thus ♣

R-Code 3.2 Applying complete method hierarchical clustering to the Penguin data. (See
Figure 3.3.)

hc2 <- hclust(dist(scale(Penguins[,3:6]))) # method="complete" is default.

plot(hc2, labels=c("-", "--", "---")[Penguins$num_species], hang=-1, main="")

rect.hclust(hc2, k=3, border=2:4)

round(-diff(rev(hc2$height))[1:10], 1) # differences in last ten merges

[1] 2.0 0.7 0.4 0.5 0.4 0.4 0.1 0.2 0.3 0.1

dd2 <- cutree(hc2, 3)

table(data.frame(cluster=dd2, Penguins$species)) # confusion matrix

Penguins.species

cluster Adelie Chinstrap Gentoo

1 151 14 0

2 0 0 123

3 0 54 0

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

− − − −
−

− −
−

− − − − − − − − − − − − − − − − − − −
−

−
−

−
−

−
−

−
−

−
−

−
−

− −
−

−

0
2

4
6

hclust (*, "complete")
dist(scale(Penguins[, 3:6]))

H
ei

gh
t

Figure 3.3: Complete linkage method clustering dendrogram for the Penguin dataset.
The ticks indicate the (unknown) species and the boxes the three clusters identified.
(See R-Code 3.2.)

3.1.3 The Single Linkage Method

Another hierarchical method to cluster observations into different groups is the single linkage
clustering method, also known as the method of the diameter of minimum jump. This clustering
method is based on the following dissimilarity criteria:

3.1. HIERARCHICAL CLUSTERING 57

Definition 3.4. The single dissimilarity is defined as: d(Cℓ, Cm) = minu∈Cℓ,v∈Cm d(u, v). Thus
d(Cℓ∪Cm, Cj) = min{d(Cℓ, Cj), d(Cm, Cj)}. The hierarchical algorithm that corresponds to the
choice of the single linkage dissimilarity is called single algorithm. ♢

Dissimilarity is based on the minimum dissimilarity between clusters. This method may
yield ‘stretched out’ clusters that are less descriptive. The tendency to incorporate observations
between clusters into existing clusters instead of initiating a new cluster is known as chaining.

Example 3.4. The chaining is also visible when applying the single linkage algorithm to the
Penguin data. There are two large clusters but pruning would suggest to create three groups,
one with single individual (leftmost data point in Figure 3.4). Pruning at lower height continues
to creates very tiny clusters (often singletons). ♣

R-Code 3.3 Applying single method hierarchical clustering to the Penguin data. (See
Figure 3.4.)

hc3 <- hclust(dist(scale(Penguins[,3:6])), method="single")

plot(hc3, labels=c("-", "--", "---")[Penguins$num_species], hang=-1, main="")

rect.hclust(hc3, k=3, border=2:4) # visualizing 3 clusters

dd3 <- cutree(hc3, 3)

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

− −
−

−
−

−
−

−
−

−
−

−
−

− −
−

− − −
−

− − −
−

− − − − − −
−

− − − − −
−

− −
−

−
−

−
−

− −
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

− −
−

−

0.
0

0.
6

1.
2

hclust (*, "single")
dist(scale(Penguins[, 3:6]))

H
ei

gh
t

Figure 3.4: Single linkage clustering dendrogram for the Penguin data. The ticks
indicate the (unknown) species and the boxes the three clusters identified. (See R-
Code 3.3.)

We conclude the section with another example.

Example 3.5. Consider again the jobs dataset. All three linkage methods seem to reveal very
similar structures: Turkey, Greece and Yugoslavia always stand apart. Ward method clearly
suggest three groups: (capitalist) Western Europe, communist Eastern Bloc (including Portu-
gal, Spain and Ireland, which have a pronounced agricultural component without any other
dominating sector). Note that the data were collected during the Cold War.

The resulting dendrograms of R-Code 3.4 are given in Figure 3.5. Due to the different
ordering, it is difficult to quickly compare the clusters. All agglomerations lead to similar results
that are coherent with the biplot given in Figure 2.2. ♣

58 CHAPTER 3. CLUSTERING

R-Code 3.4 Clustering jobs dataset with all three methods. (See Figure 3.5.)

jobs <- read.csv(header=TRUE, "download/sta121/europejobs.csv")

apply(jobs,1,sum) # is 100 up to rounding no scaling necessary

hc1 <- hclust(dist(jobs), method="single")

plot(hc1, hang=-1, main="Single Method")

hc2 <- hclust(dist(jobs)) # complete method is the default

plot(hc2, hang=-1, main="Complete Method")

hc3 <- hclust(dist(jobs), method="ward.D")

plot(hc3, hang=-1, main="Ward Method")

Tu
rk

ey

S
pa

in

S
w

itz
er

la
nd

E
.G

er
m

an
y

W
.G

er
m

an
y

B
el

gi
um

U
ni

te
dK

in
gd

om

N
et

he
rla

nd
s

N
or

w
ay

D
en

m
ar

k

S
w

ed
en

Ita
ly

F
ra

nc
e

F
in

la
nd

Lu
xe

m
bo

ur
g

A
us

tr
ia

Ir
el

an
d

R
um

an
ia

P
or

tu
ga

l

P
ol

an
d

U
S

S
R

C
ze

ch
os

lo
va

ki
a

B
ul

ga
ria

H
un

ga
ry

G
re

ec
e

Yu
go

sl
av

ia

0
5

10
15

20
25

Single Method

hclust (*, "single")
dist(jobs)

H
ei

gh
t

Tu
rk

ey

G
re

ec
e

Yu
go

sl
av

ia

R
um

an
ia

S
pa

in

C
ze

ch
os

lo
va

ki
a

B
ul

ga
ria

H
un

ga
ry

Ir
el

an
d

U
S

S
R

P
or

tu
ga

l

P
ol

an
d

B
el

gi
um

U
ni

te
dK

in
gd

om

N
et

he
rla

nd
s

N
or

w
ay

D
en

m
ar

k

S
w

ed
en

W
.G

er
m

an
y

E
.G

er
m

an
y

Ita
ly

F
ra

nc
e

F
in

la
nd

S
w

itz
er

la
nd

Lu
xe

m
bo

ur
g

A
us

tr
ia

0
20

40
60

Complete Method

hclust (*, "complete")
dist(jobs)

H
ei

gh
t

B
el

gi
um

U
ni

te
dK

in
gd

om

N
et

he
rla

nd
s

N
or

w
ay

D
en

m
ar

k

S
w

ed
en

F
ra

nc
e

F
in

la
nd

Ita
ly

Lu
xe

m
bo

ur
g

A
us

tr
ia

S
w

itz
er

la
nd

W
.G

er
m

an
y

E
.G

er
m

an
y

U
S

S
R

C
ze

ch
os

lo
va

ki
a

B
ul

ga
ria

H
un

ga
ry

Ir
el

an
d

S
pa

in

R
um

an
ia

P
or

tu
ga

l

P
ol

an
d

Tu
rk

ey

G
re

ec
e

Yu
go

sl
av

ia

0
50

10
0

15
0

Ward Method

hclust (*, "ward.D")
dist(jobs)

H
ei

gh
t

Figure 3.5: Clustering jobs dataset with three different hierarchical algorithms. (See
R-Code 3.4.)

3.2. THE K-MEANS ALGORITHM 59

Alternative dissimilarity measures include dist()ˆ2, including different distance measures
(method="euclidean", "manhattan", . . .), as.dist(1-cor()) and the function hclust() sup-
ports several additional agglomeration method. Hence, some care is needed that we do not fish
with these arguments to obtain a clustering that is appealing or wished for.

3.2 The k-Means Algorithm

In contrast to the hierarchical clustering algorithm, the k-means algorithm is a centroid-based
clustering algorithm and has an a priori fixed number of clusters. Here, the clusters are repre-
sented by a mean vector (representing the “center” of the cluster). This vector is not necessarily
an actual observation. The k-means algorithm is as follows:

1. Start with k cluster centers.

2. Assign observations to the nearest cluster center.

3. Recompute the k cluster centers (mean of observations assigned to each cluster).

4. If centers are the same as before then stop, otherwise go to step 2.

More formally, given an initial set of k means, denoted y (1)
1 , . . . ,y (1)

k , the algorithm proceeds
by alternating between the following two steps:

Assignment Step: Each observation is assigned to the cluster whose mean yields the smallest
within-cluster sum of squares. Since the sum of squares is the squared Euclidean distance,
this is intuitively the “nearest” mean.

C
(t)
ℓ =

{
yp : ||yp −y (t)

ℓ ||
2 ≤ ||yp −y (t)

j ||
2 ∀j, 1 ≤ j ≤ k

}
, (3.4)

where each yp is assigned to exactly one C(t)
ℓ . (There is an additional assignment rule if

there is no unique cluster.)

Mathematically, this means partitioning the observations according to the Voronoi diagram
generated by the means.

Update Step: The centroids, or means, of the observations in the new clusters are updated by

y (t+1)
ℓ =

1

|C(t)
ℓ |

∑
yj∈C

(t)
ℓ

y j . (3.5)

Since the arithmetic mean is a least-squares estimator, this also minimizes the within-
cluster sum of squares.

Example 3.6. Consider the variables bill depth and bill length from the Penguin dataset. We
illustrate in R-Code 3.5 and Figure 3.6 the first few steps of the k-means algorithm. We start
with the initial means (0,−1), (−0.5, 1) and (1.5, 1) (magenta dots in the left panel), which are
deliberately somewhat arbitrary. The separation is indicated by the polygons. We then calculate
the updated means based on all the observations that fall into the corresponding polygons. After
three iterations, the algorithm has virtually converged, after step seven the clusters do not change
anymore.

60 CHAPTER 3. CLUSTERING

R-Code 3.5 Basic k-means algorithm. (See Figure 3.6.)

library(deldir) # for function 'deldir' and 'tile.list'

library(splancs) # for function 'inout'

x <- scale(Penguins$bill_depth)

y <- scale(Penguins$bill_length)

centx <- c(-0.5, -.5, 1.5) # starting centroid centers

centy <- c(-1, 1, 1)

for (i in 1:3){ # Normally looping until convergence, here 7

Assignment step:

z <- deldir(x=centx, y=centy, rw=c(-2.5,2.5,-2.5,2.5), suppressMsge=TRUE)

w <- tile.list(z)

g1 <- inout(cbind(x,y), w[[1]][3:4])

g2 <- inout(cbind(x,y), w[[2]][3:4])

g3 <- inout(cbind(x,y), w[[3]][3:4])

Intermediate plotting

plot(y ~ x, pch=Penguins$num,

col=g1+2*g2+3*g3, main=paste("Iteration", i))

plot(w, add=TRUE)

points(centx, centy, cex=2, pch=20, col=6)

Update step:

centx <- c(mean(x[g1]), mean(x[g2]), mean(x[g3]))

centy <- c(mean(y[g1]), mean(y[g2]), mean(y[g3]))

}

Note that we have scaled the variables. Without scaling, the groups are somewhat counter-
intuitive as one variable dominates the Euclidean distance. ♣

In practice, a dataset may contain many individuals and variables and the actual optimization
problem may be very difficult. For example, in complex multi-dimensional problems, the solution
may vary according to the initial values. Thus one often runs the method several times with
different starting values and compares the resulting solutions. However, many good heuristics
exist, especially if the number of clusters is known. Due to the assignment rule (assignment
to the “nearest” group), the k-means algorithm tends to yield clusters of similar size (area or
volume, not observation number). The clusters are typically convex in shape (no banana shaped
clusters), even when the true shape is not.

Example 3.7. R-Code 3.6 illustrates k-means clustering of the four numeric variables of the
Penguin dataset with k = 3 using the built-in kmeans() function.

The clustering nicely identifies the three species. The clustering allocation has an “arbi-
trary” numbering of the clusters, which may not correspond to the natural or intuitive encoding.
Hence, the correspondance needs to be manually determined here. The clusters correspond to
Chinstrap, Gentoo and Adelie.

3.2. THE K-MEANS ALGORITHM 61

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Iteration 1

x

y

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Iteration 2

x

y
−2 −1 0 1 2

−
2

−
1

0
1

2
3

Iteration 3

x

y

Figure 3.6: Basic illustration of the k-means algorithm. After three iterations, the
means and the cluster allocations only slightly change. The magenta points are the
group means. Groups are indicated by color and species are indicated by symbol (◦:
Adeline, ∆: Chinstrap, +: Gentoo). (See R-Code 3.5.)

Figure 3.7 illustrates the clusters. Because of the marginal projection of the scatterplots, the
hyperplane separations as seen in Figure 3.6 are not visible.

The different sum-of-squares gives some insight into how well the clusters are defined. For
example, the within-sums-of-squares of the first cluster is much smaller than the other clusters,
because the observations of Chinstrap are more “tightly” clustered, compared to both other
species.

The centroid centers using only two variables (here obtained from our manual algorithm) are
very similar to the first two components of the built-in k-means algorithm. ♣

R-Code 3.6: The k-means algorithm applied to the Penguin dataset. (See Figure 3.7.)

cl <- kmeans(scale(Penguins[,3:4]), 3)

print(cl) # "Clustering vector" and "Available components" not of interest

table(cluster=cl$cluster, Species=Penguins$species)

Species

cluster Adelie Chinstrap Gentoo

1 0 9 116

2 4 54 6

3 147 5 1

pairs(Penguins[,3:6], col=cl$cluster, pch=Penguins$num_species,

gap=0, lower.panel=NULL, xaxt="n", yaxt="n")

unlist(cl[grepl("ss", names(cl))]) # extract all variables with "ss" in name

totss withinss1 withinss2 withinss3 tot.withinss

682.000 59.355 39.034 87.986 186.375

62 CHAPTER 3. CLUSTERING

betweenss

495.625

cbind(cl$centers,cbind(centy, centx)[c(1,3,2),])

bill_length bill_depth centy centx

1 0.59031 -1.09377 -0.97717 0.51932

2 1.10184 0.79854 0.87912 0.93855

3 -0.94318 0.55957 0.62073 -1.06262

bill_length

bill_depth

flipper_length

body_mass

Figure 3.7: Scatter plot of the penguin dataset with the k-means groups indicated by
color and the species type indicated by symbol (◦: Adelie, ∆: Chinstrap, +: Gentoo).
(See R-Code 3.6.)

For hierarchical clustering we can visually assess an good number of cluster by inspecting the
dendrogram or more formally looking at the height of clustering heights or their difference. For
k-means we do not have a dendrogram and different approaches are required. One graphical tool
to assess the quality of clustering are so-called silhouette plots, which help to answer questions
like How homogeneous are the clusters? Are there observations that are outlying? etc.

For illustration, suppose that we have assigned to observation i cluster A, let ai denote the
average dissimilarity of i to all other objects in cluster A. Roughly speaking, ai represents the
‘within’ dissimilarity of cluster A. For all other clusters we define di(C) the dissimilarity of i to
all other objects in cluster C, C ̸= A. A silhoutte plot represents for each value the silhouette
width si, which is defined as

si =
minC ̸=A di(C)− ai

max{minC ̸=A di(C), ai}
, (3.6)

3.3. MODEL-BASED CLUSTERING 63

where the denominator is a normalizing factor, ensuring −1 ≤ si ≤ 1.
Suppose that di(C) is minimal for cluster B. A value si close to one indicates that i has

been well clustered. The second best cluster B is not nearly as good as the chosen one. If
si close to zero, then ai and di(B) are about the same size and observation i could have been
assigned to either cluster A or B. If si close to minus one, ai is much larger than di(B) and we
should have assigned observation i rather to B and we could argue that the observation has been
missclassified.

Example 3.8. We classify the swiss dataset with k-means and construct the corresponding
silhouette plot (R-Code 3.7). It seems that two groups are adequate, each having clearly placed
observations. Increasing the number of clusters decreases the quality of individual clusters.
Naturally, increasing the number of clusters reduces si and the average value thereof in each
cluster. The clusters can be visualized by a pairs() plot, for example (not shown). ♣

R-Code 3.7 Silhouette plot of swiss dataset. (See Figure 3.8.)

library(cluster)

set.seed(14)

ks <- kmeans(swiss, centers=2)

si <- silhouette(ks$cluster, dist(swiss))

plot(si, col=2:3, main="")

for (k in 3:4) # compact form for other `k`

plot(silhouette(kmeans(swiss, centers=k)$cluster, dist(swiss)),

col=2:(k+1), main="")

pairs(swiss, col=ks$cluster, pch=19, lower.panel=NULL, gap=0)

3.3 Model-Based Clustering

A more formal approach to clustering can be achieved if we assume underlying distributions of
the observations. This is also known as finite mixture model clustering. Observations arise from
a distribution that is a mixture of two or more components, or clusters. Each cluster is described
by a density and has an associated probability or ‘weight’ in the mixture.

We have n p-dimension observations y1, . . . ,yn and assume the joint distribution is a mixture
of k components. The density of the mixture is then

f(y) =
n∏

i=1

k∑
ℓ=1

πℓ fℓ(y i), (3.7)

where fℓ(y i) is the density of cluster ℓ, possibly depending on parameters µℓ and Σℓ, and πℓ

is the probability that observation y i belongs to cluster ℓ. We typically assume multivariate
normal densities for fℓ(·). For example, for p = 1, and two clusters, we simplify (3.7) to

f(y) = f(y;π, µ1, µ2, σ1, σ2) =

n∏
i=1

π φ
(yi − µ1

σ1

) 1

σ1
+ (1− π) φ

(yi − µ2
σ2

) 1

σ2
. (3.8)

64 CHAPTER 3. CLUSTERING

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width : 0.63

n = 47 2 clusters Cj
j : nj | avei∈Cj si

1 : 16 | 0.72

2 : 31 | 0.58

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width : 0.54

n = 47 3 clusters Cj
j : nj | avei∈Cj si

1 : 16 | 0.71

2 : 11 | 0.27

3 : 20 | 0.55

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width : 0.53

n = 47 4 clusters Cj
j : nj | avei∈Cj si

1 : 3 | 0.34

2 : 16 | 0.57

3 : 12 | 0.34

4 : 16 | 0.67

Figure 3.8: Silhouette plots of swiss dataset for two, three and four clusters. (See
R-Code 3.7.)

Because we do not know cluster allocations, we estimate parameters using a so-called expectation-
maximization (EM) algorithm. Starting with initial estimates, the EM algorithm iterates through
these steps:

Estimation Step: find the expected value of the full data log-likelihood given the observed
data and current parameter estimates.

Maximization Step: Maximize the expression over current parameter values to find the next
parameter estimates.

Recall that the covariance matrix Σℓ determines the geometric features of the ℓth cluster.
Assuming different covariance matrix allows for differences in shape, volume, and orientation of
the clusters, unlike in the k-means method presented before.

On the other hand, if the observations of group ℓ, ℓ = 1, . . . , k, are iid realizations from
Np(µℓ,Σ), i.e., Σ1 = · · · = Σk. It can be shown that k-means clustering is equivalent to the
maximum likelihood framework for such a Gaussian case.

The formal nature of this method (i.e., assuming densities) allows for the use of different
model selection criteria for choosing the best model. The BIC is typically used.

As illustration, the next examples clusters eruptions data from the ‘Old Faithful’ geyser in
Yellowstone National Park, Wyoming.

Example 3.9. The ‘Old Faithful’ geyser in Yellowstone National Park is probably one of the
worlds most famous geysers. The geyser erupts spectacularly and regularly and is thus quite
predictive (nice feature for tourists). In R-Code 3.8 we visualize the duration of eruptions and
the corresponding waiting time. The scatterplot suggests two, maybe three clusters. Using the

3.4. LONGITUDINAL CLUSTERING 65

function Mclust() from the package mclust, we fit a mixture of bivariate Gaussian densities.
The function selects the best model automatically (here based on BIC), resulting in four clusters,
each with a bivariate but independent normal density (i.e., “VVI” model, resulting in individual
but diagonal matrices Σk).

The left panel of Figure 3.9 shows the four clusters. An advantage of a model based clustering
is the availability of cluster probabilities (each observation is assigned to the cluster with highest
probability). The observation (65, 4) is almost as likely to be classified in Cluster 1 or 3.

The right panel of Figure 3.9 visualizes fℓ in (3.7) based on four bivariate Gaussian densi-
ties. Cluster 2 seems missing but its mixture weight is only about 8% and thus not sufficiently
pronounced to be visible in a simple perspective plot.

As a final remark, note that there are many different versions of ‘Old Faithful’ available.
Often the data is visualized as waiting time versus the previous event duration (e.g., faithful
from the package datasets). ♣

50 60 70 80 90 100 110

1
2

3
4

5

waiting

du
ra

tio
n

Cluster 1
Cluster 2
Cluster 3
Cluster 4

waiting

duration

D
ensity

Figure 3.9: Clusters of geyser (left) and resulting bivariate density (right). (See
R-Code 3.8.)

3.4 Longitudinal Clustering

Quite often we have measurements over time for several individuals or at several measuring
locations. Examples for the former are growth curves for piglets, CD4 cell counts in patients,
such data is often called longitudinal data. For the latter, we may observe meteorological data in
different cities, the current yield of different bonds over time. We will discuss proper statistical
models for such time series data in Chapter 10.

In this section, we will discuss clustering approaches for such temporal data, without speci-
fying specific statistical models. The difference to the previous sections is the sequential nature
of data, i.e., we do have “curves” (often also referred to as functional data). These curves are

66 CHAPTER 3. CLUSTERING

R-Code 3.8 Model based clustering of geyser data. (See Figure 3.9.)

library(mclust)

data("geyser", package="MASS")

mcl <- Mclust(geyser)

summary(mcl)

--

Gaussian finite mixture model fitted by EM algorithm

--

##

Mclust VVI (diagonal, varying volume and shape) model with 4 components:

##

log-likelihood n df BIC ICL

-1330.1 299 19 -2768.6 -2798.7

##

Clustering table:

1 2 3 4

90 17 98 94

plot(mcl, what="classification")

legend("bottomleft", legend=paste("Cluster", 1:4), bty="n",

pch=mclust.options("classPlotSymbols")[1:4], # is 16 0 17 3

col=mclust.options("classPlotColors")[1:4]) # or some approx color

uncert <- which.max(mcl$uncertainty) # most difficult obsvation to cluster

points(geyser[uncert,], cex=2, lwd=2)

round(mcl$z[which.max(mcl$uncertainty),], 3) # prob of belonging to cluster

[1] 0.535 0.001 0.464 0.000

plot(mcl, what="density", type="persp")

mcl$parameters$pro # mixture weights pi_k

[1] 0.292835 0.079684 0.333923 0.293559

often quite smooth, i.e., consecutive observations are not independent. A further difficulty is
that we often have missing values. Due to the smoothness of the curves, it is often quite easy to
interpolate and much more efficient than to eliminate all observations of the corresponding time
point.

A clustering algorithm takes into account, that we work with data over time instead of
different variables of individuals. The dependence over time should be taken into account when
calculating distances between curves. At this point, we do not model such correlations and thus,
we do not discuss the technical details of a successful implementation of an algorithm. Many
difficulties discussed previously also apply to longitudinal clustering: often, the optimal number
of groups is not clear. Minor chances in the algorithmic parameters may lead to different group
allocations.

3.4. LONGITUDINAL CLUSTERING 67

There are several R packages that implement longitudinal clustering. The next example
illustrates the clustering of wind data with the package kml (standing for k-means for longitudinal
data). The package provides the functionality to deal with missing values and runs the algorithm
several times to help finding appropriate number of clusters.

Example 3.10. The storm Xynthia raged over Europe end of Febrary beginning of March 2010
and did significant damage in France and quite some damage in further European countries
(https://en.wikipedia.org/wiki/Cyclone_Xynthia). We analyze wind speed data for 71 stations in
Switzerland over a period of 95 hours, starting at 28.02.2010 at 00:00. R-Code 3.9 loads the
dataset and selects the mean wind speed as variable of interest. Wind speeds are quite variable
(top panel of Figure 3.9) and thus we will use a weighted running average to cluster the data,
that is, we represent the wind at time t as yt = (4yt + 3yt±1 + 2yt±2 + yt±3)/16.

Longitudinal clustering is done with the function kml(). Notice that the function kml()

changes (rather updates) its input argument directly. Therefore no assignment is required.
The right panel of Figure 3.9 shows the smooth wind speeds and superimposed the five cluster

means. The clusters represent the stations that experienced the storm in the following matter.
(A) no strong wind, hardly affected by the storm; (B) two moderate peaks for both waves of the
storm; (C) moderate peak for the first wave, pronounced “early” second peak, (D) permanently
high winds with a slightly more pronounced first wave (E) extremely affected by the storm.

The left panel of Figure 3.9 is one way to represent a graphical guidance to choose the number
of clusters. For each run of the algorithm nbRedrawing=12 the specified criterion (here ‘Calinski–
Harabatz’) is reported in decreasing order. Here, five groups seem optimal but six or four have
quite a similar criterion. In interactive R mode, the plot constructed with the function choice()

allows to switch between the number of clusters (among the computed ones) and further graphical
representations. As a side remark, depending on the criterion, even more groups are chosen (see
the output of plotAllCriterion(clkml))

With table() it is possible to investigate group sizes and their heritage. As shown in the R
output, four clusters are essentially clusters (A), (B), (C) and the union of (D) and (E). Similarly,
when constructing six groups we essentially create a high and low version of group (C).

The lower panel of Figure 3.9 shows the positions of the measurement station along with its
group. In cluster E are two stations, Chasseral and La Dôle, which are placed on the mountains
of the same name of the Jura Mountains. Most of the B cluster lies in the Swiss Alps, which
were not as affected by the storm. It is important to note that we do not work with peak wind
gusts which are mainly responsible for storm damage. The highest gusts occur in three different
groups, Altdorf in cluster (C) had more than 146 km/h peak gusts. ♣

R-Code 3.9: Longitudinal clustering with kml. (See Figure 3.10.)

load("download/sta121/Xynthia.RData")

str(data) # a few variables that we do not use.

Xynthia <- data.frame(Hour=data$Hour, Lat=data$Lat, Lon=data$Lon,

Station=data[,c("WMO.Station.Number")], WS=data[,c("Wind_speed.m.s.")])

https://en.wikipedia.org/wiki/Cyclone_Xynthia

68 CHAPTER 3. CLUSTERING

XynthiaWide <- reshape(Xynthia, idvar =c("Station","Lon","Lat"),

timevar="Hour", direction="wide")

WindRaw <- t(as.matrix(XynthiaWide[,-c(1:3)]))

matplot(WindRaw, col="gray", type="l", lty=1, ylab="Wind speed [m/s]")

smooth the values:

ma <- function(x){ filter(x, c(1,2,3,4,3,2,1)/16, sides=2)}

Wind <- apply(WindRaw, 2, ma) # smooth the wind speedsq

Wind <- Wind[!is.na(Wind[,1]),] # cut start and end due to filter

Now ready for kml:

library("kml")

set.seed(14)

clkml <- cld(t(Wind)) # construct the object for `kml`

kml(clkml, nbClusters=3:7, nbRedrawing=12) # now cluster!

choice(clkml) # if working in RStudio, call `x11()` first

plotAllCriterion(clkml) # Clustering is not very stable but

clkml5 <- getClusters(clkml, 5) # store cluster assignment

table(clkml5, getClusters(clkml, 4)) # essentially last group is splitted

##

clkml5 A B C D

A 25 0 0 0

B 1 23 0 0

C 0 0 12 0

D 0 2 0 6

E 0 0 0 2

table(clkml5, getClusters(clkml, 6)) # new group out of A, B, C

Now visualization, lower panel of Figure

library(mapdata)

map("worldHires", "Switzerland")

text(Info$Lon, Info$Lat, as.character(clkml5),

col=c(2,1,3,4,6)[as.numeric(clkml5)], cex=1.2)

Info[Info$WMO.Station.Number %in% XynthiaWide[clkml5=="E", "Station"],]

WMO.Station.Number Station_name Latitude Longitude Elevation

674 6605 CHASSERAL 47.117 7.0500 1595

707 6702 LA DOLE 46.417 6.0833 1670

MaxPerStation <- tapply(data$Max_gust, data$WMO.Station, max, na.rm=TRUE)

GustsNr <- order(MaxPerStation, decreasing=TRUE)[1:5]

points(Info$Lon[GustsNr], Info$Lat[GustsNr], col=7, cex=3.2, lwd=3)

tapply(MaxPerStation, clkml5, max)*3.6 # Max per Cluster in km/h

3.5. EXAMPLE: A BIOINFORMATICS DATA ANALYSIS 69

A B C D E

85.32 105.84 146.52 135.36 127.80

We conclude the section with some comments about missing values. Rubin (1976) classi-
fies missing values in three different categories according to the mechanism that governs the
missingness.

Missing completely at random (MCAR) indicates that an observation may be missing with
a certain probability but this probability is independent of the observation, measuring process,
covariates or suchlike. This setting is the easiest to address statistically but in reality often
unreasonable to assume. The package kml also assumes this missing data mechanism

Missing at random (MAR) can be understood as missing at random conditionally on other
variables at random. For example, they may be MCAR for the particular set of observations but
for a new run of the experiment, the mechanism may change and thus MCAR does not hold.

All cases that are not MCAR or MAR are termed missing not at random (MNAR). Unfortu-
nately, these cases are very dangerous, as they introduce a bias in the data. A specific example
is the lack of reporting a measurement because of a very low reading (e.g., low inferred ozone
levels over the Antarctic in the early 1980) .

There is another intuitive explanation of the differences. Let R be the probability that an
observation may be missing, Yobs and Ymis the random vectors indicating the observed and
missing observations then

MCAR : P (R | Yobs,Ymis) = P (R),

MAR : P (R | Yobs,Ymis) = P (R | Yobs), (3.9)

MNAR : P (R | Yobs,Ymis) = P (R | Yobs,Ymis), i.e., cannot be simplified.

3.5 Example: A Bioinformatics Data Analysis

This example is taken from Sabates-Bellver et al. (2007), whose abstract reads: “Colorectal
cancers are believed to arise predominantly from adenomas. Although these precancerous lesions
have been subjected to extensive clinical, pathologic, and molecular analyses, little is currently
known about the global gene expression changes accompanying their formation. To characterize
the molecular processes underlying the transformation of normal colonic epithelium, we compared
the transcriptomes of 32 prospectively collected adenomas with those of normal mucosa from the
same individuals. Important differences emerged not only between the expression profiles of
normal and adenomatous tissues but also between those of small and large adenomas.”

In this subsection we have a rudimentary look at the original data, so-called gene expression
data. Naturally, we cannot go into all the detail as this is beyond the scope of this document.

The original dataset as well as the relevant meta-data has been provided to us as raw text
files. The data matrix consists of 54675 rows and 64+1 columns and results in ≈ 17MB of data.
We only provide a reduced subset of the data.

In the experiment, tissue samples from normal mucosa and adenomas were collected from 28
patients. Four patients contributed two (two plus two) samples, resulting in 32 samples.

70 CHAPTER 3. CLUSTERING

0 20 40 60 80

0
5

10
15

20
25

W
in

d
sp

ee
d

[m
/s

]

0 20 40 60 80

0
5

10
15

20

Times

V

A A
A A

A A A
A A A A A A A A A A A

B

B
B

B
B

B B B B B
B

B B
B

B

B B B

C C

C
C

C C
C

C

C C

C

C

C
C C C C C

D
D D

D D
D

D
D D

D
D

D D D

D

D
D D

E

E

E

E
E

E
E

E

E
E

E

E
E E

E

E E

E

A B C D E: 35.2% : 33.8% : 16.9% : 11.3% : 2.82%

3 3
3 3

3
3 3 3 3 3 3 3 3

2 4 6 8 10

25
30

35
40

Calinski.Harabatz
Sorted

Rerolling

4
4

4 4

4 4 4
4 4

4

4

5
5 5

5 5
5

5 5 5

5

5

5

6
6

6 6 6
6 6

6 6 6
6

6

7

7
7

7 7

7
7

7

7 7

7

7

B

B
E

D

B

B

B

B

B
B

B

D

B

B

A D

B

B
A

B

A
D

BB

B
D B

C

B

B

D

C

C

D

B

E
B

B
A

C

C

A
A

A C

D
A

B
C
A

C
A

C

A
A A

AA A
A

A

C
A

A

A
C

A

C
A

A

A

Figure 3.10: Top: wind speed for 71 stations in Switzerland over a period of 95 hours,
starting at 28.02.2010 00:00. Middle: output of choice() with cluster criterion for
each run (left) and cluster means with observations (right). Bottom: stations and their
group attributes. The stations with five largest peak gusts have been highlighted with
a yellow circle. (See R-Code 3.9.)

3.5. EXAMPLE: A BIOINFORMATICS DATA ANALYSIS 71

We load the dataset sabates_bellver_U133_all.txt and log2 transform the data. In order
to find differences between adonomas and normal tissue, we select the probes (“genes”) that are
most prominently different. That means, we determine all the significant probes (α = 0.01; Holm
correction) and reduce the dataset to these probes.

dim(dat <- read.csv("download/sta121/sabates_bellver_U133_all.txt"))[1]

rma <- as.matrix(log(dat[,-1], 2))

p.values <- apply(rma, 1, function(y) t.test(y[1:32],y[33:64], var=T)$p.v)

p.adj <- p.adjust(p.values, method="holm")

probes <- dat$Probes

rownames(rma) <- probes

inter <- rma[p.adj < 1e-13,]

realistically, a slightly larger value should be used

We only use probes that are highly significant. Notice that we have adjusted the p-value
using a Holm correction. Instead of using probes according to a p-value, we can select probes
that exhibit a considerable fold change, possibly augmented by some genes that we know to be
of interest.

dim(inter)

[1] 831 64

type <- factor(rep(c("nm","po"), each=32))

indn <- colnames(inter)

library(ade4)

pr4 <- dudi.pca(t(inter), scan=F, scale=T)

s.class(pr4$li, type,col=3:4)

s.label(pr4$li, label=indn, add.plot=T)

The command hclust() performs a hierarchical cluster analysis on a set of dissimilarities.
Based on the correlation matrix, we can plot the result of hclust() and compare it to the biplot.

plot(hc <- hclust(dist(cor(rma))))

cu <- cutree(hc, 4)

covarsraw <- read.csv("download/sta121/sabates_bellver_table1.csv")

str(covarsraw,strict.width="cut")

'data.frame': 32 obs. of 12 variables:

$ Patient : chr "GL1" "GL2" "PR" ""..

$ Age : int 49 49 74 69 69 57 5..

$ Sex : chr "M" "M" "F" "M" ...

72 CHAPTER 3. CLUSTERING

 d = 10

 nm po

 nm_02

 nm_03 nm_05 nm_06

 nm_07 nm_08
 nm_09

 nm_10

 nm_11
 nm_12 nm_13

 nm_15

 nm_16

 nm_17

 nm_18

 nm_19

 nm_20

 nm_22

 nm_24

 nm_26

 nm_27
 nm_28

 nm_29
 nm_30 nm_32

 nm_33

 nm_34

 nm_35
 nm_38

 nm_39

 nm_41
 nm_42

 po_02
 po_03

 po_05

 po_06

 po_07

 po_08

 po_09
 po_10

 po_11
 po_12

 po_13

 po_15

 po_16

 po_17

 po_18

 po_19

 po_20

 po_22 po_24

 po_26

 po_27 po_28

 po_29

 po_30 po_32

 po_33
 po_34 po_35

 po_38

 po_39

 po_41

 po_42

po
_1

3
po

_3
3

po
_3

4
po

_3
5

po
_0

8
po

_1
0

po
_0

5
po

_0
6

po
_1

1
po

_1
7

po
_2

7
po

_4
2

po
_0

7
po

_1
6

po
_3

9
po

_1
5

po
_1

9
po

_2
9

po
_3

0
po

_3
8

po
_1

8
po

_2
0

po
_2

8
po

_0
9

po
_2

4
po

_1
2

po
_0

2
po

_4
1

po
_0

3
po

_3
2

po
_2

2
po

_2
6

nm
_3

9
nm

_3
8

nm
_4

1
nm

_2
2

nm
_1

1
nm

_1
9

nm
_1

8
nm

_2
4

nm
_0

3
nm

_1
5

nm
_1

7
nm

_4
2

nm
_2

8
nm

_2
6

nm
_2

7
nm

_0
9

nm
_1

0
nm

_3
2

nm
_1

3
nm

_1
2

nm
_2

9
nm

_3
0

nm
_3

3
nm

_3
4

nm
_3

5
nm

_0
7

nm
_0

8
nm

_1
6

nm
_2

0
nm

_0
2

nm
_0

5
nm

_0
60.

1
0.

5

Cluster Dendrogram

hclust (*, "complete")
distcorrma

H
ei

gh
t

Figure 3.11: PCA (top) and cluster analysis (bottom).

$ Colon.segment.involved : chr "D" "S" "S" "S" ...

$ Maximum.adenoma.diameter : int 10 10 20 10 20 15 3..

$ Microscopic.appearance : chr "T-V" "T-V" "T-V" "..

$ Highest.degree.of.dysplasia : chr "H" "L" "H" "H" ...

$ Degree.of.dysplasia : chr "H" "L" "H" "H" ...

$ No.adenomas : int 9 9 2 10 10 1 1 2 2..

$ No.previously.excised.adenomas : chr "4" "4" "-" "-" ...

$ No.previous.synchronous.hyperplastic.polyps: int 1 1 0 1 1 1 1 2 2 0..

$ Familiarity.for.colorectal.cancer : chr "Mother, 70" "Moth"..

dim(covarsraw)

[1] 32 12

covars <- with(covarsraw,

data.frame(Age=c(Age,Age), Sex=rep(Sex,2),

segm=factor(c(Colon.segment.involved,Colon.segment.involved)),

hist=factor(c(rep(0,32),(Familiarity.for.colorectal.cancer=="No"))))

)

3.5. EXAMPLE: A BIOINFORMATICS DATA ANALYSIS 73

heatmap(inter, col=topo.colors(100), margin=c(2,2), labRow=NULL,

ColSideColors=heat.colors(2)[rep(as.numeric(covarsraw$Sex),2)])

See also:

library("gplots")

heatmap.2()

There is no surprise that in the heatmap (Figure 3.12) we see strong difference between the
two groups (NM and PO) as we have selected the probes with the strongest differences. The
horizontal stripes are induced by the probe clustering. The red blocks do not have a pattern.
That means that there is no structure to the patients by sex.

We improve the PCA by accounting for sex or we can construct a PCA for each group size
of the adenomas.

library(ade4)

pr4 <- dudi.pca(t(inter), scan=F, scale=T)

s.class(pr4$li, factor(as.numeric(covarsraw$Sex)+rep(c(0,2),each=32)),

col=1:4, ylim=c(-10,10))

tmp <- factor((covarsraw$Max>20) + (covarsraw$Maximum.adenoma.diameter >=20))

pr5 <- dudi.pca(t(inter[,33:64]), scan=F, scale=T)

s.class(pr5$li, tmp, col=1:4, ylim=c(-10,10))

Naturally, depending on the exact selection of probes, we get slightly different results. Hence,
the figures here do not exactly correspond with those in the original paper.

It is possible to link probes to gene names, locations (on the chromosomes), etc. The following
code snippet gives a glance of how to perform such an analysis.

library(hgu133a2.db) # see below on how to install this package

x <- hgu133a2GENENAME

Get the probe identifiers that are mapped to a gene name

mapped_probes <- mappedkeys(x)

xx <- as.list(x[mapped_probes]) # Convert to a list

xx[1:5]

x <- hgu133a2CHRLOC

Get the probe identifiers that are mapped to chromosome locations

mapped_probes <- mappedkeys(x)

xx <- as.list(x[mapped_probes]) # Convert to a list

xx$`227475_at` # probe found above... but it is not mapped!

74 CHAPTER 3. CLUSTERING

Warning in heatmap(inter, col = topo.colors(100), margin = c(2, 2),

labRow = NULL, : NAs introduced by coercion

po
_1

3
po

_3
9

po
_2

4
po

_3
4

po
_0

8
po

_2
7

po
_1

1
po

_1
7

po
_0

9
po

_1
9

po
_4

2
po

_0
7

po
_4

1
po

_3
5

po
_2

6
po

_2
2

po
_0

3
po

_1
0

po
_2

9
po

_3
8

po
_3

2
po

_2
0

po
_1

6
po

_1
5

po
_0

5
po

_3
0

po
_2

8
po

_1
2

po
_3

3
po

_0
2

po
_1

8
po

_0
6

nm
_3

3
nm

_1
7

nm
_1

5
nm

_3
5

nm
_3

4
nm

_1
8

nm
_2

0
nm

_0
8

nm
_0

7
nm

_0
9

nm
_1

1
nm

_3
0

nm
_3

2
nm

_2
9

nm
_2

7
nm

_2
4

nm
_0

6
nm

_0
2

nm
_4

2
nm

_0
3

nm
_1

6
nm

_4
1

nm
_1

0
nm

_2
6

nm
_2

8
nm

_0
5

nm
_1

3
nm

_3
8

nm
_3

9
nm

_1
2

nm
_1

9
nm

_2
2

205950_s_at
208383_s_at
200088_x_at
221896_s_at
200807_s_at
217768_at
201592_at
202364_at
200732_s_at
217989_at
212741_at
203914_x_at
236001_at
226594_at
208671_at
201563_at
214096_s_at
202475_at
203721_s_at
211762_s_at
201013_s_at
211951_at
201327_s_at
200873_s_at
213175_s_at
204386_s_at
202503_s_at
209104_s_at
224601_at
204616_at
207607_at
206574_s_at
1559884_at
231626_at
238177_at
211253_x_at
207530_s_at
228885_at
209613_s_at
209735_at
205464_at
1554522_at
212398_at
204613_at
209964_s_at
231052_at
204931_at
215118_s_at
217967_s_at
212956_at
203498_at
225328_at
1558143_a_at
227475_at
222695_s_at
1553764_a_at
204944_at
204033_at
218305_at
205394_at
223062_s_at
224523_s_at
202894_at
222116_s_at
218412_s_at
202804_at
223176_at
229215_at
209835_x_at
201719_s_at
201479_at
227322_s_at
203022_at
225554_s_at
224721_at
207515_s_at
212378_at
219148_at
205126_at
228355_s_at
201478_s_at
225866_at
203344_s_at
225626_at
225622_at
220180_at
237400_at
227561_at
209357_at
204834_at
230264_s_at
1554450_s_at
225941_at
211896_s_at
223168_at
235651_at
212724_at
213766_x_at
201348_at
212521_s_at
202808_at
220266_s_at
211385_x_at
212226_s_at

Figure 3.12: Heatmap, see text.

3.6 Bibliographic remarks

The package cluster is very established and provides many features. For example, the function
daisy allows to calculate many different types of distances. The output of a cluster analysis is
not an object of class hclust() but different methods exist.

The packages vegan and ade4 are very rich and contain many functions for multivariate data
analysis. The package made4 is an extension to ade4, tailored for analyses in bioinformatics.

Bioconductor (www.bioconductor.org) is a open source software project for the analysis of
genomic data. The vast majority of Bioconductor components are R-packages, which inherently

http://www.bioconductor.org

3.7. EXERCISES AND PROBLEMS 75

Warning in factor(as.numeric(covarsraw$Sex) + rep(c(0, 2), each = 32)):

NAs introduced by coercion

Error in s.class(pr4$li, factor(as.numeric(covarsraw$Sex) + rep(c(0, 2),

: Non equal row numbers 64 0

 d = 10

 0
 1

 2

Figure 3.13: PCAs. The spacing of the grid is d = 10 units.

run in a classical R environment. To install a Bioconductor package, say made4, the following
lines are necessary:

source("http://bioconductor.org/biocLite.R")

biocLite("made4")

3.7 Exercises and Problems

Problem 3.1 (Clustering) We use again the protein.txt dataset, available from https://www.
math.uzh.ch/furrer/download/sta121/protein.txt.

a) Conduct a cluster analysis, using all the three agglomeration methods seen during the
lesson. Discuss the figures.

b) Select one method. Is it possible to cut the tree such that the resulting classification can
be interpreted in a meaningful way?

c) Compare the results obtained from the application of the PCA analysis and a clustering
method. Can you see any similarities or dissimilarities in the analysis performed?

Problem 3.2 (Differences between clustering approaches with artificial data) In this problem,
we want to understand how the different agglomerative schemes of hierarchical clustering as well

https://www.math.uzh.ch/furrer/download/sta121/protein.txt
https://www.math.uzh.ch/furrer/download/sta121/protein.txt

76 CHAPTER 3. CLUSTERING

as a k-means form their clusters. For both situations below, try to look at the scatterplot of the
data and cluster mentally with single and complete linkage, Ward and k-means.

a) Generate artificial data as below and create four clusters. Interpret.

set.seed(17)

pts <- rbind(cbind(rnorm(49), rnorm(49)), c(3, 3))

b) Generate artificial data as below and create four clusters. Interpret the result.

set.seed(17)

pts <- cbind(rep(c(1, 2.5, 4.5, 7.5), each=10), 1:10) + rnorm(40, sd=.05)

Problem 3.3 (Univariate K-means function in R)
Write a function called my.kmean(), which takes as an input a vector x and the number of

clusters k, does the k-means clustering in one dimension, returns a data.frame with the original
x as one column, the assigned cluster numbers as the second column.

For simplicity, you can specify the number of iterations after which the algorithm stops.
Apply your function to x<-c(1,2,1,3,2,6,5,7,6,12), k=3.

Chapter 4

Discrimination and Classification

Given data consisting of different, known, groups, we discuss how we can find
simple rules (in terms of the variables of the data) that characterize the groups.
This characterization can be used as a simple classifier for observations without a
known or given group attribute.

Learning goals for this chapter:

⋄ Understand the basic setup of a classification problem

⋄ Explain and run in R the linear and quadratic discrimination for Gaussian
case

⋄ Define and apply in R Fisher’s linear discrimination rule

⋄ Explain and apply in R classification trees; interpret the outcome

⋄ Describe bagging and boosting

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter04.R.

4.1 Classification in the Gaussian Case

Classification is quite similar to clustering and we will refer quite often to the previous chapter.
Compared to the case of clustering, we now know the group attribute of all observations, i.e.,
we have data from different groups or populations. The goal is to find a “separation” rule that
separates the space of the variables or observations according to the different groups. In practice,
these separation rules are hard to describe in closed form and we often reduce the setting to be
able to predict group membership for arbitrary values of the space.

77

http://www.math.uzh.ch/furrer/download/sta121/chapter04.R

78 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

We illustrate discrimination first with Gaussian random variables. More specifically, suppose
we have observations from Y1, . . . ,Yn1

iid∼ Np(µ1,Σ) and Yn1+1, . . . ,Yn1+n2

iid∼ Np(µ2,Σ) avail-
able for discrimination. Then we observe a new value y . The goal is to determine to which of
the two groups the realization y belongs, i.e., to classify y . In other words, to find a function
G(·), such that G(y) = ℓ with ℓ the group label. In the ideal setting, we not only argue that y
stems from group ℓ but we also attribute a probability that y is a realization of group ℓ.

4.1.1 Linear Discrimination

As a motivating illustration, consider the simple case where we observe two samples from distri-
butions N (µ1, σ

2) and N (µ2, σ
2). Intuitively, we partition the real line such that future observa-

tions are classified by the partition they fall into. This particular case is illustrated in Figure 4.1,
where the real line is separated into the segments]−∞, (µ1+µ2)/2[and](µ1+µ2)/2,∞[because
the two densities intersect at (µ1 + µ2)/2. Naturally, if the means are not known, we would use
plug-in estimates.

Example 4.1. We consider Y1 ∼ N (−1, 1) and Y2 ∼ N (1.5, 1). The densities intersect at
1/4 = (µ1 + µ2)/2, yielding equal areas on corresponding sides (see Figure 4.1).

Suppose we do not know the corresponding means and variances but have samples of size 50.
The estimates are close to the unknown truth and yield a cutoff of 0.29314, with 7 and 3
missclassifications. ♣

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

Figure 4.1: Linear discrimination in one dimension: two Gaussian densities. Discrim-
ination has partitioned the observations at 1/2 because (µ1 + µ2)/2 = 1/2, indicated
with the blue vertical line. (See R-Code 4.1.)

The concept of linear discrimination analysis (LDA) can be extended to k different groups,
each with p observed variables. In two dimensions, we describe the problem as such: find β0 and
β1 such that x2 = β0+β1x1 partitions the plane. Here the partition is a linear combination, and
thus we call the method linear discrimination.

In the case of Gaussian bivariate densities (with equal variances) the parameters β0 and β1

can be found by

4.1. CLASSIFICATION IN THE GAUSSIAN CASE 79

R-Code 4.1 Linear discrimination of Gaussian densities in one dimension. (See Figure 4.1.)

x <- seq(-5, 5, l=100)

plot(x, dnorm(x, -1), type="l", ylab="f(x)")

lines(x, dnorm(x, 1.5), col=2)

abline(v=1/4, col=4)

set.seed(14)

y1 <- rnorm(50, -1) # empirical

y2 <- rnorm(50, 1.5)

c(mean(y1), mean(y2), (mean(y1)+mean(y2))/2)

[1] -0.79605 1.38234 0.29314

c(sum((mean(y1)+mean(y2))/2<y1), sum((mean(y1)+mean(y2))/2>y2))

[1] 7 3

• maximizing the likelihood of the density, or

• minimizing the error of wrong classification.

The result is illustrated in Example 4.2.

Example 4.2. R-Code 4.2 illustrates linear discrimination in the case of bivariate Gaussian
densities with shifted means. The discrimination line has intercept −2 and slope 2/3. The
direction onto we project is given by

(−2
3

)
= Σ−1(µ1 − µ2). The discrimination line passes

through the center of the line between the means
(
3
0

)
= (µ1 + µ2)/2. Hence, the discrimination

line solves (−2, 3)
(
x−3
y−0

)
= 0.

If we sample from the densities and estimate the parameters, the discrimination slightly
changes, as illustrated in the right panel of Figure 4.2. Notice that we have not determined the
discrimination line directly but “predicted” a fine grid through ♣

R-Code 4.2: Linear classification in the setting of bivariate Gaussian densities with and
without known parameters. (See Figure 4.2.)

library(mvtnorm)

mu1 <- c(2, 1)

mu2 <- c(4,-1)

Sigma <- matrix(c(6,2,2,2), 2)

x1 <- seq(-3, to=7, length=99)

x2 <- seq(-4, to=4, length=100)

grid <- expand.grid(x=x1, y=x2)

dens1 <- matrix(dmvnorm(grid, mean=mu1, sigma=Sigma), 99, 100)

dens2 <- matrix(dmvnorm(grid, mean=mu2, sigma=Sigma), 99, 100)

contour(x1, x2, dens1, nlevels=7, drawlabels=F, xlab="x1", ylab="x2")

80 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

contour(x1, x2, dens2, nlevels=7, drawlabels=F, col=2, add=T)

(mu <- (mu1+mu2)/2)

[1] 3 0

(as <- solve(Sigma, mu1-mu2))

[1] -1 2

abline(a=as[1]/as[2]*mu[1]+mu[2], b=-as[1]/as[2], col=4, lwd=2)

points(rbind((mu1+mu2)/2), col=4, pch=19)

Construct right panel based on empirical quantities

library(MASS)

set.seed(17)

N <- 25

s1 <- rmvnorm(N, mean=mu1, sigma=Sigma)

s2 <- rmvnorm(N, mean=mu2, sigma=Sigma)

obs <- rbind(s1, s2)

colnames(obs) <- c("x", "y")

group <- factor(rep(c("a","b"), each=N))

tmp <- lda(obs, grouping=group) # from package MASS

cll <- as.numeric(predict(tmp, grid)$class) # predict the fine grid

image(x1, x2, matrix(cll, 99, 100), col=c(rgb(0,0,0,.2), rgb(1,0,0,.3)))

points(obs, col=group, pch=20)

abline(a=as[1]/as[2]*mu[1]+mu[2], b=-as[1]/as[2], col=4, lwd=2) # as above

x1

x2

−2 0 2 4 6

−
4

−
2

0
2

4

−2 0 2 4 6

−
4

−
2

0
2

4

x1

x2

Figure 4.2: Linear discrimination in the case of bivariate densities with known pa-
rameters (left) and in the case of samples (right). The separation based on the (known)
densities is indicated with the blue line whereas the empirical separation with the gray
area. (See R-Code 4.2.)

4.1. CLASSIFICATION IN THE GAUSSIAN CASE 81

4.1.2 Quadratic Discrimination

In the case of unequal variances, linear discrimination may not be sufficient. As a motivation,
Figure 4.3 shows the log-densities of N (−1, 1) and N (2, 4). It is obvious that a single separating
line will not classify new observations as accurately as for the simpler case.

Mathematically, when calculating the values for which the (log-)densities intersect, the quad-
ratic terms in the kernel of the Gaussian density do not vanish and thus one has to solve the
quadratic equation

y2
(1

σ21
− 1

σ22

)
− 2y

(µ1
σ21
− µ2
σ22

)
+
(µ21
σ21
− µ22
σ22

)
− 2 log

σ2
σ1

= 0. (4.1)

Hence the name quadratic discrimination analysis (QDA).
Naturally, if σ2 = σ1, the unique root of (4.1) is at (µ1 + µ2)/2, as seen in last section. For

more than two densities, several roots have to be calculated but not all of these might be relevant
or used for the discrimination.

In higher dimensions, the analytic solution does not have a simple closed form and rely again
on numeric approaches. The next two examples show the numerical approaches based on the
functions uniroot() and MASS::qda() for one and two dimensions, respectively.

−4 −2 0 2 4

1e
−

04
1e

−
02

1e
+

00

x

lo
g

f(
x)

Figure 4.3: Discrimination in one dimension with unequal variances. The blue verti-
cal lines discriminate the densities N (−1, 1) (black) and N (2, 4) (green). Red dotted
density is as in Figure 4.1. (See R-Code 4.3.)

Example 4.3. Although we would have closed form solutions for the roots of equation (4.1), R-
Code 4.3 uses a numerical approach for the densities N (−1, 1) and N (2, 4). If we would include
N (1.5, 1) as third density, only small (< 4.42) or large values (< 2.73) would be attributed to
N (2, 4), as seen in Figure 4.3 (for better visiblity, with log densities). ♣

82 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

R-Code 4.3: Gaussian densities with different variances. (See Figure 4.3.)

x <- seq(-5,5, l=100)

plot(x, dnorm(x, -1), type="l", ylab="log f(x)", log="y", ylim=c(1e-4,1))

lines(x, dnorm(x, 1.5), col=2, lty=2)

lines(x, dnorm(x, 2, sd=2), col=3)

numerically determine intersections:

quadfun <- function(x, m1, m2, s1, s2) x^2*(1/s1^2-1/s2^2) -

2*x*(m1/s1^2-m2/s2^2) + (m1^2/s1^2-m2^2/s2^2) - 2*log(s2/s1)

(ints <- c(uniroot(quadfun, m1=-1, m2=2, s1=1, s2=2, c(-5, 0))$root,

uniroot(quadfun, m1=-1, m2=2, s1=1, s2=2, c(0, 1))$root))

[1] -4.41834 0.41833

because there are two zeros, we need two calls to uniroot...

abline(v=ints, col=4)

Example 4.4. We now compare linear and quadratic discrimination with three different groups,
where two of the three share the same covariance matrix (actually, we use the same distributions
as in Example 4.2). We notice that the boundaries between two groups are very similar between
LDA and QDA if the covariance matrices are identical. ♣

R-Code 4.4: Linear and quadratic discrimination based on data from three different bi-
variate Gaussian densities with different covariances. (See Figure 4.4.)

mu3 <- c(-1,2) # third mean

Sigma3 <- matrix(c(2, -1.2, -1.2, 4), 2, 2) # and covariance

s3 <- rmvnorm(N, mean=mu3, sigma=Sigma3) # sample thereof

obs <- rbind(s1, s2, s3) # collect all observations

colnames(obs) <- c("x", "y")

group <- factor(rep(c("a","b","c"), each=N)) # define groups

tmp <- lda(obs, grouping=group)

cll <- predict(tmp, grid)$class

image(x1, x2, matrix(as.numeric(cll), 99, 100), # partition of space

col=c(rgb(0,0,0,0.2), rgb(1,0,0,.3), rgb(0,1,0,.3)))

points(obs, col=group, pch=20)

densgrid3 <- dmvnorm(grid, mean=mu3, sigma=Sigma3) # we add contour lines

dens3 <- matrix(densgrid3, 99, 100)

contour(x1, x2, dens1, nlevels=7, col=1, add=T, drawlabels=F)

contour(x1, x2, dens2, nlevels=7, col=2, add=T, drawlabels=F)

contour(x1, x2, dens3, nlevels=7, col=3, add=T, drawlabels=F)

Now quadratic discrimination:

4.1. CLASSIFICATION IN THE GAUSSIAN CASE 83

tmp <- qda(obs, grouping=group)

clq <- predict(tmp, grid)$class

image(x1,x2, matrix(as.numeric(clq), 99, 100),

col=c(rgb(0,0,0,0.2), rgb(1,0,0,.3), rgb(0,1,0,.3)))

points(obs, col=group, pch=20)

−2 0 2 4 6

−
4

−
2

0
2

4

x1

x2

−2 0 2 4 6

−
4

−
2

0
2

4

x1

x2

Figure 4.4: Linear (left) and quadratic (right) discrimination in the case of bivariate
densities from three samples (based on different covariances). Densities indicated with
black and red isolines are as in Figure 4.2. In the right panel contour plots have been
omitted for better visibility. (See R-Code 4.4.)

4.1.3 Likelihood and Bayesian Discrimination

Likelihood discrimination partitions the space such that at each location the density of the
corresponding class is maximized.

In fact, this is equivalent to the discrimination rule we have applied in the last paragraph.
Naturally, likelihood discrimination is not limited to a Gaussian distribution as assumed until
here. A new observation is assigned to the group that maximizes the likelihood, i.e., the point is
assigned to the group with the highest density at that point. Hence, for likelihood classification
we “only” need (parametric form) densities. If exact parameters are unknown, but samples
are available, the parameters can first be estimated and then likelihood discrimination applied.
For non-Gaussian cases, the optimization problem might be complicated, especially in higher
dimensions.

In Bayesian discrimination we additionally assign prior probabilities to the corresponding
classes. In practice, these are often chosen proportional to the number of observations. This
choice reflects the different uncertainties resulting from the different (group) sample sizes.

84 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

In the previous examples, we can add prior believe by setting the prior argument in the
functions lda() and qda().

4.1.4 Fisher’s Linear Discrimination Rule

If we do not have parametric densities for the individual groups, a standard likelihood approach
cannot be be used for classification. An alternative is to search for a hyperplane a such that
the projected observations a⊤y1, . . .a⊤yn can be easily discriminated. Figure 4.5 illustrates
this with three different “hyperplanes” a = (0.42,−0.52)⊤, b = (1, 0)⊤ and c = (0, 1)⊤. The
projection on the y-axis (c = (0, 1)⊤) is useless as both groups have a similar range of y values.
Projecting on the x-asis yields a much better result and the value 44 seems to separate the two
groups quite well with only two individuals wrongly placed. Best is the projection based on a ,
the two groups are nearly perfectly separated and within each group, the observations cluster
tightly.

30 35 40 45 50 55 60

10
15

20
25

x

y

Figure 4.5: Illustration of projections onto two lines (hyperplanes of dimension one)
used for discrimination. The line given by a = (0.42,−0.52)⊤ is optimal (Fisher’s linear
discrimination rule) whereas the ones given by b = (1, 0)⊤ and c = (0, 1)⊤ are not. The
code to construct the is given in the online supplement.

The discrimination is based on a sum of squares decomposition:

total sums of squares

= between-groups sum of squares + within-groups sum of squares (4.2)

= a⊤Ba + a⊤Wa , (4.3)

where the matrices B and W are the between- and within-groups (empirical) covariances. The
solution is to maximize the first and to minimize the second term. This is equivalent to maximiz-
ing the ratio a⊤Ba

/
a⊤Wa and thus the solution is the eigenvector associated with the largest

eigenvalue of W−1B. This approach is called Fisher’s linear discrimination rule.
In case of two groups with distributions with equal variances Np(µ1,Σ) and Np(µ2,Σ),

Fisher’s linear discriminate rule is identical to linear discrimination.

4.2. CLASSIFICATION TREES 85

4.2 Classification Trees

In this section we look at so-called classification trees or decision trees as a classifier. This
method addresses the problem of group prediction for new observations by breaking down the
multivariate data into successive univariate rules that best separate the data.

A classification tree is constructed as follows. At each consecutive step the algorithm sepa-
rates a subset of all individuals into two groups, augmenting the purity within each group, and
thus creating an new node in the tree. The separation is based on a single variable that best dis-
criminates between one group and all others. The assessment of the purity can be accomplished
by a criterion like Gini impurity, information gain, variance reduction, etc. Although we do not
require distributional assumptions, we can still use the multinomial distribution of the classes
within each group and apply entropy type arguments. The assessment rule also determines when
to stop separating, i.e., when a terminal node has been reached.

We want to avoid overfitting and overly complex trees that do not generalize well. Different
algorithms address this overfitting differently. For example, they may apply pruning after the
tree has been constructed. That means we reduce the size of classification trees by removing
branches that may improve the overall classification accuracy. The next example illustrates the
idea of a classification tree.

Example 4.5. We use the Penguins dataset to construct a classification tree as implemented
by the function ctree() from the package partykit (see R-Code 4.5). When using the four
numeric variables bill_length, bill_depth, flipper_length and body_mass the resulting tree
has six inner nodes and seven terminal nodes. Some of the terminal nodes classify the penguins
perfectly (e.g., [12]), others not (e.g., [13]).

The visualization of the variable separation is easier when only two variables are used and
thus we redo a classification based on the variables bill_length, bill_depth. Figure 4.6 shows
a graphical representation of the classification tree based as a dendrogram and the corresponding
separation of the plane. For simplicity we omitted the two terminal nodes that lead to the same
prediction in their partitions ([3][4] and [15][16]). ♣

R-Code 4.5: Regression tree for the peng data.

library(partykit)

print(rt4 <- ctree(species ~ bill_length + bill_depth + flipper_length +

body_mass, data=Penguins))

##

Model formula:

species ~ bill_length + bill_depth + flipper_length + body_mass

##

Fitted party:

[1] root

| [2] flipper_length <= 206

| | [3] bill_length <= 43.2

86 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

| | | [4] bill_length <= 42.3: Adelie (n = 139, err = 1%)

| | | [5] bill_length > 42.3: Adelie (n = 11, err = 36%)

| | [6] bill_length > 43.2

| | | [7] bill_depth <= 19.6

| | | | [8] bill_depth <= 17: Chinstrap (n = 8, err = 12%)

| | | | [9] bill_depth > 17: Chinstrap (n = 43, err = 2%)

| | | [10] bill_depth > 19.6: Chinstrap (n = 12, err = 25%)

| [11] flipper_length > 206

| | [12] bill_depth <= 17.3: Gentoo (n = 122, err = 0%)

| | [13] bill_depth > 17.3: Chinstrap (n = 7, err = 29%)

##

Number of inner nodes: 6

Number of terminal nodes: 7

plot(rt4, margin=.2) # plot is easier to interpret.

Based on bill variables only:

rt2 <- ctree(species ~ bill_length + bill_depth, data=Penguins)

plot(rt2, margin=.3)

print(rt2) # uncomment to get proper node numbering

id <- as.numeric(Penguins$species)

plot(bill_length~bill_depth, data=Penguins, col=id, pch=id)

abline(h=42.35) # [2][5] # to better visualize <= vs >, we add 0.05

lines(c(16.35, 16.35), c(42.35, 62)) # [6][7]

lines(c(16.35, 24), c(44.15, 44.15)) # [8][9]

lines(c(17.35, 17.35), c(44.15, 62)) # [10][13]

lines(c(16.35, 17.35), c(48.15, 48.15)) # [10][13]

Figure 4.5 illustrates the biggest disadvantage of classification tree: the resulting subspace
is hard to interpret and the discrete separation boundaries are counter-intuitive. However, re-
gression trees are typically very fast to construct. Hence, decision trees are commonly used in
situations where we have many predictors and/or complex, unknown relationships between the
data and class. Historically, classification trees refer to outcome variables that encode the group
and regression trees refer to when the outcome is an arbitrary real number. The term Classifi-
cation And Regression Trees (CARTs) refers to both of the above procedures. There are many
algorithms developed in the machine learning literature.

4.3 Bagging, Boosting and More

Bagging is an abbreviation of bootstrap aggregation. Bagging tries to reduce the prediction
variance by artificially increasing the training data. A bootstrap approach resamples from the
original (training) dataset and thus creates a set of additional training sets of equal sizes. To
each of the samples a simple classification algorithm is applied. While the predictive power
of the method is not improved (we use the same type of algorithm for the original and the

4.3. BAGGING, BOOSTING AND MORE 87

bill_length
p < 0.001

1

≤ 42.3 > 42.3
bill_depth
p < 0.001

2

≤ 16.1 > 16.1

Node 3 (n = 8)

Adelie

0
0.4
0.8

Node 4 (n = 135)

Adelie

0
0.4
0.8

bill_depth
p < 0.001

5

≤ 16.3 > 16.3

Node 6 (n = 111)

Adelie

0
0.4
0.8

bill_length
p < 0.001

7

≤ 44.1 > 44.1

Node 8 (n = 14)

Adelie

0
0.4
0.8

bill_depth
p < 0.001

9

≤ 17.3 > 17.3
bill_length
p = 0.023

10

≤ 48.1 > 48.1

Node 11 (n = 12)

Adelie

0
0.4
0.8

Node 12 (n = 8)

Adelie

0
0.4
0.8

bill_length
p = 0.021

13

≤ 46 > 46

Node 14 (n = 7)

Adelie

0
0.4
0.8

Node 15 (n = 47)

Adelie

0
0.4
0.8

14 16 18 20

35
40

45
50

55
60

bill_depth

bi
ll_

le
ng

th

Figure 4.6: Dendrogram of the peng regression tree based on variables bill_depth

and bill_right (top) and associated regression tree partition (bottom). (See R-
Code 4.5.)

bootstrapped test sets), the variance in the prediction is reduced. Thus bagging can be seen as
a meta-algorithm. Through the averaging approach bagging typically prevents overfitting. In
fact, bagging is a special case of a so-called model averaging approach.

The next example illustrates bagging using the Penguin dataset by carefully comparing the
predictive capabilities which we first outline.

To compare a set of predicted class labels with observed ones, it is possible to display the
so-called confusion matrix : a matrix with ijth entry giving the number of predicted class i for
observed class j. Assume that the confusion matrix is denoted with conf.mat. A good classi-
fication yields a almost diagonal matrix confusion matrix. Other measures are as follows. The
accuracy is the ratio of all correctly identified to all possible cases, i.e., sum(diag(conf.mat))/
sum(conf.mat). The precision or true positive predictive value for each class is the ratio of cor-
rectly identified to all predicted in that particular class, i.e., diag(conf.mat)/rowSums(conf.mat).
Similarly, the sensitivity or recall for each class is the ratio of correctly identified to all observed
in that class, i.e., diag(conf.mat)/colSums(conf.mat).

88 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

Example 4.6. We will illustrate bagging using the Penguin dataset based on both bill variables.
To compare the approaches, we set aside a randomly selected subset (roughly 33%) to use in
prediction.

In R-code 4.6, we use the function bagging() from the package adabag. For bagging, we set
the number of iterations to mfinal=11 as more iterations do not change predictions.

The predict() function returns an entire list containing, among others, the class proba-
bilities, predicted class and the confusion matrix. We use the latter to calculate the accuracy,
precision and sensitivity. ♣

R-Code 4.6: Bagging based classification of the Penguins data.

set.seed(14)

sel <- sample(nrow(Penguins), 224) # define subset for training

train <- Penguins[sel, c(1,3:4)]

test <- Penguins[-sel, c(1,3:4)]

library("adabag")

peng.bagging <- bagging(species~., data=train, mfinal=11)

bagging.pred <- predict(peng.bagging, newdata=test)

print(conf.mat <- bagging.pred$confusion) # confusion matrix

Observed Class

Predicted Class Adelie Chinstrap Gentoo

Adelie 48 1 4

Chinstrap 1 17 4

Gentoo 0 0 43

sum(diag(conf.mat)) / sum(conf.mat) # accuracy (overall measure)

[1] 0.91525

diag(conf.mat) / rowSums(conf.mat) # precision for each class

Adelie Chinstrap Gentoo

0.90566 0.77273 1.00000

diag(conf.mat) / colSums(conf.mat) # sensitivity for each class

Adelie Chinstrap Gentoo

0.97959 0.94444 0.84314

A random forests algorithm extends the bagging algorithm. Instead of having all predictors
at all fitting stages a random subset of the predictors is chosen before fitting each new candidate
split. This approach increases variation in the trees grown and prevents strongly correlated trees
from occurring if there are very prominent predictors.

Once a forest consists of a (determined) number of trees, the classification for a new observa-
tion is given by the majority consensus based on the classification of each tree. We continue to
use the Penguin dataset to illustrate different random forest algorithms in the next example.

4.3. BAGGING, BOOSTING AND MORE 89

Example 4.7. We use the same data as in Example 4.6. R-code 4.7 illustrates the use of the
function randomForest() from the same named package and the function cforest() from the
package partykit.

As shown by the confusion matrix, the algorithms give very similar results (we have a quite
easy task, even a simple classification tree performs well). Figure 4.7 shows the individual class
probabilities, classification is done by taking the largest one.

For the random forests, 50 trees are grown (upper bound) and, although typically not nec-
essary, it is possible to access individual trees and their nodes through getTree or $nodes (see
the last few lines of code). ♣

R-Code 4.7: Random forest based classification of the Penguin data.

library("randomForest")

peng.rf <- randomForest(species~., data=train, ntree=50, prox=TRUE)

rf.pred <- predict(peng.rf, newdata=test)

table(rf.pred, test$species, dnn=c("Predicted Class", "Observed Class"))

Observed Class

Predicted Class Adelie Chinstrap Gentoo

Adelie 48 1 0

Chinstrap 1 17 3

Gentoo 0 0 48

ct <- cforest(species ~ ., data=train, ntree=50) # with package partykit

ct.pred <- predict(ct, newdata=test)

table(ct.pred, test$species, dnn=c("Predicted Class", "Observed Class"))

Observed Class

Predicted Class Adelie Chinstrap Gentoo

Adelie 48 1 2

Chinstrap 1 17 5

Gentoo 0 0 44

peng.rt <- ctree(species~., data=train) # Compare with simple tree

rt.pred <- predict(peng.rt, newdata=test)

table(rt.pred, test$species, dnn=c("Predicted Class", "Observed Class"))

Observed Class

Predicted Class Adelie Chinstrap Gentoo

Adelie 48 1 6

Chinstrap 1 14 2

Gentoo 0 3 43

x <- seq(13, to=22, length=50)

y <- seq(32, to=60, length=49)

nd <- expand.grid(bill_depth=x, bill_length=y)

p <- predict(ct, newdata=nd, type="prob")

90 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

image(x, y, matrix(p[,1], nrow=length(x)), main="Adelie", zlim=c(0,1),

xlab="bill_depth", ylab="bill_length", col=tim.colors(10))

points(bill_length ~ bill_depth, data=train, col=id[sel], pch=id[sel])

image(x, y, matrix(p[,2], nrow=length(x)), main="Chinstrap", zlim=c(0,1),

xlab="Sepal.Length", ylab="Sepal.Width", col=tim.colors(10))

points(bill_length ~ bill_depth, data=train, col=id[sel], pch=id[sel])

image.plot(x, y, matrix(p[,3], nrow=length(x)), main="Gentoo", zlim=c(0,1),

xlab="Sepal.Length", ylab="Sepal.Width", col=tim.colors(10))

points(bill_length ~ bill_depth, data=train, col=id[sel], pch=id[sel])

length(ct$nodes) # nr of trees in random forest (== ntree=50)

[1] 50

ct$nodes[[11]] # accessin the 11th tree

ct$nodes[[11]]$split[1:2] # first split of 11th tree

ct$nodes[[11]]$kids[1:2] # branches after first split

ct$nodes[[11]]$kids[[2]]$split[1:2] # second split of second branch, etc

14 16 18 20 22

35
40

45
50

55
60

Adelie

bill_depth

bi
ll_

le
ng

th

14 16 18 20 22

35
40

45
50

55
60

Chinstrap

Sepal.Length

S
ep

al
.W

id
th

14 16 18 20 22

35
40

45
50

55
60

Gentoo

Sepal.Length

S
ep

al
.W

id
th

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.7: Classification probabilities of a random forest. For each pixel, the proba-
bilities sum to one. Training data are visualized (◦: Adelie, ∆: Chinstrap, +: Gentoo).
(See R-Code 4.7.)

Boosting is based on the idea that it is possible to construct a strong classifier from many
weak classifiers. Basically, boosting calculates the output using several different models and then
averages the result using a weighted average approach. The key is to wisely select the the weak
classifiers and to appropriately weight their result.

Example 4.8. We use again the same data as in Example 4.6. R-code 4.8 illustrates the use of the
function boosting() from the package adaboost. No surprise, we observe similar classification
performance as with random forests. ♣

4.3. BAGGING, BOOSTING AND MORE 91

R-Code 4.8: Boosting Penguin data.

peng.adaboost <- boosting(species~., data=train, mfinal=11) # in pkg adabag

adaboost.pred <- predict(peng.adaboost, newdata=test)

adaboost.pred$confusion

Observed Class

Predicted Class Adelie Chinstrap Gentoo

Adelie 46 1 0

Chinstrap 2 17 3

Gentoo 1 0 48

One of the most famous boosting algorithms is the so-called AdaBoost (Freund and Shapire,
1995) which we outline here. As input we have the triples (y i, gi, wi), i = 1, . . . , n, where y i

denotes the variables of the data point i, gi the associated group label and wi is the starting
weight, set to 1/n. For m = 1 to M algorithm loops over the following steps:

[1] Fit a classifier G(m)(·) to the training data with weights wi

[2] Calculate the error measure e(m) =

n∑
i=1

wiI
(
gi ̸= G(m)(y i)

)
/

n∑
i=1

wi

[3] Calculate the update weight a(m) = log
(1− e(m)

e(m)

)
[4] Update the weights wi ← wi exp

(
a(m)I

(
gi ̸= G(m)(y i)

))
and normalize.

The final class is determined by

argmax
k

M∑
m=1

a(m)I
(
k = G(m)(y i)

)
. (4.4)

In the algorithm above I(. . .) represents the indicator function. Steps [2] to [3] serve to
update the weights wi appropriately in case a classification is incorrect, i.e., gi ̸= G(m)(y i).

Of course many variants of this algorithm exist, for K classes, the error measure in Step [2]
if further increased by log(K − 1). We illustrate the boosting algorithm with a manual imple-
mentation thereof.

Example 4.9. Suppose that we observe two univariate samples that we want to classify to class
0 and 1. As weak classifier we choose G(y) = I

(
y > (µ̂1 + µ̂2)/2

)
, where µ̂k are weighted mean

estimates of the groups and thus the classifier is in the spirit of LDA, see Example 4.1. Using
the indicator function yields directly the class label 0 and 1.

Figure 4.8 shows the evolution of boosting over the iterations; lowest row of points shows the
data, each successive steps the selected data points (training set) with size proportional to the
error. The top row gives the final classifier. In Step m = 4, a(4) = 0 and thus the weights are
not updated (circle sizes at step 3 and 4 are identical). ♣

92 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

R-Code 4.9: Manual implementation of a boosting algorithm (See Figure 4.8.)

set.seed(14)

n1 <- 12 # group sizes

n2 <- 12

M <- 7 # number of iterations

tmp <- rbind(WC=0, err=numeric(M), a=0)

dat <- data.frame(g=rep(0:1, c(n1,n2)),y=c(rnorm(n1, 0), rnorm(n2, 1.5)))

n <- n1 + n2 # total number of observations

plot(dat$y, rep(0, n), col=dat$g+1, ylim=c(0, M+1), pch=19,

ylab="m (1,...,M)", xlab="x")

col <- c(rgb(0,0,0,.2), rgb(1,0,0,.3))

w <- rep(1/n,n) # weights, will be adapted

WC <- function(dat, w) # weak classifier

(weighted.mean(dat$y[dat$g==0], w[dat$g==0]) +

weighted.mean(dat$y[dat$g==1], w[dat$g==1]))/2

for (i in 1:M) {

sel <- sample(n, .8*n) # selector for training dataset

WCout <- WC(dat[sel,], w[sel]) # weak classifier. 0 if x < WCout

tmp["WC",i] <- WCout

wrong <- as.numeric(dat$g != (WCout < dat$y)) # wrongly classified

tmp["err",i] <- sum(w * wrong)/sum(w) # error measure 2.

tmp["a",i] <- log((1-tmp["err",i])/tmp["err",i]) # update weight 3.

w <- w * exp(tmp["a",i]* wrong) # update weights

w <- w/sum(w) # normalize weights

segments(c(-4,WCout), c(i,i), c(WCout, 4), c(i,i), col=col, lwd=10)

points(dat$y[sel], rep(i, .8*n), cex=exp(w[sel]*n)/3, col=dat$g[sel]+1)

}

tmp # show thresholds, errors and update-weights

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

WC 1.40599 0.98652 1.270256 1.2599e+00 1.18347 1.26285 1.17242

err 0.29167 0.37395 0.496116 5.0000e-01 0.42404 0.55381 0.46144

a 0.88730 0.51531 0.015535 -4.4409e-16 0.30623 -0.21607 0.15455

x <- seq(0, to=2, l=50)

finaltmp <- colSums(outer(tmp["WC",], x, "<") * tmp["a",]) >

colSums(outer(tmp["WC",], x, ">") * tmp["a",])

print(final<- x[which.max(finaltmp)]) # final threshold

[1] 1.1837

segments(c(-4,final), c(M,M)+1, c(final, 4), c(M,M)+1, col=col, lwd=15)

Although general statements cannot be made, typically boosting has a very high prediction
power, surpassing bagging and random forest one (which are more powerful than simple decision

4.4. MACHINE LEARNING AND DATA MINING 93

0 1 2 3

0
2

4
6

8

x

m
 (

1,
...

,M
)

Figure 4.8: Manual implementation of a boosting algorithm. Lowest row of points
shows the data, each successive steps the selected data points (training set) with size
proportional to the error. The top row gives the final classifier. (See R-Code 4.9.)

trees). Boosting does tyically not overfitting but is sensitive to outliers. An outlier may be hard to
classify and constantly receives high weight as the classifier tries to overcome the shortcomings
of the previous wrongly classified observations. While random forest can be implemented in
parallel in a straightforward manner, the sequential nature of boosting prohibits an efficient
parallelization.

4.4 Machine Learning and Data Mining

In the last few years machine learning or ML for short seems to be a hot “discipline” and it seems
that statistics is getting replaced by ML. Job ads for machine learners seem more ubiquitous than
for statistician. So what is ML? As far as I know there is no uniformly accepted and applicable
definition of ML. Moreover as a trained statistician, my view here might be slightly biased.
One possible approach to differentiate between statistics and ML is with respect to the purpose.
ML is mainly concerned with prediction, statistics with inference about the population from a
sample. For the former we often have huge datasets containing many observations and many
predictors. For the latter we often have very small and limited datasets where we need to careful
about model assumptions, possible dependencies etc. A statistician is very concerned about the
interpretability of his method and thus his results. In ML interpretablity is of secondary concern,
much behind generalizability. For example, to link the content of this chapter, LDA and QDA
can be seen as statistical approaches, trees and their generalization more as ML approaches.

To further illustrate, consider as example a linear regression. Regression is probably one of the
most classical statistical models relying on very few assumptions. A statistician fits a regression
line based on all data and knows (if the assumptions hold) that he found the best solution. A
machine learner will separate the data in training, validation and test data and performs several
or many regressions. He picks the best and (through the test data) knows something about the
performance of the method and, within his measures, knows that the pick is optimal as well.

Of course, as shown in this and the previous chapters, the intersection between both disci-
plines is not empty. Similarly, a machine learner is a data scientists that has a deep understanding
of statistics, algorithms and computer architecture.

94 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

Data mining is the discipline (“art”) of discovering patterns for relevant decision processes in
vast amounts of data. Hence, data mining can be seen as a subfield of ML.

Table 4.1: Glossary for machine learning terminology. Similar versions of such tables
circulate all over the web.

Machine learning Statistics
network, graphs model

weights parameters
features variables/predictors
learning fitting

supervised learning classification or regression
unsupervised learning clustering or density estimation

generalization test set performance

The biggest difference between statistics and machine learning/data mining is the terminol-
ogy. Table 4.1 illustrates the terminology differences of the two fields. While the fields may seem
disjoint at first, an understanding of the terminology elucidates the major similarities.

Recently, another hot topic has emerged on the horizon: big data. A common description of
big data is based on the x V’s (where x increased over time starting with 3):

Volume: the data is large in terms of storage (terabytes and more).

Velocity: the data arrives at high speed (constant flow, streams, . . .). In this context, we refer
to the speed at which the data is generated and processed.

Variety: the data is collected by different sources and consists of different types (structured
vs. unstructured, measurements, images, . . .).

Veracity: the data is often biased, very noisy and has many features that are not relevant for
the purpose of the analysis.

Validity: (sometimes also called volatility, adding a seventh ‘V’) the data has a very limited
time window of validity, i.e., the data may be used for making instantaneous decisions, but
less useful for understanding the past or making predictions far into the future.

Valuable: the data is highly valuable and ‘big data’ is a big business.

See also https://en.wikipedia.org/wiki/Big_data and http://insidebigdata.com/2013/09/12/beyond-
volume-variety-velocity-issue-big-data-veracity/.

4.5 Example: Optical Character Recognition

In this section, we illustrate that optical character recognition is straightforward and can be
implemented with reasonable precision with a few lines of R-Code.

For simplicity, we try to recognize numbers, based on a small training dataset. For this
illustration, we use the png image shown at the top of Figure 4.9. OCRexample.png was originally

https://en.wikipedia.org/wiki/Big_data
http://insidebigdata.com/2013/09/12/ beyond-volume-variety-velocity-issue-big-data-veracity/
http://insidebigdata.com/2013/09/12/ beyond-volume-variety-velocity-issue-big-data-veracity/

4.5. EXAMPLE: OPTICAL CHARACTER RECOGNITION 95

found at www.oocities.org/santosh_ganti/nn.htm4.gif. We use the top rows as our training set
and will predict the very last row. R-Code 4.10 illustrates that OCR is very simple (just a
few lines of R-Code!). We first read the image and we aggregate the three RGB values. Most
of the code is devoted to transforming the image into an array, where each slice contains one
single digit. As a test, we also illustrate a hierarchical clustering approach. The classification
is perfect, shown by the middle panel of Figure 4.9. Notice that different aggregation methods
tremendously improve the classification. We use classical trees (rpart()) and bagging here.

R-Code 4.10: OCR example using rpart() and bagging. (See Figure 4.9.)

library("png")

datpng <- readPNG("download/sta121/OCRexample.png")

dat <- apply(datpng, c(1,2), sum)

image(1:dim(dat)[1], 1:dim(dat)[2], dat[,], axes=F, xlab="", ylab="")

specific parameters for this particular example:

nrow <- 10

ncol <- 11

sizer <- dim(dat)[2]/nrow

sizec <- dim(dat)[1]/ncol

abline(v=(1:ncol)*sizec, h=(1:nrow)*sizer)

arr <- array(0, c(sizec, sizer, nrow*ncol))

k <- 1

for (i in 1:ncol) {

for (j in 1:nrow) {

arr[,,k] <- dat[(i-1)*sizec + 1:sizec, ((j-1)*sizer) + 1:sizer]

k <- k+1

}

}

image(arr[,,3]) # for example!

arra <- arr

dim(arra) <- c(prod(dim(arr)[1:2]), dim(arr)[3])

plot(hc <- hclust(dist(t(arra))), sub="", main="Complete linkage", xlab="")

method="ward.D" best, "complete" least

toclass <- cutree(hc, 10)

print(valid <- toclass[101:110]-1) # 101:100 is example specific!!

[1] 1 4 6 5 3 0 9 7 2 8

Why does the first a larger dissimilarity?

image(arr[,,1]-arr[,,3], zlim=c(-3,3), axes=F, xlab="", ylab="")

image(arr[,,2]-arr[,,3], zlim=c(-3,3), axes=F, xlab="", ylab="")

http://www.oocities.org/santosh_ganti/nn.htm4.gif

96 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

image(1:sizec,1:sizer, apply(arr,c(1,2),sum))

reduce the pixel size:

arra <- arr[3:(sizec-3), 5:(sizer-3),]

dim(arra) <- c(prod(dim(arra)[1:2]),dim(arra)[3])

arra <- t(arra)

dim(arra)

[1] 110 240

ar <- data.frame(nr=factor(c(rep(0:9,each=10), valid)),arra)

library("rpart")

rt <- rpart(nr~., data=ar[1:100,])

rpart.pred <- predict(rt, newdata=ar[101:110,])

rbind(truth=valid, pred=apply(rpart.pred, 1, which.max)-1) # almost perfect

101 102 103 104 105 106 107 108 109 110

truth 1 4 6 5 3 0 9 7 2 8

pred 1 4 6 5 1 0 9 7 2 8

library("adabag")

ab <- bagging(nr~., data=ar[1:100,], mfinal=40) # maybe increase mfinal

bagging.pred <- predict(ab, newdata=ar[101:110,])

diag(bagging.pred$confusion) # perfect

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

To avoid alignment issues as illustrated in Figure 4.9, one could eliminate the top and bottom
lines with no information (followed by appropriate elimination of columns). With a bilinear
interpolator, e.g., fields::interp.surface(), all symbols can be brought to one unique size.
This works well for “courier” type fonts.

Note that for discrimination, we cannot use ctree() as too much pruning is performed.

4.6 Bibliographic remarks

We can again mention Mardia et al. (1979) for a general accessible overview of discrimination.
Decision trees and their extentions are well explained in Hastie et al. (2009). Breiman et al.

(1984) is the reference for CARTs; Quinlan (1993) for C4.5. (Breiman, 2001) coined the term
Random Forest, which has since been trademarked. Buehlmann and Hothorn (2007) gives an
overview of boosting, algorithmic descriptions thereof can be found in Zhu et al. (2009). Strobl
et al. (2009) gives a very accessible overview of classification (and regression) trees as well as
bagging and random forests. There are countless articles about boosting and bagging, as well
as many R-packages (mboost, adabag, . . .). The R task view ‘Machine Learning & Statistical
Learning’ gives a detailed summary of the relevant packages.

The web page https://statistical-research.com/index.php/2013/04/29/a-brief-tour-of-the-trees-
and-forests/ compares recursive partitioning functions of different R-packages.

http://cran.r-project.org/web/views/MachineLearning.html
http://cran.r-project.org/web/views/MachineLearning.html
https://statistical-research.com/index.php/2013/04/29/a-brief-tour-of-the-trees-and-forests/
https://statistical-research.com/index.php/2013/04/29/a-brief-tour-of-the-trees-and-forests/

4.6. BIBLIOGRAPHIC REMARKS 97

61
10

3
62 63

66 64 65
67

68 69 70 15 14 12 13 16 17
20 18 19

11 10
1

81
82 83

86 84 85
11

0
87

90 88 89
10

9
21

24 22 23
25 26 27 28 29 30

10
5

31
39 40 37 38 34 32 33
35 36

51
10

4
58 59 60 54 52 53

57
55 56

1
10

6
10 9 7 8 4 2 3
5 6

41
10

2
42 43

44 45 48
49 50

46 47
71

80
10

8
78 79

74
72 73

75 76 77
91

10
0

99
10

7
97 98 92 93

96 94 95

0
5

10
15

20
25

30

Complete linkage

H
ei

gh
t

Figure 4.9: Simple OCR example. Top: starting png with delimiting lines for each
number. Center: cluster dendrogram using complete linkage. Bottom: illustration of
alignment issues. (See R-Code 4.10.)

The R-package partykit is a reimplementation of most of the R-package party. It has better
functionality and more interfaces but is a bit slower because of the R implementation (compared
to party’s C implementation).

The web page statweb.stanford.edu/∼jhf/ftp/dm-stat.pdf gives a more detailed overview of the
difference between data mining and statistics.

http://statweb.stanford.edu/~jhf/ftp/dm-stat.pdf

98 CHAPTER 4. DISCRIMINATION AND CLASSIFICATION

4.7 Exercises and Problems

Problem 4.1 (LDA/QDA and comparisons with other methods) The dataset ec.txt was
collected by the Economic Research Department of the Union Bank of Switzerland in 1991. We
want to investigate the following question: What was the work and living conditions in different
cities around the globe in 1991? (The data are available at https://www.math.uzh.ch/furrer/
download/sta121/ec.txt.)
The variables are:

City: City name
Work: Weighted average of the number of working hours in 12 occupations
Price: Index of the cost 112 goods and services excluding rent (Zurich=100)
Salary: Index of hourly earnings in 12 occupations after deductions (Zurich=100)
SalaryCat: Was generated from Salary with the R code: cut(Salary, breaks=3)

a) Explore the date and describe them with plots, tables and words. Do you think the collected
data of the different countries are comparable?

b) Which cities are similar? Conduct a cluster analysis. Decide on a “reasonable” size of the
grouping. Plot and interpret the results.

c) Use PCA and display the results in a biplot. Interpret the results.

d) Use linear and quadratic discriminant analysis to discriminate the three salary levels of
SalaryCat base on the variables Work and Price. Display the results graphically. Compare
the results of the linear and the quadratic approach.

e) Compare the findings from the different approaches above. Make five distinct statements
and refer to all points a) to d) at least once.

https://www.math.uzh.ch/furrer/download/sta121/ec.txt
https://www.math.uzh.ch/furrer/download/sta121/ec.txt

Chapter 5

Linear Models

Linear models are a class of models that relate observations linearly with parame-
ters. They have many appealing properties (statistically and computationally) and
thus are widely used.

Learning goals for this chapter:

⋄ Understand the concept of the least squares criterion

⋄ Understand the statistical model of linear regression

⋄ Calculate a predicted value of a dependent variable

⋄ Conduct linear regression in R, interpret the output

⋄ Articulate assumptions for multiple linear regression, understand why we
need to check the assumptions of the model, check the assumptions using
diagnostic plots

⋄ Know how to calculate a confidence interval for a single slope parameter in
the multiple regression setting

⋄ Translate research questions involving slope parameters into the appropriate
hypotheses for testing

⋄ Explain the statistical model for one-way, two-way, multi-way ANOVA

⋄ Examine the assumptions for ANOVA and associated diagnostics

⋄ Use R to run ANOVA and interpret the output

⋄ Explain the relationship of ANOVA to Regression

⋄ Know the types of research questions that can be answered using the linear
regression and ANOVA

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter05.R.

99

http://www.math.uzh.ch/furrer/download/sta121/chapter05.R

100 CHAPTER 5. LINEAR MODELS

5.1 Multiple Regression

We have seen regression models in the past chapters already. We are now formalizing the model
and further discussing the (most classical) estimation technique in this context: least squares
estimation.

The multiple linear regression model with p predictors is given by

Yi = β0 + β1xi1 + · · ·+ βpxip + εi (5.1)

= x⊤
i β + εi, i = 1, . . . , n, n > p, (5.2)

where

• Yi: dependent variable, modeling the observation, data yi,

• x i = (1, xi1, . . . , xip)
⊤: free variables, predictors,

• β = (β0, . . . , βp)
⊤: parameter vector (unknown),

• εi: error (unknown), with symmetric distribution and E(εi) = 0.

We have a so-called linear model, as (5.2) is linear in the parameter of interest β. In the
basic framework, we assume homoscedastic and independent errors, that means Var(εi) = σ2

and implies Cov(εi, εj) = 0, i ̸= j. As we see, least squares estimation does not depend on
distributional assumptions and thus formally, no further requirements on the error distribution
needed. However, we will derive statistical tests which simplify the discussion if we additionally
assume that the errors are Gaussian. Hence we do so.

To derive estimators, estimates, etc., it is convenient to write the n equations of (5.2) using
matrix notation

Y = Xβ + ε, (5.3)

where X is an n× (p+1) matrix with rows x⊤
i . We assume that the (column) rank of X is p+1

(rank(X) = p+ 1).
The ordinary least squares (OLS) principle is based on minimizing the sum of the squared

residuals based on the realization y of (5.3):

β̂ =argmin
β

(y −Xβ)⊤(y −Xβ) (5.4)

⇒ d

dβ
(y −Xβ)⊤(y −Xβ) =

d

dβ
(y⊤y − 2β⊤X⊤y + β⊤X⊤Xβ)

= −2X⊤y + 2X⊤Xβ

(5.5)

⇒ X⊤Xβ = X⊤y (5.6)

⇒ β̂ = (X⊤X)−1X⊤y . (5.7)

Equation (5.6) is called the normal equation, at this very step, we need the rank assuption of X,
such that (X⊤X)−1 is well defined.

Formally, β̂ as defined in (5.7) is an estimate, i.e., a “classical” vector with p+ 1 scalars. To
derive properties from β̂, we have to consider it as an estimator in the sense that we “replace”
the actual data vector y with the random vector Y ∼ Nn(Xβ, σ2I), as defined in (5.3).

5.1. MULTIPLE REGRESSION 101

Starting from equation (5.2) and (5.7), the following estimates (left column) and distributions
(right column) can be derived:

β̂ = (X⊤X)−1X⊤y , β̂ ∼ Np+1

(
β, σ2(X⊤X)−1

)
,

7 min
(5.8)

ŷ = X(X⊤X)−1X⊤y = Hy , Ŷ ∼ Nn(Xβ, σ2H) , (5.9)

e = y − ŷ = (I−H)y , e ∼ Nn(0, σ
2(I−H)) , (5.10)

where we term the matrix H = X(X⊤X)−1X⊤ as the hat matrix.
6 minThese results are profound. They state among others that the least squares estimate of

β is unbiased and has a multivariate Gaussian distribution. With little additional effort, it
would be possible to show the infamous Gauss–Markov theorem, that with uncorrelated errors
(no Gaussian assumption needed), the OLS estimator (5.7) has a covariance matrix which is
“smaller” than that of any other linear estimator. (Here, smaller means that Var(β̃)−Var(β̂) is
positive semi-definite matrix for every other linear unbiased estimator β̃ = BY). The estimator
β̂ is the best linear unbiased estimator (BLUE).

Note that the OLS approach does not yield an estimate for σ2. To derive test statistics,
however, we need an estimate to address the unknown parameter in the distributions of (5.8)
to (5.10). We choose the intuitive unbiased estimate

σ̂2 =
1

n− p− 1
e⊤e , (5.11)

The somewhat unusual denominator guarantees that we have an unbiased estimator. Hence,
taking an individual element of (5.8) we have the following result

β̂i − βi√
σ̂2vii

∼ tn−p−1 with vii =
(
(X⊤X)−1

)
ii
, i = 0, . . . , p. (5.12)

We start with an example that highlights the strong dependency of the before mentioned
distributions on the covariates. To illustrate, we will sample the covariates in a first step and
then continue to work conditionally on it.

Example 5.1. Let’s assume a simple regression setting with

Yi = β0 + β1xi + εi, i = 1, . . . , n, εi
iid∼ N (0, σ2). (5.13)

The classical least squares solution is

β̂0 = y − β̂1x β̂1 =
sxy
s2x

= r
sy
sx

=

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2
. (5.14)

Simpler now, the joint distribution of the estimators of β0 and β1 is

β̂ =

(
β̂0

β̂1

)
∼ N2

((β0
β1

)
, σ2
(
(1 x)⊤(1 x)

)−1
)
= N2

((β0
β1

)
, σ2
(

n
∑

i xi∑
i xi

∑
i x

2
i

)
−1)

(5.15)

https://tube.switch.ch/download/video/51f8db5e
https://tube.switch.ch/download/video/51f8db5e
https://tube.switch.ch/download/video/6caa2411
https://tube.switch.ch/download/video/6caa2411

102 CHAPTER 5. LINEAR MODELS

For example, we sample the values of the predictor, say Xi
iid∼ N (µ, τ2). Hence, on “average”, the

variance matrix is

σ2
(
(1 x)⊤(1 x)

)−1 ≈ σ2
(

n E(
∑

iXi)

E(
∑

iXi) E(
∑

iX
2
i)

)−1

= σ2

(
n nµ

nµ n(τ2 + µ2)

)−1

(5.16)

=
σ2

n

(
1 µ

µ τ2 + µ2

)−1

=

(
0.10 −0.03
−0.03 0.01

)
, (5.17)

where we use the numerical values µ = 3, τ2 = 1, σ2 = 1/4 and n = 25 in the last step. When
simulating the predictors, i.e., using Xi

iid∼ N (µ, τ2), the variances of the estimates β̂0 and β̂1 are
0.104 and 0.011, respectively, which are reasonably close to 0.10 and 0.01 (see Problem 1).

The correlation between the estimates β̂0 and β̂1 is approximately -0.953 (theoretical is
0.949). To avoid such high correlations, the predictors are often centered before the analysis.
Thus, in the previous calculation µ = 0 and thus the correlation is zero as well. Naturally, the
slope estimates remains the same and the intercept absorbs the offset:

β0 + β1xi = βnew
0 + βnew

1 (xi − µ) ⇒ β̂1 = β̂new
1 β̂0 = β̂new

0 − β̂new
1 µ . (5.18)

In practice, µ is often unknown and we center with the empirical mean x̄. Figure 5.1 compares
the (theoretical) quantiles of both approaches. The gray shaded rectangle gives the confidence
rectangle based on using the marginal confidence intervals individually (using (5.12)). ♣

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

β̂0

β̂ 1

0.75 1.25 1.75 2.25 2.75

β̂0

new

Figure 5.1: “Confidence regions” of β̂ based on non-centered and centered data. The
ellipses define the area for which the probability of β̂ lying therein is 95%, based on the
theoretical distribution (5.8). The rectangles are defined by the corresponding marginal
distributions (gray for non-centered and light gray for centered data).

5.1.1 Model validation

As part of assessing the adequacy of the linear model, we should check if the error distribution
is adequate and check if there is any evidence against the iid assumption. For the former we
can, for example, compare the histogram with the fitted density, plot Q-Q-plots, probability
plots etc. The later is a bit more delicate and involves testing if there is serial correlation, e.g.,

5.1. MULTIPLE REGRESSION 103

Corr(Yi, Yi+1) ̸= 0, if the distribution holds for all i. While serial correlation can be assessed
with cor(y[1:(n-1)], y[2:n]) for a data vector y of length n <- length(y), it is not possible
to check individually if yi a realization of Yi ∼ L. It is, however, possible to apply a bulk check
as outlined further below. We see more about serial correlation in Chapters 10 and 11.

5.1.2 Leverage and Influence

We quantify if an observation is unusual with respect to the predictors (large leverage) and if
an observation has large influence on the fit, i.e., if omitting the observation, we would get a
substantially different result.

Starting from

ŷ = X(X⊤X)−1X⊤y = Hy , (5.19)

(5.20)

(see equation (5.9)) we rewrite the ith component as

ŷi = hiiyi +

n∑
j=1,j ̸=i

hijyj . (5.21)

Hence, hii measures how much the ith observation contributes to its prediction and is thus called
leverage. In general, 1/n ≤ hii ≤ 1; the closer a predictor is to the (hypothetical) center of the
predictors, the smaller hii is. Large values indicate a high leverage, where “large” is typically
seen as twice the average of all leverages:

hii > 2
1

n

n∑
i=1

hii =
2(p+ 1)

n
. (5.22)

An outlying observation, say ỹi = yi + ∆, will not have a large effect, i.e., influence, on the
result unless hii is large. Before we formally quantify this influence the next section, let us have
another look at the residuals.

From equation (5.10) we write ei = yi − ŷi. Under our model assumptions, we have

Var(ei) = σ2(1− hii) and Cov(ei, ej) = −σ2hij , i ̸= j, (5.23)

which is somewhat counter intuitive as we have started from εi
iid∼ N (0, σ2). The reduction in the

variance and the correlation are a result of the fitting, more precisely of the projection operation.
While the correlation are rarely an issue, the raw residuals are often normalized:

standardized residuals: ri =
ei
s
, (5.24)

studentized residuals: ti =
ei

s
√
1− hii

, (5.25)

where s2 is the usual estimate of σ2.

104 CHAPTER 5. LINEAR MODELS

R-Code 5.1 Leverages and influence of the LifeCycleSavings example. (See Figure 5.2.)

lcs <- lm(sr ~ ., data=LifeCycleSavings)

hii <-influence(lcs)$hat

c(2*mean(hii), 2*length(coef(lcs))/length(resid(lcs)))

[1] 0.2 0.2

highleverage <- hii > 2*mean(hii)

print(hii[highleverage])

Ireland Japan United States Libya

0.2122363 0.2233099 0.3336880 0.5314568

rbind(residuals=residuals(lcs), standard=rstandard(lcs),

student=rstudent(lcs))[,1:6]

Australia Austria Belgium Bolivia Brazil Canada

residuals 0.8635798 0.6163860 2.2189579 -0.6983191 3.5528094 -0.31689236

standard 0.2352011 0.1728294 0.6108576 -0.1924503 0.9685881 -0.09083873

student 0.2327161 0.1709551 0.6065522 -0.1903783 0.9679082 -0.08983197

plot(lcs, which=5)

0.0 0.1 0.2 0.3 0.4 0.5

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(sr ~ .)

Cook's distance

1

0.5

0.5

1

Residuals vs Leverage

Libya

Japan

Zambia

Figure 5.2: Residual vs leverage plot. (See R-Code 5.1.)

Example 5.2. We reconsider the LifeCycleSavings data again. R-Code 5.1 looks at the lever-
ages of the model having all variables lcs, as seen in R-Code 1.2 of Example 1.4. Of course, the
leverage depends on the predictor and change when using different predictors.

Figure 5.2 shows a Residual vs Leverage plot, where “isolines” have been plotted based on
equation (1.14). ♣

Example 5.3. Back to the LifeCycleSavings data. Trimming a model can be done manually

5.1. MULTIPLE REGRESSION 105

using p-values from the summary output. Of course, there are alternative criteria available, such
as the Bayesian information criterion (BIC). Different criteria may not necessarily lead to the
same final model, as illustrated at the end of R-Code 5.2, where the variable pop75 is eliminated.
♣

R-Code 5.2: LifeCycleSavings data: full model, model simplification and model valida-
tion..

lcs.all <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data=LifeCycleSavings)

summary(lcs.all) # as shown in Example

lcs.aic <- step(lcs.all) # AIC is default choice

Start: AIC=138.3

sr ~ pop15 + pop75 + dpi + ddpi

##

Df Sum of Sq RSS AIC

- dpi 1 1.893 652.61 136.45

<none> 650.71 138.30

- pop75 1 35.236 685.95 138.94

- ddpi 1 63.054 713.77 140.93

- pop15 1 147.012 797.72 146.49

##

Step: AIC=136.45

sr ~ pop15 + pop75 + ddpi

##

Df Sum of Sq RSS AIC

<none> 652.61 136.45

- pop75 1 47.946 700.55 137.99

- ddpi 1 73.562 726.17 139.79

- pop15 1 145.789 798.40 144.53

summary(lcs.aic)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.1246633 7.1837859 3.915020 0.0002969796

pop15 -0.4517775 0.1409317 -3.205649 0.0024515384

pop75 -1.8354083 0.9983996 -1.838350 0.0724726983

ddpi 0.4278317 0.1878856 2.277087 0.0274781754

AIC the smaller the better!

extractAIC(lcs.aic)[2]

[1] 136.4475

plot(lcs.aic) # 4 plots to assess the model

BIC as an alternative:

summary(step(lcs.all, k=log(50), trace=0))$coefficients

106 CHAPTER 5. LINEAR MODELS

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.5995758 2.33439442 6.682494 2.479591e-08

pop15 -0.2163762 0.06033473 -3.586263 7.959672e-04

ddpi 0.4428302 0.19240135 2.301596 2.583739e-02

=> the variable "pop75" drops from the model

Remark 5.1. As another note, generalized cross-validation (GCV) is an approximation of (leave-
one-out) CV. The idea is to (essentially) replace the sum of functions of the diagonal elements
of the hat matrix by an expression in terms of the trace of the hat matrix. In the framework of

linear models, for example,
1

1− hii
is approximated by

1

1− (p+ 1)/n
. ♣

5.2 Analysis of Variance

There are many ways to assess model fit, i.e., assessing how well a model fits the actual data.
On a general level, a model fit is a partition of variances. The variability in the data is separated
into variability components of the model and remaining variability (error). Naturally, we would
like the remaining error variance to be as small as possible — compared to the variance explained
by the model.

y = y − ŷ + ŷ = (y − ŷ) + ŷ = (I−H)y +Hy ⇒ (5.26)

y⊤y =
(
(y − ŷ) + ŷ

)⊤((y − ŷ) + ŷ
)

(5.27)

= y⊤(I−H)(I−H)⊤y + 2y⊤(I−H)Hy + y⊤HHy = y⊤(I−H)y + y⊤Hy (5.28)

by properties of the hat matrix H. Each of the terms is a sum of squares:

SSy⊤y = SSy⊤(I−H)y + SSy⊤Hy

SS“total” = SS“error” + SS“model” . (5.29)

We have used quotes in the last equation as a classical definition differs slightly. To be precise,
i.e., to eliminate the quotes, we should start the left-hand side of (5.26) with y − µ̂1. In such a
case, we would decouple the (overall) mean µ from β, or write ŷ−µ̂1 instead of only ŷ . We discuss
this decomposition in Problem 2. Results (5.28) and (5.29) can be summarized geometrically, as
shown in Figure 5.3.

The sum of squares are linked to variance estimates, e.g., SSerror = (n − p − 1)σ̂2. Thus, to
properly compare the components, we have to further divide them by their degrees of freedom.
For SSerror this is n− p− 1, for SSmodel this is p, because we have p predictors x1i, . . . , xpi. The
divided quantities are denoted by MS (mean squares). The ratio of mean squares Fobs is (under
H0 : β1 = · · · = βp = 0) distributed according to an Fp,n−p−1 distribution. Hence, we reject
H0 : β1 = · · · = βp = 0 if Fobs > Fp,n−p−1(1− α), the 1− α-quantile of the F -distribution with
p and n− p− 1 degrees of freedom. The aforementioned quantities are typically presented in an
ANOVA table. Table 5.1 illustrates such a table (where we start with y − µ1 in (5.26)). The
F -value at the end of a summary.lm() call refers to exactly this value Fobs.

5.2. ANALYSIS OF VARIANCE 107

y

y
e

Col()X

Figure 5.3: Regression considered geometrically. The data vector y is projected onto
the subspace spanned by the columns of X, Col(X).

Table 5.1: ANOVA table. Note that for the first two columns the quantities add up
to the total.

Source Sums of squares Degrees of freedom Mean squares F -value

Model SSmodel =
n∑

i=1

(ŷi −y)2 dfmodel = p MSmodel =
SSmodel

dfmodel
Fobs =

MSmodel

MSerror

Error SSerror =
n∑

i=1

(yi − ŷi)2 dferror = n− p− 1 MSerror =
SSerror

dferror

Total SStotal =
n∑

i=1

(yi −y)2 dftotal = n− 1

After a model has been fit, we perform model validation/model selection to verify if all the
included predictors are necessary or if some can be omitted. We often encounter the situation
where we have two nested models, a “smaller” model m and a “larger” model M that contains all
predictors of m and some more, formally m ⊂ M . The situation is geometrically illustrated in
Figure 5.4, where the residual vector e is further decomposed. This decomposition is reflected
by replacing the corresponding line with two sources in the ANOVA, see Table 5.2.

We reject H0 : “the smaller model is sufficient” for large values of F∆. Formally, we reject the
null hypothesis if F∆ > Fp−q,n−p−1(1 − α), the 1 − α-quantile of the F -distribution with p − q
and n− p− 1 degrees of freedom.

Recall that a squared tℓ distribution is identical to an F1,ℓ distribution. Therefore, even the
classical t-test H0: βi = 0, with the test statistic given by equation (5.12), can be cast into
this ANOVA framework: we test if the increase of the error induced by removing a predictor is
significant compared to the error (of the reduced model). More specifically, the t-test uses the
tn−p−1 distribution, which corresponds to p− q = 1.

108 CHAPTER 5. LINEAR MODELS

y

y
e

ym

M

M

m

me

Col()

MCol()

X

X

Figure 5.4: Regression considered geometrically. Subscript M refers to a “larger”
model and subscript m to a “smaller” model (contained in model M).

Table 5.2: ANOVA table to compare two models M and m with p and q (p > q)
parameters, respectively (a mean is contained in both and not counted).

Source Sums of squares Degr. of free. Mean squares F -value

Model m SSmodel,m dfmodel,m = q MSmodel,m =
SSmodel,m

dfmodel,m

Terms from
modelM only

SS∆ = SSerror,m

− SSerror,M
df∆ = p− q MS∆ =

SSerror,m − SSerror,M

p− q
F∆ =

MS∆
MSerror,M

Error SSerror,M
dferror,M =

n− p− 1
MSerror,M =

SSerror,M

dferror,M

Total SStotal dftotal = n− 1

5.3 Extensions of the Linear Model

We discuss a few extensions of the classical linear regression model formulation. The main
message is that many models can be cast into a linear model framework.

The case of non-Gaussian observations is discussed in Chapter 8. If the error is just “some-
what” non-Gaussian (similar form as a Gaussian in that we have symmetry and the tails are not
too heavy) it is often permissible to proceed by assuming Gaussianity. The t- and F -tests for
individual β̂i or sums of squares decompositions are not too sensitive to non-Gaussian errors.

5.3.1 One-Way ANOVA

To investigate if there are at least two mean values y1, y2, . . . , yI which show a significant differ-
ence we use classical one-way ANOVA.

More formally, we assume that the I populations are normally distributed with homogeneous
variances and that the samples are independent.

Instead of performing
(
I
2

)
two-sample t-tests, we write the problem as a linear regression

model with one categorical influential variable.

5.3. EXTENSIONS OF THE LINEAR MODEL 109

We have I groups (i = 1, . . . , I,) and ni samples per group (j = 1, . . . , ni). This leads to the
model

Yij = µ+ βi + ϵij with εij ∼ N (0, σ2), (5.30)

where we have the constraint that

I∑
i=1

βi = 0. (5.31)

Using this model we can test different hypotheses. The most popular one is

β1 = β2 = · · · = βI = 0. (5.32)

The constraint (5.31) is called the sum-to-zero constraint. The default constraint in R is the
so-called treatment constraint β1 = 0. Therefore it is always important to quickly cross-check
the output of the lm() call.

Example 5.4. (Rehabilitation time after surgery) The original dataset was retrieved from www-
stat.stanford.edu/~nzhang/191_web/Data/Rehab.txt and is available at user.math.uzh.ch/furrer/
download/sta121/rehab.csv. We want to know whether rehabilitation time after a surgery depends
on the fitness level of the respective person. The dataset contains 24 subjects grouped into one
of three different fitness levels: below average (8), average (10) and above average (6). Box plots
of the three groups are given in Figure 5.5. The analysis is given in R-Code 5.3.

The results from both the ANOVA and the linear model show that there is a significant
effect of the fitness level. The estimated group means are 24 days (fitness above average), 32
days (average) and 38 days (below average).

The model has been fitted using a response in the form of a factor. Note how the estimated
coefficients can be reconstructed. Many other approaches are possible. ♣

R-Code 5.3: Box plots and one-way ANOVA with rehab dataset. (See Figure 5.5.)

rehab <- read.csv("download/sta121/rehab.csv")

boxplot(Time ~ Fitness, data=rehab, xlab="Level",

ylab="Rehabilitation time (days)")

options("contrasts"=c("contr.sum", "contr.sum")) # sum-to-zero

model <- lm(Time ~ Fitness, data=rehab)

summary(model)

##

Call:

lm(formula = Time ~ Fitness, data = rehab)

##

Residuals:

Min 1Q Median 3Q Max

http://www-stat.stanford.edu/~nzhang/191_web/Data/Rehab.txt
http://www-stat.stanford.edu/~nzhang/191_web/Data/Rehab.txt
http://user.math.uzh.ch/furrer/download/sta121/rehab.csv
http://user.math.uzh.ch/furrer/download/sta121/rehab.csv

110 CHAPTER 5. LINEAR MODELS

-9.0 -3.0 -0.5 3.0 8.0

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.3333 0.9285 33.747 < 2e-16 ***

Fitness1 -7.3333 1.4009 -5.235 3.45e-05 ***

Fitness2 0.6667 1.2339 0.540 0.595

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 4.451 on 21 degrees of freedom

Multiple R-squared: 0.6176,Adjusted R-squared: 0.5812

F-statistic: 16.96 on 2 and 21 DF, p-value: 4.129e-05

Estimated group means

ABOVE: 31.3333 - 7.3333=24

AVERAGE: 31.3333 + 0.6667=32

BELOW: 31.3333 + 7.3333 - 0.6667=38

anova(model)

Analysis of Variance Table

##

Response: Time

Df Sum Sq Mean Sq F value Pr(>F)

Fitness 2 672 336.00 16.962 4.129e-05 ***

Residuals 21 416 19.81

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ABOVE AVERAGE BELOW

20
25

30
35

40

Level

R
eh

ab
ili

ta
tio

n
tim

e
(d

ay
s)

Figure 5.5: Box plots of rehabilitation time for three levels of fitness. (See R-Code 5.3.)

5.3. EXTENSIONS OF THE LINEAR MODEL 111

The one-way ANOVA is another simple case in which we can write down the sum of squares
decomposition. To simplify the presentation, we use dot notation in order to show that we work
with averages, for example,

yi· =
1

ni

ni∑
j=1

yij and y·· =
1

N

I∑
i=1

ni∑
j=1

yij . (5.33)

Remember the decomposition of the total sum of squares:

3 min

∑
ij

(yij − y..)2 =
∑
ij

(yij − yi. + yi. − y..)2 (5.34)

=
∑
ij

(yij − yi.)2 +
∑
ij

(yi. − y..)2 +
∑
ij

2(yij − yi.)(yi. − y..) (5.35)

=
∑
ij

(yij − yi.)2 +
∑
ij

(yi. − y..)2 + 2
∑
i

{(yi. − y..)
∑
j

(yij − yi.)︸ ︷︷ ︸
0

}. (5.36)

Therefore we can see that∑
ij

(yij − y..)2︸ ︷︷ ︸
Total

=
∑
ij

(yij − yi.)2︸ ︷︷ ︸
Error

+
∑
ij

(yi. − y..)2︸ ︷︷ ︸
Treatment

. (5.37)

5.3.2 Two-Way and Multi-Way ANOVA

The one-way ANOVA can be extended to several factors. In the case of two factors with, say, I
and J levels we have

Yijk = µ+ βi + γj + ϵijk with εijk ∼ N (0, σ2), (5.38)

with nij samples for each of the corresponding I × J treatments. For identifiability reasons, as
in (5.31), we impose constraints of the form

I∑
i=1

βi = 0,

J∑
j=1

γj = 0, . (5.39)

Using this model we can test different hypotheses. The popular hypotheses tests are

H0 :β1 = β2 = · · · = βI = 0, (5.40)

H0 :γ1 = γ2 = · · · = γJ = 0. (5.41)

The resulting p-values can be directly extracted from an anova() output.
For more factors, we “essentially” have to add indices and Greek letters to (5.38).
The decomposition in different sums of squares is straightforward if we have balanced designs,

i.e., if nij = n for all i and j.
If the factors do not exhibit linear effects, interaction terms need to be added. In the two-way

setting, a call to interaction.plot() may illustrate possible interactions.

https://tube.switch.ch/download/video/58fc9856
https://tube.switch.ch/download/video/58fc9856

112 CHAPTER 5. LINEAR MODELS

5.3.3 Weighted and Generalized Least Squares

In this section we discuss the case in which the errors are not independent or identically dis-
tributed.

If the variances vary for the observations, we apply a weighted least squares (WLS) approach.
If the variances are not independent, we use a generalized least-squares (GLS) approach. Both
approaches work fine if the underlying parameters are known.

Y = Xβ + ε, ε ∼ Nn(0, σ
2V), (5.42)

where σ2 is unknown and V is an arbitrary (symmetric and positive definite) matrix. Let W de-
note a “square root” of V−1 such that W⊤W = V−1. The trick is to pre-multiply equation (5.42)
with W such that the transformed errors Wε are iid:

WY = WXβ +Wε, Wε ∼ Nn(0, σ
2I). (5.43)

In the transformed setting we proceed as in the standard case and thus

β̂ = (X⊤V−1X)−1X⊤V−1y . (5.44)

There are several issues with this approach:

1. V is unknown: iterative approaches or maximum likelihood may be used.

2. If n is large and V is not a diagonal matrix, the computational cost to calculate (5.44)
may be prohibitive.

5.3.4 Multivariate Regression

It is very important to distinguish between multiple and multivariate regression. The former has
several predictors and the latter has several variables that are observed, i.e., instead of a vector
y , we observe a data matrix. More precisely, instead of the model Yi ∼ N (x i

⊤β, σ2), as written
at the beginning of this chapter, we have Yi ∼ Nr(x i

⊤B,Σ), as discussed in the last chapter.
Thus, we need to estimate an entire parameter matrix B ⊂ Rp+1×r.

6 min
There are several ways to solve the multivariate regression problem. One way is to stack the

matrices into vectors and to apply a generalized least squares approach, the tool seen in the last
subsection.

5.4 Bibliographic remarks

Fahrmeir et al. (2013) is a very good, accessible book with both theoretical text blocks and
extensive case studies, as well. On a similar level, the same author provides the following pdf:
cran.r-project.org/doc/contrib/Faraway-PRA.pdf.

Mardia et al. (1979) cover all aspects of this chapter.
Approaching the (statistical) problem from a different angle, Christensen (2011) describes

many statistical methods in terms of projections. However, it is somewhat more technical and
requires a rigorous linear algebra background.

https://tube.switch.ch/download/video/451c0c32
https://tube.switch.ch/download/video/451c0c32
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

5.5. EXERCISES AND PROBLEMS 113

5.5 Exercises and Problems

Problem 5.1 (Correlation of estimates) Let’s assume a simple regression setting with

Yi = β0 + β1xi + εi, i = 1, . . . , n, εi
iid∼ N (0, σ2).

As values for the predictor, we take a realization of Xi
iid∼ N (µ, τ2). We use the numerical values

µ = 3, β0 = 1, β1 = 1/4. σ2 = 1/4, n = 25 and τ2 = 1.

a) Calculate Corr(β̂0, β̂1
)
.

b) Simulate R = 500 times the regression setting for the non-centered and the centered setting.
Plot the β̂0 and β̂1. Give an interpretation. What changes if the centering is based on the
sample average?

c) If we denote β̂(c)0 and β̂(c)1 , where the index c specifies the centering choice (i.e., non, µ, x̄).
What are the empirical values of Corr

(
β̂
(c)
k , β̂

(c)
k

)
, k = 0, 1? Give an interpretation.

Problem 5.2 (Centered predictors and sums of squares derivation) In this problem, we con-
sider centered predictors and decouple the intercept β0 from the remaining parameters. More
specifically, we consider the model

Yi = µ+ β1xi1 + · · ·+ βpxip + εi = µ+ x⊤
i β + εi, i = 1, . . . , n, n > p,

and
∑n

i=1 xij = 0 for j = 1, . . . , p and with all other assumptions as in our standard setting. In
matrix notation we have Y = 1µ+Xβ + ε.

a) Show that the OLS estimates of µ and β are given by µ̂ = y = 1/n1⊤y and β̂ =

(X⊤X)−1X⊤y .

b) Derive the distribution of Y− µ̂1 (where µ̂1 = 1/n11⊤Y) and show that the distribution
of β̂ = (X⊤X)−1X⊤Y is equivalent to (X⊤X)−1X⊤(Y − µ̂1). What is a convenient
consequence of these results?

Hint: It is worthwhile to define J = 1/n11⊤ and to show that J and thus I − J are
idempotent and that J(I− J) = 0 and JH = 0, the null matrix.

c) Derive the sums of squares decomposition (5.29) when starting from y −y1 in (5.26).

Problem 5.3 (Multiple linear regression – teacher salaries) The file salary.txt is available
on the course web page. It contains information about average teacher salaries for 325 school
districts in Iowa for the 2000–2001 school year. The variables are

District name of the district
districtSize size of the district:

1: <1000 students, 2: 1000–2000 students, 3: >2000 students
salary average teacher salary (in dollars)
experience average teacher experience (in years)

114 CHAPTER 5. LINEAR MODELS

a) Read in the file salary.txt. Create a factor variable for the size of the district and add
it as additional variable (with columnname size) to the data set. Hint: read.table(),
within(), factor()

b) Make numerical and graphical summaries of the data. What is the average salary in CHF?
Hint: summary(), by(), aggregate(), plot(), pairs(), boxplot(), hist(), . . .

c) Fit the following two models to the data

A: salary ∼ 1 + experience + districtSize
B: salary ∼ 1 + experience + size

Compare the models. How does the interpretation of the parameters change if we use a
factor instead of an integer for a categorical variable?

d) Consider model B and discuss the fit of the model. Is there an effect of experience and/or
district size? Could we drop one variable from the model? How can we interpret the
parameter estimates?

e) How does model B change if we use “experience − 11” instead of experience in the model?
Hint: I()

f) Look at the residuals and discuss the adequacy of the model.

g) What is the predicted value of a salary according to the model A and B for a teacher with
12 years experience in the district category “large”?

Problem 5.4 (Multiple linear regression – artificial data) When fitting the model

y = β0 + β1x1 + β2x2

to a set of n = 15 cases, we obtained least squares estimates β̂0 = 10, β̂1 = 12, β̂2 = 15, and
s2 = 2. It is also known that

(X⊤X)−1 =

 1 0.25 0.25

0.25 0.5 −0.25
0.25 −0.25 2

a) What is the standard error SE(β̂2)?

Hint: Do NOT calculate X.

b) Test the hypothesis that β2 = 0.

c) Estimate the covariance between β̂1 and β̂2. What is the standard error of β̂1 − β̂2?

d) Test the hypothesis that β1 = β2.

e) The total sum of squares is SST=120. Construct the ANOVA table and test the hypothesis
that β1 = β2 = 0. Obtain the percentage of variation in y that is explained by the model.

Chapter 6

Mixed Models

If we have several measurements from clusters or if we have several measurements
from the same individuals over time the linear model assumptions may be violated.
Mixed models extend the linear model framework. They can integrate both fixed
effects and random effects.

Learning goals for this chapter:

⋄ Extend the treatment design to include random effects

⋄ Explain the difference between random effect models and ANOVA

⋄ Explain random and fixed effects

⋄ Use of random effects models

⋄ Combine fixed and random effects in the mixed model – theory and R

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter06.R.

6.1 Motivation

We now return to extensions of the linear model. To motivate random effects and mixed effects
models we start with simple examples illustrating the need to extend the classical linear model.

(1a) In a factory, three different production machines are used. The total production time is
recorded. The model,

Yij = µ+ βi + εij with εij
iid∼ N (0, σ2) (6.1)

and some constraint on the βis (e.g., sum to zero constraint), is sufficient to investigate if all
machines have the same (similar) production time.

115

http://www.math.uzh.ch/furrer/download/sta121/chapter06.R

116 CHAPTER 6. MIXED MODELS

(1b) In a factory, three different production machines are each run by one specific but arbi-
trarily (randomly) selected operators. The total production time is recorded. The model,

Yij = µ+ βi + αj + εij with εij
iid∼ N (0, σ2). (6.2)

and some constraints on the βjs (machines) and the αjs (operators), are sufficient to make
statements about the machines but not about the population of operators since there is no
element in the model going beyond the selection of operators.

(2) A so-called hierarchical model: A body condition score is an assessment of the proportion
of fat that a cow possesses. It is widely accepted that the score is an important factor in (dairy)
cattle management (Roche et al., 2009). The cows within one herd are likely to be more similar
than cows from different farmers. Cows from nearby farms are likely to be more similar than cows
from distant region. Naturally, one should take into account all possible covariates to control for
all these effects.

The model that would account for this structure, would be the following:

Yijk = xijk
⊤β + αi + γi(j) + εijk, (6.3)

where αi represents the effect of the ith farm, γi(j) the effect of the jth herd j within the farm i

and k for the cow within herd j within farm i. The parentheses in the subscript highlight the fact
that there is a nesting effect due to the sampling of subpopulations. In practice, it is however
not always possible to explicitly control these using covariates (here “fixed” effects) because they
may not be known or “modelable”.

The last two examples illustrate that we need to extend the classical linear model (here
ANOVA framework) because the basic model assumptions are not satisfied (i.e., independent
observations, deterministic, unique predictors). The core idea is that the factors αi and/or βj
are not fixed (in terms of predictors) but random. These models are called random effect models
or, more generally, mixed (effects) models. They are used in situations, where we have

• Repeated measures: we have several observations from the same individual (all other pa-
rameters kept fixed),

• Hierarchical models: observations belong to subpopulations (animals in stables, stables in
farms, farms in regions . . .),

• Longitudinal settings: observations follow the same individual or subject over time (other
parameters may change over time as well).

6.2 Mixed Effects Models

The main difference between a model with one random effect and a fixed effects model (6.1)
(i.e., a “normal” one-way ANOVA) is the fact that the levels to be compared are now random.
This means that the general interest lies on the variable itself, not on the comparison of specific
values of this variable (or factor). We are much more interested in modeling variances or variance

6.2. MIXED EFFECTS MODELS 117

components instead of individual levels. For example, (under an appropriate setting), what is
the within-subject variability in the response relative to between-subject variability?

The model is used to deal with two main problems that occur if we have repeated measures:

1. Observations of the same (random) individual or level i are more correlated than observa-
tions of different individuals.

2. Parameters of each individual or level i might be slightly different.

A random effect model consists of a model with random effects only. A mixed effects model
consists of random and fixed effects.

6.2.1 Random Effect Model

Random effect models allow one to account for correlations or a correlation structure in the
data. The correlation is implicitly captured in the model. This can be seen if we have a look
at the expected value, variance and covariances of the observations. We illustrate this using the
simplest random effects model of the form

Yij = µ+ αi + εij with εij
iid∼ N (0, σ2), (6.4)

where αi is now random, or αi
iid∼ N (0, σ2α), and αi and εij are independent.

The expected value simply is

E(Yij) = E(µ+ αi + εij) = E(µ) + E(αi) + E(εij) = µ. (6.5)

The variance has the form

Var(Yij) = Var(µ+ αi + εij) = Var(αi) + Var(εij) = σ2α + σ2. (6.6)

The covariance of two observations of the same individual i is obtained via

Cov(Yij , Yik) = Cov(µ+ αi + εij , µ+ αi + εik) (6.7)

= Cov(αi, αi) + Cov(αi, εij) + Cov(αi, εik) + Cov(εij , εik) = Var(αi) = σ2α. (6.8)

Analogously, we can see that the covariance of observations from two different individuals is zero.
Hence, we have

Corr(Yij , Yik) =
σ2α

σ2α + σ2
and Corr(Yij , Ylk) = 0, i ̸= l. (6.9)

6.2.2 Mixed Models

It is possible to include both fixed and random effects in one model. The general definition of a
linear mixed model is

Yij = Xijβ︸ ︷︷ ︸
fixed effects

+ Zijαi︸ ︷︷ ︸
random effects

+ εij , (6.10)

118 CHAPTER 6. MIXED MODELS

where αi
iid∼ N (0,Σ) and where Xij and Zij are known matrices of appropriate size (here row

vectors). Thus, we are also capable of discussing the between-subject variability in covariate
effects relative to the mean population effect.

Naturally, by (appropriately) stacking the observations and errors into vectors Y and ε and
placing Xij and Zij in matrices X and Z, we can write (6.10) as Y = Xβ + Zα + ε, with
appropriate distributional assumptions.

Estimation in a mixed model is not straightforward because unlike in the classical linear
model framework, no closed-form solutions exist for the estimates exist. There are three main
approaches to estimation of model parameters:

1. Maximum likelihood (ML) estimation,

2. Restricted maximum likelihood (REML) estimation,

3. Markov chain Monte Carlo (MCMC) approaches.

ML estimation is easy to explain and beneficial in comparing different (nested) models but yields
less stable variance component estimates than REML. The last approach is computationally
demanding and is not often used in practice. However, even ML estimation is quite elaborate
and based on profile likelihood steps.

To fit the models we will use the function lmer() available in the package lme4. The speci-
fication of the model is quite similar to a fixed effects model, but with the addition of a (.| .)

model term for the random effects.
With respect to (6.10), we can visualize the formula component as (Z | i), where i specifies

the variable for which a random component is considered. In the previous example, we could
consider i to be the different operators of the machinery. Table 6.1 gives more practical details.

Table 6.1: Formula syntax for function lmer() in package lme4.

Formula Model

(1 | group)
random intercept within group

(x | group)
random slope for x and intercept within group,
with correlation between intercept and slope

(0 + x | group)
random slope for x within group, no variation in
intercept

(1 | group1) + (1 | group2)
random intercepts for two (crossed or nested)
grouping factors

(x || group) or
(1 | group) + (0 + x | group)

uncorrelated random intercept and random slope
for x within group

6.3 Linear Mixed Models for Longitudinal Data

Linear mixed models are often applied in the special situation where we have repeated mea-
surements of several individuals over time. The two random effects that are most common in

6.3. LINEAR MIXED MODELS FOR LONGITUDINAL DATA 119

this situation are a random intercept for each individual and a random slope for time for each
individual.

For example, when we model the response by Yij for i individuals with j repeated measures
(over time) each, we have several possible models:

• Global model where all observations are pooled:

Yij = β0 + β1x1,ij + εij , εij
iid∼ N (0, σ2). (6.11)

This model ignores within-subject correlation. As a consequence, the variability of coeffi-
cients is underestimated because correlated data contain less information than independent
data.

• Subject-specific models, where we fit different models for each individual (no pooling at
all):

Yij = β0,i + β1,ix1,ij + εij , εij
iid∼ N (0, σ2i). (6.12)

The fitted model can only be interpreted with regard to individuals in the sample. No
statements with respect to a population are possible. The number of parameters to be
estimated can grow quite large.

The mixed linear model is somewhere in between these two approaches and represents partial
pooling (over the variances).

Yij = β0 + (β0,i −β0) +β1x1,ij + (β1,i −β1)x1,ij + εij , (6.13)

which we rewrite as (using β0 ← β0, α0,i ← (β0,i −β0), . . .)

Yij = β0 + β1x1,ij + α0,i + α1,ix1,ij + εij , (6.14)

where εij
iid∼ N (0, σ2) are independent of αi =

(
α0,i

α1,i

)
iid∼ N2(0,Σ). In terms of (6.10), Xij =

Zij = (1 x1,ij).

Example 6.1. (Pigs’ weight) We track the weight (in kg) of 48 pigs over time for nine consecutive
weeks (Diggle et al., 2002). To emphasize that we track individual pigs, we plot individual lines
for each pig.

If we have a look at the plot in Figure 6.1, we can see that all pigs gain considerable weight,
but they start at different levels. Animals with larger weights at the beginning seem to have
larger weights at the end as well. The variability seems larger towards the end (probably due to
variation in the growth rate of the individual animals).

We might be interested in the growth (growth rate) but also in how the individual animals
behave with respect to this rate. To start, we would fit a simple linear model (m1 in R-Code 6.1).
The linear model fits the “union” of all data points well, but does not capture the fact that
individual pigs deviate almost “linearly” from the fitted line.

Therefore, it is advisable to fit a linear mixed model and include a random intercept in the
model (m2 in R-Code 6.2). This means that for each pig, we would fit an individual line modeling
the weight. The regression line m1 represents the population average.

120 CHAPTER 6. MIXED MODELS

R-Code 6.1 Pigs’ weight over time. (See Figure 6.1.)

pigs <- read.csv("download/sta121/pigs.csv",

col.names=paste0("weight.", 1:9), header=F)

dim(pigs)

[1] 48 9

matplot(1:9, t(pigs), type="l", ylab="Weight [kg]", xlab="Week", lty=1,

col="gray")

Reshape the data "wide" -> "long"

pigslong <- reshape(pigs, direction="long", varying=1:9)

str(pigslong, give.attr=FALSE)

'data.frame': 432 obs. of 3 variables:

$ time : num 1 1 1 1 1 1 1 1 1 1 ...

$ weight: num 24 22.5 22.5 24 24.5 23 22.5 23.5 20 25.5 ...

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

m1 <- lm(weight ~ time, data=pigslong)

abline(m1, lwd=2, col=1)

lines(1:9, colMeans(pigs), lwd=2, col=2)

Looking at the individual slopes, we can see that they are more variable at later time points
than at earlier time points. For this reason we could also include a random slope in the model
(m3 in R-Code 6.2). ♣

2 4 6 8

20
40

60
80

Week

W
ei

gh
t [

kg
]

Figure 6.1: Weight of 48 pigs over time. Overall population average is drawn in red
and the simple regression fit in black. (See R-Code 6.1.)

6.3. LINEAR MIXED MODELS FOR LONGITUDINAL DATA 121

R-Code 6.2: Linear mixed models for the pigs dataset: model with random intercept (m2)
and with random intercept and slope (m3).

library(lme4)

m2 <- lmer(weight ~ time + (1 | id), data=pigslong)

summary(m2)

Linear mixed model fit by REML ['lmerMod']

Formula: weight ~ time + (1 | id)

Data: pigslong

##

REML criterion at convergence: 2033.8

##

Scaled residuals:

Min 1Q Median 3Q Max

-3.7390 -0.5456 0.0184 0.5122 3.9313

##

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 15.142 3.891

Residual 4.395 2.096

Number of obs: 432, groups: id, 48

##

Fixed effects:

Estimate Std. Error t value

(Intercept) 19.35561 0.60314 32.09

time 6.20990 0.03906 158.97

##

Correlation of Fixed Effects:

(Intr)

time -0.324

Now fitting a random intercept and random slope

m3 <- lmer(weight ~ time + (time | id), data=pigslong)

summary(m3)

Linear mixed model fit by REML ['lmerMod']

Formula: weight ~ time + (time | id)

Data: pigslong

##

REML criterion at convergence: 1740.9

##

Scaled residuals:

Min 1Q Median 3Q Max

-3.6202 -0.5474 0.0150 0.5486 2.9939

122 CHAPTER 6. MIXED MODELS

##

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 6.986 2.6432

time 0.380 0.6164 -0.06

Residual 1.597 1.2637

Number of obs: 432, groups: id, 48

##

Fixed effects:

Estimate Std. Error t value

(Intercept) 19.35561 0.40387 47.93

time 6.20990 0.09204 67.47

##

Correlation of Fixed Effects:

(Intr)

time -0.132

It is important to note that in cases where we do not have a balanced design (different number
of observations at the same time points for each individual) a mixed model will lead to different
estimates than a linear model. In general, by taking into account the correlation structure one
observes a shrinkage of the estimates towards the mean.

The structure of the resulting object of an lmer() call is more elaborate than that of an
lm() call. Besides having more “components” due to the more complex nature, it possesses an
S4 structure which can be seen as a structured list. The individual components from the fitted
object can be extracted through fitted(), resid(), fixef() (fixed effects), ranef() (random
effects) and coef() (both the fixed and random effects), for example. Many “methods” exist; see
the result of the R-call methods(class="merMod") for more.

Example 6.2. (Pigs’ weight continued) Let us return to the pigs dataset and look at some
uncertainties. One can visualize the random effects (extracted using ranef()) using a cater-
pillar plot, as in Figure 6.2. The caterpillar plot does not indicate any structure between the
variables (as seen with the low correlation). Similarly, the plot plot(ranef(m3))$id shows no
structure. This is no surprise since there is only a very weak correlation between the random
effects (estimated at roughly −0.06). Thus the call lmer(weight ˜ time + (time || id),

data=pigslong) yields numerically very similar results (m4 in R-Code 6.3).
Finally, models m2, m3 and m4 are nested and an analysis of variance (anova() call) can be

applied. The result is based on the log likelihood (and thus the model is possibly refitted with
argument REML=FALSE) and the p-values provide the strength of evidence against H0: “the smaller
model is sufficient”. Hence we would argue that independent random intercepts and slopes should
be used to model the weight gain. ♣

6.3. LINEAR MIXED MODELS FOR LONGITUDINAL DATA 123

id

26
16
25

3
9

15
30

7
28
31
32

2
35
27
13

6
8

40
14
12
34
37
39
41
43
38
33
42
11
29

1
23
46
36
10

5
21
24
20
48

4
44
18
22
47
19
45
17

−5 0 5

(Intercept)

−5 0 5

time

Figure 6.2: Random effects and associated uncertainties (based on conditional covari-
ances) of the pigs dataset. (See R-Code 6.3.)

R-Code 6.3: Inferential aspects for the pigs dataset.

library(lattice)

dotplot(ranef(m3, condVar=TRUE))

$id

confint(m3, nsim=50, method="boot") # nsim could be maybe slightly larger

Computing bootstrap confidence intervals ...

2.5 % 97.5 %

.sig01 2.0298911 3.4688652

.sig02 -0.3638148 0.1305362

.sig03 0.4680248 0.8511890

.sigma 1.1808395 1.3618936

(Intercept) 18.6071582 20.1424181

time 5.9717635 6.4655477

the nonsignificant coefficent is now called .sig02

An alternative way to calculate the CI is through profiling:

124 CHAPTER 6. MIXED MODELS

confint(m3) # but this takes a couple seconds!

cor_time.(Intercept)|id is not significant: fit independent random effects:

m4 <- lmer(weight ~ time + (time || id), data=pigslong)

anova(m2, m3, m4, REML=FALSE)

refitting model(s) with ML (instead of REML)

Data: pigslong

Models:

m2: weight ~ time + (1 | id)

m4: weight ~ time + ((1 | id) + (0 + time | id))

m3: weight ~ time + (time | id)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

m2 4 2037.8 2054.1 -1014.93 2029.8

m4 5 1748.1 1768.4 -869.04 1738.1 291.7771 1 <2e-16 ***

m3 6 1749.9 1774.3 -868.96 1737.9 0.1528 1 0.6959

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The predict predict() method works for mixed models as well as for linear models. However,
one has to additionally specify if one needs predictions with respect to the fixed effects or random
effects (etc). R-Code 6.4 illustrates several different types of predictions and compares the values
with the original observations (for pig id==1).

R-Code 6.4 Prediction for the pigs dataset.

timepts <- c(1, 3, 5, 7, 9)

newpig <- data.frame(time=timepts, id=1)

fixed effects;

p1 <- predict(m3, newdata=newpig, re.form=~0)

fixed and random intercept effect:

p2 <- predict(m3, newdata=newpig, re.form=~(1|id))

fixed and random effects

p3 <- predict(m3, newdata=newpig, re.form=~(time|id))

print(round(rbind(pigs[1,timepts], p1, p2, p3), 2))

weight.1 weight.3 weight.5 weight.7 weight.9

1 24.00 39.00 48.00 61.00 72.00

2 25.57 37.99 50.41 62.82 75.24

3 25.81 38.23 50.65 63.07 75.48

4 25.41 37.04 48.66 60.29 71.92

A final remark concerning the interpretation of the time variable: Note that this is dependent
on the coding of the time variable. Time point zero can be defined as the time of some baseline

6.3. LINEAR MIXED MODELS FOR LONGITUDINAL DATA 125

measurement or an otherwise defined starting point. Alternatively, time could be centered around
the midpoint. In this case, the random intercept reflects individual properties around the middle
of the time axis. Even the last time point or a time point not contained in the data set can be
defined as time point zero, in which case the intercept parameter represents an extrapolation of
time.

The consequence of this is that if the individual heterogeneity is different at different time
points, the estimated variance of the random intercept can be different.

6.3.1 General Model Formulation

Let’s have a look at the form of the model one more time, but this time as a summary of the
measurements of one individual i:

Yi = Xiβ + Ziαi + ϵi with αi
iid∼ N (0,Σ), independent of εi

iid∼ N (0, σ2I). (6.15)

To simplify the notation, we omit the corresponding dimensions of the vectors. In most cases, the
columns of Zi are a subset of the columns of Xi. Note that there are two different perspectives
from which we can interpret the model:

• Conditional: The focus of the conditional linear mixed model is on the random effects.
Using the estimated individual random effects, we can make individual forecasts for time
points that are not yet contained in the model.

• Marginal: Here we focus on the fixed effects, which inform us about the mean behavior of
the population. Using this information, we can provide predictions for new individuals.

The expected value of the conditional distribution of Yi (i.e. with given random effects) is

E(Yi|αi) = Xiβ + Ziαi, (6.16)

and the respective covariance is

Cov(Yi|αi) = σ2I. (6.17)

To obtain the expected value of the marginal distribution of y i, we use the law of iterated
expectations:

E(Yi) = E(E(Yi|αi)) = E(Xiβ + Ziαi) = Xiβ + Zi E(αi) = Xiβ. (6.18)

For the covariance matrix of the marginal distribution, we use the variance decomposition for-
mula:

Cov(Yi) = E(Cov(Yi|αi)) + Cov(E(Yi|αi)) = E(σ2I) + Cov(Xiβ + Ziαi). (6.19)

We know that

Cov(Xiβ + Ziαi) = Cov(Ziαi) = ZiCov(αi)Z
T
i = ZiΣZT

i . (6.20)

Using this in the equation above, we can finally write

Cov(Yi) = σ2I+ ZiΣZT
i . (6.21)

Hence, it is important to specify the conditional or marginal setting.

126 CHAPTER 6. MIXED MODELS

6.4 Additional Examples

6.4.1 Sitka Dataset

We consider measurements on the log-size of 79 Sitka spruce trees, 54 of which were grown
in ozone-enriched chambers and 25 which served as controls. The size (height times diameter
squared) of each tree was measured eight times, at roughly monthly intervals.

In R-Code 6.5 we compare two models: one with a random intercept and one with a random
intercept and a random slope. We rescale the time variable to months after 1989 to avoid
covergence issue from the fitting procedure. (A fitting without rescaling issues warnings and
suggests rescaling).

We choose to fit the model with the classical maximum likelihood method instead with the
default REML method in order to compare the resulting AICs with arbitrary fixed effects fits;
see also the technical remark at the end of this section.

R-Code 6.5: Sitka data. (See Figure 6.3.)

library(lme4)

data(Sitka89, package="MASS")

str(Sitka89)

'data.frame': 632 obs. of 4 variables:

$ size : num 6.16 6.18 6.48 6.65 6.87 6.95 6.99 7.04 5.2 5.22 ...

$ Time : num 469 496 528 556 579 613 639 674 469 496 ...

$ tree : int 1 1 1 1 1 1 1 1 2 2 ...

$ treat: Factor w/ 2 levels "control","ozone": 2 2 2 2 2 2 2 2 2 2 ...

help("Sitka89", package="MASS") # "size" is already on a log scale!

with(Sitka89, { # potting:

time <- unique(Time)

plot(time, size[tree==1], xlab="Time (days since 1988)", ylab="Size",

ylim=range(Sitka89$size), type="l", col=3-(treat=="ozone"))

for(i in 2:79)

lines(time, size[tree==i], col=3-((treat[tree==i])[1]=="ozone"))

means <- tapply(size, list(treat,Time), mean)

lines(time, means[2,], lwd=4)

lines(time, means[2,], col=2, lty=2, lwd=2)

lines(time, means[1,], lwd=4)

lines(time, means[1,], col=3, lty=2, lwd=2)

legend("bottomri", legend=c("Ozone", "Control"), col=2:3, bty="n", lwd=1)

})

Sitka89$Time <- (Sitka89$Time-366)/(356/12) # rescaling

6.4. ADDITIONAL EXAMPLES 127

Fitting ans two summary outputs

summary(out1 <- lmer(size ~ Time + (1 | tree), data=Sitka89, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: size ~ Time + (1 | tree)

Data: Sitka89

##

AIC BIC logLik deviance df.resid

-339.5 -321.8 173.8 -347.5 628

##

Scaled residuals:

Min 1Q Median 3Q Max

-3.6472 -0.6969 0.0019 0.6768 3.1761

##

Random effects:

Groups Name Variance Std.Dev.

tree (Intercept) 0.4192 0.6474

Residual 0.0175 0.1323

Number of obs: 632, groups: tree, 79

##

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.248551 0.074795 70.17

Time 0.108325 0.002356 45.98

##

Correlation of Fixed Effects:

(Intr)

Time -0.216

print(out2 <- lmer(size ~ Time + (1 + Time | tree), data=Sitka89, REML=FALSE))

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: size ~ Time + (1 + Time | tree)

Data: Sitka89

AIC BIC logLik deviance df.resid

-381.4216 -354.7282 196.7108 -393.4216 626

Random effects:

Groups Name Std.Dev. Corr

tree (Intercept) 0.69780

Time 0.02492 -0.40

Residual 0.11816

Number of obs: 632, groups: tree, 79

Fixed Effects:

(Intercept) Time

128 CHAPTER 6. MIXED MODELS

5.2486 0.1083

the following is a way to extract relevant info from summary:

lme4:::.prt.VC(summary(out2)$varcor,3,comp=c("Variance", "Std.Dev."))

Random effects:

Groups Name Variance Std.Dev. Corr

tree (Intercept) 0.486927 0.6978

Time 0.000621 0.0249 -0.40

Residual 0.013962 0.1182

AIC(lm(size ~ Time, data=Sitka89), out1, out2)

df AIC

lm(size ~ Time, data = Sitka89) 3 1275.8940

out1 4 -339.5494

out2 6 -381.4216

confint(out2, method="boot", nsim=50) # e.g., leads to similar results.

500 550 600 650

4
5

6
7

Time (days since 1988)

S
iz

e

Ozone
Control

Figure 6.3: Sitka89 dataset. The means are indicated with bold (black) lines. (See
R-Code 6.5.)

Technical note: When comparing arbitrary fixed effects models and mixed effects models,
ML method is required. If the fixed effects terms are the same in all models, either REML
or ML is fine, but REML usually preferred. Also note that the interpretation of the results is
usually difficult when both fixed effects and random effects are changing. Hence, we recommend
changing only one or the other at a time.

Using a likelihood ratio test (LRT) is delicate when testing if one variance component is
zero because the typical chi-squared approximation does not hold. This is because the null-
hypothesis, H0 : σ2α = 0 say, has the parameter on the boundary of the parameter space. There

6.4. ADDITIONAL EXAMPLES 129

is an entire theory on the distribution of the LRT in these situations (see, e.g.„ Self and Liang,
1987). For this special case, where one parameter lies on the boundary, the likelihood ratio has
a 1/2χ2

0 + 1/2χ2
1-distribution. In practice, one has to halve the p-value based on χ2

1.

6.4.2 Pigs Dataset Revisited Using ggplot2

We illustrate the pigs dataset using the plotting functionality of ggplot2(), a package that
provides a very powerful mechanism for displaying all sorts of plots. The mechanism is almost
like a language on its own and, in practice, one often starts with a suitable example that is then
further modified.

R-Code 6.6 superimposes different fits (pooled linear, individual linear and random intercept)
for a selection of pigs (specified by id.sel). The pooled fit is naturally the worst and the mixed
model one does a good job. Subject 18 seems to have a different slope than the majority of other
subjects. Notice that the first few lines have been called previously and would not be needed
again.

R-Code 6.6 pigs dataset revisited. Fancy plotting routines. (See Figure 6.4.)

library(lme4)

library(ggplot2)

pigs <- read.csv("download/sta121/pigs.csv",

col.names=paste0("weight.", 1:9), header=F)

pigslong <- reshape(pigs, direction="long", varying=1:9)

id.sel <- c(1,2,9,17,18,30)

pigsplot <- pigslong[pigslong$id %in% id.sel,]

m2 <- lmer(weight ~ time + (1 | id), data=pigslong)

mm2 <- data.frame(id=id.sel, intercept=coef(m2)[[1]][id.sel,1],

slope=coef(m2)[[1]][id.sel,2])

g <- ggplot(data=pigsplot, aes(x=time, y=weight)) + geom_point() +

facet_wrap(~id) + theme_bw() +

geom_smooth(formula=y ~ x, method="lm", aes(color="lm.ind"), se=FALSE) +

geom_smooth(formula=y ~ x, method="lm", aes(color="lm.pool"),

data=within(pigslong, id <- NULL), se=FALSE) +

geom_abline(aes(intercept=intercept, slope=slope, color="lme"),

data=mm2) +

scale_colour_manual(name="Model",values=c("lm.ind"="blue2",

"lm.pool"="orange", "lme"="green4"))

g

R-Code 6.7 illustrates the shrinkage effect of the mixed model approach. For a better il-
lustration, we have redone the analysis with centered time, or such that the design matrix X

has orthogonal columns. The random intercept model has one common slope (identical to the
pooled one). The values for the intercepts are slightly smaller than those for the other models.
There are virtually no differences between the green and blue dots, confirming that a dependence

130 CHAPTER 6. MIXED MODELS

17 18 30

1 2 9

2.5 5.0 7.5 2.5 5.0 7.5 2.5 5.0 7.5

20

40

60

80

20

40

60

80

time

w
ei

gh
t

Model

lm.ind

lm.pool

lme

Figure 6.4: pigs dataset revisited. We use a plotting approach provided by the
package ggplot2(). For visibility, we select six individual pigs. (See R-Code 6.6.)

between the effects is not really necessary.

Remark 6.1. Note that in the Bayesian context, there is not such a difference between fixed
and random effects as in the case of a classical approach. If we take a linear model Y = Xβ+ ε

and put a prior on β this is equivalent to a random effects model. Similarly, if we have a random
effects model in the classical sense, say Y = αi + ε then this is as a Bayesian model with a
normal prior on α. Of course for a proper specification, we need additional, carefully specified,
priors. ♣

6.5 Bibliographic remarks

There are many R packages available for fitting mixed models: mainly lme4 and nlme, but also
mgcv and MCMCglmm. The model specification slightly varies between the different packages.

ASReml (www.vsni.co.uk/software/asreml, Butler et al., 2009) is another (standalone) software
that fits linear mixed effects models through a particular implementation of REML (Gilmour
et al., 1995, see also Gilmour et al., 2004). There exists an R-interface through the package
asreml-R. The model specification is relatively similar in the sense that one specifies the fixed
effects and the random effects through separate arguments (as for nlme). However, ARSeml is
neither open-source nor free.

It is also possible to fit, e.g., logistic regression models by adding random effects to the linear
predictor. This results in so-called generalized linear mixed models (GLMMs). We will see
generalized linear models (GLMs) in a later chapter.

https://www.vsni.co.uk/software/asreml

6.5. BIBLIOGRAPHIC REMARKS 131

R-Code 6.7 Shrinkage effect of mixed models. (See Figure 6.5.)

library(plyr)

fits <- data.frame(id=rep(unique(pigslong$id), 5),

model=rep(c("individual", "mixed2", "mixed3", "mixed4", "pool"),

each=48), intercept=NA, slope=NA)

m1 <- lm(weight ~ time, data=pigslong)

fits[fits$model == "pool", "intercept"] <- coef(m1)[1]

fits[fits$model == "pool", "slope"] <- coef(m1)[2]

fits[fits$model == "individual", c("intercept", "slope")] <-

ddply(.data=pigslong, .variables="id", .fun=function(x){

coef(lm(weight ~ time, data=x)) })[,2:3]

m2 <- lmer(weight ~ time + (1 | id), data=pigslong)

m3 <- lmer(weight ~ time + (time | id), data=pigslong)

m4 <- lmer(weight ~ time + (time || id), data=pigslong)

fits[fits$model == "mixed2", c("intercept", "slope")] <- coef(m2)$id

fits[fits$model == "mixed3", c("intercept", "slope")] <- coef(m3)$id

fits[fits$model == "mixed4", c("intercept", "slope")] <- coef(m4)$id

g1 <- ggplot(data=fits, aes(x=intercept, y=slope, color=model)) +

geom_point() + theme_bw()

g1

132 CHAPTER 6. MIXED MODELS

5.0

5.5

6.0

6.5

7.0

7.5

15 20 25
intercept

sl
op

e

model

individual

mixed2

mixed3

mixed4

pool

5.0

5.5

6.0

6.5

7.0

7.5

45 50 55 60
intercept

sl
op

e

model

individual

mixed2

mixed3

mixed4

pool

Figure 6.5: Shrinkage effect of mixed models. The bottom panel is based on the
centered time covariate. mixed[2,3,4] correspond to the mixed models with random
intercept, correlated random intercept and random slope and uncorrelated random in-
tercept and random slope. (See R-Code 6.7.)

6.6. EXERCISES AND PROBLEMS 133

6.6 Exercises and Problems

Problem 6.1 (ANOVA with random effect) The dataset hearing.txt is available at https:
//www.math.uzh.ch/furrer/download/sta121/hearing.txt. The data are from a hearing experiment:

24 subjects with normal hearing listened to standard audiology tapes of English words at low
volume with a noisy background. They repeated the words and were scored correct or incorrect
in their perception of the words.

Each subject was exposed to four word list with 50 words. The order of the list was randomized.

This word lists are standard audiology tools for assessing hearing. They are calibrated to be
equally difficult to perceive. However, the original calibration was performed with normal-hearing
subjects without noise background. The experimenter wished to determine whether the lists were
still equally difficult to understand in the presence of a noisy background.

The three observed variables are:
SubjectID: Code for each subject - 24 of them

ListID: Code for each of the four lists played

Hearing: Score received on hearing test (\% heard correct)

(Loven, Faith. (1981). A Study of the Interlist Equivalency of the CID W-22 Word List
Presented in Quiet and in Noise. Unpublished MS Thesis, University of Iowa.)

a) Make an exploratory analysis of the data.
Hint: Among others, produce a box-plot comparing the hearing scores of the four different
word lists.

b) Which variables explain much of the variation in the variable Hearing?
Hint: lm(), anova()

c) Model the variability of Hearing with a linear mixed model that takes the possibly corre-
lated responses with each subject into account. Do the hearing scores differ for different
lists?
Hint : Use lme4::lmer() with SubjectID as random effect.

d) Compare the results from b and c.

Problem 6.2 (Longitudinal data) The dataset termites.txt is available from the https://www.
math.uzh.ch/furrer/download/sta121/termites.txt. It contains data collected in an experiment that
investigated the effects of certain tree resins on termites.

More precisely, a resin derived from the bark of tropical trees was dissolved and placed on filter
paper in different dose levels (5mg and 10mg). For each dosage level, eight dishes are set up with
25 termites in each dish. The termites are fed the dosed filter paper and a daily count is made
of the number of termites surviving.

The question was, if the resin harm the termites and if the different dosage levels influence effect
the survival.

The observed variables are:

https://www.math.uzh.ch/furrer/download/sta121/hearing.txt
https://www.math.uzh.ch/furrer/download/sta121/hearing.txt
https://www.math.uzh.ch/furrer/download/sta121/termites.txt
https://www.math.uzh.ch/furrer/download/sta121/termites.txt

134 CHAPTER 6. MIXED MODELS

dish: dish number

dose: 5 or 10 mg of resin

day1: Number of termites still alive on this day

day2: Number of termites still alive on this day

....

day15: Number of termites still alive on this day

a) Explore the data.

b) Restructure the data to long format. Plot the data with functions from package lattice.
Hint: reshape() (stats package) or melt() from package reshape2. xyplot() and
bwplot().

The data in long format could look as follows:

head(term)

dish dose day n.termites

1 1 5 1 25

2 2 5 1 25

3 3 5 1 25

4 4 5 1 25

5 5 5 1 25

6 6 5 1 25

c) Use a linear model to see whether the survival of the termites depends on dose, day, dish.
What is problematic with the variable dish? Plot the predicted values of the model you
found (x-axis: day, y-axis: predicted values, dishes indicated with colours).

d) Fit the model again with a random intercept for each level of dish. Compare the results
with c. Plot the predicted values.

e) Fit the model again with a random intercept and slope for each level of dish. Compare
the results with answers from questions c, and d. Plot the predicted values.

f) Use bootstrap to simulate a 95% confidence interval for the dose parameter in model used
to answer question d.

Chapter 7

Non-Parametric Regression

We model noisy observations in terms of an arbitrary function of one or more
explanatory variables.

Learning goals for this chapter:

⋄ Describe the motivation for non-parametric regression

⋄ Describe kernel approaches, penalized approaches, locally adaptive ap-
proaches

⋄ Calculate the various nonparametric regression estimates in R for given data

⋄ Know the strengths and weaknesses of the various methods introduced

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter08.R.

7.1 Motivation

We start by looking at two classic datasets consisting of pairs of data. In both examples, simple
regression models are not adequate because the models are not flexible enough to describe the
data sufficiently well. In this chapter we discuss different approaches for such noisy types of data.

Example 7.1. Figure 1.2 shows the annual bituminous coal production in the USA between
1920 and 1968 (Makridakis et al., 1998, Exercise 7.7). A polynomial of degree 10 seems to
fit the data well (magenta colored line). However, this fit does not provide any predictive
capability or socioeconomic interpretation. For example, when we use the fit to predict the coal
production for 1915, predict(lm(coal poly(year,10)), newdata=data.frame(year=1915))

our prediction is 6187, larger than the total production between 1920 and 1930! ♣

135

http://www.math.uzh.ch/furrer/download/sta121/chapter08.R

136 CHAPTER 7. NON-PARAMETRIC REGRESSION

Example 7.2. The mcycle data gives a series of head acceleration measurements from a motor-
cycle accident simulation study used to test crash helmets (Silverman, 1985). The data is shown
in the left panel of Figure 7.1.

We superimpose regression fits for models including time in milliseconds and polynomial
powers thereof as predictors.

For this particular example, we use the package ggplot2, based on the grammar of graphics
approach. We choose a layout for these figures close to base figures, without fully matching
them. The fits are created using the function stat_smooth() and are drawn with uncertainty
bands. For the used method method="lm", the bands are based on the classical predict.lm()
function. ♣

R-Code 7.1 Datasets mcycle and bicoal plotted with ggplot(). (See Figure 7.1.)

data(mcycle, package="MASS")

str(mcycle)

'data.frame': 133 obs. of 2 variables:

$ times: num 2.4 2.6 3.2 3.6 4 6.2 6.6 6.8 7.8 8.2 ...

$ accel: num 0 -1.3 -2.7 0 -2.7 -2.7 -2.7 -1.3 -2.7 -2.7 ...

plot(accel~times, data=mcycle) # would be a simple option.

library(ggplot2)

pl <- ggplot(mcycle, aes(times, accel)) + geom_point()

pl <- pl + stat_smooth(method="lm") + # add some fits and uncertainy bands

stat_smooth(method="lm", formula=y ~ poly(x, 5), col=3) +

stat_smooth(method="lm", formula=y ~ poly(x, 10), col=2)

pl # "print()ing" the object is equivalent to plotting

−100

−50

0

50

100

0 20 40 60
times

ac
ce

l

Figure 7.1: Dataset mcycle with a few linear model fits superimposed (linear, poly-
nomial with five and ten degrees). (See R-Code 7.1.)

7.2. KERNEL APPROACHES 137

The classical linear model framework is extended and we assume that

Yi = g(xi) + εi, (7.1)

where εi
iid∼ (0, σ2) and g an “arbitrary” function. In fact, it is arbitrary in the sense that it is not

represented as a linear function of some parameter vector but, formally speaking, g is a twice
differentiable.

In the simple regression case, g(x) = β0 + β1x. If we consider multiple regression based on
one covariate, we may have g(x) = β0 + β1x+ β2x

2 · · ·+ βpx
p, as for example in Figure 7.1. We

now assume that g is “complicated;” a few parameters are not sufficient to “model” g and thus
the goal is to estimate g non-parametrically.

Many non-parametric techniques exist and most can be categorized into one of the following
three approaches:

• Local estimation approaches (kernel smoothers, local polynomials, see Section 7.2)

• Penalized approaches (splines, see Section 7.3)

• Locally adaptive approaches (wavelets, . . . , see Section 7.4)

The first is motivated by a moving window sliding along x, which is used to predict ĝ(x). The
second is based on extending the classical least squares minimization by using a more flexible
description of g(x). The third takes into account that we need different smoothing strategies
depending on x. Here we discuss the first two approaches in more detail and only outline the
third one, much like a black box method.

One key property of the approaches discussed here and of many more used in practice is that
they are linear smoothers, in the sense that

ŷi = ĝ(xi) =
n∑

i=1

hijyj (7.2)

for some “weights” hij , resulting in

ŷ = Hy , (7.3)

where the hat matrix H has elements hij which typically depend on x1, . . . , xn. The hat matrix
has properties similar to those of the corresponding hat matrix X(X⊤X)−1X⊤ in the linear
model. For example, the rank of the hat matrix determines the maximum “flexibility” of the
fitted values. Specifically, a rank one matrix results in a constant value for g. Of course, a large
rank does not necessary imply a “good” fit.

7.2 Kernel Approaches

Kernel approach are moving window type approaches, where the prediction for a particular
value depends on the nearby observations. This dependency is determined by weights that are
calculated by a so-called kernel.

138 CHAPTER 7. NON-PARAMETRIC REGRESSION

Definition 7.1. A kernel is a function k(x) that

• is symmetric (around zero) and non-negative, i.e., k(u) = k(−u) and k(u) ≥ 0;

• is normed, i.e.,
∫
k(u)du = 1;

• has a bounded second moment, i.e.,
∫
u2k(u)du <∞;

• is square integrable, i.e.,
∫
k(u)2du <∞.

Usually, one assumes that
∫
u2k(u)du = 1. A kernel is a density but not vice-versa. ♢

A kernel estimator is defined by a kernel function k(u) and a bandwidth parameter λ > 0 and
weights the observations proportional to k

(
xi − x/λ

)
/λ. Hence, hij in (7.2)r consists of these

normalized weights.
The following (kernel) estimators are popular practical variants:

Nadayara–Watson: ĝ(x) =

∑
i

1

λ
k
(xi − x

λ

)
Yi∑

i

1

λ
k
(xi − x

λ

) (7.4)

Gasser–Müller: ĝ(x) =
∑
i

∫ si

si−1

1

λ
k
(u− x

λ

)
duYi, (7.5)

si =
1

2
(xi + xi+1), s0 = −∞, sn =∞.

Of course there is virtually no limitation on the number of kernels, some are used more often.
The most commonly used ones are (right most version is unscaled, meaning

∫
u2k(u)du ̸= 1):

uniform (or top-hat): k(x) =
1

2
√
3
I(|x| ≤

√
3), k(x) =

1

2
I(|x| ≤ 1),

trianglular: k(x) =
1√
6

(
1− |x|√

6

)
I(|x| ≤

√
6), k(x) = (1− |x|)I(|x| ≤ 1),

Epanechnikov: k(x) =
3

4
√
5

(
1− x2

5

)
I(|x| ≤

√
5), k(x) =

3

4
(1− x2)I(|x| ≤ 1),

Gaussian: k(x) =
1√
2π

exp(−x2/2),

where I(·) is the indicator function and restricts the support of the first three kernels. In R, these
and more kernels can be visualized with plot(density(0, kernel="rectangular", bw=1)) and
appropriate kernel argument.

The key difficulty of kernel estimators is the choice of the bandwidth parameter λ. The
bandwidth determines the amount of smoothing and roughly said λ → ∞ results in the mean,
i.e., ĝ(x) = Y and λ ≈ 0 results in the interpolator.

A sensible and careful choice of the bandwidth parameter balances bias and variance. Small
bandwidth values result in a small amount of bias but large variance whereas for a large band-
width, the relation is inverted.

7.2. KERNEL APPROACHES 139

Choosing the smoothing/bandwidth parameter of non-parametric regressions is the classic
example of cross-validation (CV, see Section 1.3), which is illustrated in the next example. For
some approaches, CV is computationally intensive and general cross-validation (GCV) procedures
are used. These latter ones are essentially approximations to CV that approximate elements of
the hat matrix in order to avoid n fitting procedures.

Example 7.3. R-Code 7.2 smooths the motorcycle data bicoal with different kernel smoothers:
ksmooth() and sm.regression() (from the package sm). Some smoothers have difficulties with
replicated data and thus we slightly jitter the times as we have 39 non-unique time stamps. The
function ksmooth() is used first. A uniform kernel (default) yields very rugged curves. Switching
to a Gaussian one (kernel="normal") yields a truly “smooth” curve. The unbounded support
of the Gaussian kernel yields a slightly stonger smoothed version. For sm.regression() we use
a cross-validated bandwidth h. The bandwidth for that smoother can also be specified by the
value of the trace of the hat matrix, corresponding to the degrees of freedom of the smoother.
For our particular setting, we need about 16 degrees of freedom.

Note that sm.regression() can be used with two covariates for which the results can be
presented with the package rgl. ♣

R-Code 7.2 Kernel with mcycle data. (See Figure 7.2.)

accel <- mcycle$accel # for unique values

times <- mcycle$times+rnorm(length(accel), -.001, .001)

plot(times, accel, pch=20)

If the output of `ksmooth` is not continuous, the default of `x.points`

may not be sufficient.

k1 <- ksmooth(times, accel, bandwidth=5, x.points=times)

lines(k1, col=3)

a normal kernel makes it smooth...

k2 <- ksmooth(times, accel, kernel="normal", bandwidth=5, x.points=times)

lines(k2, col=4)

library(sm) # hcv and sm.regression

print(cv <- hcv(times, accel, hstart=0.5, hend=3.5, ngrid=31))

[1] 1.4765

sm.regression(times, accel, h=cv, add=T, col=2)

Instead of specifying bandwidth, specify the degrees of freedom.

The cv smooth corresponds to df=16 (found after several trials):

sm.regression(times, accel, df=16, add=T, col=6, lty=4)

legend("bottomright", bty="n", lty=c(1,1,1,4), col=c(3,4,2,6),

legend=c("ksmooth: uniform, bw=5", "ksmooth: Gauss, bw=5",

"sm.regression: cv", "sm.regression: df=16"))

cv <- hcv(times, accel, hstart=0.5, hend=3.4, ngrid=31, display="line")

140 CHAPTER 7. NON-PARAMETRIC REGRESSION

10 20 30 40 50

−
10

0
−

50
0

50

times

ac
ce

l

ksmooth: uniform, bw=5
ksmooth: Gauss, bw=5
sm.regression: cv
sm.regression: df=16

0.5 1.5 2.5 3.5

75
00

0
85

00
0

95
00

0
10

50
00

h

C
V

Figure 7.2: Kernel smoothers applied to the mcycle data (left) and cross-validation
criterion for kernel smoother. (See R-Code 7.2.)

Kernel smoothers are also used when estimating densities. Suppose that we observe x1, . . . , xn
from un unknown continuous density fX(x). A histogram is a discrete estimate of the density.
An improved version thereof is a running bin, i.e., f̂X(x) =

∑n
i=1 I(xi ∈ [x ± δ/2])

/
(δn). Here,

based on the indicator function I(·) we estimate is the proportion of observation that fall into
the neighborhood of xi with width 2δ. This estimate is thus equivalent to the uniform kernel
with yi ≡ 1. The function density() uses a similar approach with a Gausssian kernel as default.

From a theoretical point of view, it can be shown that the bias is O(λ2) and the variance is
O(1/(nλ)). Choosing a bandwidth of rate λ = λ(n) = O(n−1/5), kernel approaches thus have a
mean squared error rate of O(n−4/5). Note that this rate is slower than traditional approaches
with O(1/n). This is the price of not assuming a parametric model.

7.2.1 Local Polynomials

Kernel smoothers suffer from boundary bias (at the boundary, we have observations on one side
only) and, to a lesser extend, from bias induced by the design points {xi}. Local polynomial
address both issues and naturally extend kernel smoothers.

For a fixed value x0, consider the following minimization problem

min
a(x0)

∑
i

wi(x)
(
Yi − a(x0)

)2
, (7.6)

where a(x) is a constant but depends on the fixed (x). The solution to this problem is the
Nadayara–Watson estimator â(x) for which the weights are given by the kernel, i.e., wi(x) =

k
(
(x − xi)/λ

)
/λ. The idea of local polynomials is to replace a(x0) by a qth order polynomial

for some small value of q. The idea is that we approximate g(xi) with, for example, locally with
a0+a1(xi−x0). The resulting smoother is again a linear smoother and the solution is much like
a weighted least squares solution.

A local linear smoother has a smaller bias than Nadayara–Watson but the same variance.

There are two commonly used functions for local polynomials in R: loess(), and lowess()

7.3. SPLINES 141

(See Example 7.4). The latter is also used as the “red” guide the eye line in scatterplot matrices
(e.g., Figure 1.5).

Example 7.4. For completeness, we apply both loess() and lowess() to the mcycle dataset.
lowess(), which is an older implementation based on a complicated algorithm, and loess(),
which is newer and more coherent with respect to the arguments. Often, default values for
the bandwidth are not useful. Additionally, the bandwidth cannot be shared between different
approaches. ♣

R-Code 7.3 Local polynomials and the mcycle data. (See Figure 7.3.)

plot(times, accel, pch=20)

lobj <- loess(accel ~ times) # default smoothing value

lines(lobj$x, lobj$fitted, col=5)

lobj <- loess(accel ~ times, span=.1) # not enough smoothing

lines(lobj$x, lobj$fitted, col=3)

lobj <- loess(accel ~ times, span=0.35) # probably close to optimal

lines(lobj$x, lobj$fitted, col=2, lwd=2)

lines(lowess(times, accel, f=0.35), col=4, lwd=2) # same value

legend("bottomright", lty=1, col=c(5,3,2,4), lwd=c(1,1,2), bty="n", legend=

c("loess: default","loess: span=0.1","loess: span=0.35","lowess: f=0.35"))

10 20 30 40 50

−
10

0
−

50
0

50

times

ac
ce

l

loess: default
loess: span=0.1
loess: span=0.35
lowess: f=0.35

Figure 7.3: Local polynomials with the mcycle data. (See R-Code 7.3.)

7.3 Splines

In the classical least squares minimization with g(x) = x⊤β, the criterion

argmin
g

n∑
i=1

(
yi − g(xi)

)2
, g(xi) = x i

⊤β (7.7)

is well defined. The minimization over the g is equivalent a minimization over β. We now think
of a much more flexible description of g(x), where g can be (almost arbitrary). In that case, the

142 CHAPTER 7. NON-PARAMETRIC REGRESSION

criterion above may not be optimal as we find one function that essentially interpolates, i.e., for
all distinct values xi, yi = g(xi). Thus we need extend the criterion to balance residual sums of
squares (RSS) and smoothness (in the kernel smoothing sense):

ĝ(x) = argmin
g

n∑
i=1

(
yi − g(xi)

)2
+ λJ(g), (7.8)

where λ is a smoothing parameter and J is a penalty function that for smoother functions yield
smaller penalties.

We aim to find a function g that is not too “wiggly”, i.e., a smoother fit. A common way to
quantify the smoothness is through the second derivative of g and we set the penalty function
J(g) to

J(g) =

∫ (
g′′(x)

)2
dx, (7.9)

and the goal is to find the minimizer of M(λ) = RSS + λJ(g) over all possible functions g
(strictly speaking, twice differentiable). At first sight, it is surprising that such a seemingly
complex problem has a solution which is moreover very simple. The function minimizing M(λ)

is a natural cubic spline with knots at the data points and is called a natural smoothing spline
(see as follows).

To simplify the notation, we assume that we have observations at distinct values (that we
order) x1 < x2 < · · · < xn. In equation (7.9), we integrate over (a, b) only, often a = x1 and
b = xn, but a = −∞ and/or b =∞ or any other value is possible.

Formally, a cubic spline for the knots ξ1, . . . , ξk is a function g(x) that is a cubic polynomial in
each interval [ξi, ξi+1], i = 1, . . . , k−1, and is twice differentiable (g′(x) and g′′(x) are continuous
everywhere). A natural cubic spline additionally assumes g(x) to be linear in (a, ξ1] and [ξk, b).
The solution to (7.8) is a natural cubic spline with knots at the data points, i.e., ξ1 = x1, . . . , ξn =

xn.

As for kernel smoothers, we can use CV to determine λ or use some a-priori knowledge
reflecting the hypothesized smoothness of g.

Example 7.5. R-Code 7.4 fits different smoothing splines to the mcycle dataset. In the second
part, we manually extract the CV and GCV criterion, also visualized in Figure 7.4. ♣

Numerically, the smoothing spline is found by formulating a basis for the splines and then
applying a ridge regression approach. There are several possible spline basis functions, see below.
For the moment, assume that the jth basis function is written as bj(x). The elements of the
matrix B are defined by bj(xi). Then the smoothing spline is the solution to

(y −Bβ)⊤(y −Bβ) + λβ⊤Ωβ, (7.10)

where Ω is the matrix having elements
∫ b

a
b′′i (x)b

′′
j (x)dx. The solution is simply

β̂ = (B⊤B+ λΩ)−1B⊤y . (7.11)

7.3. SPLINES 143

R-Code 7.4 Splines for the mcycle data. (See Figure 7.4.)

(s1 <- smooth.spline(times, accel)) # generalized CV, default

Call:

smooth.spline(x = times, y = accel)

##

Smoothing Parameter spar= 1.0655 lambda= 0.00011012 (12 iterations)

Equivalent Degrees of Freedom (Df): 12.243

Penalized Criterion (RSS): 61988

GCV: 565.37

s2 <- smooth.spline(times, accel, cv=T) # ordinary CV

s3 <- smooth.spline(times, accel, spar=1)

print(c(s1$lambda, s2$lambda, s3$lambda)*1e6)

[1] 110.125 91.003 36.998

plot(accel~times, pch=20)

lines(s1, col=2)

lines(s2, col=3)

lines(s3, col=4, lty=4)

legend("bottomright", legend=c("default (GCV)","CV","spar=1"),

bty="n", col=c(2,3,4), lty=c(1,1,4))

ln <- 50

output <- array(0, c(ln,4))

sparseq <- seq(0.8, to=1.2, length=ln)

for (i in 1:ln) {

si <- smooth.spline(times, accel, spar=sparseq[i], cv=TRUE)

output[i,] <- c(si$lambda, si$cv.crit, smooth.spline(times,

accel, spar=sparseq[i], cv=FALSE)$cv.crit, si$df)

}

colnames(output) <- c("lambda","CV","GCV","d.f.")

print(opt <- cbind(CV=output[which(min(output[,2])==output[,2]),1],

GCV=output[which(min(output[,3])==output[,3]),1]))

CV GCV

lambda 8.9439e-05 0.00011735

plot(output[,1], output[,2], type="l", xlab=expression(lambda),

ylab="CV/GCV criterion")

lines(output[,1], output[,3], col=4)

abline(v=opt, col=c(1,4), lty=2)

There are several ways to define spline basis functions. One example is the so-called truncated
power series basis

{
1, x, x2, x3, (x− ξ1)3+, . . . , (x− ξk)3+

}
, where x+ = max(x, 0). Another, com-

putationally more appealing example is the B-spline basis for the natural cubic spline. Figure 7.5

144 CHAPTER 7. NON-PARAMETRIC REGRESSION

10 20 30 40 50

−
10

0
−

50
0

50

times

ac
ce

l

default (GCV)
CV
spar=1

0e+00 6e−04

55
0

60
0

65
0

λ

C
V

/G
C

V
 c

rit
er

io
n

Figure 7.4: Spline smoothers for the mcycle data (left) and manually performing CV
to find an optimal smoothing parameter value (right). (See R-Code 7.4.)

shows nine B-spline basis elements.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

2
0.

4
0.

6

x1

Figure 7.5: Basis functions of natural cubic splines, essentially matplot() visualiza-
tion of splines::ns().

Regression splines are an alternative to smoothing splines. We construct spline basis functions
and then use these to regress the observations on. However, we restrict the number of knots.
More precisely, regression splines minimize a residual sum of squares over splines with knots at
k determined locations, ξ1, . . . ξk. The smoothing is then accomplished through the number of
knots and the position of the knots, illustrated in R-Code 7.5.

R-Code 7.5 Regression splines. (See Figure 7.6.)

plot(accel ~ times, pch=20)

sm1 <- lm(accel ~ bs(times, 6))

lines(times, sm1$fitted)

lines(times, lm(accel ~ bs(times, 12))$fitted, col=3)

knots <- c(1,15,20,25,30,50)

abline(v=knots, col="gray")

lines(times, lm(accel ~ bs(times, knots=knots))$fitted, col=2)

7.4. LOCALLY ADAPTIVE APPROACHES 145

10 20 30 40 50

−
10

0
−

50
0

50

times

ac
ce

l

Figure 7.6: Regression splines with mcycle data. The vertical lines indicate locations
of the knots. (See R-Code 7.5.)

It is possible to cast the splines and regression splines into the kernel framework.
(Interpolating) splines and smoothing splines are also often used in simple drawing programs

to parameterize smooth curves. An interpolating spline function can be calculated by the R-
function spline().

7.4 Locally Adaptive Approaches

Most approaches discussed thus far determine the smoothing parameter globally, i.e., there is
a single parameter for the entire dataset. The exception is regression splines, where the knots
are determined manually and thus it is possible to achieve different levels of smoothness in the
data. However, all these approaches are not suitable in cases where the curve has extremely
different smoothing behaviors in different regions. A classic case is shown in the top panel of
Figure 7.7, the so-called ‘doppler’ function. This artificial function serves as a test function for
locally adaptive approaches.

The archetype locally adaptive smoother uses wavelets. The theoretical background of
wavelets are mathematically quite evolved and thus we need some handwaving here. In a nutshell,
a wavelet decomposition is as follows. One defines a scaling function ϕ(x) (also called the “father”
wavelet function) and a mother wavelet function ψ(x), with descendants ψjk(x) = 2j/2ψ(2jx−k).
The idea is to write the function g(x) as

g(x) = αϕ(x) +

∞∑
j=0

2j−1∑
k=0

βjkψjk(x), (7.12)

where α is the scaling coefficient and βjk the detail coefficients. Of course, in order that the last
equation holds, the scaling and wavelet functions cannot be arbitrary. In fact, equation 7.12 is
a simplified version of a complete and general wavelet decomposition. We shall not bother with
the general description here.

A wavelet representation is not much unlike a Fourier representation except that the “basis
functions” may represent large and small features. Moreover, the functions are scaled such that
important features imply large coefficients. That means that smoothing is equivalent to setting

146 CHAPTER 7. NON-PARAMETRIC REGRESSION

small coefficients βjk to zero. This procedure is called thresholding and two typical approaches are
hard thresholding and soft thresholding. The former sets all coefficient that exceeds a threshold
δ to zero, the latter additionally shifts the coefficients by δ. The thresholding functions can be
visualized by curve(x*(abs(x)>1), -2,2) and curve(sign(x)*pmax(abs(x)-1,0), -2,2).

The concept of a wavelet decomposition is illustrated in the following example.

Example 7.6. The doppler function f(x) =
√
x(1− x) sin(2.1π/(x + 0.05)) represents a sinu-

soidal function with changing amplitude and frequency. We observe the function at 28 = 256

equispaced points with a noise having variance σ2 = 0.01, see top panel of Figure 7.7.
We decompose the signal (with default parameters for the wavelet specification, see left

panel of second row of Figure 7.7), leading to the different coefficients α and βjk, the latter are
represented in the right panel of Figure 7.7). For didactic purposes, we reconstruct the signal
with with a few levels only. For example, with the red curve in left panel of the third row is a
reconstructed signal based on three coefficients only.

The number of zeros does not change between hard and soft thresholding (at the same
threshold) and increases with increasing threshold. The reconstruction illustrates nicely the
difference between both thresholding approaches, for value=.1, both curves capture the large
scale variability well but with type="soft") the residuals are smaller as the coefficients of the
last level only essentially represent noise. The stronger the thresholding the more of the original
structure of the signal is shrunk. ♣

R-Code 7.6: A wavelet analysis of the doppler data. (See Figure 7.7.)

set.seed(14)

doppler <- function(x) sqrt(x*(1-x))*sin(2.1*pi/(x+.05))

n <- 2^8

xi <- seq(0, 1, length=n)

yi <- doppler(xi)+rnorm(n, 0, sd=0.1)

plot(xi, yi, pch=20)

curve(doppler, add=T, n=1000, col=4)

library(wavethresh)

wd1 <- wd(yi) # wd=wavelet decomp

summary(wd1) # printing the object is a bit cryptic

Levels: 8

Length of original: 256

Filter was: Daub cmpct on least asymm N=10

Boundary handling: periodic

Transform type: wavelet

Date: Sun Aug 27 12:55:03 2023

to access the individual coefficients beta_jk, use accessD(wd, level=j)

round(accessD(wd1, level=3), 4)

[1] 0.2182 -0.0333 1.1923 1.7530 -0.9345 0.3094 -0.0168 -0.0187

7.4. LOCALLY ADAPTIVE APPROACHES 147

Plot the mother basis

draw(wd1)

Coefficients...

tmp <- plot(wd1, main="", sub="", scaling="by.level")

NOTE: "wd"=wavelet decomposition and "wr"=wavelet reconstruction.

plot(xi, yi, pch=20, main="Reconstruction with different levels")

curve(doppler, add=T, n=1000, col="gray")

levs <- c(1, 3, 5, 7)

reconstruction with different levels

for (i in 1:4) {

tmp <- threshold(wd1, levels=levs[i]:7, policy="manual", value=999)

lines(wr(tmp)~xi, col=i+1)

}

legend("bottomright", legend=paste(levs, "Levels"), col=2:5, lty=1, bty="n")

errors:

plot(xi, yi, type="n", main="Error of Reconstruction")

for (i in 1:4) {

tmp <- threshold(wd1, levels=levs[i]:7, policy="manual", value=999)

lines(doppler(xi)-wr(tmp)~xi, col=i+1, lwd=1)

}

With soft and hard thresholding, the number of zeros

are the same, only the magnitudes of coefficients vary a bit.

t1wdd <- threshold(wd1, policy="manual", value=.1, type="hard")

t2wdd <- threshold(wd1, policy="manual", value=.1, type="soft")

t3wdd <- threshold(wd1, policy="manual", value=.5, type="soft")

t4wdd <- threshold(wd1, policy="manual", value=1, type="soft")

legend("bottomright", , col=2:5, lty=1, bty="n",

legend=c("hard, 0.1", "soft, 0.1", "soft, 0.5", "soft, 1.0"))

plot(xi, yi, pch=20, main="Reconstruction: different thresholding")

curve(doppler, add=T, n=1000, col="gray")

lines(wr(t1wdd)~xi, col=2, lwd=1)

lines(wr(t2wdd)~xi, col=3, lwd=1)

lines(wr(t3wdd)~xi, col=4, lwd=1)

lines(wr(t4wdd)~xi, col=5, lwd=1)

We count the number of zeros:

zeros <- array(0,c(4,7+2))

for (i in 1:7) {

zeros[1,i] <- sum(accessD(t1wdd, level=i)==0)

zeros[2,i] <- sum(accessD(t2wdd, level=i)==0)

148 CHAPTER 7. NON-PARAMETRIC REGRESSION

zeros[3,i] <- sum(accessD(t3wdd, level=i)==0)

zeros[4,i] <- sum(accessD(t4wdd, level=i)==0)

}

zeros[,8] <- apply(zeros[,1:7],1,sum) # total number of zeros

zeros[,9] <- 2^8 - zeros[,8] # nonzero coefficients

print(zeros) # to be compared with 256 coefficients!

Notice that the last column of 'zeros' also corresponds to

'dof'=degrees of freedom.

plot(xi, yi, type="n", main="Error of Reconstruction")

abline(h=c(0.1, -0.1), col="gray") # one +/-sigma of the added error

lines(doppler(xi)-wr(t1wdd) ~ xi, col=2, lwd=1)

lines(doppler(xi)-wr(t2wdd) ~ xi, col=3, lwd=1)

lines(doppler(xi)-wr(t3wdd) ~ xi, col=4, lwd=1)

lines(doppler(xi)-wr(t4wdd) ~ xi, col=5, lwd=1)

legend("bottomright", legend=paste(zeros[,9]), col=2:5, lwd=1, bty="n")

Note that the error is smaller than sigma in the artificial data example!

7.5 Example: Image Compression

Smoothing splines and wavelets are particularly suitable for extensions in two dimensions. Thin-
plate splines are the two-dimensional analog of the cubic spline in one dimension. Here, we only
illustrate the wavelet approach with an example. A full treatment of a two-dimensional wavelet
would be beyond this lecture.

The top left panel of Figure 7.8 shows a RGB png color image of a chapel in Gspon
(46◦13’28.6"N 7◦54’10.5"E). The image consists of 5122 = 262144 pixels, and we work with
the ‘blue’ component, scaled to 0 and 255 (top right). The image has a few regions that are
homogeneous (sky, fronts, . . .), many sharp boundaries and quite a few details (stairs, handrail,
stonework, . . .)

R-Code 7.7 illustrates an image compression approach based on a two-dimensional wavelet
approach, similar to that seen in R-Code 7.6. We start with the (uncompressed) decomposition
with default arguments to specify the wavelets. The resulting object imwdG has 218 = 5122

coefficients partitioned in 9 levels (each level has three components: horizontal, vertical, and
diagonal). We choose a manual (hard-)thresholding. The parameter value of threshold has
been chosen by trial and error to be 30 (automatic approaches exist, of course). The middle row
of Figure 7.8 gives the error of reconstruction (different scale) and the reconstruction itself of
the image based on roughly 11000 coefficients (about 96% of the coefficients are zero!). Ideally,
smooth areas and fine scale features in the image should be preserved, which is the case here.
The reconstruction consists of non-integer values. If we work with proper RGB grayscale images,
we would have to round the reconstruction to the nearest integer. We have roughly 13%, 37%

7.5. EXAMPLE: IMAGE COMPRESSION 149

and 56% percent of all pixels that whos reconstruction is zero, ±1 and ±2 grayscale units off,
respectively.

The compression is straightforward, but the manual extraction of the coefficients is some-
what difficult. The coefficients are stored in many vectors and it seems (almost) cryptic. After
a thresholding operation, vectors are stored in a compressed format. The lower left panel of
Figure 7.8 shows all non-zero coefficients aligned in a matrix pattern. The lines indicate the
horizontal, diagonal and vertical components (counter-clockwise). Most non-zero coefficients are
positioned at “feature changes”, i.e., the boundaries and sharp edges are visible. The stairs appear
in almost all levels. Note that it is possible to plot the coefficients of each level and component in-
dividually via plot(timwdG, scaling="global", package="R", plot.type="cols") but the
interpretation for large images might not be as easy.

The thresholding also filters iid noise in an image. The last few lines of R code illustrate
that the reconstruction remains virtually the same, even if substantial noise is added, e.g.,
gspon+rnorm(512ˆ2, sd=10). The corresponding reconstructed image is virtually the same
as the noise-free one.

R-Code 7.7: Wavelet analysis of an image. (See Figure 7.8.)

library(wavethresh)

library(png) # load a nice image

gsponRGB <- readPNG("download/sta121/Gspon512.png")

plot(0, xlim=c(1,512), ylim=c(1,512), type="n", axes=F, xlab="", ylab="",

xaxs="i", yaxs="i")

rasterImage(gsponRGB, 1, 1, 512, 512)

graycol <- gray(0:127/128) # Colors: dark to white

gspon <- round(t(gsponRGB[512:1,,3])*255) # Values between 0:255

zl <- c(-60,300) # Avoid very dark and very light levels

image(gspon, col=graycol, zlim=zl, axes=F)

actual wavelet analysis:

summary(imwdG <- imwd(gspon)) # default arguments work fine

UNcompressed image wavelet decomposition structure

Levels: 9

Original image was 512 x 512 pixels.

Filter was: Daub cmpct on least asymm N=10

Boundary handling: periodic

to see the used wavelet, one could visualize it through

draw(imwdG, 2^9, border="gray")

thresh <- 30

timwdG <- threshold(imwdG, pol="manual", value=thresh)

error of reconstruction (different scale) and reconstruction:

image(imwr(timwdG)-gspon, zlim=c(-100,100), col=graycol, axes=F)

150 CHAPTER 7. NON-PARAMETRIC REGRESSION

summary(error <- c(imwr(timwdG)-gspon)) # should be rounded!

Min. 1st Qu. Median Mean 3rd Qu. Max.

-45.912 -2.138 0.005 0.000 2.113 52.384

image(imwr(timwdG), zlim=zl, col=graycol, axes=F)

sapply(0:4, function(x) mean(abs(round(error)) <= x)) # proportion within

[1] 0.13224 0.37445 0.56236 0.69272 0.77838

The object imwdG has 2^18=512^2 coefficients:

3*(2^16+2^14+2^12+2^10+2^8+2^6+2^4+2^2+2^0)+1 #=512^2

[1] 262144

to access these coefficients, we run

tmp <- threshold(imwdG, policy="manual", value=thresh, compression=FALSE)

and the values can also be accessed through:

c(length(timwdG$w8L1$val), length(timwdG$w8L2$val), length(timwdG$w8L3$val))

[1] 1529 1380 207

levs <- plot(timwdG, scaling="global", package="S") # all coefs in a matrix

levs[abs(levs) < 1] <- NA # due to thresholding, no small numbers

nnz <- sum(!is.na(levs)) # number of zeros.

print(c(nonzeros=nnz, percent=nnz/512^2 *100)) # significant compression

nonzeros percent

10672.000 4.071

image(levs, axes=FALSE) # show non-zero values

some lines:

for (i in 1:7) { # number of levels would be `nlevelsWT(timwdG)`

lines(c(0,2^(-i+1)), c(2^(-i), 2^(-i)))

lines(c(2^(-i), 2^(-i)), c(0,2^(-i+1)))

}

reconstruct a noisy version of the image:

image(gspon+rnorm(512^2, sd=10), zlim=zl, col=graycol, axes=FALSE)

imwdG2 <- imwd(gspon+rnorm(512^2, sd=10))

timwdG2 <- threshold(imwdG2, pol="manual", value=thresh)

image(imwr(timwdG2), zlim=zl, col=graycol, axes=FALSE)

summary(c(imwr(timwdG2)-imwr(timwdG)))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-55.985 -1.496 -0.008 -0.004 1.484 51.181

7.5. EXAMPLE: IMAGE COMPRESSION 151

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

xi

yi

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0

Wavelet Picture (Enhanced)

Daub cmpct on least asymm N=10
x

ps
i

Translate

R
es

ol
ut

io
n

Le
ve

l

7
6

5
4

3
2

1
0

0 32 64 96 128

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Reconstruction with different levels

xi

yi

1 Levels
3 Levels
5 Levels
7 Levels

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Error of Reconstruction

xi

yi

hard, 0.1
soft, 0.1
soft, 0.5
soft, 1.0

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Reconstruction: different thresholding

xi

yi

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

0.
6

Error of Reconstruction

xi

yi

105
105
14
12

Figure 7.7: A wavelet analysis of the doppler data. Top row illustrates the function
and the noisy observations thereof. Second row: wavelet function and coefficients for
each level. Third row: reconstruction and error of reconstruction based on a few levels
only. Bottom row: reconstruction and error of reconstruction based on a different
thresholding type and level.

152 CHAPTER 7. NON-PARAMETRIC REGRESSION

Figure 7.8: Top row: original images in color and in gray-scale. Middle row: error and
reconstructed (compressed) image. Bottom row: wavelet coefficients and reconstructed
(threshold) image from a noise version of the original image.

7.6. BIBLIOGRAPHIC REMARKS 153

7.6 Bibliographic remarks

Green and Silverman (1994) is an early but accessible reference for non-parametric regression.
Wahba (1990) is the classic book on splines. However, Wood (2006) is definitely more relevant
here. The book by Fan and Gijbels (1996) is an accessible source for local polynomials. It also
briefly outlines wavelets, as well as the other classical smoothing approaches. Similarly, the first
few chapters of Hastie and Tibshirani (1990) give an accessible overview of smoothers. Later
chapters then link smoothers to (generalized) additive models.

Nason (2010) is the book behind the wavethresh package.
Thin plate splines are nicely implemented in R by the function Tps() of the package fields.

7.7 Exercises and Problems

Problem 7.1 (Non-parametric regression) Gompertz’s (1825) theory states that mortality rates
of organisms increase at an exponential rate with increasing age. In other words, the probability
of dying increases exponentially with the age of an organism. An experiment was setup to test
this theory. It considered a start population of 1′203′646 Mediterranean fruit flies and the number
of flies found dead each day was counted. The recorded data contains the number of surviving
flies for each day.
One variable of interest is “mortality rate” defined as the number of flies dying on a given day
divided by the number of flies alive at the beginning of that day.

The dataset medflies.txt, available from https://www.math.uzh.ch/furrer/download/sta121/
medflies.txt, consist of:

day: Day of the measurement
living: Number of flies alive at the beginning of the day
mort.rate: Mortality rate for the flies for each day

a) Explore the data with tables and plots and describe it with words.

b) Was the variable mort.rate constructed correctly?

c) Verify Gompertz’s theory that mortality rates increase at an exponential rate as age in-
creases. Does it hold for this data? Can you find a subset of the data where the theory
holds?
Hint: Use linear regressions to model log(mort.rate) and plot the regression together
with the data. Verify the model assumptions with diagnostic plots.

d) Consider mort.rate (not on log scale) for the rest of the exercise. Fit a non-parametric
regression using a kernel approach. Try different kernels and bandwidths. Plot the data
and the resulting fits.

e) Redo d with (i) the smoothing splines and (ii) the local polynomials method.

f) Use cross-validation to find an optimal bandwidth for the kernel approach in d. Plot the
resulting fit.
Hint: Use functions hcv() and sm.regression() from package sm. See script.

https://www.math.uzh.ch/furrer/download/sta121/medflies.txt
https://www.math.uzh.ch/furrer/download/sta121/medflies.txt

154 CHAPTER 7. NON-PARAMETRIC REGRESSION

g) Calculate “manually” a cross-validation based on smoothing splines.

h) What scientific questions can be answered with a non-parametric model? Find a question
that can be answered with a non-parametric model, and another one that can be answered
with a linear model.

Problem 7.2 (Kernel smoothing) Revisit the bicoal dataset.

a) Use ksmooth() and loess() and construct sensible smooths of the data.

b) The function hcv() from the package sm is known to produce sometimes unstable re-
sults. Compare the results of sm.regression() with bandwidth chosen by hcv() and
h.select(). What do you conclude?

c) Implement an CV approach for your favorite smoother and compare the fit with other
smooths.

Chapter 8

Generalized Linear Models

Often the outcome cannot be modeled as a Gaussian realization and extensions of
the linear model are required. Logistic regression explains failures and successes
(binary outcomes) using one or more explanatory variables. This model is part of
an extension of linear models, called generalized linear models, that are for non-
Gaussian distributions.

Learning goals for this chapter:

⋄ Apply logistic regression techniques to datasets with a binary response vari-
able, interpret the output

⋄ Apply Poisson regression techniques to datasets with a count response vari-
able, interpret the output

⋄ Understand the basics of fitting and inference for nonlinear regression meth-
ods when the regression function acting on the predictors is not linear in the
parameters

⋄ Explain the difference between logistic and linear regression

⋄ Defines Generalized linear model, exponential family of distributions, check-
ing if a distribution belongs to the exponential family of distributions

⋄ understand some similarities and differences between LDA and logistic re-
gression

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter10.R.

155

http://www.math.uzh.ch/furrer/download/sta121/chapter10.R

156 CHAPTER 8. GENERALIZED LINEAR MODELS

8.1 Motivation

Within the context of parametric models, we have mainly seen linear models y = Xβ+ ε where
we often assumed εi

iid∼ N (0, σ2) (see, Chapter 5 for details and notation). The following classical
and famous dataset illustrates the issue with a least squares approach where we cannot assume
a Gaussian response.

Example 8.1. (orings data) In January 1986, the space shuttle ‘Challenger’ exploded shortly
after take-off from Cape Canaveral, Florida, US. Part of the problem was with the so-called
O-ring seals of the solid rocket boosters. In total there are six (primary) O-rings in the two
boosters. In several shuttle starts prior to 1986, some of the rings showed failures (the rocket
hulls were typically recovered and examined).

The functioning of rubber seals (naturally) depends on temperature. The dataset data(

orings, package="faraway") gives the number of defects from 23 previous shuttle starts and
is shown in Figure 8.1. The question here is if we can predict a failure probability as a function
of the temperature. Notice that at launch time of this last Challenger mission the ambient
temperature was 31◦F (i.e., just below freezing point). ♣

20 30 40 50 60 70 80

0
1

2
3

4
5

6

Temperature [F]

N
um

be
r

of
 d

am
ag

ed
 O

−
rin

gs

Figure 8.1: orings data and a linear fit.

A linear fit has been added to Figure 8.1 and directly illustrates the lack of adequacy of linear
models for this data. In the figure we consider the data as count data. The response is then
definitely not Gaussian and the linear model should not be used. Alternatively, we can model
the failure probability, by normalizing the observed data by the total number of O-rings. When
modeling probabilities, that is, yi ∈ [0, 1], a linear model cannot guarantee that ŷi ∈ [0, 1].

In this chapter we extend the linear model towards data that is non-Gaussian, as - for example
- count data or a proportion

8.2. LOGISTIC REGRESSION 157

8.2 Logistic Regression

To model probabilities as a function of one predictor, for example the probability of a defect as
a function of the temperature, we start with

p = P{defect} = exp(β0 + β1x)

1 + exp(β0 + β1x)
=

1

1 + exp(−β0 − β1x)
, (8.1)

where x is the temperature. The advantage of using the function (8.1) to model a probability
is the guarantee that p ∈ [0, 1] whatever value of x. Through inverting the relation, we have a
linear model for the log-odds

g(p) = log
(p

1− p

)
= β0 + β1x. (8.2)

In general, the function g(·) is called the link function. Here, g−1(·) is the logistic function and
thus a regression problem based on this function is called logistic regression.

8.2.1 Estimation, Inference and Prediction

When we apply a modeling approach as outlined, it is important to realize that we do not attempt
to fit a non-linear regression, nor transform the data, but use a general methodology. We observe
binomial variable Yi ∼ Bin(ni, pi) and estimate the probabilities p̂i based on the observed data
yi/ni. We implicitly use the fact that E(Yi)/ni = pi. The transformed probabilities are linked
to one or several predictors using the so-called logit function

logit(pi) = log
(pi
1− pi

)
= x⊤

i β. (8.3)

As soon as we have an estimate for β, we also have estimates for pi and other quantities that
can be derived thereof.

Equation (8.3) illustrates the most prominent difference with respect to the classical (linear)
model. We do not specify additive errors but only the distribution of the observations (here
Binomial) and the predictors are used additively for transformed parameters of this distribution.

As a consequence, we do not minimize the squared residuals. For the logistic regression case
— even if we would use a least squares approach — no closed form expressions for the estimates
exist and an iterative approach is used. More precisely, the observations are transformed and
regressed on x i with appropriate weights (IRWLS, iteratively reweighted least squares). Another
consequence is that we cannot derive exact distributions of estimators and therefore confidence
intervals are typically not exact.

The estimation (or fitting) is done with the R function glm(), which takes similar arguments
as the function lm(). The result of glm() bears quite some similarities with results of lm().
R Code 8.1 illustrates a fit of the O-ring data using glm().

To construct confidence intervals for the parameters, we can use the function confint()

from MASS or manually construct Wald-type confidence intervals by taking estimate plus/minus
quantile times standard error. The former is slightly more precise, as the latter is, by construction,
symmetric. Confidence intervals will be further illustrated in Example 8.2.

158 CHAPTER 8. GENERALIZED LINEAR MODELS

R-Code 8.1: orings data and estimated failure probability as a function of the ambient
air temperature at launch time. (See Figure 8.2.)

data(orings, package="faraway")

glm1 <- glm(cbind(damage, 6 - damage) ~ temp, family=binomial, data=orings)

summary(glm1)

##

Call:

glm(formula = cbind(damage, 6 - damage) ~ temp, family = binomial,

data = orings)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-0.9529 -0.7345 -0.4393 -0.2079 1.9565

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 38.898 on 22 degrees of freedom

Residual deviance: 16.912 on 21 degrees of freedom

AIC: 33.675

##

Number of Fisher Scoring iterations: 6

plot(damage/6 ~ temp, xlim=c(21, 80), ylim=c(0, 1),

xlab="Temperature [F]", ylab="Probability of damage", data=orings)

points(orings$temp, glm1$fitted, col=2)

#

ct <- seq(20, to=85, length=100)

p.out <- predict(glm1, new=data.frame(temp=ct), type="response")

lines(ct, p.out)

abline(v=31, col="gray", lty=2)

unlist(predict(glm1, new=data.frame(temp=31), type="response", se.fit=T))

fit.1 se.fit.1 residual.scale

0.99303415 0.01153332 1.00000000

Prediction can be performed on the “linear model” level (8.3) or on the level of the response.

8.2. LOGISTIC REGRESSION 159

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Temperature [F]

P
ro

ba
bi

lit
y

of
 d

am
ag

e

Figure 8.2: orings data and estimated failure probability as a function of the ambient
air temperature at launch time. (See R-Code 8.1.)

The former is (essentially) x⊤
0 β̂ and the latter is p̂0. Even on the response level, the prediction

does not exactly yield Ŷ . In the case of logistic regression, the prediction is in (0, 1), whereas
the observations are integers. We do not predict the outcomes, but rather the outcome proba-
bilities. In the case of the O-ring example, the probability that all rings fail is larger than 95%
(dbinom(6,size=6,prob=.993)).

Example 8.2. The dataset aflatoxin from the package faraway contains data on the doses (in
ppb) of Aflatoxin B1 fed to lab animals and the number responding with liver cancer. R-Code 8.2
illustrates model estimation, building confidence intervals and illustrates prediction.

From the functional relationship of the logistic function, we can determine the dose for which
we expect death with probability 0.5. Often termed, LD50 (lethal dose). In our example, it is
roughly 33.7± 7.5. ♣

R-Code 8.2: Comparison of calculation of confidence intervals and prediction. (See Fig-
ure 8.3.)

library(faraway)

data(aflatoxin)

glm2 <- glm(cbind(tumor, total-tumor) ~ dose,

family=binomial, data=aflatoxin)

print(cmat <- summary(glm2))

##

Call:

glm(formula = cbind(tumor, total - tumor) ~ dose, family = binomial,

data = aflatoxin)

160 CHAPTER 8. GENERALIZED LINEAR MODELS

##

Deviance Residuals:

1 2 3 4 5 6

-1.2995 0.7959 -0.4814 0.4174 -0.1629 0.3774

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.03604 0.48226 -6.295 3.07e-10 ***

dose 0.09009 0.01456 6.189 6.04e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 116.524 on 5 degrees of freedom

Residual deviance: 2.897 on 4 degrees of freedom

AIC: 17.685

##

Number of Fisher Scoring iterations: 5

library(MASS) # for function confint()

confint(glm2)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -4.10594724 -2.1868361

dose 0.06440816 0.1217981

cmat$coef[,1] + cmat$coef[,2] %*% t(qnorm(c(.025,.975)))

[,1] [,2]

[1,] -3.9812477 -2.0908252

[2,] 0.0615603 0.1186173

dose <- 0:100

pr <- predict(glm2, new=data.frame(dose=dose), type="response", se.fit=T)

instead of pr$fit+qnorm(c(.025,.975))*pr$se.fit) sophisticated version:

plot(tumor/total ~ dose, data=aflatoxin, xlim=c(0,100))

polygon(c(0:100, 100:0), cbind(pmin(1, pr$fit+qnorm(.975)*pr$se.fit),

rev(pmax(0, pr$fit+qnorm(.025)*pr$se.fit))), col=rgb(.9,.9,.9), border=NA)

polygon(c(0:100, 100:0), cbind(pmin(1, pr$fit+qnorm(.75)*pr$se.fit),

rev(pmax(0, pr$fit+qnorm(.25)*pr$se.fit))), col=rgb(.7,.7,.7), border=NA)

points(tumor/total ~ dose, data=aflatoxin)

lines(dose, pr$fit)

print(LD50 <- dose.p(glm2, p=0.5)) # leathal dose LD50

8.2. LOGISTIC REGRESSION 161

Dose SE

p = 0.5: 33.7005 3.800093

abline(h=0.5, lty=4)

abline(v=LD50 + qnorm(c(.025,.975))*c(attr(LD50, "SE")))

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dose

tu
m

or
/to

ta
l

Figure 8.3: Predictive distribution and prediction intervals based on a Wald-type
approximation. (See R-Code 8.2.)

In practice, there might be cases where the data exhibits a larger variability compared to the
binomial variance. With family=quasibinomial, it is possible to model the over-dispersion.

The logistic regression is a special case of a generalized linear model (GLM) which we briefly
introduce in Section 8.4.

8.2.2 Deviances

The deviance is a quantity describing the quality of a fit and is a generalization of the classical
sum of squared residuals (SSR). More specifically, instead of SSR, the difference between the
log-likelihoods of two models is used. In general, the larger the deviance, the poorer the fit to
the data.

The benchmark model is the so-called saturated model which is essentially a perfect fit. The
residual deviance is (essentially) the difference between the saturated model and the fitted model.
Another benchmark is the so-called null model which corresponds to the null hypothesis and for
the simplest cases consists of only one parameter (β0). The null deviance is (essentially) the
difference between the saturated model and the null model.

Model deviances are not usually interpreted directly, but rather compared with each other.
The difference between deviances are approximately distributed according to a χ2 distribution
with degrees of freedom corresponding to the difference in the number of estimated parameters.
Large values of the χ2 statistic provide evidence against the null hypothesis.

162 CHAPTER 8. GENERALIZED LINEAR MODELS

R-Code 8.3 A GLM with handwash data.

handwash <- read.csv("download/sta121/washroom.csv")

print(handwash)

Gender BkPk Others WashYes WashNo

1 Male no alone 27 26

2 Male no others 5 5

3 Male yes alone 13 8

4 Male yes others 3 2

5 Female no alone 4 28

6 Female no others 0 5

7 Female yes alone 7 7

8 Female yes others 4 6

summary(glmhw <- glm(cbind(WashYes, WashNo) ~ Gender + BkPk + Others,

family=binomial, data=handwash))

##

Call:

glm(formula = cbind(WashYes, WashNo) ~ Gender + BkPk + Others,

family = binomial, data = handwash)

##

Deviance Residuals:

1 2 3 4 5 6 7 8

0.5007 0.3784 -0.9366 -0.3991 -0.7920 -1.3055 0.9827 0.4027

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.5432 0.3730 -4.138 3.51e-05 ***

GenderMale 1.4433 0.3880 3.720 0.000199 ***

BkPkyes 1.0149 0.3914 2.593 0.009521 **

Othersothers -0.1398 0.4500 -0.311 0.756116

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 25.1480 on 7 degrees of freedom

Residual deviance: 4.8901 on 4 degrees of freedom

AIC: 34.739

##

Number of Fisher Scoring iterations: 4

8.3. POISSON REGRESSION 163

Example 8.3. Abraham and Ledolter (2006) describe the story behind the handwash dataset
as follows: “During the fall semester of 2001, a group of undergraduate students in the introduc-
tory statistics course collected data on hand washing after using the restroom. Students took
observations at several locations around campus. They developed ingenious ways of ‘hiding’ in
bathrooms so that students being observed were not aware of their presence.” A short analysis
is given in R-Code 8.3.

The data does not reveal any (significant) indication that presence of others effects hands are
washed after using the restroom. ♣

8.2.3 Logistic Regression and Discrimination/Classification

The logistic regression can be used to classify a set of observations into two (or possibly more)
groups. For example, we predict the probabilities of belonging to a certain class given covariates.
For two groups, we may classify the observation in one groups if the probability is below 1/2 and
vice versa.

For example for the aflotoxin example, the value 33.7 (i.e., LD50) can be used as a critical
value to separate the classes non-deadly and deadly.

In case of perfect discrimination, glm() raises warnings as seen with the example:
y <- rep(c(0,1), each=5); glm(y rnorm(10, y, sd=.1), family="binomial");

In other words, ‘perfect fits’ cause warnings.

8.3 Poisson Regression

When observing Poisson-type count data (counts of rare events) a classical LM model is not
adequate and we have to extend our approach analogously. (We cannot rely on the Poisson
approximation of a binomial distribution.) We set Yi ∼ P(λi), independent, with λi > 0. To
ensure this constraint we set

log(λi) = g(λi) = x⊤
i β, (8.4)

for each predictor x . Starting from the density of a Poisson random variable it would again be
possible to show that β can be estimated using an IRWLS approach. The derivation would,
however, take several lines. The subsequent steps are similar to the Binomial setting and are
illustrated in the following example and associated R-Code.

Example 8.4. The elephant data collected by Poole (1989) contains the number of successful
matings between the observed elephants over a span of 8 years. Elephant ages were recorded at
the beginning of the study.

R Code 8.4 gives a short analysis. We see that β̂AGE = 0.0687 and interpret this to mean that
as age increases by one year, the probability of mating increases by 100 ·(exp(0.0687)−1) = 7.1%
with a 95% confidence interval of [4%, 10%].

In the second part of R Code 8.4, we compare several models, including: the above-fitted
model, the “null” model containing only an intercept, and the above-fitted model with an extra
covariate. The anova() output reassures us that AGE is relevant and also sufficient as a linear
predictor. ♣

164 CHAPTER 8. GENERALIZED LINEAR MODELS

R-Code 8.4: Modeling the elephant data. (See Figure 8.4.)

elephant <- read.csv("download/sta121/elephant.csv")

head(elephant, 3)

Age Matings

1 27 0

2 28 1

3 28 1

eleglm <- glm(Matings ~ Age, family=poisson, data=elephant)

summary(eleglm)

##

Call:

glm(formula = Matings ~ Age, family = poisson, data = elephant)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-2.80798 -0.86137 -0.08629 0.60087 2.17777

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.58201 0.54462 -2.905 0.00368 **

Age 0.06869 0.01375 4.997 5.81e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for poisson family taken to be 1)

##

Null deviance: 75.372 on 40 degrees of freedom

Residual deviance: 51.012 on 39 degrees of freedom

AIC: 156.46

##

Number of Fisher Scoring iterations: 5

100*(exp(confint(eleglm, 2))-1) # "2" for "Age"

Waiting for profiling to be done...

2.5 % 97.5 %

4.255848 10.036024

plot(elephant, ylim=c(-.5, 9.5))

newdata <- data.frame(Age=seq(25, to=55, length=100))

elepre <- predict(eleglm, newdata=newdata, type="response", se.fit=TRUE)

lines(newdata$Age, elepre$fit)

lines(newdata$Age, elepre$fit + elepre$se.fit*qnorm(.1), col=3)

8.3. POISSON REGRESSION 165

lines(newdata$Age, elepre$fit + elepre$se.fit*qnorm(.9), col=3)

abline(h=0, col=4)

Now we perform model selection:

eleglm0 <- glm(Matings ~ 1, family=poisson, data=elephant)

eleglm2 <- glm(Matings ~ Age + I(Age*Age), family=poisson, data=elephant)

anova(eleglm0, eleglm, eleglm2, test="Chisq")

Analysis of Deviance Table

##

Model 1: Matings ~ 1

Model 2: Matings ~ Age

Model 3: Matings ~ Age + I(Age * Age)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 40 75.372

2 39 51.012 1 24.3601 7.991e-07 ***

3 38 50.826 1 0.1854 0.6667

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

confint(eleglm2)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -9.044944422 2.893178033

Age -0.163750206 0.457733552

I(Age * Age) -0.004967908 0.002948358

summary(eleglm2)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.857405968 3.03563826 -0.9412867 0.3465579

Age 0.135954442 0.15800953 0.8604193 0.3895580

I(Age * Age) -0.000859507 0.00201239 -0.4271075 0.6693010

Poisson regression is commonly used for count data. It can be used to answer how the number
of some observable depends on some other variable or to find relationships between rates and
variables. The outcome then can be a count y or a rate y/t, where t can be a time or space
interval, or some other grouping. For modeling rates, Equation (8.5) changes to

g(µ/t) = log(µ/t) = β0 + β1x1 + · · ·+ βpxp (8.5)

g(µ) = log(µ) = β0 + β1x1 + · · ·+ βpxp + log(t). (8.6)

The mean count is now proportional to t. This additional term is known as an offset and can be
used to make groups more comparable.

One assumption of the Poisson model is that the mean and variance are equal. In practice,
this, however, is not the case and we need to further inflate the variance (family quasipoisson).

166 CHAPTER 8. GENERALIZED LINEAR MODELS

8.4 Generalized Linear Models

The last few sections illustrated the extension of linear models to binomial data and Poisson count
data. Natural questions are: For which other distributions can we apply a similar framework?
Is it possible to put all these distributions under a common framework? These two questions are
discussed in this section and run under generalized linear models.

In a nutshell, a generalized linear model (GLM) extends the linear model (LM) framework
to a large class of distribution families in which the (transformation of the) expected value of
the observation is modeled with a linear model.

A GLM consists of three components:

1. Distribution of Yi (independent conditional on the predictors)

2. A linear function of predictors x⊤
i β

3. A function linking E(Yi) = µi and the predictors: g(µi) = x⊤
i β

Example 8.5. For both the logistic and Poisson regression, Yi were independent and the link
functions were the logit function (8.3) and the logarithm. ♣

The distribution of Yi cannot be taken arbitrarily. The theory of GLM can be derived
under a umbrella of so-called exponential family distribution. This distribution is rather a broad
class of distributions and includes: binomial, Poisson, inverse-Gaussian, Gamma and Gaussian
distributions. The density of these distributions can be written in the form

fY (y; θ) = exp
(θy − b(θ)

ϕ
+ c(y, ϕ)

)
, (8.7)

where θ is the parameter (of interest), and b(·), c(·, ·) two suitable functions. The parameter
ϕ is typically modeling dispersion (variance). For example, the pmf of the Poisson distribution

30 35 40 45 50

0
2

4
6

8

Age

M
at

in
gs

Figure 8.4: Modeling the elephant data using Poisson regression. (See R-Code 8.4.)

8.4. GENERALIZED LINEAR MODELS 167

is written as fY (y;λ) = exp(−λ)λy/y! = exp
(
(log(λ)y − λ)/1 − log(y!)

)
, i.e., θ = log(λ),

b(θ) = exp(θ) = λ, ϕ = 1 and c(y, ϕ) = − log(y!). Because of the particular form of the density
of the exponential family, the estimation process can be unified through the IRWLS algorithm.

Table 8.1 gives a summary of the most important members of the exponential family. For
most of the one parameter families, an extension exists (quasibinomial or quasipoisson). The
advantage of using the framework of the exponential family is its broad use. In the case of the
Gaussian distribution, the LM is a particular case of the GLM. See R-Code 8.5.

R-Code 8.5 Comparison of the GLM with the LM. (see R Code 5.2.)

lcs.glm <- glm(sr ~ pop15 + pop75 + dpi + ddpi, data=LifeCycleSavings)

summary(lcs.glm)

##

Call:

glm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-8.2422 -2.6857 -0.2488 2.4280 9.7509

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.5660865 7.3545161 3.884 0.000334 ***

pop15 -0.4611931 0.1446422 -3.189 0.002603 **

pop75 -1.6914977 1.0835989 -1.561 0.125530

dpi -0.0003369 0.0009311 -0.362 0.719173

ddpi 0.4096949 0.1961971 2.088 0.042471 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for gaussian family taken to be 14.46029)

##

Null deviance: 983.63 on 49 degrees of freedom

Residual deviance: 650.71 on 45 degrees of freedom

AIC: 282.2

##

Number of Fisher Scoring iterations: 2

Different types of residuals exist. To extract these from a fitted model, the corresponding
type needs to be specified. For example, in residuals(), the argument type=c("deviance",

"pearson", "working", "response", "partial") can be used, where default is ‘deviance’.
In the linear model setting, deviance, pearson, working, response coincide.

168 CHAPTER 8. GENERALIZED LINEAR MODELS

Table 8.1: Some members of the exponential family and the natural link function.

Distribution Link function
Gaussian Identity: g(µ) = µ

Binomial Logit: g(µ) = log µ
1−µ

Poisson Log: g(µ) = log µ

Gamma Inverse: g(µ) = 1/µ

Other link functions than those shown in Table 8.1 can be chosen. For the binomial setting,
another commonly used one is the so-called probit() function, defined as the inverse of the
cumulative distribution function of a standard normal distribution.

8.5 Bibliographic remarks

Dalal et al. (1989) gives a detailed description of the background of the Challenger accident in a
statistical context. The webpage http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster
is very enlightening as well.

Faraway (2006) covers GLMs with a focus on R applications in a very accessible fashion.
McCullagh and Nelder (1983) continues to be a valuable reference. Green and Silverman (1994)
also contains several chapters about GLMs.

Dobson (2001) is a more theoretical but very accessible text. Many books have at least some
chapter about GLMs, notable books include Fahrmeir et al. (2013), Hastie and Tibshirani (1990),
and Wood (2006).

In case of ordinal data, we have to extend the model to so-called cumulative link models
(CLMs). In R, the package ordinal handles CLMs in the usual way.

8.6 Exercises and Problems

Problem 8.1 (Logistic regression) Bliss (1935) analysed the numbers of insects dying at different
levels of insecticide concentration. The bliss dataset is available in the R package faraway. See
also ?bliss.

a) Look at the data. Plot the ratio of dead and total insects for all concentration levels.

b) Fit a logistic regression using the logit link function. Interpret the results.

c) Calculate the predicted values at the observed concentration levels using the model coeffi-
cients (coef()). Verify your results with fitted().

d) Add the line of the predicted probabilities to the plot from a). Add a 95% confidence
interval of the predicted values to the plot.
Hint: See ?predict.glm().

e) Redo the last five questions using the probit link function (another possible link-function
for binomial data).

http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

8.6. EXERCISES AND PROBLEMS 169

f) Compare the logit and probit fits by plotting the ratio of the predicted values from the logit
and the probit model on the interval [−1, 5]. Where do the predicted values agree?

g) Compute the LD50 for the logit model. LD stands for lethal dose, and LD50 is the dose at
which 50% of the insects die.

Problem 8.2 (Exponential family) Distributions that can be written as

f(y; θ, ϕ) = exp

(
yθ − b(θ)

ϕ
+ c(y, ϕ)

)
belong to the exponential family. The methodology of generalised linear models is developed for
distributions of the exponential family.

Determine which of the following distributions belong to the exponential family. If so, deter-
mine θ, ϕ, b(θ), and c(y, ϕ).

a) Exponential distribution: f(y;λ) = λe−λy.

b) Binomial distribution: f(y;π) =
(
n

y

)
πy(1− π)n−y, n known.

c) Uniform distribution f(y; θ) = 1/θ, 0 < y < θ.

d) Normal distribution with known variance σ2.

170 CHAPTER 8. GENERALIZED LINEAR MODELS

Chapter 9

Survival Analysis

In the analysis of survival or time-to-event data we model observations representing
the time until the occurrence of a certain event. Typically, we do not have full
knowledge about all the times and this partial information, called censoring, has
to be taken into account.

Learning goals for this chapter:

⋄ Describe survival data, and the roles played by censoring, and survival and
hazard functions

⋄ Graph survival data, and the Kaplan–Meier curve in R

⋄ Apply Log-rank test to compare treatment groups, interpret the results

⋄ Use Cox proportional hazards to model given data set, interpret the results

⋄ Check the proportional hazard assumption, and compute the hazard ratio in
R

⋄ Apply survival analysis models to the given data, interpret the results

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter09.R.

Survival data (also called time-to-event data) describes the duration from a starting event
until an end event. The analysis of such data occurs in many situations and many different fields.
Some examples of this kind of data are:

• Time from first diagnosis of HIV until death

• Time between first use of a new computer until it breaks for the first time

• Lifetime of a hippopotamus

171

http://www.math.uzh.ch/furrer/download/sta121/chapter09.R

172 CHAPTER 9. SURVIVAL ANALYSIS

• Time until a volcano erupts

Survival data is inherently positive; thus we have to limit possible probability models for
survival models to positive random variables. Examples include the exponential distribution,
the Gamma distribution, and the Weibull distribution that we will discuss in detail in this
chapter. A second main characteristic of survival data is the fact that we may have incomplete
information about the subjects or cases. This implies that we need to use models and estimation
procedures capable of exploiting partial information.

9.1 Censoring

A typical (biostatistical) study is designed to recruit patients or individuals within a certain
time frame and to follow them until the end of the study. In many cases, the end of the study
occurs before every individual in the data set has died or experienced the event of interest. Those
individuals that are still alive and observed at the end of the observation time are called censored.
Sometimes patients move or withdraw their consent, both denoted as lost to follow-up, and are
considered another instance of censoring. All of these situtations are called “right censoring”, the
most common censoring mechanism in survival data. Therefore we focus on this censoring type
here.

An alternative but similar type is left censoring, exemplified by when a disease has been
diagnosed but the exact onset of the disease is unknown. A third type is interval censoring,
which typically occurs when the recurrence of a tumor is diagnosed between two consecutive
follow-up visits.

Here and in many practical applications we assume that the censoring is independent (non-
informative) of the survival time or any other relevant information of the individual/case.

Example 9.1. Figure 9.1 shows example survival data for six individuals that have been re-
cruited between time t = 0 and time t = 7. Four individuals have died while under observation,
indicated by black squares at their observed times of death (Patients 1, 2, 5 and 6). Patient 3
was lost to follow-up (moved or withdraw the consent) and Patient 4 was still alive at the end
of the study (t = 20).

The figure shows the survival time in relation to the study time and as absolute survival
time. For our analysis, the end of recruitment does not play a role and depending on the setting
it may coincide with the start of the study. The age of the individuals (or other covariates) are
not indicated in the plot. ♣

9.2 Survivor and Hazard Function

Before we analyze survival data, we have to look at some particular functions “describing” the
survival time. Let T be a non-negative random variable which represents the individual lifetimes
or the time until event. As in previous chapters, we denote the density function (pdf) of the
survival time as fT (t) and the cdf as FT (t) = P(T ≤ t).

9.2. SURVIVOR AND HAZARD FUNCTION 173

0 5 10 15 20

Study time

P
at

ie
nt

 ID

1
2

3
4

5
6

Start of study End of recruitment End of study

Death
Death

Lost to follow−up
Alive

Death
Death

0 5 10 15 20

Time in study

P
at

ie
nt

 ID

2
1

6
3

5
4

D
D
D

C
D

C

Figure 9.1: Observed survival times with censoring. Top panel shows the individual
during the study time. Lower panel shows the absolute survival times, D: death, C:
censoring.

Definition 9.1. For a survival time T with pdf fT (t) and cdf FT (t) we define the following
functions.

1. The survivor function

S(t) = P(T ≥ t). (9.1)

2. The hazard function or hazard rate

h(t) = lim
∆t↘0

1

∆t
P{t ≤ T < t+∆t | T ≥ t}. (9.2)

3. The cumulative hazard function

H(t) =

∫ t

0
h(u)du. (9.3)

The survivor function represents the probability that an individual survives any specified time
point. The hazard function can be considered the “infinitesimal rate of death in a very short
time” or instantaneous rate of failure or the force of mortality. The cumulative hazard function
is the cumulative risk of death up to any specified time given that death has not occurred until
then. Not that the cumulative hazard is not a cdf and the function can exceed one.

It is often necessary to switch between these functions and this can be done using several
relationships. For the survivor function, we naturally have S(t) = 1 − F (t). Second, starting

174 CHAPTER 9. SURVIVAL ANALYSIS

from the definition of the hazard function (9.2) and of conditional probabilities:

h(t) = lim
∆t↘0

1

∆t

P
(
{t ≤ T < t+∆t} ∩ {T ≥ t}

)
P(T ≥ t)

(9.4)

= lim
∆t↘0

1

∆t

P
(
t ≤ T < t+∆t

)
P(T ≥ t)

= lim
∆t↘0

(
F (t+∆t)− F (t)

)
/∆t

P(T ≥ t)
=
f(t)

S(t)
. (9.5)

Finally, one can easily move between the survivor function and cumulative hazard function using
the relation:

H(t) =

∫ t

0
h(u)du =

∫ t

0

f(u)

1− F (u)
du (9.6)

= − log(1− F (u))}

∣∣∣∣∣
t

0

= − log(1− F (t)) = − log{S(t)}. (9.7)

Using the definition of conditional probabilities and the concept of the survival function, we also
have:

P{t1 ≤ T ≤ t2 | T ≥ t1} =
S(t1)− S(t2)

S(t1)
. (9.8)

The relationships to move between H(t), h(t) and S(t) (and thus fT (t) and FT (t)) are quite
central and thus captured here as a proposition.

Property 9.1. For a continues survival time T , we have for t ≥ 0:

1. h(t) =
f(t)

S(t)
,

2. S(t) = exp
(
−H(t)

)
.

We now look at two particularly well-suited survival time random variables.

Example 9.2. (Exponential distribution) Let T ∼ Exp(λ). Thus fT (t) = λ exp(−λt) and
FT (t) = 1 − exp(−λt), t ≥ 0. Hence the survivor function is S(t) = exp(−λt) and the hazard
rate is h(t) = fT (t)

/
S(t) = λ exp(−λt)

/
exp(−λt) = λ. That means that the instantaneous

rate of failure does not depend on time. This is not surprising as we know that the exponential
distribution is memory-less, i.e., P(T > s + t | T > s) = P(T > t), for all s, t ≥ 0. This “no
aging” effect is often unrealistic in practice but can be used as a baseline. ♣

Example 9.3. (Weibull distribution) One common (theoretical) distribution of survival times
is the Weilbull distribution. The density for t > 0 is given by

fT (t) =
α

β

(t
β

)α−1
exp

(
− (t/β)α

)
(9.9)

with shape parameter α > 0 and scale parameter β > 0. Note that for α = 1 we have the classical
exponential density with rate λ = 1/β. The density, distribution function, survivor function and
hazard function take on different forms depending on parameter choice. We illustrate this in
Figure 9.2 for a scale parameter of 1 and a shape parameter of either 3, 1 or 0.5. Notice that
the hazard function is monotonic for any choice of the scale parameter. ♣

9.3. NON-PARAMETRIC METHODS FOR SURVIVAL DATA 175

R-Code 9.1: Plotting density, distribution, survivor and hazard functions using the Weibull
distribution with various shape parameter values. (See Figure 9.2.)

Time <- seq(0, 2, by=0.01)

legtext <- expression(alpha==3, alpha==1, alpha==0.5)

Density (pdf):

f3 <- dweibull(Time, shape=3)

plot(Time, f3, type="l", ylab="f(t)", ylim=c(0, 2))

lines(Time, dweibull(Time, shape=1), type="l", col=2)

lines(Time, dweibull(Time, shape=0.5), type="l", col=3)

legend("topright", legtext, lwd=1, col=1:3, bty="n")

Distribution function (cdf):

F3 <- pweibull(Time, shape=3)

plot(Time, F3, type="l", ylab="F(t)")

lines(Time, pweibull(Time, shape=1), type="l", col=2)

lines(Time, pweibull(Time, shape=0.5),type="l", col=3)

legend("topleft", legtext, lwd=1, col=1:3, bty="n")

Survivor function:

S3 <- 1 - F3

plot(Time, S3, type="l", ylab="S(t)")

lines(Time, 1 - pweibull(Time, shape=1), type="l", col="red")

lines(Time, 1 - pweibull(Time, shape=0.5), type="l", col="green")

legend("topright", legtext, lwd=1, col=1:3, bty="n")

Hazard function:

h3 <- f3/S3

plot(Time, h3, type="l", ylab="h(t)", ylim=c(0,8))

h1 <- dweibull(Time, shape=1)/(1 - pweibull(Time, shape=1))

lines(Time, h1, type="l", col="red")

h0.5 <- dweibull(Time, shape=.5)/(1 - pweibull(Time, shape=0.5))

lines(Time, h0.5, type="l", col="green")

legend("topleft", legtext, lwd=1, col=1:3, bty="n")

9.3 Non-Parametric Methods for Survival Data

We first show a very common non-parametric method for estimating the survivor function and
then discuss testing for differences between two survivor curves.

176 CHAPTER 9. SURVIVAL ANALYSIS

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

Time

f(
t)

α = 3
α = 1
α = 0.5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

Time

F
(t

)

α = 3
α = 1
α = 0.5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

Time

S
(t

)

α = 3
α = 1
α = 0.5

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8

Time

h(
t)

α = 3
α = 1
α = 0.5

Figure 9.2: Plotting density, distribution, survivor and hazard functions using the
Weibull distribution with various shape parameter values. (See R-Code 9.1.)

9.3.1 Kaplan-Meier Estimator for the Survivor Function

The Kaplan-Meier estimator, also known as the product-limit estimator, is a well-known statistic
estimating the survivor function S(t). To develop this estimator, we look at the ordered event
times (ignoring all censored time points for the moment) 0 < t(1) < t(2) < · · · < t(m−1) < t(m).
We start with the discretized hazard function, which is in the interval

[
t(k−1), t(k)

)
hk = P

(
T ∈ [t(k−1), t(k)) | T ≥ t(k−1)

)
, (9.10)

i.e., the conditional probability of death in interval k, given that interval k has been reached.
But we are interested in the opposite, i.e., the conditional probability pk to survive interval k,

9.3. NON-PARAMETRIC METHODS FOR SURVIVAL DATA 177

given that interval k has been reached, given by

pk = 1− hk = P
(
T ≥ t(k) | T ≥ t(k−1)

)
. (9.11)

In the end, we would like to look at the unconditional probability to survive the interval k, which
we can calculate by multiplying all conditional survival probabilities from the beginning until k:

Pk = P(T ≥ t(k)) = pk · pk−1 · · · p1 = (1− hk) · · · (1− h1). (9.12)

To get an estimator for hk, we define dk as the number of events at t(k), and nk as the number
of individuals at risk at (or shortly before) t(k). This allows us to use

ĥk =
dk
nk

(9.13)

in the expression for Pk. The Kaplan-Meier estimator for the survivor function then has the
form

Ŝ(t) =

1, if t < t(1),∏
k:t(k)≤t

(
1− dk

nk

)
, if t ≥ t(1). (9.14)

Example 9.4. (Ovarian cancer) We analyse a dataset of 26 patients with ovarian cancer. After
surgery, the patients were treated with one of two distinct chemotherapies. The dataset is found
in the survival package.

The Kaplan-Meier plot shows estimated survivor functions for each chemotherapy group.
There seems to be a difference between the two groups, but this should be tested. ♣

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

Chemotherapy 1
Chemotherapy 2

Figure 9.3: Kaplan-Meier curve comparing two different chemotherapies in the treat-
ment of ovarian cancer. Ticks on the curves represent censored times. (See R-Code 9.2.)

It is possible to approximate the uncertainty of Ŝ(t) by calculating a standard error for

log
(
Ŝ(t)

)
=

∑
k:t(k)≤t

log(p̂k). (9.15)

178 CHAPTER 9. SURVIVAL ANALYSIS

R-Code 9.2 ovarian dataset: Kaplan-Meier curve comparing two different chemotherapies
in the treatment of ovarian cancer. (See Figure 9.3.)

library(survival) # load necessary library

head(ovarian, 3) # data in package:survival, inspect first entries

futime fustat age resid.ds rx ecog.ps

1 59 1 72.332 2 1 1

2 115 1 74.493 2 1 1

3 156 1 66.466 2 1 2

Create survival object:

ovarian.surv <- Surv(time=ovarian$futime, event=ovarian$fustat)

look at survival object:

ovarian.surv

[1] 59 115 156 421+ 431 448+ 464 475 477+ 563 638

[12] 744+ 769+ 770+ 803+ 855+ 1040+ 1106+ 1129+ 1206+ 1227+ 268

[23] 329 353 365 377+

Estimate and plot the Kaplan-Meier curve:

ovarian.fit <- survfit(ovarian.surv ~ ovarian$rx)

plot(ovarian.fit, lwd=2, col=c("blue", "red"), mark=3, xlab="Time (days)")

legend("bottomleft", c("Chemotherapy 1", "Chemotherapy 2"),

lwd=2, col=c("blue", "red"), bty="n")

Now each of the individual terms p̂k can be treated as in a binomial setting. Collecting the terms
and using the delta-method we have

se
(
Ŝ(t)

)
≈ Ŝ(t)

(∑
k:t(k)≤t

dk
nk(nk − dk)

)1/2

. (9.16)

7 min
Notice that the uncertainties are pointwise. Hence, comparing uncertainty bands for different

survivor curves is not straightforward. We next discuss a better approach for comparing two
different survivor functions.

9.3.2 Testing differences in Survival Curves

A typical aim when analyzing survival data is to compare survival rates under different treatments
(such as treatment with different drugs) and testing if one of them better. A simple non-
parametric test to be used in such a situation is the log-rank test. Its basic idea is again to
look at the ordered event times 0 < t(1) < t(2) < · · · < t(m−1) < t(m). We use the number of
individuals at risk and the number of events at each time point t(k) for each treatment group:

• n1,k := number of individuals in Group 1 at risk at (or shortly before) t(k)

• n2,k := number of individuals in Group 2 at risk at (or shortly before) t(k)

https://tube.switch.ch/download/video/3015ae93
https://tube.switch.ch/download/video/3015ae93

9.3. NON-PARAMETRIC METHODS FOR SURVIVAL DATA 179

• d1,k := number of events in Group 1 at t(k)

• d2,k := number of events in Group 2 at t(k).

The setting can be summarized by the following 2× 2 table:

Group # of events # surviving beyond t(k) # at risk at t(k)
1 d1,k n1,k − d1,k n1,k

2 d2,k n2,k − d2,k n2,k

Total dk nk − dk nk

(9.17)

The null hypothesis of the log-rank test is

H0 : S1(t) = S2(t), (9.18)

and the corresponding alternative hypothesis is

H1 : S1(t) ̸= S2(t). (9.19)

If survival is the same in both groups and based on fixed margins, the four entries of the table
in (9.17) are determined by any single entry, say d1,k. We therefore consider this number of
deaths as a random variable and we compare the theoretical expected value with the observed
one. If the null hypothesis is true, the number of deaths follows a hypergeometric distribution,
so that the expected number of deaths in Group 1 is

e1k =
n1,k
nk

dk. (9.20)

Now the observed and expected number of deaths in Group 1 is compared, leading to the test
statistic

q =

(m∑
k=1

(d1,k − e1,k)
)2

m∑
k=1

v1,k

, (9.21)

4 min
where v1,k is the respective variance of the hypergeometric distribution. If H0 is true, q follows
a χ2 distribution with one degree of freedom and we reject H0 if q ≥ χ2

1(1− α), i.e., the 1 − α
quantile of a χ2

1 distribution.

Example 9.5. (Log-rank test to compare treatment groups) We return to the ovarian

dataset and conduct a log-rank test in order to see if the difference in survival between the two
treatments is significant. The result shows no evidence of a significant difference between the
two chemotherapies (see R-Code 9.3). The result is not surprising, if the Kaplan-Meier estimates
are plotted with (pointwise) confidence bands. ♣

Remark 9.1. 1. The log-rank test has many alternative names, including Mantel–Haenszel
or Mantel–Cox test.

https://tube.switch.ch/download/video/34f4a4a7
https://tube.switch.ch/download/video/34f4a4a7

180 CHAPTER 9. SURVIVAL ANALYSIS

R-Code 9.3 ovarian dataset: Testing for differences between survival curves from different
treatments.

survdiff(ovarian.surv ~ rx, data=ovarian)

Call:

survdiff(formula = ovarian.surv ~ rx, data = ovarian)

##

N Observed Expected (O-E)^2/E (O-E)^2/V

rx=1 13 7 5.23 0.596 1.06

rx=2 13 5 6.77 0.461 1.06

##

Chisq= 1.1 on 1 degrees of freedom, p= 0.3

Kaplan-Meier estimates are plotted with (pointwise) confidence bands:

plot(ovarian.fit, col=c(4,2), mark=3, conf.int=TRUE)

2. There are two major problems associated with the application of the log-rank test. First, it
can be used only to compare the categories of one categorical covariate, but not for several
(possibly continuous) covariates. Second, no quantification of a covariate effect is possible,
only a difference can be stated.

3. The Wilcoxon-test (or Breslow-test) weights the individual summands of (9.21) by nk.
Ultimately, under the null the test statistic has a chi-square distribution as well but is
better adapted to settings where we do not have proportional hazards.

♣

9.4 Parametric Modeling of Survival Data

9.4.1 Regression Models for Survival Data

By looking at the hazard function instead of the survivor function, one can quantify the effects
of covariates and make statements such as “the risk in Group 1 is β times higher than the risk
in Group 2.” The most common regression model for censored survival data is the proportional
hazards model. The general idea is that the hazard function can be split into a baseline hazard
component and covariate effects component. The covariates themselves specify group association
and (possibly also) individual factors. The hazard function of individual i with covariates x i is:

hi(t; x i) = h0(t) exp(x⊤
i β), (9.22)

where h0(t) represents the baseline hazard rate which can be treated as a nuisance parameter
(or rather nuisance function) and left completely unspecified, as is the case in a Cox regression
model. Alternatively, a certain form of the baseline hazard can be assumed and prespecified. For
example, a Weibull regression model assumes the baseline hazard follows a Weibull distribution.

9.4. PARAMETRIC MODELING OF SURVIVAL DATA 181

When fitting a proportional hazards model, we have

hi(t; x⊤
i)

hj(t; x⊤
j)

=
h0(t) exp(x⊤

i β)

h0(t) exp(x⊤
j β)

=
exp(x⊤

i β)

exp(x⊤
j β)

= exp
(
(x i − x j)

Tβ
)
, (9.23)

for two distinct individuals i and j. This means that two individuals have proportional hazards,
and this proportionality is independent of t. Therefore, the estimated coefficients β can be
interpreted as hazard ratios. When any kind of proportional hazards model is fitted, it is crucial
to check the proportional hazards assumption first. If this assumption is not met, the results will
be wrong and cannot be correctly interpreted. Details on how to assess the proportional hazards
assumption will be given later in this chapter.

From now on, we will talk about Cox proportional hazards regression models, by far the most
common survival model. It is a semiparametric model, i.e., the baseline hazard function is not
specified.

Example 9.6. (Cox regression models to compare treatment groups) Three different
Cox regression models are fitted and used to compare the treatment groups in the ovarian

dataset. The first model contains treatment only, whereas in the second model, we add residual
disease presence as a covariate as well.

Model 1 leads to the same result as the log-rank test, i.e., no significant treatment effect can
be found. The risk of Chemotherapy 2 is a factor of exp(β̂rx) = 0.551 smaller than the risk
of Chemotherapy 1. Adding the other covariates (the residual disease covariate has a p-value
around 5%) does not alter the finding that the different therapies are not significantly different.

The age effect is typically modeled through the baseline h0(t). We can, of course, separate the
age effect from the baseline. Model 3 includes patients’ age. The effect of age itself is noteworthy:
with each one-year increase in age and keeping all other covariates constant, the risk is multiplied
by exp(β̂age) = 1.137. ♣

R-Code 9.4: Using Cox proportional hazards to model the ovarian dataset.

ovarian.cox1 <- coxph(ovarian.surv ~ rx, data=ovarian)

summary(ovarian.cox1)

Call:

coxph(formula = ovarian.surv ~ rx, data = ovarian)

##

n= 26, number of events= 12

##

coef exp(coef) se(coef) z Pr(>|z|)

rx -0.596 0.551 0.587 -1.02 0.31

##

exp(coef) exp(-coef) lower .95 upper .95

rx 0.551 1.82 0.174 1.74

##

Concordance= 0.608 (se = 0.07)

182 CHAPTER 9. SURVIVAL ANALYSIS

Likelihood ratio test= 1.05 on 1 df, p=0.3

Wald test = 1.03 on 1 df, p=0.3

Score (logrank) test = 1.06 on 1 df, p=0.3

(ovarian.cox2 <- coxph(ovarian.surv ~ rx + resid.ds, data=ovarian))

Call:

coxph(formula = ovarian.surv ~ rx + resid.ds, data = ovarian)

##

coef exp(coef) se(coef) z p

rx -0.76 0.47 0.59 -1.3 0.20

resid.ds 1.32 3.74 0.68 1.9 0.05

##

Likelihood ratio test=5.4 on 2 df, p=0.066

n= 26, number of events= 12

(ovarian.cox3 <- coxph(ovarian.surv ~ rx + resid.ds + age, data=ovarian))

Call:

coxph(formula = ovarian.surv ~ rx + resid.ds + age, data = ovarian)

##

coef exp(coef) se(coef) z p

rx -0.849 0.428 0.639 -1.3 0.184

resid.ds 0.696 2.006 0.759 0.9 0.359

age 0.129 1.137 0.047 2.7 0.007

##

Likelihood ratio test=17 on 3 df, p=0.00079

n= 26, number of events= 12

The proportional hazards assumption can be checked in several ways. In the following ex-
ample, we show two of them: a formal statistical test and a graphical assessment. Note that
a statistical test of the proportional hazards assumption assumes that if the null hypothesis is
true, the proportional hazards assumption is fulfilled, i.e., we hope for a non-significant result.
A significant result is evidence against the proportional hazards assumption.

Example 9.7. (Testing the proportional hazards assumption) R-Code 9.5 shows the
assessment of proportional hazards for model 1 from the analysis of the ovarian dataset. The
test (which is based on so-called Schönfeld residuals) has a p-value of 0.104, which means that
the proportional hazards assumption can not be rejected.

Take a look at the corresponding plot, shown in Figure 9.4. If the proportional hazards
assumption cannot be rejected, there should be a straight, horizontal line at about 0. Since
the pointwise confidence band contains this value at almost all time points, there is not enough
evidence to assume non-proportional hazards. ♣

Using the function muhaz() from the package muhaz, it is possible to estimate the hazard
function. As shown by Property 9.1.1 an estimate for the density is required. While the non-
parametric cdf estimation is straightforward, it is difficult to estimate the corresponding densities.

9.4. PARAMETRIC MODELING OF SURVIVAL DATA 183

R-Code 9.5 Assessing the proportional hazards assumption with a formal statistical test
and graphically. (See Figure 9.4.)

Formal statistical test:

cox.zph(ovarian.cox1)

chisq df p

rx 2.68 1 0.1

GLOBAL 2.68 1 0.1

Graphical assessment:

plot(cox.zph(ovarian.cox1))

abline(h=0, col=3)

−
4

−
2

0
2

4

Time

B
et

a(
t)

 fo
r

rx

100 180 310 350 410 460 500 600

Figure 9.4: Graphical assessment of the proportional hazards assumption. (See R-
Code 9.5.)

Typically, kernels are used (much in the spirit of Section 9.2) and additional parameters have to
be specified.

As a general rule, if the hazard plots cross, the Cox proportional hazards model is not
appropriate.

Example 9.8. R-Code 9.6 illustrates the result of hazard function estimation. Given the small
dataset size, the results pictured in Figure 9.5 are difficult to interpret. ♣

Remark 9.2. 1. Although fitting a Cox proportional hazard model has the flavor of a GLM,
it is not quite one. Under the hood, similar approaches are taken when estimating the
parameters. However, it is at least as difficult assessing adequacy of the fit based on
residuals. Comparing different models (nested or not) can be done using classical scores
like AIC and BIC.

2. Naturally the “linear model” term can be extended to a “mixed model” idea, where each

184 CHAPTER 9. SURVIVAL ANALYSIS

R-Code 9.6 Estimation of the hazard function. (See Figure 9.5.)

library(muhaz)

The following will produce a couple warnings, that we can ignore!

lam1 <- with(ovarian, muhaz(futime, fustat, rx==1, max.time=1106))

lam2 <- with(ovarian, muhaz(futime, fustat, rx==2, max.time=1227))

plot(lam1, xlim=c(0,1250))

lines(lam2, col=2)

rug(ovarian$futime[ovarian$rx==1])

rug(ovarian$futime[ovarian$rx==2], col=2)

0 200 400 600 800 1000 1200

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Follow−up Time

H
az

ar
d

R
at

e

Figure 9.5: Plotting the estimated hazard functions. (See R-Code 9.6.)

subject would have an individual hazard, with some subjects being more frail. The indi-
vidual terms are often not of interest and are modeled with a random effect in the linear
component of the proportional hazard model and are often summarized by frailty models.

3. If the proportional hazards assumption is not fulfilled, care has to be taken when fitting
regression models. Sometimes it is possible to solve this problem by conducting a stratified
analysis or by creating an artificial time-dependent covariate. These measures, however,
are beyond the scope of this course and are not discussed here.

♣

9.4.2 Likelihood for Censored Data

Proper estimation of parameters requires censoring to be taken into account. The data contains
the “exact” time to an event for some subjects, but for other subjects it is only known that the
time to the event exceeds the observation time. As discussed at the beginning of the chapter,
we assume that the censoring does not provide any information regarding the survival time of
the subjects (see the sources listed in the bibliographic remarks for further details on censoring
mechanisms and this assumption). Further, we do not model censoring stochastically.

Consider the survival times t1, t2, . . . , tn for the n subjects where the associated random

9.4. PARAMETRIC MODELING OF SURVIVAL DATA 185

variables Ti are iid according to some (parametric) density, say f(t; θ). We denote with ci the
censoring time for the ith subject and δi the indicator

δi =

1, the event was observed, i.e., ti ≤ ci,

0, the event was not observed, i.e., ti > ci.
(9.24)

The observed response is yi = min{ti, ci} and thus (yi, δi) for i = 1, 2, . . . , n is given. Subjects
experiencing the event contribute f(yi) to the likelihood (as classical) while censored subjects
contribute S(yi) and thus the likelihood is

L(θ, y1, y2, . . . , yn) =

n∏
i=1,δi=1

f(yi)×
n∏

i=1,δi=0

S(yi), (9.25)

We now use the identities of Proposition 1 to avoid the differentiation of the censoring case and
rewrite the likelihood and log-likelihood

L(θ, y1, y2, . . . , yn) =
n∏

i=1

h(yi)
δi × S(yi), (9.26)

ℓ(θ, y1, y2, . . . , yn) =
n∑

i=1

δi log
(
h(yi)

)
−H(yi). (9.27)

Example 9.9. As an example, consider the exponential model with pdf

f(y) = λ exp(−λy), y > 0. (9.28)

The likelihood for n survival times is then

L(λ; y1, y2, . . . , yn) =

n∏
i=1

f(yi) = λn exp(−λ
n∑

i=1

yi). (9.29)

It is straightforward to show that the maximum likelihood estimate of our parameter λ is λ̂ =

n/
∑n

i=1 yi = 1/ȳ. However, this assumes that all observed times are event times.
Suppose now that in addition to y1, y2, . . . , yn, we also consider censoring. That is, for each

subject, we have final observation time yi and knowledge of whether that final observation time is
an event time (e.g., death) or just the last time the subject was observed. Subjects experiencing
the event contribute f(yi) = λ exp(−λyi) to the likelihood while censored subjects contribute
S(yi) = exp(−λci) = exp(−λyi). Further, h(yi) = λ and H(yi) = λyi. The log-likelihood for all
observations is then

ℓ(λ; y1, y2, . . . , yn) =
n∑

i=1

δi log(λ)− λyi (9.30)

with maximum likelihood estimate

λ̂ =

∑n
i=1 δi
n

× n∑n
i=1 yi

= δ̄
1

ȳ
. (9.31)

It is clear then that ignoring censoring yields biased results: we reduce the estimate by a factor
of the proportion of observed events.

186 CHAPTER 9. SURVIVAL ANALYSIS

In R-Code 9.7 we use the ovarian data to show that ignoring censoring leads to a different
estimate of the rate parameter λ. Using the exponential distribution with survreg() from the
package survival, the ML estimate λ̂ is given by 1/exp(Intercept). For simplicity, we ignore
first the effect of the treatment (leading to the model above) and consider no censoring by
indicating that all 26 subjects experience the event first.

In the second part of R-Code 9.7 we use two different hazard rates, again using an exponential
model. Hence, the results are h(t) = λ and h(t) = λ+∆ for the two treatments, where we need
to specify the treatment as a factor. The numerical values are 0.001 and 0.0006 and ought to
be compared with the non-parametric estimates in Figure 9.5. ∆ = 0.5420 is comparable to the
value 0.5508 found in the proportional hazard models of R-Code 9.4. ♣

R-Code 9.7: Maximum likelihood estimation without and with censoring.

ovarian.surv.woCensoring <- Surv(time=ovarian$futime, event=rep(1, 26))

fit.woCensoring <- survreg(ovarian.surv.woCensoring ~ 1, data=ovarian,

dist="exponential")

c(1/exp(fit.woCensoring$coefficients), manual=1/mean(ovarian$futime))

(Intercept) manual

0.0016679 0.0016679

fit.Censoring <- survreg(ovarian.surv ~ 1, data=ovarian, dist="exponential")

c(1/exp(fit.Censoring$coefficients),

manual=mean(ovarian$fustat)/mean(ovarian$futime))

(Intercept) manual

0.00076982 0.00076982

fit.woCensoring <- survreg(ovarian.surv.woCensoring ~ factor(rx),

data=ovarian, dist="exponential")

c(fit.tr1=exp(sum(fit.woCensoring$coefficients[1])),

manual.tr1=mean(ovarian$futime[ovarian$rx==1]))

fit.tr1 manual.tr1

517.31 517.31

c(fit.tr2woCensoring=exp(sum(fit.woCensoring$coefficients)),

manual.tr2.woCensoring=mean(ovarian$futime[ovarian$rx==2]))

fit.tr2woCensoring manual.tr2.woCensoring

681.77 681.77

to compare fit with previous results:

fit.Censoring <- survreg(ovarian.surv ~ factor(rx), data=ovarian,

dist="exponential")

c(fit.tr1=1/exp(sum(fit.Censoring$coefficients[1])),

manual.tr2=1/exp(sum(fit.Censoring$coefficients)))

9.5. BIBLIOGRAPHIC REMARKS 187

fit.tr1 manual.tr2

0.00104089 0.00056414

1/exp(fit.Censoring$coefficients[2]) # effect of treatment

factor(rx)2

0.54198

Remark 9.3. Another commonly used parametric model is the log-logistic distribution, a ran-
dom variable whose logarithm has a logistic distribution. While it has a similar shape as the
log-normal distribution, a closed form for the cdf exists. The main advantage of the log-logistic
model over the Weibull is the non-monotonic hazard function and it is the basis of accelerated
failure time modeling. ♣

9.5 Bibliographic remarks

There are several good books about survival analysis, like Therneau and Grambsch (2010) or
Klein and Moeschberger (2003) or the more classical ones like Cox and Oakes (1984) or Kalbfleisch
and Prentice (2002). Moore (2016) and Kleinbaum and Klein (2012) contain a more practical
and accessible description.

Collett (2014) is my favorite, he also provides all datasets through this weblink.

An alternative way to represent survival data is through a so-called Lexis diagram where
subjects are represented as lines (life line) in an age vs. time graph. The R package Epi man-
ages Lexis diagrams. The CRAN task view survival cran.r-project.org/web/views/Survival.html
illustrates the activity of the field.

9.6 Exercises and Problems

Problem 9.1 (Log-logistic distribution) The log-logistic distribution has the following density

f(x;α, β) =

(β
α

)(
x
α

)β−1(
1 +

(
x
α

)β)2 , x ≥ 0,

F (x;α, β) =
xβ

αβ + xβ

where α > 0 is a scale parameter and β > 0 a shape parameter.

a) Plot the density, the distribution function, the survival function and the hazard function
of the log-logistic distribution for the values α = 1 and β ∈ {0.5, 1, 2, 4, 8}.

b) The shape of the density of a Weibull random variable depends greatly on the value of κ.
More specifically, there are three cases of interest: 0 < κ < 1, κ = 1 and κ > 1. Let σ = 1:
by using relevant plots in R, give a qualitative description of the obtained pattern for each
of the aforementioned cases.

https://www.crcpress.com/downloads/K12670/Data sets for Modelling Survival Data, 3rd edn.zip
https://cran.r-project.org/web/views/Survival.html

188 CHAPTER 9. SURVIVAL ANALYSIS

Problem 9.2 (Survival analysis) A randomized study was conducted to investigate the effect of
a new treatment of primary biliary cirrhosis (PBC), a chronic and eventually fatal liver disease.
The trial was designed to compare an active treatment (Azathioprine) (n = 94) versus placebo
(n = 90). 31 of the patients suffered from central cholestasis (variable cenc0), a particular strong
form of the disease. The primary endpoint was the survival time from entry into study. The
data set pbc.txt is available from https://www.math.uzh.ch/furrer/download/sta121/pbc.txt.

a) Load the data set pbc.txt containing the data from the PBC study, create a survival
object and have a look at it.
Hint : Code the treat variable as factor.

b) Compare the two groups defined by treat=1 (placebo) and treat=2 (treatment) based on
graphical displays of the survival functions. Use the function survfit(), which computes
a Kaplan-Meier estimate of the survival curve.
Do you think that there is a difference between treatment and placebo?

c) Compare the two treatment groups with a log-rank test.

d) Fit a Cox-model with treat as predictor.

e) Fit a Cox-model with the additional predictors age and cenc0. How does the result of
treat change compared to d)?

f) Check the proportional hazards assumption in the Cox-models in d) and e).

https://www.math.uzh.ch/furrer/download/sta121/pbc.txt

Chapter 10

Time Series

Measurements of the same variables are often made at regular points in time and
exhibit an inherent correlation. Appropriate methodological approaches must be
used to correctly account for this dependency.

Learning goals for this chapter:

⋄ Identify important features on a time series plot

⋄ Identify and interpret an AR(p), MA(q)

⋄ Interpret PACF, ACF

⋄ Distinguish AR terms and MA terms from exploring an ACF and PACF

⋄ Test if all residual autocorrelations are zero

⋄ Predict values with ARIMA model using R, create and interpret confidence
intervals for forecasts

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter10.R.

10.1 Introduction

We start with a classical dataset.

Example 10.1. The concentration of carbon dioxide (CO2) in Earth’s atmosphere has increased
in the last century and is likely to increase in the future. CO2 has a greenhouse effect and thus
contributes to global warming. The left panel of Figure 10.1 shows recent monthly mean carbon
dioxide levels measured at Mauna Loa Observatory, Hawaii. The right panel shows annual
averages with a cubic fit. The data is available here with more information here. See also this
article here.

189

http://www.math.uzh.ch/furrer/download/sta121/chapter10.R
http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://www.esrl.noaa.gov/gmd/obop/mlo/programs/esrl/co2/co2.html
http://en.wikipedia.org/wiki/Keeling_Curve
http://en.wikipedia.org/wiki/Keeling_Curve

190 CHAPTER 10. TIME SERIES

R-Code 10.1 Monthly and annual mean carbon dioxide levels measured at Mauna Loa
Observatory, Hawaii. (See Figure 10.1.)

path <- "http://user.math.uzh.ch/furrer/download/sta121/"

raw <- read.csv(paste0(path, "co2-mlo-monthly-noaa-esrl.csv"))

dim(raw)

[1] 56 13

craw <- c(as.matrix(t(raw[,-1])))[-c(1,2,671,672)]

(n <- length(craw))

[1] 668

mnts <- rep(1:12,56)[-c(1,2,671,672)]

time <- (1:n)/n

co2 <- ts(craw, start=c(1958, 3), frequency=12)

str(co2)

Time-Series [1:668] from 1958 to 2014: 316 317 318 317 316 ...

plot(co2, ylab="CO2 [ppm]")

lines(lowess(co2, f=.2), col=2) # robust wrt f value!

am <- read.csv(paste0(path, "co2-mlo-annual-noaa-esrl.csv"))

dim(am)

[1] 54 2

apply(raw[,-1],1,weighted.mean,na.rm=T) is a different approach

plot(co2~year, data=am, cex=.5)

lines(am$year, fitted(lm(co2~poly(year,3), data=am)), col=3)

R-Code 10.2 Fitting an annual and a cubic trend. (See Figure 10.2.)

lm1 <- lm(craw ~ poly(time,3) + as.factor(mnts))

plot(resid(lm1))

lot of structure!!

indi <- c(rep(0,400), rep(1,268))

lm2 <- lm(craw ~ indi * (poly(time,3)) + as.factor(mnts))

plot(resid(lm2))

plot(resid(lm2)[-1], resid(lm2)[-n]) # lag one scatter plot

AIC(lm1, lm2)

df AIC

lm1 16 1462.1503

lm2 20 842.4133

The inconvenient truth is that the rate is increasing. The annual means can be modeled by
a third order polynomial (see R-Code 10.2). The residuals of this fit are shown in Figure 10.2
and exhibit a strange behavior occurring after 400 months (reason?).

10.2. ARMA MODELS 191

This effect is due to the eruption of the volcano Mount Pinatubo in June 1991 (see here for
details). Including indicator functions (through the vector indi) in the model eliminates a lot
of the dominant structure in the residuals (middle panel in Figure 10.2). However, the residuals
remain correlated. This is also reflected in the lag-one scatter plot (i.e., plot of the pairs (rt−1, rt),
where rt is the residual at time t) in the right panel of Figure 10.2. ♣

The iid assumptions of the noise in the regression model of the previous example is clearly
violated. In this chapter we introduce a few models for such time series data where we exploit
this correlation for more appropriate uncertainty estimates and better prediction models.

10.2 ARMA Models

In this section we set the stage for a very large class of time series models. For simplicity, we
start by assuming that the time series has a zero mean.

10.2.1 Autoregressive Models

The following introduces an intuitive model for time series: the so-called autoregressive model

Yt = ϕYt−1 + εt, ϕ ̸= 0 (10.1)

with Gaussian white noise εt, i.e., εt
iid∼ N (0, σ2). It is called autoregressive because the current

observation depends on the previous one. This model is denoted with AR(1), where the number
in the parentheses indicates the number of previous terms the current observation depends on.

In practice, t varies between 1 and T and some initial condition has to be assumed, for
example, Y0 = 0 or Y1 ∼ N (0, σ2). Further, we assume that |ϕ| < 1, to ensure stationarity. In
the case of ϕ > 1, it quickly becomes clear that the series “explodes”.

Time

C
O

2
[p

pm
]

1960 1970 1980 1990 2000 2010

32
0

34
0

36
0

38
0

40
0

1960 1970 1980 1990 2000 2010

32
0

34
0

36
0

38
0

year

co
2

Figure 10.1: Monthly and annual mean carbon dioxide levels measured at Mauna
Loa Observatory, Hawaii. The red and green curves are lowess smooth and third order
polynomial fits, respectively. (See R-Code 10.1.)

https://en.wikipedia.org/wiki/Mount_Pinatubo

192 CHAPTER 10. TIME SERIES

0 100 300 500

−
2

−
1

0
1

2

Index

re
si

d(
lm

1)

0 100 300 500

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Index
re

si
d(

lm
2)

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

resid(lm2)[−1]

re
si

d(
lm

2)
[−

n]

Figure 10.2: Residuals of cubic trend fits without (left) and with (middle) the Mount
Pinatubo effect. Lag one scatter plot of residuals (right). (See R-Code 10.2.)

Assuming Y1 ∼ N (0, σ2/(1 − ϕ2)) allows for the connection between an AR(1) model (with
1 ≤ t ≤ T) and a multivariate Gaussian distribution. More specifically, let Y = (Y1, . . . , YT)

⊤

and 0 a zero T -vector. Then

Y ∼ NT (0,Σ), Σ =
(σ2

1− ϕ2
ϕ|i−j|

)
ij
. (10.2)

The AR(1) model (10.1) can be extended to an AR(p) model, defined as

Yt = ϕ1Yt−1 + . . . ϕpYt−p + εt, ϕp ̸= 0, (10.3)

with appropriate assumptions on the parameters ϕ1, . . . , ϕp and with “initial” conditions (e.g.,
distributions for Y1, . . . , Yp).

In the case of a non-zero but constant mean, Y• is replaced by Y•−µ in the AR(p) definition.

10.2.2 Moving Average Models

Similarly, we can define moving average model where the present observation depends on a
weighted average of white noise components. More precisely, a MA(1) is defined by

Yt = εt + θεt−1, θ ̸= 0, (10.4)

with, typically, εt
iid∼ N (0, σ2), and a MA(q) is defined by

Yt = εt + θ1εt−1 + · · ·+ θqεt−q, θq ̸= 0. (10.5)

In the case of a non-zero mean, Y• is replaced by Y• − µ in the MA(q) definition.
It is possible to combine AR(p) and MA(q) processes into so-called ARMA(p, q) models.

10.3 ACF and PACF and Their Estimation

One of the goals of time series modeling is to implement correlation structures in the observations.
We recall here the covariance and correlation of a bivariate random variable.

10.3. ACF AND PACF AND THEIR ESTIMATION 193

The function

γ(s, t) = Cov(Ys, Yt), s, t = 1, . . . , T, (10.6)

is called the autocovariance function. The autocorrelation function is obtained by normalizing
the autocovariance by

√
γ(s, s)γ(t, t).

It is convenient to further restrict the class of time series by considering stationarity. A time
series having constant mean and an autocovariance function that depends only on the magnitude
|s− t| is called stationary. More precisely, Yt is (weakly) stationary if

E[Yt] = µ, (10.7)

Cov(Ys, Yt) = γ(|s− t|), s, t = 1, . . . , T. (10.8)

We will consider only integer values of k = |s − t| which we subscript from now on. For a
stationary process, the autocorrelations, denoted by ρk, simplify to γk/γ0.

The autocorrelation and partial autocorrelation function can be used to infer the “nature” of
the ARMA model, as illustrated in the following examples.

The autocovariance of an MA(1) process Yt = θεt−1 + εt is obtained from

γh = Cov(θεt−1 + εt, θεt−1+h + εt+h) =

(θ2 + 1)σ2 h = 0,

θσ2 h = 1,

0 h ≥ 2.

(10.9)

For an AR(1) process, we have as autocorrelation function (ACF)

ρh = ϕh. (10.10)

Another, yet similar, concept is the partial autocorrelation function (PACF). It is essentially
the correlation between Yt−k and Yt “conditional” on knowing Yt−k+1, . . . , Yt−1. The PACF is
denoted with ϕkk and by definition ϕ11 = ρ1. For an AR(1) process, we have ϕkk = 0 for all
k > 1. For an MA(1) process, we have ϕ22 < 0 and then levels off.

R-Code 10.3 Autocorrelation and partial autocorrelation of the residuals. (See Fig-
ure 10.3.)

acf(resid(lm2))

pacf(resid(lm2))

For an AR(p) model, the PACF vanishes after p lags. For an MA(q) model, the ACF vanishes
after q lags. Hence, the PACF and ACF can be used to select an appropriate model.

Example 10.2. Figure 10.3 shows the ACF and PACF of the detrended time series (i.e., the
residuals) and proposes an AR(2) model. ♣

194 CHAPTER 10. TIME SERIES

0 5 10 15 20 25

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series resid(lm2)

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

Lag

P
ar

tia
l A

C
F

Series resid(lm2)

Figure 10.3: Autocorrelation and partial autocorrelation plots of the detrended time
series (i.e., the residuals). (See R-Code 10.3.)

A useful estimate of the autocovariance function is

γ̂(h) =
1

n

n−h∑
t=1

(yt − ȳ)(yt+h − ȳ). (10.11)

The estimator, however, is biased, even when replacing n by n− h.

Example 10.3. R-Code 10.4 and Figure 10.4 illustrate the estimation of the AR(2) parameters.
The theoretical ACF and PACF values are compared with the empirical ones. The AR(2)
represents a very good fit. ♣

0 5 10 15 20 25

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series resid(lm2)

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

Lag

P
ar

tia
l A

C
F

Series resid(lm2)

Figure 10.4: Autocorrelation and partial-autocorrelation plot of the detrended time
series with superimposed theoretical values based on the estimated AR(p) model (p = 2

red, p = 1 blue, p = 3 green). (See R-Code 10.4.)

10.3. ACF AND PACF AND THEIR ESTIMATION 195

R-Code 10.4 ARMA fit. (See Figure 10.4.)

print(f1 <- ar(resid(lm2), order=2))

##

Call:

ar(x = resid(lm2), order.max = 2)

##

Coefficients:

1 2

0.6360 0.1497

##

Order selected 2 sigma^2 estimated as 0.0842

AIC would select a too complicated model:

ar(resid(lm2))$order

[1] 16

l <- 28

acf(resid(lm2))

points(0:l, ARMAacf(ar=f1$ar, l=l), col=2, cex=.6)

points(0:l, ARMAacf(ar=ar(resid(lm2), order=3)$ar, l=l), col=3)

points(0:l, ARMAacf(ar=ar(resid(lm2), order=1)$ar, l=l), col=4)

pacf(resid(lm2))

points(1:l, ARMAacf(ar=f1$ar, l=l, pacf=TRUE), col=2, cex=.6)

points(1:l, ARMAacf(ar=ar(resid(lm2), order=3)$ar, l=l, pacf=T), col=3)

points(1:l, ARMAacf(ar=ar(resid(lm2), order=1)$ar, l=l, pacf=T), col=4)

There are several ways to obtain the uncertainty in the estimates ϕ̂i as illustrated by R-
Code 10.5. Figure 10.5 emphasizes that marginal confidence intervals may be misleadingly large.

R-Code 10.5: Bootstrapping. (See Figure 10.5.)

a1 <- ar(resid(lm2), order=2) # does not allow the extraction of se!

a1 <- arima(resid(lm2), order=c(2,0,0))

th <- coef(a1)[1:2]

print(ci <- confint(a1))

2.5 % 97.5 %

ar1 0.56789549 0.71833519

ar2 0.07328981 0.22393823

intercept -0.10904930 0.09901755

N <- 200

bootsam <- array(0, c(N,2))

196 CHAPTER 10. TIME SERIES

res <- a1$resid[-c(1:2)]

for (i in 1:N) {

ab <- arima.sim(n=length(res), list(ar=th), innov=sample(res))

bootsam[i,] <- ar(ab, order=2, aic=F)$ar

}

plot(bootsam, xlab=expression(hat(phi)[1]), ylab=expression(hat(phi)[2]))

abline(v=th[1], h=th[2], col=3)

abline(v=ci[1,], h=ci[2,], col=4, lty=2)

hist(bootsam[,2], prob=T, xlim=c(0,1), main="", xlab=expression(hat(phi)))

abline(v=c(th[2],ci[2,]), col=c(3,4,4), lty=c(1,2,2))

hist(bootsam[,1], prob=T, add=T)

abline(v=c(th[1],ci[1,]), col=c(3,4,4), lty=c(1,2,2))

0.55 0.60 0.65 0.70 0.75

0.
05

0.
10

0.
15

0.
20

0.
25

φ̂1

φ̂ 2

φ̂

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Figure 10.5: Bootstrap uncertainty of the AR(2) model. Left panel gives 200 boot-
strapped estimates of an AR(2) model. Right panel gives the marginal histograms.
Green lines indicate the estimates. Blue dotted lines give crude 95% confidence interval
bounds. (See R-Code 10.5.)

It is possible to estimate the trend/“fixed effects” directly through the arima() function. The
model specification is slightly more complicated but essentially equivalent to a lm() approach.

10.4 Prediction

After fitting a model, prediction can be performed. In the context of time series, prediction of
observed values is called smoothing of future (unobserved) values or a forecast. Prediction is

10.4. PREDICTION 197

essentially based on linear best unbiased predictor (BLUP) ideas.
For fitted arima() objects, the R-function predict() can be used. R-Code 10.6 illustrates

estimation through the arima function, followed by a 24 month forecast. See Example 10.1 for
a detailed description of the data and exploratory figures.

Notice that a cubic time and an offset are not required. A seasonal effect is almost as having
a factor with individual fixed effects (see Figure 10.6).

R-Code 10.6: Prediction of CO2 values with an AR(2) and different trend models. (See
Figure 10.6.)

We assume data objects co2, time and indi are available. See Example 10.1

set.seed(12)

Pinatubo effect and cubic time:

X <- cbind(Pinatubo=indi, time, time2=I(time^2), time3=I(time^3))

f1 <- arima(co2, order=c(2,0,0), season=c(1,0,0), xreg=X)

Eliminate Pinatubo and cubic factor

f2 <- arima(co2, order=c(2,0,0), season=c(1,0,0), xreg=X[,-c(1,4)])

Manually include seasonal component

X3 <- model.matrix(~time+I(time^2)+factor(mnts))

f3 <- arima(co2, order=c(2,0,0), xreg=X3, include.mean=FALSE)

ahead <- ((n+1):(n+24))/n

newxreg <- cbind(0,ahead, ahead^2, ahead^3)

pr1 <- predict(f1, newxreg=newxreg, n.ahead=24)

newxreg <- cbind(ahead, ahead^2)

pr2 <- predict(f2, newxreg=newxreg, n.ahead=24)

factormat <- diag(12)[,-1] # just 11 factors (treatment contrasts)

newxreg <- cbind(1, ahead, ahead^2, factormat[c(11:12,1:12,1:10),])

pr3 <- predict(f3, newxreg=newxreg, n.ahead=24)

plot(co2, ylab="CO2 [ppm]",xlim=c(2010,2016),ylim=c(390,406))

lines(2013+(9+1:24)/12, pr1$pred, col=1)

lines(2013+(9+1:24)/12, pr1$pred+2*pr1$se, col=1, lty=2)

lines(2013+(9+1:24)/12, pr1$pred-2*pr1$se, col=1, lty=2)

condensed:

matlines(2013+(9+1:24)/12, cbind(pr2$pred, pr2$pred+2*pr2$se,

pr2$pred-2*pr2$se), col=2, lty=c(1,2,2))

matlines(2013+(9+1:24)/12, cbind(pr3$pred, pr3$pred+2*pr3$se,

pr3$pred-2*pr3$se), col=3, lty=c(1,2,2))

lm2 <- lm(craw ~ (poly(time,2)) + as.factor(mnts))

lines(time*n/12+1958+1/12,predict(lm2, newdata=as.data.frame(X3)), col=5)

rbind(predictors=summary(pr1$pred-pr2$pred),

198 CHAPTER 10. TIME SERIES

factors=summary(pr3$pred-pr2$pred))

Min. 1st Qu. Median Mean 3rd Qu.

predictors 0.2421855 0.2517099 0.2709061 0.2673309 0.2803843

factors -0.9367029 -0.5942522 -0.4378734 -0.4679855 -0.3193980

Max.

predictors 0.29515327

factors -0.09481726

Time

C
O

2
[p

pm
]

2010 2011 2012 2013 2014 2015 2016

39
0

39
5

40
0

40
5

Figure 10.6: Prediction for an AR(2) model with seasonal components and associated
crude uncertainties (dashed). Black: cubic trend with Pinatubo effect, red: quadratic
trend, green: individual fixed levels for each month. Light blue is simple regression fit.
(See R-Code 10.6.)

10.5 Example: Car Drivers Accidents

Consider the R dataset UKDriverDeaths, a time series giving monthly counts of car drivers in
Great Britain killed or seriously injured from January 1969 to December 1984 (n = 192). Wearing
a seat belt was made compulsory on 31 Jan 1983. The data is shown in Figure 10.7.

The series yi exhibits a strong seasonal component and a (possibly) smooth trend. R-
Code 10.7 illustrates the fitting of several simple models based on the raw data. A commonly
performed square root transformation would yield completely different “optimal” models.

A similar result as that in R-Code 10.7 could be obtained by fitting a linear model with belt

as a predictor and additional seasonal predictors, followed by a AR(2) model.

10.5. EXAMPLE: CAR DRIVERS ACCIDENTS 199

R-Code 10.7: Time series of the UKDriverDeaths dataset with seasonal AR fit. (See
Figure 10.7.)

str(UKDriverDeaths) # from package:datasets

Time-Series [1:192] from 1969 to 1985: 1687 1508 1507 1385 1632 ...

plot(UKDriverDeaths)

There is a possibility to play with the order...

f1 <- arima(UKDriverDeaths, order=c(2,0,0),season=c(1,0,0))

belt <- c(rep(0,169),rep(1,23))

f2 <- arima(UKDriverDeaths, order=c(1,0,0),season=c(1,0,0), xreg=belt)

f3 <- arima(UKDriverDeaths, order=c(2,0,0),season=c(1,0,0), xreg=belt)

f1

##

Call:

arima(x = UKDriverDeaths, order = c(2, 0, 0), seasonal = c(1, 0, 0))

##

Coefficients:

ar1 ar2 sar1 intercept

0.4347 0.2029 0.6671 1643.502

s.e. 0.0748 0.0728 0.0550 83.876

##

sigma^2 estimated as 24943: log likelihood = -1248.14, aic = 2506.27

f2

##

Call:

arima(x = UKDriverDeaths, order = c(1, 0, 0), seasonal = c(1, 0, 0), xreg = belt)

##

Coefficients:

ar1 sar1 intercept belt

0.4446 0.6511 1710.1531 -347.6812

s.e. 0.0695 0.0564 53.3647 73.0634

##

sigma^2 estimated as 23693: log likelihood = -1242.86, aic = 2495.71

f3

##

Call:

arima(x = UKDriverDeaths, order = c(2, 0, 0), seasonal = c(1, 0, 0), xreg = belt)

##

Coefficients:

200 CHAPTER 10. TIME SERIES

ar1 ar2 sar1 intercept belt

0.3466 0.1966 0.6890 1714.8170 -365.0402

s.e. 0.0750 0.0740 0.0531 69.3883 80.6904

##

sigma^2 estimated as 22720: log likelihood = -1239.42, aic = 2490.84

lines(UKDriverDeaths-f1$residuals, col=4)

lines(UKDriverDeaths-f2$residuals, col=3)

lines(UKDriverDeaths-f3$residuals, col=2)

Time

U
K

D
riv

er
D

ea
th

s

1970 1975 1980 1985

10
00

15
00

20
00

25
00

Figure 10.7: UKDriverDeaths data and fit. (See R-Code 10.7.)

10.6 Bibliographic remarks

There are plenty of good and valuable time series books, like Box et al. (2008), Brockwell and
Davis (2010), and Shumway and Stoffer (2010). They are all quite formal in notation. For the
latter one, there is a public pdf version available at www.stat.pitt.edu/stoffer/tsa4.

Brockwell and Davis (1991) is another classic, at the upper end with respect to technicalities.

http://www.stat.pitt.edu/stoffer/tsa4

10.7. EXERCISES AND PROBLEMS 201

10.7 Exercises and Problems

Problem 10.1 (Auto regressive process) Consider the AR(1) process defined as

Yt = ϕYt−1 + ϵt, ϵt
iid∼ N

(
0, σ2

)
, ϕ ∈ (0, 1), Y1 ∼ N (0, σ2).

a) Use R to simulate a realisation of an AR(1) process for t = 1, . . . , 50. Use (i) a sequential
simulation and (ii) a direct approach (Exercise class). Use e.g., σ2 = 2, ϕ = 0.5. What is
the effect of choosing different values for σ2 and ϕ?

b) Calculate E(Yt+1 | Y1, . . . , Yt) and Var(Yt+1 | Y1, . . . , Yt). Use this result to predict Y51
together with a 95% confidence interval for the simulated chain in a.

c) For n ≥ 1, calculate E(Yt+n | Yt) and Var(Yt+n | Yt). Use this result to predict Y55 together
with a 95% confidence interval for the simulated chain in a.

d) How many times does the AR process as specified in a change sign (cross the zero line) in
average?
Hint: Use simulation techniques.

e) Use R to sequentially simulate a chain with ϕ = 1.1 and describe its behaviour.

Problem 10.2 (Working with ts object) The data set Meatprice.txt is available from https://
www.math.uzh.ch/furrer/download/sta121/Meatprice.txt. It was published by the Swiss Farmer’s
Union and consists of a time series that describes the realised monthly price of cow meat.

a) Look at the data.

b) Create a time series object and plot it.
Hint : Use the R function ts() and set the arguments frequency and start.

c) Decompose the time series into a seasonal trend, an overall trend and residuals.
Hint: Use stl() with argument s.window="periodic".

d) Are the residuals correlated?
Hint : acf(), pacf().

e) Adjust the time series for seasonality. Plot and compare it to the original time series.

f) Estimate the coefficients of an AR(1) process of this time series using ar().

https://www.math.uzh.ch/furrer/download/sta121/Meatprice.txt
https://www.math.uzh.ch/furrer/download/sta121/Meatprice.txt

202 CHAPTER 10. TIME SERIES

Chapter 11

Spatial Statistics

Measurements are often taken in some predefined spatial domain and exhibit an in-
herent correlation that needs to be taken into account through appropriate method-
ology approaches.

Learning goals for this chapter:

⋄ Visualize geostatistical data in R, check if there is a spatial structure in the
data and the spatial methods should be used to analyse the data

⋄ Define stationarity of a process, additive decompositions of a process

⋄ Explain a covariance functions

⋄ Visualize the spatial structure

⋄ Make prediction using kriging in R, define kriging

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter11.R.

11.1 Introduction

Spatial data summarizes measurements, observations, or data in general that have an inherent
geographical location attribute attached. Examples are:

• Cadmium content in the sediment of Lake Geneva (Example 11.1)

• Total precipitation in October 2017 at all SwissMetNet stations (www.meteoschweiz.admin.
ch/home/mess-und-prognosesysteme/bodenstationen/automatisches-messnetz.html)

• Number of Bluetongue (en.wikipedia.org/wiki/Bluetongue_disease) cases in cattle in the
150+ districts of Switzerland

• Number of births in the municipalities of the Canton of Zurich from 2000 to 2010

203

http://www.math.uzh.ch/furrer/download/sta121/chapter11.R
http://www.meteoschweiz.admin.ch/home/mess-und-prognosesysteme/bodenstationen/automatisches-messnetz.html
http://www.meteoschweiz.admin.ch/home/mess-und-prognosesysteme/bodenstationen/automatisches-messnetz.html
http://en.wikipedia.org/wiki/Bluetongue_disease

204 CHAPTER 11. SPATIAL STATISTICS

• Improvised Explosive Devices (IEDs) or roadside bombs along a US supply road in Baghdad
between February 13th and March 10th 2007.

• Farms on which Bluetongue disease has been diagnosed

In these examples, a correlation between the data seems to exist, reflecting W. Tobler’s
(http://en.wikipedia.org/wiki/Waldo_Tobler) first law of geography : “Everything is related to ev-
erything else, but near things are more related than distant things” (Tobler, 1970).

In all six examples, the data is associated with space. Although we have some time attribute,
it cannot be resolved. However, there are fundamental differences in these examples. In the
first two examples, we can obtain measurements at any arbitrary spatial location within our
spatial domain (lake Geneva, Switzerland). With additional effort, it would be possible to
obtain more measurements, thus increasing the density of observations. Often, the measurement
is representative of a tiny area or volume, which can be neglected compared to the entire spatial
domain. In the second set of examples, a value represents a fixed geographic region (districts
or municipalities of Switzerland) and it is often impossible to obtain additional readings (at a
sub-regional scale or for a differently defined region). The regions are often induced by political
boundaries (counties, cantons, . . .) or defined historically (US ZIP codes). The last two examples
represent recordings of spatial location for some sort of “event”. Other classical types of such
data are the position of a tree in a certain study area, sightings of animals, etc. The occurrence
of the event defines the location and often there we have no influence of where the event occurs.

We often refer to these three types of data as geostatistical data, lattice data, and spatial
point patterns. All three types have similar underlying modeling approaches. In this chapter,
we mainly discuss geostatistical data and shortly comment on lattice data.

11.2 Geostatistical Data

As seen in the last chapter, in time series analysis one of the main concerns is forecast (prediction
of an unobserved quantity in the future). In the analysis of spatial processes, similarly, one of the
main concerns is interpolation, prediction of an unobserved quantity in the domain. However,
typically only a single “sample” is available. This implies different methodologies compared to
classical multivariate statistics (as seen in earlier chapters).

Throughout the chapter, we use the following dataset.

Example 11.1. (leman data) We consider mercury content in the sediment of Lake Geneva
taken in 1983. The data has been discussed in Furrer and Genton (1999). Figure 11.1 shows the
bathymetry of Lake Geneva as well as major cities and rivers. Figure 11.2 shows the 293 sampling
locations as well as the observed values (color coded). There is one large value measured next
to the stream mouth of the river Rhone. Additionally, there is also a large value measured next
to a large purification plant in the greater Lausanne area. The spatial structure in the data is
clearly visible. ♣

http://en.wikipedia.org/wiki/Waldo_Tobler

11.2. GEOSTATISTICAL DATA 205

500 510 520 530 540 550 560

12
0

13
0

14
0

15
0

●

●

●●

●

●

●

●

●

200

100

(383)

● 75 Montreux

Vevey

LausanneMorges

Rolle

Nyon

Geneva

Thonon

Evian

R
hone

La Venoge

L'Aubonne

Rhone

Figure 11.1: Lake Geneva bathymetry (Swiss coordinate system CH1903).

R-Code 11.1 leman data: EDA (see Figure 11.2).

load("download/sta121/leman83_red.RData")

str(leman)

'data.frame': 293 obs. of 10 variables:

$ x : num 501 502 501 503 502 ...

$ y : num 119 120 121 121 122 ...

$ Zn: num 72.2 98.2 81.6 131 160 125 48 131 127 106 ...

$ Cr: num 49.3 45.5 72.8 63.6 66.8 55 11.1 59.4 67.1 43.6 ...

$ Cd: num 0.23 0.37 0.14 0.3 0.56 0.3 0.17 0.44 0.39 0.26 ...

$ Co: num 22.1 8.5 14 4.6 5.7 9.5 7.5 4.5 19.6 6.6 ...

$ Sr: num 345 308 240 383 356 349 350 374 345 419 ...

$ Hg: num 0.17 0.21 0.06 0.24 0.35 0.14 0.08 0.26 0.23 0.18 ...

$ Pb: num 11 15 15 18 24 22 7 19 23 7 ...

$ Ni: num 32.5 33.8 55.9 47.1 52.5 41.8 11.7 45.5 50.6 32.8 ...

library(fields)

plot(y ~ x, col=tim.colors()[cut(Hg,64)], pch=19, data=leman)

simpler alternative is quilt.plot

lines(lake.data)

with(hist(Hg, breaks=20, main=""), data=leman)

206 CHAPTER 11. SPATIAL STATISTICS

500 510 520 530 540 550 560

12
0

13
0

14
0

15
0

x

y

Hg

F
re

qu
en

cy

0.0 0.5 1.0 1.5

0
10

20
30

40

Figure 11.2: leman data: Visualization of the variable Hg.

We start by defining a stochastic process, which extends the concept of a random vector.
The set of random variables {

Z(s) : s ∈ D ⊂ Rd, d ≥ 1
}

(11.1)

is called a spatial process (or random process or simply process). We call D the spatial domain.
The spatial process Z(·) defines, for every s ∈ D, a random variable Z(s). The domain D

can be seen as an index set and, in practice, is often a region (a subset of R2), i.e., d = 2.
A realization of the spatial process Z(·), denoted by z(·), is often called the sample surface,

or the sample path. In practice, we observe the sample surface at a finite number of locations in
the domain. We denote with {

z(s i) : s1, . . . , sn ∈ D
}
, (11.2)

the set of data measured at the locations s1, . . . , sn in a domain D. The sample (11.2) can be
seen as a subset of a potentially infinite number of measurements

{
z(s) : s ∈ D

}
.

It is not trivial to construct genuine spatial processes. While finite dimensional joint distri-
butions would be available, these need to satisfy specific properties to form a process. These
properties ensure that finite dimensional subsets of the spatial process are coherent. In this
chapter as well as very often in practice, we consider Gaussian spatial processes. That means
that for every s0 ∈ D, Z(s0) is a normal random variable.

11.2.1 Stationarity

Even after fixing the distributions of a spatial process to normal random variables, we still have a
lot of flexibility for means, variances and covariances. Stationarity helps to reduce this flexibility
by adding structure to the first two moments, i.e., to the mean, variance and covariances. As in
time series, the concept of stationarity is important.

Second-order stationarity means constant mean and variance and a covariance structure that
is translation invariant. More formally:

11.2. GEOSTATISTICAL DATA 207

Definition 11.1. A spatial process Z(·) is stationary if the following moments exist and satisfy

E
(
Z(s1)

)
≡ µ, (11.3)

Cov
(
Z(s1), Z(s2)

)
= c(s1 − s2), s1, s2 ∈ D. (11.4)

The function c(·) is called the covariance function and is a function of s1 − s2 only. ♢

This restriction on the first two moments of a stationary process is needed as we often observe
a single observation, i.e., we observe the sample surface once at a finite subset of spatial locations.
Often, we further restrict the covariance function, as illustrated in the next definition.

Definition 11.2. If the covariance function c(·) is a function of the distance ||s1−s2|| only, then
the spatial process is called isotropic, otherwise it is called anisotropic. The difference h = s1−s2

is called the (spatial) lag and we let h = ||h ||. ♢

Remark 11.1. 1. Stationarity as introduced above is often referred to as second-order sta-
tionarity because it only constraints the first two moments; some literature also uses the
term weak stationarity. If for any location s in the domain the distribution of Z(s) is
identical we use the term strong stationarity.

2. In geostatistics, we often relax the assumption given in (11.4) to

Var
(
Z(s1)− Z(s2)

)
= 2γ(s1 − s2), s1, s2 ∈ D. (11.5)

That is, if the variance of the differences can be written as a function of s1− s2 only. Such
a process is said to be intrinsically stationary (or to satisfy the intrinsic hypothesis). The
functions 2γ(·) and γ(·) are called the variogram and the semivariogram respectively. If
γ(·) is a function of ||h || only, then the process as well as γ(·) is called isotropic, otherwise
anisotropic.

3. Strong stationarity implies second-order stationarity if the second moment of Z(·) is finite.
Second-order stationarity implies intrinsic stationarity. For the inverse to hold, we need to
impose that γ(h) is bounded for all h .

4. Stationarity is an assumption made by the statistician and it cannot be proven or rejected
with the data itself — at most we could show that we cannot reject the hypothesis.

5. Traditionally, we distinguish between geometric anisotropy and zonal anisotropy. An
anisotropy is said to be geometrical when it can be reduced to isotropy by a linear transfor-
mation; any other form of anisotropy is zonal. Geostatisticians often suppose a geometric
anisotropy when the contours of the (empirical) variogram form an ellipsoid (here the var-
iogram as a function of h = (hx, hy)). Such processes can be transformed into isotropic
processes by means of matrix multiplication: if the matrix O describes the corresponding
ellipsoid then the process Z(Os) is isotropic.

♣

208 CHAPTER 11. SPATIAL STATISTICS

11.2.2 Additive Decomposition

When applying statistical procedures it is often necessary to decompose the process Z(·) into
several parts in order to obtain stationary elements. The most commonly used and widely
accepted decomposition for spatial processes is based on the additive separation according to
different scales.

Y (s) = µ(s) + Z(s) + ε(s), s ∈ D, (11.6)

where each term accounts for a variation at a certain scale, namely:

• µ(·) = E
(
Y (·)

)
is the deterministic mean structure, called large-scale variation;

• Z(·) is a zero-mean, stationary process. The process Y (·) is called smooth small-scale
variation;

• ε(·) is a zero-mean white-noise process, independent of Z(·) and is considered as measure-
ment error. We often assume ε(s) ∼ N (0, σ2).

The large-scale variation µ(·) is also called trend or drift.

This additive decomposition is very much in the spirit of mixed models. Equation (11.6)
has two stochastic components on the right-hand-side. Compared to a classical mixed model
setup, as given in equation (6.4), we have only one level, but a multivariate observation. For
identifiability, similar to the mean of the random effects, we have to assume zero-mean for Z(·).

The estimation of µ(·) is crucial and often involves subjective decisions. There exist basically
two ways of treating the mean structure µ(·). The first supposes that µ(·) is a linear combination
of some functions

{
xk(·)

}p
k=0. This means, that for a particular location s0, the trend is µ(s0) =

β0 + β1x1(s0) + β1x1(s0) + · · ·+ βpxp(s0).
The second approach consists in estimating µ(·) and subtracting it from y(·). In this case,

the estimation neglects the dependency of the spatial process, but the resulting difference is
a stationary process. The trend µ(·) can be modeled via a parametric or a non-parametric
approach.

11.2.3 Covariance Functions

If the process is stationary we can use the covariance function c(·) defined in (11.4) to describe
the spatial dependence structure of the process.

We cannot use an arbitrary function as a possible covariance function because a valid covari-
ance has to be a positive (semi-)definite function in order to ensure

Var
(n∑
i=1

αiZ(s i)
)
=

n∑
i,j=1

αiαj Cov
(
Z(s i), Z(sj)

)
=

n∑
i,j=1

αiαjc(s i − sj) ≥ 0 (11.7)

for all α1, . . . , αn.
There is a lot of mathematical theory on how to construct valid covariance functions. In

practice only a few are used. One example is the so-called exponential covariance function, given
by

c(h ;θ) = θ1 exp(−||h ||/θ2), θ1 > 0, θ2 > 0. (11.8)

11.2. GEOSTATISTICAL DATA 209

The parameters of the covariance function have particular names. θ1 is called the partial sill
and θ2 is related to the range, i.e., the distance at which the covariance vanishes or essentially
vanishes. For covariance functions that only asymptotically reach zero, we often use the term
practical range, which is defined as the distance at which the covariance function is at 5% of the
partial sill.

Hence, we have for an arbitrary location Var
(
Y (s0)

)
= Var

(
Z(s0)

)
+Var

(
ε(s0)

)
= θ1 + σ2,

termed the total sill. The variance of the measurement error has been historically called the
nugget or nugget effect (Matheron, 1962).

The covariance function of the spatial process Y (·) is as for Z(·), except at 0, were it takes
the value θ1 + σ2. Hence, in the presence of measurement error, the covariance function is
discontinuous.

R-Code 11.2 and Figure 11.3 illustrate typical covariance functions. Notice that the functions
look all very similar and that choosing a model may not be trivial. The so-called spherical
covariance function is zero beyond the practical range. The different Matérn have a different
behavior at lag zero, which has implications on the smoothness of the sample surface.

R-Code 11.2 Often used covariance functions. (See Figure 11.3.)

library(geoR) # providing the function `cov.spatial`

curve(cov.spatial(x, cov.pars=c(1, .25)),

xlab="Distance", ylab=expression(c(h)))

curve(cov.spatial(x, cov.pars=c(1, .75), cov.model="sph"),

add=TRUE, lty=2,col=2)

curve(cov.spatial(x, cov.pars=c(1, 0.188), kappa=1), add=TRUE, lty=3,col=3)

curve(cov.spatial(x, cov.pars=c(1, 0.14), kappa=2), add=TRUE, lty=4,col=4)

curve(cov.spatial(x, cov.pars=c(1, 0.117), kappa=3), add=TRUE, lty=5,col=5)

abline(v=.75, col="gray")

legend("topright", c("Exponential", "Spherical", "Matern (v=1)",

"Matern (v=2)", "Matern (v=3)"), lty=1:5, col=1:5, bty="n")

11.2.4 Estimation of the Second Moment Structure

If the underlying distribution of the random field is known and if the covariance matrix is an
explicit function of the parameter θ, maximum likelihood estimation (MLE) methods can be
used to determine all parameters. This approach is computationally quite intensive and method-
of-moments type estimation approaches are often used. For simplicity assume that the process
Z is stationary.

An alternative approach is to estimate the covariance function at certain lags and then fitting
a parametric function to the estimates. For example, the covariance function at lag h can be

210 CHAPTER 11. SPATIAL STATISTICS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

c(
h)

Exponential
Spherical
Matern (v=1)
Matern (v=2)
Matern (v=3)

Figure 11.3: Examples of different covariance functions. The black curve is given
by (11.8). The covariance functions have nugget effect 0, partial sill 1 and (practical)
range 0.75. (See R-Code 11.2.)

estimated by

ĉ(h) =
1

NJ

∑
(i,j)∈J

(
Z(s i)− Z̄

)(
Z(sj)− Z̄

)
, (11.9)

where J contains all pairs (i, j) for which s i and sj are approximately h apart, NJ is the number
of such pairs and Z̄ =

∑
i Z(s i)/n (see Remark 11.2 below).

However, in practice a different and more convenient approach is used, which is based on
a function called the semivariogram, which is linked to the covariance function. Section 11.2.5
contains more details, which are not essential for the understanding of the remaining part of the
chapter.

Definition 11.3. For a stationary process Z(·) with covariance function c(·), the semivariogram
γ(·) is defined by

γ(h) = c(0)− c(h), (11.10)

where 0 is the null vector. ♢

In other words, the semivariogram is a reflection of the covariance function (at the line
(θ1 + σ2)/2) and can also be defined by

γ(s1 − s2) =
1

2
Var
(
Z(s1)− Z(s2)

)
= E

((
Z(s1)− Z(s2)

)2)
, (11.11)

because a stationary process has constant mean. Based on this last expression, the following
estimator is quite intuitive:

γ̂(h) =
1

2

1

NJ

∑
(i,j)∈J

(
Z(s i)− Z(sj)

)2
, (11.12)

where J is again an index set, similar as used in (11.9).
This estimator is often called Matheron’s classical estimator of the semivariogram (Matheron,

1962) and has appealing properties. For example, if the vector z denotes the observations, we
can write an estimate of (11.12) as γ̂(h) = z⊤A(h)z for some matrix A(h).

11.2. GEOSTATISTICAL DATA 211

Many other estimators exist and are implemented in common statistical software routines.
These usually try to overcome the classical estimator’s sensitivity towards outliers.

Remark 11.2. 1. The index set J is formally described by

J = J(h) =
{
(i, j) : s i − sj ∈ T(h)

}
, NJ = card{J} (11.13)

and T(h) is some specified tolerance region in Rd. A typical tolerance region is T(h) =

Tl,a(h) =
{
k : ||k − h || ≤ l, arccos

(
k⊤h

/
(||k ||||h ||

)
≤ a

}
.

2. It is recommended that variograms should not be estimated for lags bigger than half the
diameter of the domain. Further, all lags h should be chosen such that at least thirty pairs
should be included (Journel and Huijbregts, 1978).

3. We can estimate the variance along a given axis h , i.e., estimate a directional variogram,
by using an appropriate tolerance region T(h). Directional variograms are an indispens-
able tool in exploratory variography. Besides the indication of trends and other types of
nonstationarity, they allow for calculation of the transformation matrix O of geometrical
anisotropy.

♣

Once the empirical covariance or semivariogram has been estimated, we fit an appropriately
choosen parametric model to the empirical counterparts. This so-called semivariogram fitting
approach is as follows. Suppose we have an empirical semivariogram γ̂(hk), for different lags hk,
k = 1, . . . ,K, and an appropriate family γ(h ;θ). The method of ordinary least squares estimates
θ by means of

θ̂ = argmin
θ

K∑
k=1

(
γ̂(hk)− γ(hk;θ)

)2
. (11.14)

to get a good match between the estimated and the theoretical counterpart. Of course more
complicated approaches exist, e.g., by incorporating weights that take into account the number
of pairs in the individual bins, etc.

Example 11.2. R-Code 11.3 illustrates the estimation of the semivariogram of the leman data.
We assume an exponential model (which would be the default for many of the functions). Graph-
ically, the resulting fit seems adequate (see Figure 11.4).

The estimates are σ2 = 0.039 (tausq), θ1 = 0.077 (sigmasq), and θ2 = 11.64 (phi).
Note that the variance of the variable (var(leman$Hg)) is smaller than the total sill. The

total variance is a weighted average of the empirical semivariogram. ♣

R-Code 11.3: leman data semivariogram estimation and fitting. (See Figure 11.4.)

library(geoR)

vg <- variog(coords=leman[,c("x","y")], data=leman$Hg, max.dist=40)

212 CHAPTER 11. SPATIAL STATISTICS

variog: computing omnidirectional variogram

plot(vg) # visualize emprirical variogram

abline(h=var(leman$Hg), col="gray") # sample variance

Fitting the empirical variogram

fit <- variofit(vg, ini.cov.pars=c(.1, .1), cov.model="exponential")

variofit: covariance model used is exponential

variofit: weights used: npairs

variofit: minimisation function used: optim

fit

variofit: model parameters estimated by WLS (weighted least squares):

covariance model is: exponential

parameter estimates:

tausq sigmasq phi

0.0392 0.0771 11.6394

Practical Range with cor=0.05 for asymptotic range: 34.86849

##

variofit: minimised weighted sum of squares = 2.3477

lines(fit) # adding fitted variogram

points(0, fit$nugget+fit$cov.pars[1], pch=20, col=4)

curve(cov.spatial(x, cov.pars=fit$cov.pars), xlim=c(0,35),

add=T, col=4) # adding fitted covariance function

0 10 20 30

0.
00

0.
04

0.
08

0.
12

distance

se
m

iv
ar

ia
nc

e

Figure 11.4: Spatial dependence structure for leman data: black circles represent the
empirical semivariogram. Black line is the fitted exponential model. Blue line (including
the dot) is the corresponding covariance function. Gray horizontal line represents the
marginal variance of the data. (See R-Code 11.3.)

11.2. GEOSTATISTICAL DATA 213

11.2.5 Semivariograms

For every intrinsically stationary process the semivariogram exists and is uniquely defined. How-
ever, a process for which γ(·) is its semivariogram does not exist for every function γ(·). A
semivariogram γ(·) has to satisfy certain properties. In practice, we choose among a few param-
eterized families (as we choose between different families of distributions).

Similarly to the covariance function, the parameters of a semivariogram are linked to the
partial sill (if it exists), and the range (if it exists).

Consider the following widely used, isotropic semivariograms, parameterized using partial sill
θ1 > 0 and range parameter θ2 > 0.

• The spherical semivariogram

γ(h ;θ) =

θ1
(
3/2
(
||h ||/θ2

)
− 1/2

(
||h ||/θ2

)3)
, if ||h || ≤ θ2,

θ1, otherwise.
(11.15)

• The exponential semivariogram

γ(h ;θ) = θ1
(
1− exp(−||h ||/θ2)

)
, (11.16)

• The Matérn semivariogram

γ(h ;θ) = θ1
(
1− (||h ||/θ2)νKν(||h ||/θ2)

)
, (11.17)

where Kν is the modified Bessel function of the second kind of order ν > 0 (Abramowitz
and Stegun, 1970).

For certain ν the Matérn model (11.17) has appealing forms. For example, if ν = 0.5, it
reduces to an exponential model. The practical range of the Matérn model depends on the
parameter θ2 and ν. As ν decreases it approaches a pure nugget effect model.

The last two semivariograms attain their maximum value only asymptotically, i.e., have an
infinite range.

11.2.6 Spatial Prediction: Kriging

If we wish to make predictions at a location not included in the observed locations, for the
purpose of establishing a pollution map for example, all measures will have to be taken into
account in computing the predicted value. Of course, their contributions will be weighted by the
strength of their correlation with the location of interest.

Hence, a reasonable prediction of Z(s0), for simplicity noted by Ẑ(s0) is a linear combination
of all observations. More specifically, we assume the linear predictor

Ẑ(s0) =

n∑
i=1

λiZ(s i) = λ⊤Z, (11.18)

where the weights λ = (λ1, . . . , λn)
⊤ are chosen such that the predictor is unbiased and that the

mean squared prediction error

E
((
Z(s0)−

n∑
i=1

λiZ(s i)
)2)

(11.19)

214 CHAPTER 11. SPATIAL STATISTICS

is minimized. With λ chosen under these constraints the estimator (11.18) is called the ordinary
kriging predictor and is the best linear unbiased predictor (BLUP).

The optimal weights sum to one (i.e., satisfy 1⊤λ = 1) to guarantee unbiasedness and
minimizing equation (11.19) (under the constraint 1⊤λ = 1 by means of Lagrange multipliers)
leads to

λ = Σ−1
(
σ + 1

1− 1⊤Σ−1σ

1⊤Σ−11

)
. (11.20)

where Σ =
(
c(s i − sj)

)
, σ =

(
c(s0 − s i)

)
.

The exact form of the ordinary kriging weights (11.20) is intimidating. To get a better
understanding, recall the formula of conditional expectation for a Gaussian random vector (D.18)
and replace the unknown mean with the generalized least squares (GLS) estimator. The GLS
estimator for the mean is

µ̂GLS = 1⊤
1

1⊤Σ−11
Z . (11.21)

Hence

Ẑ(s0) = µ̂GLS + σ⊤Σ−1(Z− µ̂GLS1) . (11.22)

Now, placing (11.21) in placing (11.22) collecting the terms, we find the weights (11.20).
In a pure nugget effect model, the ordinary kriging predictor is

Ẑ(s0) =

∑

i Z(s i)/n, if s0 /∈ {s1, . . . , sn},

Z(s i), if s0 = s i, i = 1, . . . , n.
(11.23)

The minimized mean squared prediction error (11.19) is often called the kriging variance and
is given by

Var
(
Ẑ(s0)

)
= c(0)− σ⊤Σ−1σ +

(1− 1⊤Σ−1σ)2

1⊤Σ−11
. (11.24)

Remark 11.3. 1. If the mean µ(·) and the covariance function c(·) of the spatial process
Z(·) are known functions, the optimal predictor simplifies to

Ẑ(s0) = µ(s0) + σ⊤Σ−1(Z− µ). (11.25)

where µ =
(
µ(s i)

)
. The predictor (11.25) is called the simple kriging predictor. For

Gaussian processes, simple kriging coincides with E
(
Z(s0) | Z(s1), . . . , Z(sn)

)
and is

therefore optimal amongst all unbiased predictors.

2. If the deterministic mean structure can be expressed as

µ(·) =
K∑
k=0

βkxk(·), (11.26)

11.2. GEOSTATISTICAL DATA 215

for known functions x0(·), then the kriging weights can be generalized as follows. The
vector 1 is replaced by the design matrix X induced by the functions

{
xk(·)

}
K
k=0 evaluated

at the spatial locations. This type of prediction is often referred to as universal kriging.

♣

Theoretically kriging is an optimal predictor in the sense that it minimizes the estimation
variance under the unbiasedness constraint when the variogram is known and the process is
second-order stationary. In practice, these conditions are rarely met. Nevertheless, kriging has
become a popular interpolator in the statistical community.

Example 11.3. R-Code 11.4 illustrates kriging using the package fields. Estimation and fitting
is done in a almost blackbox-fashion in the function Krig(). We assume a linear trend surface
(here linear in the coordinates). Figure 11.4 shows the resulting interpolated (seemingly smooth)
surface, which is decomposed into the trend and the spatial process. ♣

R-Code 11.4 leman prediction. (See Figure 11.5.)

Construct a grid within the lake boundaries:

library(splancs)

xr <- seq(min(lake.data[,1]),to=max(lake.data[,1]),l=100)

yr <- seq(min(lake.data[,2]),to=max(lake.data[,2]),by=xr[2]-xr[1])

locs <- data.frame(x=lake.data[,1], y=lake.data[,2])

grid <- expand.grid(x=xr, y=yr)

pts <- pip(grid, locs, bound=TRUE) # get Point-In-Polygon

#

Perform kriging:

with({

out <- Krig(cbind(x,y), Hg, theta=11.64, give.warnings=FALSE)

pout <- predict(out, pts)

quilt.plot(pts, pout, nx=length(xr)-2, ny=length(yr)-1)

fit0 <- predict(out, pts, just.fixed=TRUE) # trend

quilt.plot(pts, fit0, nx=length(xr)-2, ny=length(yr)-1)

fit1 <- pout - fit0 # smooth spatial

quilt.plot(pts, fit1, nx=length(xr)-2, ny=length(yr)-1)

}, data=leman)

216 CHAPTER 11. SPATIAL STATISTICS

510 520 530 540 550 560

12
0

13
0

14
0

15
0

0.2

0.4

0.6

0.8

1.0

510 520 530 540 550 560

12
0

13
0

14
0

15
0

0.20

0.25

0.30

510 520 530 540 550 560

12
0

13
0

14
0

15
0

−0.2

0.0

0.2

0.4

0.6

0.8

Figure 11.5: leman: prediction (top left), trend (top right), and smooth spatial com-
ponent (bottom). (See R-Code 11.4.)

11.3 Lattice Data

In the case of lattice data, the lattice structure does not change. Hence, we can work with
“classical” multivariate distributions and we do not have to work with processes because the
dimension is finite and fixed. Further, we typically have a datum or observation for all the
lattice elements and prediction is seen as smoothing. Often the data are modeled according to
some distribution where the parameters thereof vary smoothly over space. Classical analysis
evaluate if such spatially structured terms are present and if the structure can be attributed to
other factors.

11.4 Bibliographic remarks

The book by Cressie (1993) is often seen as a bible. Other older titles are Journel and Huijbregts
(1978) and Ripley (1981). At the end of last century many books in spatial statistics were
published, including Chilès and Delfiner (1999), Olea (1999), Webster and Oliver (2001), and
Schabenberger and Gotway (2005).

Multivariate geostatistics is covered in Wackernagel (1995). Space-time geostatistics is cov-
ered, e.g., in Sherman (2011).

Stein (1999) is a very theoretical gem.

11.5. EXERCISES AND PROBLEMS 217

Kriging is a minimum mean squared error method of spatial prediction. Matheron (1963)
named this method of optimal spatial linear prediction after D. G. Krige, a South African mining
engineer who developed empirical methods for determining ore-grade distributions from samples
(Krige, 1951). However, the formulation of optimal linear prediction did not come from him.
Wold (1938), Kolmogoroff (1941) and Wiener (1949) developed optimal linear prediction, where
closer points obtained more weight than distant points. Extensions from simple kriging to uni-
versal kriging are covered in Goldberger (1962) and Matheron (1969). For a more thorough
overview of the historical origins of kriging, refer to Cressie (1990).

There are many R packages that deal with spatial data. See the CRAN Task View: Analysis
of Spatial Data for an overview. We personally work a lot with fields and geoR.

11.5 Exercises and Problems

Problem 11.1 (Visualizing spatial data) The (artificial) data set spatialSim.RData is available
from https://www.math.uzh.ch/furrer/download/sta121/spatialSim.RData. It contains two spatial
fields on a regular 100× 100 grid.

a) Load the data and plot both fields using image.plot() from package fields. Describe
and compare both fields via these plots and summary statistics.

b) Sketch covariance functions for sim1 and sim2 by hand. Write in a few words in what way
the two curves differ.
Hint: x-axis: distance between points h, y-axis: covariancs c(h).

c) Use linear regression to investigate if there is an overall trend in sim1 with respect to the
coordinates x1 and x2.
Hint: Convert the data to long format, i.e., a data.frame having the column names
c("x1", "x2", "z"). Then regress z on the other variables.

d) Discuss the assumptions of a linear models. Which ones are violated in c.?

e) How could the regression setting from c be extended to take into account the spatial
dependency of z? Give a model formulation (equation) and describe the used components.

Problem 11.2 (Simple kriging on a transect) The data set transect.txt is available from https:
//www.math.uzh.ch/furrer/download/sta121/transect.txt. It consist of observations of a spatial
process Z(si) at locations si, where i = 1, . . . , 5. si are locations along a transect between 0 and
10.

a) Have a look at the data and plot them in the interval [0, 10].

b) Write an R function exp.cov(h, theta2, theta3) that implements the exponential co-
variance function as defined in the script. Plot the function for the distances h ∈ [0, 4],
with nugget θ1 = 0, sill θ2 = 3 and range θ3 = 1. Can you identify these parameters in the
plot?
Hint: θ1 = 0, hence no case discrimination is needed.

http://stat.ethz.ch/CRAN/web/views/Spatial.html
http://stat.ethz.ch/CRAN/web/views/Spatial.html
https://www.math.uzh.ch/furrer/download/sta121/spatialSim.RData
https://www.math.uzh.ch/furrer/download/sta121/transect.txt
https://www.math.uzh.ch/furrer/download/sta121/transect.txt

218 CHAPTER 11. SPATIAL STATISTICS

c) Write a function dist.matrix(x, y) that returns a matrix of pairwise (Euclidean) dis-
tances between each elements of the vectors x and y. Use this function to calculate
DIST.MAT, a matrix containing all possible distances of the locations in the transect dataset.
Hint: Use for-loops or outer(), and abs().

d) Use the exponential convariance function as specified in c. and DIST.MAT from c. to
calculate a covariance matrix SIGMA.

e) Define a sequence of snew location where the process Z(s) should be predicted. Use (c) to
calculate all possible distances between the observed points and the snew. Then calculate
sigma, the corresponding covariance matrix, using exp.cov() from b.

f) Assume known constant mean µ = 0, second-order stationarity, and known covariance
function. Calculate the simple kriging prediction for the locations snew. Plot the predicted
values of Z(s) as line and the observed values as points.
Hint: Use solve() for matrix inversion, and t() to get the matrices in an appropriate
shape for multiplication.

g) Repeat b. to f. with different parameters of to covariance function. What is the influence
of θ2?

Chapter 12

Extreme Value Theory

To model extreme events (i.e., the size of the largest flood in a decade) we cannot
simply estimate the location and spread of daily runoff and derive relevant statistics.
We have to use a different set of statistical tools that do not rely on the central
limit theorem. This is the topic of extreme value theory.

Learning goals for this chapter:

⋄ Explain the motivation for applying extreme value theory

⋄ Explain the modeling the maxima approach

⋄ Explain Modeling Peaks over Thresholds approach

⋄ Explain Return Level Plots

⋄ Give some examples of applications of the EVT

⋄ Conduct EVT analysis in R

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter12.R.

12.1 Motivation

Example 12.1. R-Code 12.1 shows the maximum monthly discharge of Rhone river at Porte
du Scex since 1970.

Suppose we need to design a dam for flood protection. Based on discharge data, we are not
interested in predicting the center of the distribution(mean, mode, . . . , i.e., not something about
the red line in the bottom panel) but the maximum discharge (in a possibly distant future).

More precisely, in the 45 years of data, the largest discharge was 202 m3. What is the largest
discharge that we can expect in the next 50 years with reasonable probability? Of course we
need to be more precise what we mean with ‘largest’ and ‘reasonable probability’. ♣

219

http://www.math.uzh.ch/furrer/download/sta121/chapter12.R

220 CHAPTER 12. EXTREME VALUE THEORY

R-Code 12.1 Maximum monthly discharge of Rhone river at Porte du Scex. (See Fig-
ure 12.1.)

rhone <- read.csv("download/sta121/PorteduScex70.csv")

str(rhone)

'data.frame': 549 obs. of 3 variables:

$ year : int 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 ...

$ month: int 1 2 3 4 5 6 7 8 9 10 ...

$ m3 : num 14.8 12.6 13.5 13.7 14.2 51.8 61.9 51.8 40.7 40.6 ...

plot(rhone$m3, xlab="Time (since 1970-01-01)", ylab="Discharge [m3]")

plot(m3~month, data=rhone, xlab="Month", ylab="Discharge [m3]")

lines(1:12, c(by(rhone$m3, rhone$month, median)), col=2, lwd=2)

rhone[which.max(rhone$m3),]

year month m3

285 1993 9 202.16

0 100 200 300 400 500

0
50

10
0

15
0

20
0

Time (since 1970−01−01)

D
is

ch
ar

ge
 [m

3]

2 4 6 8 10 12

0
50

10
0

15
0

20
0

Month

D
is

ch
ar

ge
 [m

3]

Figure 12.1: Monthly maxima discharge of Rhone river at Porte du Scex from January
1970 to September 2015. Top: time series, bottom: by month. The red line indicates
the monthly medians. (See R-Code 12.1.)

When modeling maximum values, it is dangerous to model distributions from first and second
order quantities and then extrapolate to quantiles, i.e., we should not perform inference obtained
from a model that fits the bulk of the data. Consider the following example. Suppose we observe
normal data, say x1, . . . , xn from the random sampleX1, . . . , Xn

iid∼ N (µ, σ2). For the illustration

12.2. MODELING THE MAXIMA 221

here, assume that we have zero mean and standard deviation one. The probability that a single
value is larger than 4 is P(Xi > 4) = 1−Φ(4) = 3.167 · 10−5. However, the probability that out
of a sample of size n = 10, 100, 1000 the maximum exceeds 4 is 0.0003 0.0032 0.0312 and thus
(naturally) strongly depends on the sample size.

Denoting Mn the maximum of X1, . . . , Xn its distribution depends on the distribution and
the sample size, as

P(Mn ≤ x) = P
(
max

i
{Xi} ≤ x

)
= P(X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x) = FX(x)n. (12.1)

Albeit, this result should not be too surprising, as the distribution of X also depends on n:
X ∼ N (µ, σ2/n). The next example illustrates this along the minimum, which is – when reversing
the “direction” of the axis – conceptually not too different compared to the maximum.

Example 12.2. Let X1, . . . , Xn
iid∼ Exp(λ) and Mn = mini{Xi}. The distribution of Mn is

P(Mn ≤ x) = 1− P(Mn > x) = 1−
(
1− FX(X ≤ x)

)n
= 1− exp(−nλx), (12.2)

that means the minimum is again an exponential random variable with rate nλ. Thus E(Mn) =

1/(nλ), which vanishes as the sample size n increases. ♣

The statistical theory of extreme values (maximum, minimum or exceedances of a large
threshold) is called extreme value theory (EVT). At the core of extreme value theory is a limit
theorem appropriate for the extreme values. These large observations behave asymptotically
differently than the central values. More specifically but loosely said, the central limit theo-
rem states that averages converge to a normal distribution whereas the maximum converges
to the so-called generalized extreme value distribution (GEV). In both settings we need some
weak assumptions such such that the limit exists. However, we do not need to elaborate these
technicalities here.

EVT comprises three different approaches that are all interlinked. The first models only the
maximum (Section 12.2), the second models data exceeding a threshold (peak over threshold,
POT, Section 12.3) and the third uses a Poisson process model for POTs (not discussed here).
All three models are interlinked, but depending on the situation some may be more suitable than
others. For technical details see the accessible text of Coles (2001).

12.2 Modeling the Maxima

Let X1, . . . , Xn be iid. We are interested in describing the distribution of the maximum of Xi,
i.e., the distribution of Mn = maxiXi. Under very mild assumptions, the (scaled) distribution
of Mn = maxiXi converges to a so-called GEV distribution with cdf

F (x;µ, σ, ξ) = exp

(
−
(
1 + ξ

(x− µ
σ

))−1/ξ
)
, (12.3)

for all x such that 1 + ξ(x − µ)/σ > 0, where µ ∈ R is the location parameter, σ > 0 the scale
parameter and ξ ∈ R the shape parameter.

222 CHAPTER 12. EXTREME VALUE THEORY

The GEV distribution is actually a family of distribution families. The three sub-families
are defined by ξ > 0, ξ < 0 and ξ = 0, and correspond to the Fréchet, Weibull and Gumbel
families, respectively. The shape parameter ξ imposes the support of the distribution, specifically
for ξ > 0, the distribution has lower endpoint as x > µ − σ/ξ, and for ξ < 0 it has an upper
endpoint x < µ + σ/(−ξ), i.e., the support of the random variable has an upper bound. For
ξ = 0, we do not have any restrictions on the support but the distribution specified in (12.3)
should be interpreted by taking the limit as ξ → 0. The shape parameter ξ also governs the tail
behavior of the distribution. The case ξ > 0 means that the density has heavy tails, for which
not all moments are finite anymore. More specifically, E(Xk) is finite for k < 1/ξ only. Hence,
the estimation of ξ is thus crucial.

Example 12.3. Consider X1, . . . , Xn
iid∼ N (0, 1) for three different n = 10, 100, 1000. R-

Code 12.2 samples R = 10000 times a corresponding sample and calculates the maximum.
The resulting empirical densities of Mn are given in Figure 12.2. The mean of these maxima
increases from 1.6, to 2.5, to 3.2 as n increases. ♣

R-Code 12.2 Empirical densities of the maximum of Gaussian samples. (See Figure 12.2.)

set.seed(1)

R <- 10000

breaks <- seq(-.5, to=5.5, by=.25)

for (n in c(10,100,1000)) {

samples <- matrix(rnorm(n*R), nrow=R, ncol=n)

Mn <- apply(samples, 1, max)

hist(Mn, main="", xlab=paste("n =",n), prob=TRUE, breaks=breaks,

ylim=c(0,1.2), border=NA, col="lightblue")

abline(v=mean(Mn), col="blue")

}

In practice we hardly ever have replicates of an entire series to estimate the maximum. To
circumvent this lack, one subdivides an entire sequence into several shorter sub-sequences, called
blocks. From each of these blocks, we take the maxima. Hence, one has to balance block length
versus sample size (number of the blocks). For some settings, the choice of the block is natural,
as the following example illustrates.

Example 12.4. In the setting of maximum monthly discharge of the Rhone river, we calculate
the maximum annual discharge (block length 12). We consider these as independent. R-Code 12.3
illustrates the fitting of a GEV distribution to the annual maxima with maximum likelihood using
the R package extRemes. The package can handle many different settings and we will only extract
relevant information, here parameter estimates and standard errors thereof. A crude Wald-type
confidence interval for the shape parameters ξ is obtained via the function ci() and yields [0.258,
0.899]; implying “heavy” tails as the lower endpoint is larger than zero. The tails are comparable
to a t2 distribution as the confidence interval suggest finite mean but non-existing variance.

12.3. MODELING PEAKS OVER THRESHOLDS 223

n = 10

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

n = 100
D

en
si

ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

n = 1000

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 12.2: Distribution of the maximum of sequences of Gaussian random variables.
(See R-Code 12.2.)

The fitting is typically assessed graphically by comparing empirical and fitted densities and
with quantile (Q-Q) and probability (P-P) plots of the fitted model, see Figure 12.3. On the
x-axis are the model fits, on the y-axis the empirical values. The diagonal line has intercept zero
and slope one. Q-Q plots are scaled to fit the observations, P-P plots have range [0, 1]. Because
of possbibly large values, probability plots are easiest to interpret. ♣

50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

N = 46 Bandwidth = 6.971

D
en

si
ty

Empirical
Modeled

50 100 150 200

50
10

0
15

0
20

0

Model Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical Probabilities

M
od

el
 P

ro
ba

bi
lit

ie
s

Figure 12.3: GEV fit of the rhone data with densities, probability and quantile plots
(left to right). (See R-Code 12.3.)

12.3 Modeling Peaks over Thresholds

Estimating GEV distribution parameters via block maxima seems a ‘data wasting’ approach.
We keep only a single observation from each year or block and thus would not consider two
exceptionally large events in a year or, alternatively, might consider a very small observation
from a particular year. As an alternative, we might consider using all data that exceed a certain
large value, i.e., keeping all exceptionally large values, independent of their occurrence. However,
when using this approach, the limit theorem and the limiting distribution (12.3) does not hold

224 CHAPTER 12. EXTREME VALUE THEORY

R-Code 12.3 GEV analysis of rhone data. (See Figure 12.3.)

year <- aggregate(m3~year, rhone, max)$m3

library(extRemes)

gevfit <- fevd(year) # we can use all the default values

summary(gevfit, silent=TRUE)[c(1,3)]

$par

location scale shape

59.17419 10.06745 0.57834

##

$se.theta

location scale shape

1.72203 1.73698 0.16341

ci(gevfit, type="parameter")

fevd(x = year)

##

[1] "Normal Approx."

##

95% lower CI Estimate 95% upper CI

location 55.79906 59.17419 62.54931

scale 6.66304 10.06745 13.47186

shape 0.25806 0.57834 0.89861

plot(gevfit, type="density", main="")

plot(gevfit, type="qq", main="")

plot(gevfit, type="prob", main="")

anymore. But as it turns out, a similar result holds in the case of such exceedances.
Under rather weak assumptions, the distribution function of X − u | X > u (i.e., conditional

on X exceeding the threshold u) for large u is approximately

P (X − u > y | X > u) ≈ 1−
(
1 +

ξy

σ

)−1/ξ
, (12.4)

for appropriate y. It is important to keep in mind that this is a limiting/asymptotic result. The
approximation gets “better” for larger thresholds u and we have asymptotic equality. The dis-
tribution specified by the right-hand-side of (12.4) is called the generalized Pareto distribution
(GPD, or GP) and σ and ξ are called the scale and shape parameters respectively. The distri-
bution has an upper end-point if ξ < 0 (bounded distributions) and a lower end-point if ξ > 0

(heavy tailed distributions). The limiting case ξ = 0 corresponds to an exponential distribution.

Example 12.5. The conditional distribution on the left-hand side of (12.4) can be written as

P (X − u > y | X > u) =
P (X − u > y ∩X > u)

P (X > u)
=

1− F (u+ y)

1− F (u)
(12.5)

12.3. MODELING PEAKS OVER THRESHOLDS 225

For an exponential random variable X ∼ Exp(λ) the latter expression simplifies to exp
(
−λ(u +

y)
)
/ exp(−λu) = exp(−λy) = 1 − F (y). More specifically, the distribution is again exponential

with parameter λ. This result is not surprising, as the exponential random variable is memory-
less. ♣

Remark 12.1. There is an asymptotic link between a GEV and a GPD. It can be shown that
(asymptotically) ξGEV = ξGP and σGP = σGEV + ξGEV(u− µGEV).

Similarly to the GEV, the GPD is also a family of distributions, discriminated by ξ. For
example the case ξ = 0 leads to a (shifted) expontential distribution. ♣

12.3.1 Return Level Plots

One of the key questions in EVT is the magnitude of an event that occurs very rarely, which
is often quantified by the so-called return level. The concept of return level and return period
has been coined in the context of floods. As illustrated here, for a so-called 100-year flood, the
return level has 1% chance of being exceeded in any given year. The return period (or ‘average
recurrence interval’) corresponding to this probability of 0.01 is 1/0.01 or 100 years.

Lets denote the generalized Pareto distribution with G(·). Let zp the return level with return
period 1/p, that means that G(zp) = 1− p and by (12.4) we have

zp = u+
σ

ξ

(
pξ − 1

)
, (ξ ̸= 0). (12.6)

In practice we need of course estimates for the values above.
Additionally, if we are interested in calculating the return level zt that is exceeded on average

every t observations, we need to take into account that we observe many observations below the
threshold. Lets denote ζu = P (X > u), i.e., the probability that an observation is larger than
the threshold. Then (for independent observations), the m-observation return level is

zm = u+
σ

ξ
((mζu)

ξ − 1). (12.7)

If we would calculate the n-observation return level (for a series of length n) this would imply that
we have on average (if we would observe many of these n sized series) one exceedance thereof.

Example 12.6. R-Code 12.4 illustrates the fitting of a GPD. We have chosen (somewhat ar-
bitrarily) a threshold of 55, corresponding essentially to the 90th percentile with 63 exceeding
observations exceeding. As we have monthly data, we need to specify this in the fitting procedure
to be able to calculate return levels based on years and not observations. The shape estimate ξ is
similar as in the case of the GEV fitting. The resulting return level has quite large uncertainties,
reflecting the difficulty estimating the shape parameter and the projection into the future.

Of course return level plots can be calculated for any distribution, including for the GEV.
As a matter of fact, it is possible to compare the return levels for both approaches shown here.
Using ci(gevfit, type="return.level", return.period=50) we get an estimate of 208.03,
with confidence interval [67.55, 348.5], yielding an even larger uncertainty. ♣

226 CHAPTER 12. EXTREME VALUE THEORY

R-Code 12.4 GPD analysis of rhone data. (See Figure 12.4.)

gpdfit <- fevd(rhone$m3, threshold=55, type="GP", time.units="months")

summary(gpdfit, silent=TRUE)[c(1)]

$par

scale shape

10.53230 0.44421

ci(gpdfit, type="parameter")

fevd(x = rhone$m3, threshold = 55, type = "GP", time.units = "months")

##

[1] "Normal Approx."

##

95% lower CI Estimate 95% upper CI

scale 5.997237 10.53230 15.06735

shape 0.074801 0.44421 0.81361

plot(gpdfit, type="density", main="")

plot(gpdfit, type="qq", main="")

plot(gpdfit, type="prob", main="")

Return period is automatically calculated to years by 'time.units':

ci(gpdfit, type="return.level", return.period=50)

fevd(x = rhone$m3, threshold = 55, type = "GP", time.units = "months")

##

[1] "Normal Approx."

##

[1] "50-year return level: 186.655"

##

[1] "95% Confidence Interval: (78.2432, 295.0668)"

In practice, we do not always have independent observations. For example, hourly, daily or
even weakly run-off values are typically serially dependent and special modeling approaches are
required.

Remark 12.2. With dependent data, we have to take the dependency into account. Loosely
speaking, we look at clusters (a series of exceedances defines a cluster) and we take the typical
cluster size into account. The cluster size is often linked to the event duration.

More formally, for an EVT approach, we need a stationary series satisfying a so-called D(un)

criterion. The D(un) condition states (essentially) that extreme events are “near-independent”
if they are sufficiently far apart (here in time). The dependence does not hat have any influence
on the limit laws for extremes. ♣

12.3. MODELING PEAKS OVER THRESHOLDS 227

0 50 100 150

0.
00

0.
02

0.
04

0.
06

0.
08

N = 63 Bandwidth = 5.596

D
en

si
ty

Empirical
Modeled

60 100 140 180

50
10

0
15

0
20

0

Model Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical Probabilities

M
od

el
 P

ro
ba

bi
lit

ie
s

Figure 12.4: GPD fit of the rhone data with densities, probability and quantile plots
(left to right). (See R-Code 12.4.)

12.3.2 Threshold Selection

The key question is selecting a threshold u for the generalized Pareto distribution. There exist
essentially two approaches, a ‘mean residual life plot’ and parameter estimates against threshold
plot. The latter is more conclusive.

Example 12.7. R-Code 12.5 illustrates threshold selection for a GPD, with a mean residual
life plot and through fitting models to a range of thresholds. The middle and bottom panel of
Figure 12.5 gives parameter estimates against threshold. The uncertainties have been indicated
with vertical lines. We select the lowest threshold that yields roughly the same parameter
estimates as any higher threshold. The choice of 55 in the previous example seems adequate. ♣

R-Code 12.5 Graphical threshold selection for GPD. (See Figure 12.5.)

mrlplot(rhone$m3)

threshrange.plot(rhone$m3, r=c(30, 100), nint=15)

As illustrated, both with a GEV or a GPD approach it is possible to calculate return levels
and suchlike. At first, it seems that a GPD approach has the advantage of estimating only two
parameters compared to the three of a GEV. However, for a GPD we require a threshold which,
to a certain degree, picks up the role of this missing parameter.

The advantages of a peak over threshold approach over a classical GEV is that the estimation
uncertainties are typically smaller due to larger “sample” sizes. However, the threshold selection
is not straightforward and requires a certain amount of care.

228 CHAPTER 12. EXTREME VALUE THEORY

0 50 100 150 200

−
20

20
60

Threshold

M
ea

n
E

xc
es

s

30 40 50 60 70 80 90 100

−
15

0
−

50
50

15
0

threshrange.plot(x = rhone$m3, r = c(30, 100), nint = 15)

re
pa

ra
m

et
er

iz
ed

 s
ca

le

30 40 50 60 70 80 90 100

−
1.

0
0.

0
1.

0

Threshold

sh
ap

e

Figure 12.5: Top: Mean residual life plot. Bottom: Parameter estimates against
threshold. The dashed lines in the top plot and the vertical bars in the lower ones
indicate the 95% uncertainty bounds. (See R-Code 12.5.)

12.4 *Comparing the Approaches Through Profile Estimates

The previous two sections calculated crude Wald confidence intervals of ξ (estimate ±2·standard
error). Because we estimate the parameters with a likelihood approach, we can get better
uncertainty estimates by profiling. Profiling is a technique that calculates for a specific value of
one parameter the maximum likelihood over all other parameters.

R-Code 12.6 illustrates the result and compares the relative-log-likelihoods of the GEV and
POT estimation approach. As we want to superimpose the two curves, we need to manually plot
the profile likelihoods. Moreover, we need to compare the relative profile log-likelihoods and thus
subtract the maximum of the log-likelihood. Confidence intervals are constructed by comparing

12.5. BIBLIOGRAPHIC REMARKS 229

the relative profile log-likelihoods with the quantile of a chisquared distribution with one degree
of freedom.

No surprise, we get similar answers, also compared to Wald type estimates.

R-Code 12.6: Profiling the parameter ξ based on GEV and GPD likelihood estimation.
(See Figure 12.6.)

xi1 <- profliker(gevfit, type="parameter", which.par=3, xrange=c(0,1),

nint=50, plot=FALSE) + gevfit$results$value

xi2 <- profliker(gpdfit, type="parameter", which.par=2, xrange=c(0,1),

nint=50, plot=FALSE) + gpdfit$results$value

x <- seq(0, to=1, length=length(xi1))

plot(x, xi1, type="l", ylim=c(-2.5,0),

ylab="Relative profile\nlog-likelihood", xlab="xi")

lines(x, xi2, col=2)

abline(h=-0.5*qchisq(0.95, 1), col=4)

abline(v=c(x[which.max(xi1)],x[which.max(xi2)]), col=c(1,2))

tmp <- cbind(gev.profile=range(x[xi1 > -0.5*qchisq(0.95, 1)]),

gev.Wald=ci(gevfit, type="parameter", which.par=3)[c(1,3)],

gpd.profile=range(x[xi2 > -0.5*qchisq(0.95, 1)]),

gpd.Wald=ci(gpdfit, type="parameter", which.par=2)[c(1,3)])

rug(tmp[,2], col=1, ticksize=.25)

rug(tmp[,4], col=2, ticksize=.25)

tmp <- rbind(tmp, "Width of CI"= tmp[2,]-tmp[1,])

print(tmp)

gev.profile gev.Wald gpd.profile gpd.Wald

95% lower CI 0.30612 0.25806 0.14286 0.074801

95% upper CI 0.93878 0.89861 0.89796 0.813612

Width of CI 0.63265 0.64055 0.75510 0.738811

12.5 Bibliographic remarks

Coles (2001) is very accessible and has a lot of emphasis on (environmental) applications. Em-
brechts et al. (1997) is more theoretical but clearly outlined and structured. For mathematically
more advanced treaties see Resnick (2008) and Haan and Ferreira (2006).

The article by Davison et al. (2012) gives an excellent overview of statistical modeling of
spatial extremes.

12.6 Exercises and Problems

Problem 12.1 (EVT) Load the dataWind data from the package extremefit. The data comes
from Airport of Brest (France) and represents the average wind speed per day from 1976 to 2005.

230 CHAPTER 12. EXTREME VALUE THEORY

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

xi

R
el

at
iv

e
pr

of
ile

lo
g−

lik
el

ih
oo

d

Figure 12.6: Profile relative log-likelihoods for GEV (black) and GPD (red) fits. The
corresponding Wald-type confidence intervals are given by the ticks. (See R-Code 12.6.)

a) Conduct EDA for the data and plot maximum monthly wind speed.

b) Using the monthly maxima of the wind speed, conduct the GEV analysis of the wind data.
Assess the fit using the P-P and Q-Q plots.

c) Apply Modeling Peaks over Thresholds for the same data set (first choose a threshold).

d) Compare return levels for the considered two methods.

Problem 12.2 (ML of GPD) In this problem we use the density

f(x;σ, ξ) =

1

σ

(ξx
σ

+ 1
)− ξ+1

ξ
, for ξ ̸= 0,

1

σ
e−x/σ, for ξ = 0,

where x ≥ 0 for ξ ≥ 0 and 0 ≤ x ≤ −σ/ξ for ξ < 0.

a) For a random variable X with density given above, calculate the density of c ·X, c > 0.

b) Use the data posted on https://www.math.uzh.ch/furrer/download/sta121/gpd.RData to de-
termine numerically the ML estimate of θ = (σ, ξ)⊤.

c) Visualize the relative log-likelihood as a function of θ and, based on this figure, summarize
the evidence against H0 : σ = 9, ξ = 0.2.

d) Graphically visualize the profile log-likelihood ℓp(ξ). Compare the estimation uncertainty
based on Wald and profile log-likelihood.

https://www.math.uzh.ch/furrer/download/sta121/gpd.RData

Chapter 13

Neural Networks and Deep Learning

In recent years there has been an explosion of “new methodologies” centered around
machine learning, deep learning and artificial intelligence. At their base they are
very similar to classical statistical methodologies but upscaled for large datasets
deployed to massive computing resources.

Learning goals for this chapter:

⋄ Understand the concept of (machine) learning

⋄ Describe the concept of a neural network (including input layer, hidden lay-
ers, output layer, neuron, activation function, weights, forward propagation,
backward propagation, error function, hyperparameters of the network)

⋄ Classify images using a neural network in R (train the network, interpret the
results)

⋄ Get some understanding of the structure of large ML models

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta121/chapter14.R.

In Section 4.4, we introduced the concept of machine learning (ML). We also compared
statistical and ML terminology in Table 4.1. This chapter delves into new, yet archetypal, ML
areas that are not easily captured by statistical terminology. As a result, we will primarily use
ML-specific language. The goal of this chapter is to provide an introduction to neural networks
and deep learning.

Building models with hundreds of thousands of parameters—or weights—poses challenges.
Traditional statistical methods, like the likelihood framework, cannot easily accommodate this
complexity. Even using R functions like optim() is insufficient for these tasks. Despite the need
for additional software components, it is still possible to execute these operations within the
RStudio environment.

231

http://www.math.uzh.ch/furrer/download/sta121/chapter14.R

232 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

13.1 Learning as in Machine Learning

We are all familiar with the term learning in the context of traditional education. However,
machine learning is a term that even experts interpret differently. Opinions about what ML is
— and what it is not — appear frequently in various forms, such as social media discussions
among professionals.

In the context of this chapter, we define learning in ML as model fitting. This includes
both constructing the model’s structure and optimizing its parameters. This broad definition
makes the term particularly useful in ML settings. Learning often involves an automatic iterative
process guided by a loss function and a rule for model updating, as depicted in Figure 13.1.

updates

knowledge

generates data

takes action to

perform an experiment Analysis

Environment

Agent

Figure 13.1: Statistical learning as an iterative process between an agent and envi-
ronment.

Traditionally, the agent in this loop was a human researcher conducting experiments to collect
data. Now, in the ML paradigm, this agent is an algorithm. It often conducts computational
experiments, generating output that is then analyzed. Based on performance metrics like RMSE
or loss values, the algorithm adjusts model parameters.

One effective context for machine learning is the reinforcement learning framework. Here,
the algorithm learns to make decisions that maximize a defined “reward”, gradually improving its
performance. This is why algorithms for games like Chess and Go are so powerful; they operate
within a finite set of moves and clear rules for success or failure.

Besides reinforcement learning, other learning strategies include supervised learning, where
the algorithm learns a function mapping inputs to outputs based on labeled data. In unsupervised
learning, the algorithm identifies patterns in unlabeled data.

The next example show how to “automatically” learn an unknown curve. As presented, the
approach is intuitive (based on the knowledge of Chapter 11) but it should be also intuitive how
such an approach can be used in higher dimensions and with more complex curves.

Example 13.1. Suppose we aim to learn an unknown curve g. We don’t require mathematical
rigor here, but let’s assume that the curve is smooth. Evaluating the curve at specific locations
is possible; that is, we can compute g(x) for certain values of x. The R-Code 13.1 initially
constructs this "unknown truth" and then proceeds to estimate the curve based on six randomly

13.1. LEARNING AS IN MACHINE LEARNING 233

selected observation points, as shown in the top panel of Figure 13.2. It becomes evident that
the estimation significantly deviates from the actual curve towards the right end of the domain.

In this basic scenario, the prediction error largely depends on how close the observation points
are to each other. While more points generally yield a better curve approximation, the prediction
error can still be used as a metric to quantify our understanding of the curve.

If we employ a reinforcement learning approach, we would strategically choose the next
observation point where the prediction error is highest. In essence, we aim to minimize the
maximum prediction error across the curve. For example, after the initial six evaluations, the
highest prediction error occurs at the origin. Therefore, the next observation point is chosen
there. The algorithm, being unaware of the “unknown truth”, cannot recognize that the initial
estimate at the origin is already quite accurate due to chance.

By iteratively selecting subsequent points based on maximizing the prediction error, we can
refine our curve estimate. After 14 such observations, our estimation significantly improves, as
depicted in the bottom panel of Figure 13.2. ♣

R-Code 13.1: Illustration of learning a curve.

library(fields)

library(spam)

set.seed(16)

nobs <- 6 # starting with a few observations

ngrid <- 100 # grid resolution

x1 <- runif(nobs) # selecting a random set of locations to start

grid <- cbind((1:ngrid)/(ngrid+1), 0)

truth <- c(rmvnorm.spam(1, Sigma=wendland.cov(grid, theta=.2)))

`truth` represents the curve that we want to find

sel <- sample(ngrid, nobs, replace=FALSE) # we select the first obs

x <- grid[sel,] # x values for observations

y <- truth[sel] # starting observations

mKout <- mKrig(x, y, Covariance="Wendland2.2", m=1, theta=.2,

lambda=0.0001) # is essentially zero but prevents numeric issues

out <- predict(mKout, xnew=grid) # predicting the curve

outSE <- predictSE(mKout, xnew=grid) # uncertainties

plot(grid[,1], truth, type="l", ylim=c(-3.2,2.2), xaxt="n",yaxt="n")

polygon(c(grid[,1], rev(grid[,1])), c(out+2*outSE,

rev(out-2*outSE)), col="gray93", border=NA)

lines(grid[,1], truth, type="l", ylim=c(-2,2)) # unkown truth

lines(grid[,1], c(out), col=4) # first guess

points(x[,1], y, pch=19, col=2) # nobs observations

this completes the top panel

for (i in 1:8) {

sel <- c(sel, which.max(outSE)) # successively adding obs

234 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

mKout <- mKrig(grid[sel,], truth[sel], Cov="Wendland2.2", m=1, theta=.2,

lambda=0.0001)

out <- predict(mKout, xnew=grid)

outSE <- predictSE(mKout, xnew=grid)

Plotting (superimposing with alpha level)

polygon(c(grid[,1],rev(grid[,1])), c(out+2*outSE, rev(out-2*outSE)),

col=rgb(.9-i/25, .9-i/25, .9-i/25, .4), border=NA)

lines(grid[,1], c(out), pch=20, col=4)

}

lines(grid[,1], truth)

points(grid[sel,1], truth[sel], pch=19, col=2)

text(grid[sel[-(1:nobs)],1], truth[sel[-(1:nobs)]]+.3, paste(1:8))

grid[, 1]

tr
ut

h

grid[, 1]

tr
ut

h

1
2

3

4

5

6

7
8

Figure 13.2: Illustration of “learning” a curve. Top: the blue line is the best guess
of the unknown black curve based on six observations (red dots). Bottom: best guess
with eight additional observations. The shading represents the uncertainty of the corre-
sponding iteration. The black line is the (unknown) truth, red dots are the observations.
The numbers indicate the order of the new locations. (See R-Code 13.1.)

13.2. CONCEPT OF NEURAL NETWORKS 235

13.2 Concept of Neural Networks

The concept of neural networks is inspired by the workings of the biological nervous system and,
more specifically, the brain’s network of neurons. This computational paradigm has its histor-
ical origins in Frank Rosenblatt’s perceptron model, dating back to 1957 (Rosenblatt, 1957).
However, the foundational principles took several decades to be applied widely, largely due to
computational limitations. Advances in both hardware capabilities (particularly Graphics Pro-
cessing Units (GPUs)) and algorithmic efficiencies have rejuvenated the field in the 21st century.
Neural networks aim to create a simplified, mathematical abstraction of biological neurons to
perform tasks ranging from classification and regression to natural language understanding and
computer vision.

In a neural network, the most elemental computing unit is known as a neuron or node. A
neuron takes in a set of inputs {x1, x2, . . . , xp}, applies a linear transformation by summing
the weighted inputs and adding a bias term, and then passes the result through a non-linear
activation function. Symbolically, the output y of a single neuron can be represented as:

y = ϕ
(p∑

i=1

wixi + b
)
, (13.1)

where wi are the weights, xi are the input features, b is the bias and ϕ(·) is the activation
function. A single neuron mimics a biological neuron as it also receives many inputs of varying
strength which will triggers a single output (possibly as soon as a certain critical value is ex-
ceeded). Figure 13.3 illustrates a single neuron (often called perceptron). While a single artificial
neuron mimics the basic functionality of a biological neuron by integrating multiple inputs to
produce an output, it is a simplified abstraction. Biological neurons are involved in more complex
processes like spike-timing-dependent plasticity and exhibit more intricate dynamics, which are
not captured in the artificial models.

x1

x2

...

xp

+1

ϕ(w⊤x+ b)

w1

w2

. . .

wp

b

y

Input Activation Ouput

Figure 13.3: Single neuron as building block of neural networks. Left simple generic
representation, right fitted single neuron classifier with p = 2 (see R-Chunk 13.2).

236 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

Example 13.2. R-Code 13.2 showcases a minimalist classification model applied to the penguin
dataset. The aim is to classify the species Adelie based on their bill and flipper lengths. We
opt for a single-neuron setting with no hidden layers (hidden=0). The loss function used is
cross-entropy, denoted by err.fun="ce", which in this context simplifies the neural network to a
generalized linear model (GLM). It’s worth noting that the estimated parameters are not exact
but approximately align with what one might expect from a GLM (refer to the right panel of
Figure 13.3). The code also generates a confusion matrix to evaluate the model’s prediction
accuracy. ♣

R-Code 13.2 Minimalist classification model based on penguins dataset.

library(palmerpenguins)

library(neuralnet)

peng <- as.data.frame(penguins[complete.cases(penguins[,c(1,3:6)]),c(1,3:6)])

peng$adelie <- peng$species == "Adelie" # binary classification

set.seed(16)

train <- sort(sample(nrow(peng), 150)) # train based on 150 random observations

peng1N <- neuralnet(adelie ~ bill_length_mm + flipper_length_mm,

hidden=0, # signle neuron

err.fct="ce", # cross-entropy as criterion

data=peng[train,], linear.output=FALSE)

plot(peng1N)

pred1N <- predict(peng1N, peng[-train,])

predicted <- c("others", "Adelie")[1 + round(pred1N)]

table(peng[-train,]$adelie, predicted) # row true, column predicted

predicted

Adelie others

FALSE 3 98

TRUE 87 4

coef(glm(adelie ~ bill_length_mm + flipper_length_mm, data=peng[train,],

family=binomial))

(Intercept) bill_length_mm flipper_length_mm

62.2482176 -0.9814299 -0.1017747

In a neural network, neurons are organized into layers, and these layers are connected to
each other by weighted edges or links that represent the flow of information between them. The
output of one neuron becomes the input to one or more neurons in the subsequent layer. These
connections are weighted, meaning that the value of the output is scaled by a weight factor
before being passed on. The architecture of a neural network, which specifies how neurons are
organized into layers and how these layers are connected, is a crucial factor in determining the
network’s performance and capabilities.

13.2. CONCEPT OF NEURAL NETWORKS 237

Weights modulate the strength of the connection between neurons, whereas biases allow for
flexibility in the activation function, effectively shifting it along the input axis. More specifically,
layer in a neural network is a collection of neurons that operate in parallel and are connected
to neurons in the adjacent layers. Each neuron in a layer receives potentially multiple inputs
from neurons in the previous layer and sends its output to multiple neurons in the next layer.
Therefore, a layer serves as a vector of neurons, each executing its own set of calculations but
sharing the same input or output space with other neurons in that layer. During a so-called
feedforward step, data flows from the input layer through the hidden layers to the output layer,
with each layer performing calculations defined by the weights and biases of its neurons.

Neural networks architecturally consist of three types of layers:

1. Input Layer : This layer serves to interface with the dataset, receiving p-dimensional vectors
as input features. Often, this layer is simply a pass-through for the data, with each neuron
corresponding to a single feature.

2. Hidden Layers: Situated between the input and output layers, these layers perform the
majority of the computation. Neural networks may contain one or more hidden layers, and
the choice of architecture often depends on the complexity of the task at hand.

3. Output Layer : This layer emits the final output of the neural network, which can be either
a vector or a single value, depending on the application. For instance, in classification
tasks, the output layer commonly contains as many neurons as there are classes.

Example 13.3. In R-Code 13.3, we return to the palmerpenguins dataset to classify all three
species using a neural network with a single hidden layer containing five neurons. We employ
the logistic activation function, specified by act.fct="logistic" as the default. The model
performs remarkably well on the training data, correctly classifying all penguins, and misses
only two in the validation set. For numerical stability, it is essential to transform the body mass
measurements to kilograms. Additionally, the model’s performance appears to be sensitive to the
initial random seed (set.seed()), as evidenced by the variability in results across five repetitive
fits with lifesign="minimal".

0.08414
−1.12814

1.
00

09
8

−2
.5

92
59

0.
73

26
8

body_mass_kg

−0.25668

1.66287

−0.04544

−0
.1

42
39

−0
.2

10
76

flipper_length_mm

1.83868
0.38357

1.43463

2.00104

1.
60

57
9

bill_depth_mm

0.29017
−0.38975
−0.52007

0.05235

0.02432bill_length_mm

−347.79781

15
5.

53
80

5

−1
55

.7
5

21.69679

−7.51088

−2
9.

95
35

3−40.22469

−227.68605

22
5.

70
84

9−179.19475

85.77291

−6.0638

−217.50537
−10.92755

8.69082

Chinstrap

Gentoo

Adelie

1.17127
−0.39587

1.58878

1.84193

1.84065
1

23.58805
−8.23842

−30.34441

1

Error: 0.000173 Steps: 3487

Figure 13.4: Fitted neural net. (See R-Code 13.3.)

238 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

R-Code 13.3 peng (See Figure 13.4.)

library(palmerpenguins)

library(neuralnet)

peng$body_mass_kg <- peng$body_mass_g/1000

set.seed(12)

train <- sort(sample(nrow(peng), nrow(peng)/2)) # based on half of the obs

pengNN <- neuralnet(species ~ bill_length_mm + bill_depth_mm +

flipper_length_mm + body_mass_kg, rep=5, hidden=c(5),

err.fct="ce", # lifesign = "minimal",

data=peng[train,], linear.output=FALSE)

fitNN <- predict(pengNN, peng[train,]) # equivalent to pengNN$net.result[[1]]

table(peng[train,]$species, apply(fitNN, 1, which.max))

plot(pengNN, rep="best")

predNN <- predict(pengNN, peng[-train,])

predicted <- c("Adelie", "Chinstrap","Gentoo")[apply(predNN, 1, which.max)]

table(predicted, peng[-train,]$species)

##

predicted Adelie Chinstrap Gentoo

Adelie 67 2 0

Chinstrap 3 29 1

Gentoo 2 0 67

13.2.1 Training the Model Parameters

Once the architecture is set up, the network “learns” through a two-step process: feedforward and
backpropagation. In the feedforward phase, data moves from the input layer through the hidden
layers to the output layer. The backpropagation phase is where the actual learning occurs; errors
computed at the output layer are propagated back to adjust the weights and biases.

During the feedforward phase, data flows in a unidirectional manner from the input layer
through the hidden layers and finally to the output layer. As data progresses through the
network, each layer performs its respective computations, applying both linear and non-linear
transformations to the inputs. This cascade of computations can be represented mathematically
by a series of matrix multiplications and activation function applications, effectively mapping
the input space to the output space through multiple transformations.

After the feedforward phase, the network computes the error between its output and the
actual target values. This error is then propagated backward through the network; hence the
term “backpropagation”. During backpropagation, the network adjusts its weights and biases in
an attempt to minimize the error. When activation functions are differentiable, these algorithms
can easily adjust model parameters to minimize the loss function. Backpropagation uses the
chain rule of calculus to compute gradients for each layer, starting from the output layer and
moving backward to the input layer. These gradients are then used to update the weights and
biases.

13.2. CONCEPT OF NEURAL NETWORKS 239

The Backpropagation algorithm essentially consists of the following steps:

1. Initial Forward Pass: Perform a feedforward pass to get the predicted output.

2. Compute the Loss: Calculate the error (or loss) between the predicted and actual output.
Commonly used loss functions include mean squared error (MSE) for regression problems
and cross-entropy loss (defined by −

∑n
i=1 yi log(ŷi)) for classification problems.

3. Backward Pass: Start from the output layer and move backward through the hidden lay-
ers. Compute the gradient of the loss function with respect to each weight by taking the
derivative of the loss function. To do this, the chain rule of calculus is applied to break
down complex derivatives into simpler components.

4. Update Weights and Biases: Use the gradients computed during the backward pass to up-
date the weights and biases. This is done using an optimization algorithm, most commonly
Gradient Descent or one of its variants (like Stochastic Gradient Descent, Adam, etc.). The
formula for a basic weight update is:

wnew = wold − α× gradient

where α is the learning rate, a hyperparameter that controls how much we are adjusting
the weights in the direction of the gradient. Biases are updated in a similar manner.

There are no rules on how many layers with respective sizes are needed. A typical approach
is starting from a specific setup of the neural net. Then the weights ({wij}) and biases (bj) of
the neurons are initially set to random values and are updated via optimization algorithms like
stochastic gradient descent (SGD) to minimize a predefined loss function. Depending on the
model perfomance, the structure of the neural net is adapted.

13.2.2 Role of Activation Functions

Activation functions introduce the much-needed non-linearity into the system, enabling the net-
work to capture complex relationships in the data. These functions are differentiable almost
everywhere, a property that is critical for the backpropagation algorithm to update weights and
biases effectively.

Classical activation functions are

Sigmoid or SoftStep or logistic: ϕ(x) =
1

1 + e−x
, (13.2)

Rectified Linear Unit (ReLU): ϕ(x) = max(0, x), (13.3)

SoftPlus: ϕ(x) = log(1 + ex), (13.4)

TanH: ϕ(x) = tanh =
ex− e−x

ex+e−x
. (13.5)

Of course many variants of the previous transfer functions exist.
The Sigmoid function squashes the output between 0 and 1 and is often used in the output

layer for binary classification problems. ReLU is computationally more efficient. Due to its

240 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

piecewise-linear nature, it helps mitigate the vanishing gradient problem in deep networks. Re-
searchers and practitioners often consider ReLU’s non-differentiability at zero to be a minor issue
in practice, and many optimization algorithms handle it quite well. In multi-class classification,
the Softmax function is often used in the output layer. It converts a vector of raw scores (also
called logits) into a probability distribution. TanH is similar to the sigmoid but maps inputs to
values between -1 and 1. While less commonly used than ReLU for deep networks, it still sees
application where centered outputs are desirable.

The Universal Approximation Theorem is a fundamental theorem in the theory of artificial
neural networks. It states that a feedforward neural network with a single hidden layer containing
a finite number of neurons can approximate any continuous function to an arbitrary degree of
accuracy, provided the activation function for the neurons is a non-constant, bounded, and
monotonically-increasing continuous function (see. e.g. Hornik, 1991).

If we interpret an n-dimensional data vector y as the output of an unknown function f(·),
the theorem states that with very weak assumptions, a NN will find an approximation ŷ which
is arbitrarily close to y . Or more generally,for for every ϵ > 0, there exists a neural network
g(x;w) such that |f(x) − g(x;w)| < ϵ for all x in the domain of interest. Note that f(·) has to
be a smooth function in (compact sub-spaces of) Rn.

The theorem is often cited to justify the use of neural networks in a wide range of approxima-
tion tasks, such as function approximation, classification, and regression. However, it’s crucial
to understand that while the theorem provides theoretical backing for the capability of neural
networks, practical implementation involves many other considerations like the architecture of
the network, the efficiency of training algorithms, and the avoidance of overfitting. The theo-
rem does not tell us how to train the neural network to achieve this approximation, nor does it
provide insights into how many neurons are needed for a given level of approximation.

13.2.3 Learning and Addressing Overfitting

To effectively train a Deep Neural Network (DNN), it’s essential to understand the key terms
often used in this context:

• Epoch: An epoch involves one complete forward and backward pass of all training examples.

• Batch Size: This specifies the number of training examples utilized in one forward and
backward pass.

• Number of Iterations: This refers to the total number of passes, each involving a subset of
training examples equal to the ‘batch size’.

Increasing the number of epochs or iterations allows for a longer learning process, which can
result in higher accuracy. However, a larger batch size requires more computing memory.

A crucial challenge in training machine learning models is the risk of overfitting. Overfitting
occurs when a model performs well on the training data but poorly on new, unseen data. To
diagnose overfitting, cross-validation is commonly used. The dataset is divided into two subsets:
a training set and a validation set. Metrics such as accuracy and loss are monitored for both
subsets during the training process.

13.3. DEEP LEARNING 241

If the training accuracy continually increases while the validation accuracy begins to decline,
the model is likely overfitting. This indicates that the model is becoming overly specialized to
the training set and losing its generalization ability.

To mitigate overfitting, especially in larger network architectures, a technique known as
dropout is often employed. Dropout involves setting a fraction of the input units to zero at
each training step, effectively “dropping out” certain nodes in the network during training. This
prevents the model from becoming too reliant on any individual feature and promotes better
generalization. In the context of the network, dropout can be visualized as temporarily removing
certain connections between layers.

By carefully tuning the epochs, batch size, and dropout rate, among other hyperparameters,
one can achieve a balanced model that performs well not just on the training data but also on
unseen data.

13.3 Deep Learning

Deep learning is a subfield of machine learning that employs deep neural networks with multiple
hidden layers. This added complexity enables the model to learn more intricate features, thus
outperforming traditional neural networks with fewer layers. Each layer, or set of layers, in a
deep network is specialized to recognize different features of the input, leading to hierarchical
learning.

One key advantage of deep learning is its capability for automatic feature extraction. Unlike
traditional machine learning algorithms, which may require manual selection of important fea-
tures, deep learning automatically identifies these features, contributing to its high accuracy in
complex tasks like image and speech recognition.

Furthermore, deep learning models are scalable and tend to perform better as data volume
increases. However, these benefits come with challenges, such as the significant computational
resources required and the potential for overfitting on small or unrepresentative datasets. They
are also often viewed as "black-box" models due to their complex internal mechanics, which can
make them difficult to interpret.

In summary, deep learning has revolutionized machine learning, particularly in tasks that
were previously considered too complex. Its strengths in automatic feature extraction, accuracy,
and scalability make it highly effective, but it’s crucial to be aware of its computational demands
and risk of overfitting.

13.3.1 Types of Deep Neural Networks

There are several specific types of architectures of deep neural networks that have gained promi-
nence for particular kinds of tasks. Here’s a summary of some of the most important ones:

1. Convolutional Neural Networks (CNNs): Primarily used in image recognition tasks, CNNs
take advantage of the hierarchical pattern in data and assemble more complex patterns
using smaller and simpler patterns. They are highly effective in tasks like image and video
recognition, image classification, and object detection.

242 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

2. Recurrent Neural Networks (RNNs): Designed for sequence prediction problems, RNNs
are ideal for tasks that involve sequential data like time series analysis, natural language
processing, and speech recognition. The unique feature of RNNs is their “memory”, which
captures information about what has been calculated so far.

3. Long Short-Term Memory Networks (LSTMs): A specialized kind of RNN, LSTMs are de-
signed to remember past information for long periods of time, making them highly suitable
for tasks that require learning from context, like machine translation.

4. Generative Adversarial Networks (GANs): These are used to generate data that is similar
to some input data. In a GAN, two networks are trained simultaneously: a generator that
produces fake data and a discriminator that tries to distinguish the fake data from real
data. GANs are widely used in tasks like image generation, super-resolution, and style
transfer.

5. Autoencoders: Used primarily for unsupervised learning tasks, autoencoders aim to encode
input data as vectors. They are often used for anomaly detection or for reducing the
dimensions of data for other machine learning tasks.

6. Transformer Networks: Originally designed for natural language processing tasks, trans-
formers have been found to be highly effective in a wide range of applications. They
excel at handling a wide range of sequence lengths, making them ideal for tasks like text
summarization, translation, and classification.

7. Graph Neural Networks (GNNs): These networks are used for learning on graph-structured
data. They are commonly used in social network analysis, citation networks, and biological
data representation.

Each of these architectures is best suited for specific types of tasks and data, and they often
outperform traditional machine learning algorithms for those specific tasks. The choice of archi-
tecture is often driven by the problem you’re trying to solve, the nature and structure of your
data, and the computational resources available.

13.3.2 Large Language Models

In recent years, large language models like GPT (Generative Pre-trained Transformer), BERT
(Bidirectional Encoder Representations from Transformers), and their derivatives have emerged
as a groundbreaking advancement in the field of natural language understanding and generation.
These models are often trained on vast datasets comprising terabytes of text data and are capable
of performing a wide range of tasks directly from the raw text.

One of the defining features of these models is their scale. With hundreds of billions of
parameters, these models are able to capture complex relationships in the data. These large
models are generally pre-trained on a comprehensive corpus of text and then fine-tuned for spe-
cific tasks, allowing for transfer learning. This enables the use of a single model for multiple
natural languge processing (NLP) tasks, from text completion and summarization to translation
and question-answering. Unlike traditional machine learning models, which treat words as inde-
pendent features, large language models consider the context of each word relative to the others

13.3. DEEP LEARNING 243

in a sentence. Note that LLM rather use tokens instead of words. A token is a unit of text that
has been extracted from a larger corpus during the process of tokenization. In natural language
processing, a token could be a word, a subword, or even a single character, depending on the
granularity of the tokenization method used.

Example 13.4. I have asked a famous LLM (https://chat.openai.com/?model=gpt-4) to “give
me details on the internal working of large languge models”. Here is its output provided in
Markdown format:

Certainly! The internal workings of large language models like GPT, BERT, and their variants can
be quite intricate, but I’ll do my best to summarize the key concepts:

– – –
Internal Workings of Large Language Models

1. **Architecture**: These models typically rely on transformer architectures. In its most basic form,
a transformer consists of an encoder and a decoder, although some models like GPT only use the
decoder part. The transformer is essentially a stack of layers where each layer comprises self-attention
mechanisms and feed-forward neural networks.

2. **Parameters**: These models have a large number of parameters—weights and biases—often
numbering in the hundreds of millions or even billions. These parameters are tuned during the training
process.

3. **Self-Attention Mechanism**: One of the key innovations in these models is the self-attention
mechanism, which allows the model to weigh the importance of different parts of the input text when
making a prediction. This is crucial for capturing long-range dependencies and contextual nuances in
text.

4. **Tokenization**: The input text is usually broken down into smaller pieces called tokens. These
tokens are then transformed into vectors using embedding layers. These vectors serve as the initial
input for the model.

5. **Positional Encoding**: Since transformers don’t have a built-in sense of order or sequence,
positional encodings are added to the embeddings to give the model information about the positions
of the tokens in the sequence.

6. **Forward Pass**: During inference, the tokenized, embedded, and positionally encoded text is
passed through the model layer by layer. Each layer’s self-attention mechanisms and feed-forward
networks modify the representations to capture both local and global contextual information.

7. **Task-Specific Heads**: For specific tasks like classification or question-answering, a task-specific
"head" is usually attached to the final layer of the pre-trained model. This head transforms the complex
representations learned by the model into output suitable for the specific task at hand.

8. **Fine-Tuning**: Although the base model is trained on a general corpus, it can be fine-tuned
on a smaller, task-specific dataset to make it more effective for specific applications. This is possible
due to the model’s ability to transfer knowledge, a feature inherent to its large-scale, multi-layer
architecture.

https://chat.openai.com/?model=gpt-4

244 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

9. **Decoding Strategies**: For generative tasks, different decoding strategies like greedy decoding,
beam search, or top-k sampling are employed to generate the most likely sequence of tokens as output.

10. **Computational Requirements**: The sheer size of these models often requires specialized
hardware like TPUs (Tensor Processing Units) or large GPU clusters for both training and sometimes
even for inference.
– – –
This should give you a deeper look into what goes on inside these large language models. Would you
like more detail on any specific aspect?

♣

At the time of updating this chapter, a new release of an open source LLM has been announced
(https://falconllm.tii.ae/falcon.html). Falcon 180B sets a new state-of-the-art for open models. It
is the largest openly available language model, with 180 billion parameters, and was trained on
a massive 3.5 trillion tokens using TII’s RefinedWeb dataset (Penedo et al., 2023).

At the time of updating this chapter, the release of the open-source LLM Falcon 180B has
been announced. Falcon 180B sets a new state-of-the-art benchmark for open models. It is the
largest openly available language model (via https://huggingface.co/), consisting of 180 billion
parameters, trained on a massive dataset comprising 3.5 trillion tokens from TII’s RefinedWeb
dataset (Penedo et al., 2023).

13.4 Tensorflow and Keras

To construct and train deep learning models with ease, several specialized frameworks have been
created. Among the most widely used are TensorFlow, Keras, and PyTorch. These frameworks
offer not only pre-defined layers and architectures but also a suite of functions and training algo-
rithms that streamline the entire model-building process. In this section, we focus on TensorFlow
and its high-level API, Keras, illustrating their utility through a specific example.

TensorFlow is a versatile, open-source machine learning library initially developed by the
Google Brain team (now Google DeepMind). It is particularly geared towards tasks that require
heavy computational power, including but not limited to deep learning. TensorFlow provides a
comprehensive ecosystem of tools, libraries, and community resources that facilitate the building
and deployment of ML-powered applications.

Keras, on the other hand, is a high-level neural network API that was designed to be user-
friendly and modular. Written in Python, it is capable of running on top of various lower-level
APIs including TensorFlow. The primary design goal of Keras is to enable rapid prototyping and
experimentation with deep neural networks, offering an environment that is not just powerful
but also easy to use and extend.

The advantage of our software choice is the smooth integration thereof via RStudio. In
case systemwide installation is missing, a local (virtual environment one) can be installed via
install.packages("keras"); keras::install_keras().

We illustrate the use of TensorFlow with a classical example, which is taken from https:

https://falconllm.tii.ae/falcon.html
https://huggingface.co/
https://github.com/rstudio/keras/blob/master/vignettes/examples/cifar10_cnn.R

13.4. TENSORFLOW AND KERAS 245

//github.com/rstudio/keras/blob/master/vignettes/examples/cifar10_cnn.R. A similar example is
presented at https://poissonisfish.com/2018/07/08/convolutional-neural-networks-in-r/.

The dataset we use is called CIFAR-10 (Canadian Institute for Advanced Research 10-class)
and is a widely used dataset for training machine learning models, particularly in the domain
of computer vision. The dataset consists of 60,000 32× color images distributed across the 10
different classes airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks.
The dataset is divided into 50,000 training images and 10,000 test images, with each class having
an equal number of instances (5,000 images for training and 1,000 images for testing per class).
The images are low-resolution, which makes the dataset manageable yet challenging enough for
training convolutional neural networks (CNNs) and other types of image classification algorithms,
see Figure 13.5 shows examples for a subset of classes.

Figure 13.5: Sample test images, with 32 × 32 RGB structure, as constructed by R.
(See R-Code 13.4.)

We start by downsizing the dataset cifar10 (provided by the R-package keras) to the first
six categories and to 30× 30 grayscale pixels. R-Code 13.4 loads and downscales the images. At
least for the human eye, the classification tasks seems now more difficult (Figure 13.6)

R-Code 13.4: Data preparation (See Figure 13.5.)

library(keras)

cifar10full <- dataset_cifar10() # See ?dataset_cifar10 for more info

sela <- (cifar10full$train$y < 6) # select only first six categories

selb <- (cifar10full$test$y < 6)

cifar10 <- list(train=list(x=cifar10full$train$x[sela,,,],

y=cifar10full$train$y[sela]), test=list(x=cifar10full$test$x[selb,,,],

y=cifar10full$test$y[selb]))

Scale RGB values in test and train inputs:

https://github.com/rstudio/keras/blob/master/vignettes/examples/cifar10_cnn.R
https://github.com/rstudio/keras/blob/master/vignettes/examples/cifar10_cnn.R
https://poissonisfish.com/2018/07/08/convolutional-neural-networks-in-r/

246 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

x_train <- cifar10$train$x/255

x_test <- cifar10$test$x/255

y_train <- to_categorical(cifar10$train$y, num_classes=6)

y_test <- to_categorical(cifar10$test$y, num_classes=6)

par(mfrow=c(4,9), mai=rep(0,4))

for (i in 1:36) {

plot(0, xlim=c(1,32), ylim=c(1,32), type="n", axes=F, xlab="",

ylab="", xaxs="i", yaxs="i")

rasterImage(x_test[i,,,], 1, 1, 32, 32, interpolate=FALSE)

}

Transform (manually) to grayscale

x_train2 <- 0.3 * x_train[,,,1] + 0.59 * x_train[,,,2] + 0.11 * x_train[,,,3]

x_test2 <- 0.3 * x_test[,,,1] + 0.59 * x_test[,,,2] + 0.11 * x_test[,,,3]

x_train2 <- x_train2[,2:31,2:31] # omit a one pixel border

x_test2 <- x_test2[,2:31,2:31]

dim(x_train2) <- c(dim(x_train2), 1) # Fitting requires 4-dimensional array

dim(x_test2) <- c(dim(x_test2), 1)

rm(x_train, x_test, cifar10, cifar10full) # not needed anymore

Figure 13.6: Sample test images, with 30 × 30 grayscale structure (same images as
the top half of Figure 13.5).

R-Code 13.5 shows the model definition, the most difficult part, as there are no rules on how
to choose the layers and their connectivity.

R-Code 13.5: TensorFlow model definition.

model <- keras_model_sequential() # Initialize sequential model

model %>% # Start with hidden 2D convolutional layer being fed by images

layer_conv_2d(filter=32, kernel_size=c(3,3), padding="same",

input_shape=c(30, 30, 1)) %>%

layer_activation("relu") %>%

Second hidden layer

layer_conv_2d(filter=30, kernel_size=c(3,3)) %>%

layer_activation("relu") %>%

13.4. TENSORFLOW AND KERAS 247

Use max pooling

layer_max_pooling_2d(pool_size=c(2,2)) %>%

layer_dropout(0.25) %>%

2 additional hidden 2D convolutional layers

layer_conv_2d(filter=32, kernel_size=c(3,3), padding="same") %>%

layer_activation("relu") %>%

layer_conv_2d(filter=32, kernel_size=c(3,3)) %>%

layer_activation("relu") %>%

Use max pooling once more

layer_max_pooling_2d(pool_size=c(2,2)) %>%

layer_dropout(0.25) %>%

Flatten max filtered output into feature vector & feed into dense layer

layer_flatten() %>%

layer_dense(32) %>% # original proposal 512

layer_activation("relu") %>%

layer_dropout(0.25) %>%

Outputs from dense layer are projected onto 6 unit output layer

layer_dense(6) %>%

layer_activation("softmax")

model %>% compile(loss="categorical_crossentropy",

optimizer="adam", # stochastic gradient descend method

metrics="accuracy")

summary(model) # to show the structure of the NN, see figure below

The call summary(model) summarizes the layers of the NN (see also the screenshot shown in
Figure 13.7). Here, we have to fit 64’004 parameters!

Once the model has been defined, the call to fit it is straightforward, as illustrated in R-
Code 13.6. For testing purposes, we have kept epochs unreasonably low. On a colab session, 2
epoch require a few seconds.

R-Code 13.6 Simple test setting.

fitsmall <- model %>% fit(x_train2, y_train, epochs=2,

validation_data=list(x_test2, y_test))

As NN models require a lot of data, it is often possible to artificially augment the data.
Especially with images, this works nicely. Data augmentation consists of rotating or translating
images and including these in the training dataset. R-Code 13.7 illustrates the additional code
necessary. The additional improvement leads to higher accuracy and lower loss, compared to the
original setting (see Figure 13.8). Note that the time to fit the model is now several minutes.

248 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

Figure 13.7: Screenshot of a colab session (https://colab.research.google.com). Middle:
the DNN is summarized (as produced by the last line of R-Code 13.5); right: graphical
summary of the first few layers of the NN.

Figure 13.9 provides the class and its classification probability of the same images as shown
in Figure 13.5.

R-Code 13.7: Final model fit with data augmentation.

batch_size <- 50

epochs <- 100

datagen <- image_data_generator(rotation_range=20, width_shift_range=0.2,

height_shift_range=0.2, horizontal_flip=TRUE)

datagen %>% fit_image_data_generator(x_train2)

fitfull <- model %>% fit(

flow_images_from_data(x_train2, y_train, datagen, batch_size=batch_size),

steps_per_epoch=as.integer(30000/batch_size),

epochs=epochs, validation_data=list(x_test2, y_test))

plot(fitfull)

pred <- as.numeric(k_argmax(predict(model, x_test2))) + 1

prob <- predict(model, x_test2)

truth <- max.col(y_test)

obj <- c("airplane", "automobile", "bird", "cat", "deer", "dog")

conf.mat <- table(pred, truth)

dimnames(conf.mat) <- list(obj, obj)

conf.mat # confusion matrix

airplane automobile bird cat deer dog

https://colab.research.google.com

13.4. TENSORFLOW AND KERAS 249

airplane 817 4 80 36 34 18

automobile 78 992 34 71 18 13

bird 57 1 594 74 43 44

cat 12 0 30 482 30 73

deer 29 1 160 103 846 69

dog 7 2 102 234 29 783

par(mfrow=c(4,9), mai=rep(0,4),cex=.9) # lower panel of Figure

for (i in 1:36) {

image(t(x_test2[i,,30:1,])[30:1,30:1], axes=F, xlab="", ylab="",

col=gray.colors(64,0,1))

legend("topleft", legend=obj[pred[i]],

text.col=ifelse(pred[i]==truth[i], 4, 5), bty="n")

legend("bottomleft", legend=round(prob[i,pred[i]],2), bty="n")

}

lo
ss

ac
cu

ra
cy

0 20 40 60 80 100

0.60

0.65

0.70

0.75

0.80

0.700

0.725

0.750

0.775

epoch

data

training

validation

Figure 13.8: Loss and accuracy as a function of learned epochs for training and
validation (test) datasets. Figure is based on plot(fitfull).

Of course the accuracy or predictive performance depends on the networks structure. There
are some overall rules (more layers, denser structure more data required), but often constructing
the network is a trial-and-test situation. For the specific example, increasing dropout reduces
performance and decreasing dropout does virtually not change it. Similarly, increasing the filter
size in the two hidden 2D convolutional layers does not improve the performance. However,
decreasing it does decrease.

A few remarks:

250 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

cat

0.48

airplane

0.94

automobile

1

cat

0.84

automobile

0.7

airplane

0.66

dog

0.58

dog

0.93

airplane

0.93

deer

0.95

deer

0.79

dog

0.29

bird

0.28

airplane

0.45

dog

0.94

bird

0.47

dog

0.66

automobile

0.93

deer

0.97

automobile

1

dog

1

deer

0.45

dog

0.69

airplane

0.88

cat

0.55

dog

0.59

dog

0.31

cat

0.31

dog

0.48

automobile

0.84

bird

0.38

automobile

1

airplane

0.87

dog

0.5

airplane

0.68

airplane

0.79

Figure 13.9: Sample test images with assigned categories and class probabilities as
shown in Figure 13.5. Properly specified images are written in blue, wrongly in red.
(See R-Code 13.7.)

• There are functions to convert a RGB image to a grayscale (e.g., imager::grayscale())
these are quite complex and involve additional overhead.

• Using the color 32 × 32 pixel RGB images with all categories, it is possible to tune the
parameters to get to 75% validation accuracy in 25 epochs, and 79% after 50 epochs (batch
size 32).

With larger machines, much higher preformance can be achieved. See for example Figure 15
in https://arxiv.org/pdf/1908.00709.pdf. Note that the necessary time to train the network
ranges between more than half a million GPU hours to less than then hours. The high
training time does not guarantee a high accuracy (here 96.35% and 96.47%. It is important
to recognize the tremendous amount of parameters involved in all given examples.

13.5 Bibliographic remarks

Fleuret (2023) wrote very accessible book about deep learning, available also as pdf (https:
//fleuret.org/public/lbdl.pdf). The wikipedia page https://en.wikipedia.org/wiki/Comparison_of_
deep-learning_software summarizes different software frameworks for deep learning. The page
https://en.wikipedia.org/wiki/Backpropagation gives an accessible account of backpropagation and
illustrates the algorithm including actual gradient calculation for a single layer network.

There are several other R packages implementing neural nets. For example, nnet is very
established and provides a feed-forward neural networks with a single hidden layer (Venables
and Ripley, 2002). The package provides the handy function multinom() that fits multinomial
log-linear models via neural networks. The R package RWeka (Hornik et al., 2009) provides an R in-
terface to the Java machine learning software Weka, which provides tools for data pre-processing,
classification, regression, clustering, association rules, and visualization. The R package RSNNS

https://arxiv.org/pdf/1908.00709.pdf
https://fleuret.org/public/lbdl.pdf
https://fleuret.org/public/lbdl.pdf
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
https://en.wikipedia.org/wiki/Backpropagation

13.6. EXERCISES AND PROBLEMS 251

(Bergmeir and Benítez, 2012) provides the interface to the Stuttgart Neural Network Simula-
tor (SNNS) (Zell et al., 1994) which is a library implementing many standard forms of neural
networks.

There are endless contributions to the topic of ML and NN. The following is a selective list that
fit well into the framework of this chapter: https://www.r-bloggers.com/understanding-the-magic -
of-neural-networks/, https://en.wikipedia.org/wiki/Deep_learning and https://machinelearningmastery.
com/what-is-deep-learning/. The manuscript https://arxiv.org/pdf/1908.00709.pdf gives a nice
summary of different types or learners, their different learning time and performance for several
classical datasets (e.g., CIFAR10, CIFAR100, MNIST, . . .). The following are about more clas-
sical classification algorithms: https://mark-borg.github.io/blog/2016/optdigits-classification/ and
https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm,

13.6 Exercises and Problems

Problem 13.1 (Classification) Consider the classes versicolor and virginica of the iris

data.

a) Using a logistic GLM, construct a classifier for the two groups.

b) Build a perceptron with logistic activation function to classify. Compare the result with
the GLM from a).

c) Construct a DNN and by monitoring loss and accuracy of training and validation data over
epochs, illustrate overfitting.

Problem 13.2 (OCR with keras) Using the optical character recognition data set (See also
Section 4.6), construct a neural net to predict the last ten digits. Discuss the result.
Hint: Start with R-Code 4.8.

Problem 13.3 Based on Section 13.4, try to confirm the following statements by adjusting the
network structure accordingly.
Hint: testing a couple epochs are sufficient.

a) Increasing dropout reduces performance. Decreasing does not change much.

b) Increase filter size in the two hidden 2D convolutional layers does not improve the perfor-
mance. However, decreasing does decrease.

c) Increasing filter size in the second hidden layer does not improve the performance.

d) Using less classes (reducing data sizes) increases accuracy.

https://www.r-bloggers.com/understanding-the-magic-of-neural-networks/
https://www.r-bloggers.com/understanding-the-magic-of-neural-networks/
https://en.wikipedia.org/wiki/Deep_learning
https://machinelearningmastery.com/what-is-deep-learning/
https://machinelearningmastery.com/what-is-deep-learning/
https://arxiv.org/pdf/1908.00709.pdf
https://mark-borg.github.io/blog/2016/optdigits-classification/
https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm

252 CHAPTER 13. NEURAL NETWORKS AND DEEP LEARNING

Postscript

The following list gives the attached and loaded packages that were used to compile this docu-
ment. If evaluating the code results in errors they might be due to outdated R-packages (many
of these evolve quickly and regular updates are recommended).

R-Code 13.8: Session info of this document.

print(sessionInfo(), locale=FALSE)

R Under development (unstable) (2023-01-31 r83741)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 22.04.3 LTS

##

Matrix products: default

BLAS: /usr/lib/R-devel/lib/R/lib/libRblas.so

LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3; LAPACK version 3.10.0

##

attached base packages:

[1] splines parallel grid stats graphics grDevices utils

[8] datasets methods base

##

other attached packages:

[1] keras_2.11.0 neuralnet_1.44.2 evd_2.3-6.1

[4] ismev_1.42 mgcv_1.9-0 nlme_3.1-161

[7] extRemes_2.1-3 distillery_1.2-1 Lmoments_1.3-1

[10] geoR_1.9-2 muhaz_1.2.6.4 survival_3.5-0

[13] fma_2.5 forecast_8.20 wavethresh_4.7.2

[16] gridExtra_2.3 plyr_1.8.8 lme4_1.1-31

[19] Matrix_1.5-3 faraway_1.0.8 bootstrap_2019.6

[22] ellipse_0.4.3 rattle_5.5.1 bitops_1.0-7

[25] tibble_3.1.8 titanic_0.1.0 palmerpenguins_0.1.1

[28] randomForest_4.7-1.1 adabag_4.2 doParallel_1.0.17

[31] iterators_1.0.14 foreach_1.5.2 caret_6.0-93

[34] lattice_0.20-45 ggplot2_3.4.0 rpart_4.1.19

[37] partykit_1.2-16 libcoin_1.0-9 png_0.1-8

[40] mvtnorm_1.1-3 kml_2.4.6 longitudinalData_2.4.5

253

254 Postscript

[43] misc3d_0.9-1 clv_0.3-2.2 class_7.3-21

[46] cluster_2.1.4 mapdata_2.3.1 mclust_6.0.0

[49] MASS_7.3-58.2 ade4_1.7-22 splancs_2.01-43

[52] sp_1.6-0 deldir_1.0-6 maps_3.4.1

[55] fields_14.1 viridis_0.6.2 viridisLite_0.4.1

[58] spam_2.9-1 ncdf4_1.21 rgl_1.0.1

[61] sm_2.2-5.7.1 knitr_1.42

##

loaded via a namespace (and not attached):

[1] jsonlite_1.8.2 magrittr_2.0.3 nloptr_2.0.3

[4] vctrs_0.5.2 minqa_1.2.5 base64enc_0.1-3

[7] htmltools_0.5.4 curl_5.0.0 Formula_1.2-4

[10] pROC_1.18.0 TTR_0.24.3 parallelly_1.34.0

[13] htmlwidgets_1.6.1 zoo_1.8-11 lubridate_1.8.0

[16] whisker_0.4.1 lifecycle_1.0.3 pkgconfig_2.0.3

[19] R6_2.5.1 fastmap_1.1.0 future_1.31.0

[22] digest_0.6.31 colorspace_2.1-0 tfruns_1.5.1

[25] fansi_1.0.4 compiler_4.3.0 withr_2.5.0

[28] tseries_0.10-53 highr_0.10 tensorflow_2.11.0

[31] lava_1.7.1 ModelMetrics_1.2.2.2 tools_4.3.0

[34] lmtest_0.9-40 quantmod_0.4.20 future.apply_1.10.0

[37] nnet_7.3-18 glue_1.6.2 quadprog_1.5-8

[40] inum_1.0-4 reshape2_1.4.4 generics_0.1.3

[43] recipes_1.0.4 gtable_0.3.1 data.table_1.14.6

[46] utf8_1.2.3 pillar_1.8.1 stringr_1.5.0

[49] dplyr_1.1.0 tidyselect_1.2.0 urca_1.3-3

[52] stats4_4.3.0 xfun_0.37 hardhat_1.2.0

[55] timeDate_4022.108 stringi_1.7.12 boot_1.3-28.1

[58] evaluate_0.16 codetools_0.2-18 tcltk_4.3.0

[61] cli_3.6.0 reticulate_1.28 munsell_0.5.0

[64] Rcpp_1.0.10 globals_0.16.2 zeallot_0.1.0

[67] fracdiff_1.5-2 gower_1.0.1 dotCall64_1.0-2

[70] listenv_0.9.0 ipred_0.9-13 scales_1.2.1

[73] xts_0.12.2 prodlim_2019.11.13 purrr_1.0.1

[76] rlang_1.0.6

Appendix A

Calculus

In this chapter we present some of the most important ideas and concepts of calculus. For exam-
ple, we will not discuss sequences and series. It is impossible to give a formal, mathematically
precise exposition. Further, we cannot present all rules, identities, guidelines or even tricks.

A.1 Functions

We start with one of the most basic concepts, a formal definition that describes a relation between
two sets.

Definition A.1. A function f from a set D to a set W is a rule that assigns a unique value
element f(x) ∈W to each element x ∈ D. We write

f : D →W (A.1)

x 7→ f(x) (A.2)

The set D is called the domain, the set W is called the range (or target set or codomain).
The graph of a function f is the set

{
(x, f(x)) : x ∈ D

}
. ♢

The function will not necessarily map to every element in W , and there may be several
elements in D with the same image in W . These functions are characterized as follows.

Definition A.2. 1. A function f is called injective, if the image of two different elements in
D is different.

2. A function f is called surjective, if for every element y in W there is at least one element
x in D such that y = f(x).

3. A function f is called bijective if it is surjective and injective. Such a function is also called
a one-to-one function. ♢

As an illustration, the first point can be ‘translated’ to ∀x, z ∈ D,x ̸= z =⇒ f(x) ̸= f(z),
which is equivalent to ∀x, z ∈ D, f(x) = f(z) =⇒ x = z.

By restricting the range, it is possible to render a function surjective. It is often possible to
restrict the domain to obtain a locally bijective function.

255

256 APPENDIX A. CALCULUS

In general, there is virtually no restriction on the domain and codomain. However, we often
work with real functions, i.e., D ⊂ R and W ⊂ R.

There are many different characterizations of functions. Some relevant one are as follows.

Definition A.3. A real function f is

1. periodic if there exists an ω > 0 such that f(x + ω) = f(x) for all x ∈ D. The smallest
value ω is called the period of f ;

2. called increasing if f(x) ≤ f(x+ h) for all h ≥ 0. In case of strict inequalities, we call the
function strictly increasing. Similar definitions hold when reversing the inequalities. ♢

The inverse f−1(y) of a bijective function f : D →W is defined as

f−1 :W → D

y 7→ f−1(y), such that y = f
(
f−1(y)

)
.

(A.3)

Subsequently, we require the “inverse” of increasing functions by generalizing the previous
definition. We call these function quantile functions.

To capture the behavior of a function locally, say at a point x0 ∈ D, we use the concept of a
limit.

Definition A.4. Let f : D → R and x0 ∈ D. The limit of f as x approaches x0 is a, written
as limx→x0 f(x) = a if for every ϵ > 0, there exists a δ > 0 such that for all x ∈ D with
0 < |x− x0| < δ =⇒ |f(x)− a| < ϵ. ♢

The latter definition does not assume that the function is defined at x0.
It is possible to define “directional” limits, in the sense that x approaches x0 from above (from

the right side) or from below (from the left side). These limits are denoted with

lim
x→x+

0

lim
x↘x0

for the former; or lim
x→x−

0

lim
x↗x0

for the latter. (A.4)

We are used to interpret graphs and when we sketch an arbitrary function we often use a
single, continuous line. This concept of not lifting the pen while sketching is formalized as follows
and linked directly to limits, introduced above.

Definition A.5. A function f is continous in x0 if the following limits exist

lim
h↗0

f(x0 + h) lim
h↘0

f(x0 + h) (A.5)

and are equal to f(x0). ♢

There are many other approaches to define continuity, for example in terms of neighborhoods,
in terms of limits of sequences.

Another very important (local) characterization of a function is the derivative, which quan-
tifies the (infinitesimal) rate of change.

A.1. FUNCTIONS 257

Definition A.6. The derivative of a function f(x) with respect to the variable x at the point
x0 is defined by

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

, (A.6)

provided the limit exists. We also write
df(x0)

dx
= f ′(x0).

If the derivative exists for all x0 ∈ D, the function f is differentiable. ♢

Some of the most important properties in differential calculus are:

Property A.1. 1. Differentiability implies continuity.

2. (Mean value theorem) For a continuous function f : [a, b] → R, which is differentiable on

(a, b) there exists a point ξ ∈ (a, b) such that f ′(ξ) =
f(b)− f(a)

b− a
.

The integral of a (positive) function quantifies the area between the function and the x-axis.
A mathematical definition is a bit more complicated.

Definition A.7. Let f(x) : D → R a function and [a, b] ∈ D a finite interval such that |f(x)| <
∞ for x ∈ [a, b]. For any n, let t0 = a < t1 < · · · < tn = b a partition of [a, b].

The integral of f from a to b is defined as∫ b

a
f(x)dx = lim

n→∞

n∑
i=1

f(ti)(ti − ti−1). (A.7)

♢

For non-finite a and b, the definition of the integral can be extended via limits.

Property A.2. (Fundamental theorem of calculus (I)). Let f : [a, b] → R continuous. For all
x ∈ [a, b], let F (x) =

∫ x
a f(u)du. Then F is continuous on [a, b], differentiable on (a, b) and

F ′(x) = f(x), for all x ∈ (a, b).

The function F is often called the antiderivative of f . There exists a second form of the
previous theorem that does not assume continuity of f but only Riemann integrability, that
means that an integral exists.

Property A.3. (Fundamental theorem of calculus (II)). Let f : [a, b]→ R. And let F such that

F ′(x) = f(x), for all x ∈ (a, b). If f is Riemann integrable then
∫ b

a
f(u)du = F (b)− F (a).

There are many ‘rules’ to calculate integrals. One of the most used ones is called integration
by substitution and is as follows.

Property A.4. Let I be an interval and φ : [a, b]→ I be a differentiable function with integrable
derivative. Let f : I → R be a continuous function. Then∫ φ(b)

φ(a)
f(u) du =

∫ b

a
f(φ(x))φ′(x) dx. (A.8)

258 APPENDIX A. CALCULUS

A.2 Functions in Higher Dimensions

We denote with Rm the vector space with elements x = (x1, . . . , xm)⊤, called vectors, equipped
with the standard operations. We will discuss vectors and vector notation in more details in the
subsequent chapter.

A natural extension of a real function is as follows. The set D is subset of Rm and thus we
write

f : D ⊂ Rm →W

x 7→ f(x).
(A.9)

Note that we keep W ⊂ R.

The concept of limit and continuity translates one-to-one. Differentiability, however, is dif-
ferent and slightly more delicate.

Definition A.8. The partial derivative of f : D ⊂ R→W with respect to xj is defined by

∂f(x)
∂xj

= lim
h→0

f(x1, . . . , xj−1, xj + h, xj+1, . . . , xm)− f(x1, . . . , xm)

h
, (A.10)

(provided it exists). ♢

The derivative of f with respect to all components is thus a vector

f ′(x) =
(∂f(x)
∂x1

, . . . ,
∂f(x)
∂xm

)
⊤ (A.11)

Hence f ′(x) is a vector valued function from D to Rm and is called the gradient of f at x ,
also denoted with grad(f(x)) = ∇f(x).

Remark A.1. The existence of partial derivatives is not sufficient for the differentiability of the
function f . ♣

In a similar fashion, higher order derivatives can be calculated. For example, taking the
derivative of each component of (A.11) with respect to all components is an matrix with com-
ponents

f ′′(x) =
(∂2f(x)
∂xi∂xj

)
, (A.12)

called the Hessian matrix.

It is important to realize that the second derivative constitutes a set of derivatives of f : all
possible double derivatives.

A.3. APPROXIMATING FUNCTIONS 259

A.3 Approximating Functions

Quite often, we want to approximate functions.

Property A.5. Let f : D → R with continuous m + 1 derivatives. Then there exists ξ ∈ [a, x]

such that

f(x) = f(a) + f ′(a)(x− a) + 1

2
f ′′(a)(x− a)2 + . . .

+
1

m!
f (m)(a)(x− a)m +

1

(m+ 1)!
f (m+1)(ξ)(x− a)m

(A.13)

We call (A.13) Taylor’s formula and the last term, often denoted by Rn(x), as the reminder
of order n. Taylor’s formula is an extension of the mean value theorem.

If the function has bounded derivatives, the reminder Rn(x) converges to zero as x→ a.
Hence, if the function is at least twice differentiable in a neighborhood of a then

f(a) + f ′(a)(x− a) + 1

2
f ′′(a)(x− a)2 (A.14)

is the best quadratic approximation in this neighborhood.

If all derivatives of f exist in an open interval I with a ∈ I, we have for all x ∈ I

f(x) =

∞∑
r=0

1

r!
f (r)(a)(x− a)r (A.15)

Often the approximation is for x = a+ h, h small.

Taylor’s formula can be expressed for multivariate real functions. Without stating the precise
assumptions we consider here the following example

f(a + h) =
∞∑
r=0

∑
i :i1+···+in=r

1

i1!i2! . . . in!

∂rf(a)
∂xi1 . . . ∂xin

hi11 h
i2
2 . . . h

in
n , (A.16)

extending (A.15) with x = a + h .

260 APPENDIX A. CALCULUS

Appendix B

Linear Algebra

In this chapter we cover the most important aspects of linear algebra, namely of notational
nature.

B.1 Vectors, Matrices and Operations

A collection of p real numbers is called a vector, an array of n × m real numbers is called a
matrix. We write

x =

x1
...
xp

 , A = (aij) =

a11 . . . a1m

...
...

an1 . . . anm

 . (B.1)

Providing the dimensions are coherent, vector and matrix addition (and subtraction) is performed
componentwise, as is scalar multiplication. That means, for example, that x ±y is a vector with
elements xi ± yi and cA is a matrix with elements caij .

The n × n identity matrix I is defined as the matrix with ones on the diagonal and zeros
elsewhere. We denote the vector with solely one elements with 1 similarly, 0 is a vector with only
zero elements. A matrix with entries d1, . . . , dn on the diagonal and zero elsewhere is denoted
with diag(d1, . . . , dn) or diag(di) for short and called a diagonal matrix. Hence, I = diag(1).

To indicate the ith-jth element of A, we use (A)ij . The transpose of a vector or a matrix
flips its dimension. When a matrix is transposed, i.e., when all rows of the matrix are turned
into columns (and vice-versa), the elements aij and aji are exchanged. Thus (A⊤)ij = (A)ji.
The vector x⊤ = (xa, . . . , xp) is termed a row vector. We work mainly with column vectors as
shown in (B.1).

In the classical setting of real numbers, there is only one type of multiplication. As soon
as we have several dimensions, several different types of multiplications exist, notably scalar
multiplication, matrix multiplication and inner product (and actually more such as the vector
product, outer product).

Let A and B be two n× p and p×m matrices. Matrix multiplication AB is defined as

AB = C with (C)ij =

p∑
k=1

aikbkj . (B.2)

261

262 APPENDIX B. LINEAR ALGEBRA

This last equation shows that the matrix I is the neutral element (or identity element) of the
matrix multiplication.

Definition B.1. The inner product between two p-vectors x and y is defined as x⊤y =∑p
i=1 xiyi. There are several different notations used: x⊤y = ⟨a , b⟩ = x · y .

If for an n× n matrix A there exists an n× n matrix B such that

AB = BA = I, (B.3)

then the matrix B is uniquely determined by A and is called the inverse of A, denoted by A−1.

B.2 Linear Spaces and Basis

The following definition formalizes one of the main spaces we work in.

Definition B.2. A vector space over R is a set V with the following two operations:

1. + : V × V → V (vector addition)

2. · : R× V → V (scalar multiplication). ♢

Typically, V is Rp, p ∈ N.
In the following we assume a fixed d and the usual operations on the vectors.

Definition B.3. 1. The vectors v1, . . . , vk are linearly dependent if there exists scalars a1, . . . , ak
(not all equal to zero), such that a1v1 + · · ·+ akvk = 0.

2. The vectors v1, . . . vk are linearly independent if a1v1+ · · ·+ akvk = 0 cannot be satisfied
by any scalars a1, . . . , ak (not all equal to zero). ♢

In a set of linearly dependent vectors, some vector can be expressed as a linear combination
of the others.

Definition B.4. The set of vectors {b1, . . . , bd} is a basis of a vectors space V if the set is
linearly independent and any other vector v ∈ V can be expressed by v = v1b1 + · · ·+ vdbd. ♢

The following proposition summarizes some of the relevant properties of a basis.

Property B.1. 1. The decomposition of a vector v ∈ V in v = v1b1 + · · ·+ vdbd is unique.

2. All bases of V have the same cardinality, which is called the dimension of V , dim(V).

3. If there are two bases {b1, . . . , bd} and {e1, . . . , ed} then there exists a d×d matrix A such
that ei = Abi, for all i.

Definition B.5. The standard basis, or canonical basis of V = Rd is {e1, . . . , ed} with e i =

(0, . . . , 0, 1, 0, . . .)⊤, i.e., the vector with a one at the ith position and zero elsewhere. ♢

B.3. PROJECTIONS 263

Definition B.6. Let A be a n ×m matrix. The column rank of the matrix is the dimension
of the subspace that the m columns of A span and is denoted by rank(A). A matrix is said to
have full rank if rank(A) = min(n,m).

The row rank is the column rank of A⊤. ♢

Some fundamental properties of the rank are as follows.

Property B.2. Let A be a n×m matrix.

1. The column rank and row rank are identical.

2. rank(A⊤A) = rank(AA⊤) = rank(A).

3. rank(A) ≤ dim(V).

4. rank(A) ≤ min(m,n).

5. For an appropriately sized matrix B rank(A+B) ≤ rank(A) + rank(B) and rank(AB) ≤
min

(
rank(A), rank(B)

)
.

B.3 Projections

We consider classical Euclidean vector spaces with elements x = (x1, . . . , xp)
⊤ ∈ Rp with Eu-

clidean norm ||x || = (
∑

i x
2
i)

1/2.
To illustrate projections, consider the setup illustrated in Figure B.1, where y and a are two

vectors in R2. The subspace spanned by a is

{λa , λ ∈ R} = {λa/||a ||, λ ∈ R} (B.4)

where the second expression is based on a normalized vector a/||a ||. By the (geometric) definition
of the inner product (dot product),

< a , b >= a⊤b = ||a ||||b|| cos θ (B.5)

where θ is the angle between the vectors. Classical trigonometric properties state that the
projection is a/||a || · ||y || cos(θ). Hence, the projected vector is

a
||a ||

a⊤

||a ||
y = a(a⊤a)−1a⊤y . (B.6)

In statistics we often encounter expressions like this last term. For example, ordinary least
squares (“classical” multiple regression) is a projection of the vector y onto the column space
spanned by X, i.e., the space spanned by the columns of the matrix X. The projection is
X(X⊤X)−1X⊤y . Usually, the column space is in a lower dimension.

θ
a

y

Figure B.1: Projection of the vector y onto the subspace spanned by a .

264 APPENDIX B. LINEAR ALGEBRA

Remark B.1. Projection matrices (like H = X(X⊤X)−1X⊤) have many nice properties such
as being symmetric, being idempotent, i.e., H = HH, having eigenvalues within [0, 1], (see next
section), rank(H) = rank(X), etc. ♣

B.4 Matrix Decompositions

In this section we elaborate representations of a matrix as a product of two or three other
matrices.

Let x be a non-zero n-vector (i.e., at least one element is not zero) and A an n× n matrix.
We can interpret A(x) as a function that maps x to Ax . We are interested in vectors that
change by a scalar factor by such a mapping

Ax = λx , (B.7)

where λ is called an eigenvalue and x an eigenvector.
A matrix A ∈ Rn×n has n eigenvalues, {λ1, . . . , λn}, albeit not necessarily different and not

necessarily real. The set of eigenvalues and the associated eigenvectors denotes an eigendecom-
position.

For all square matrices, the set of eigenvectors span an orthogonal basis, i.e., are constructed
that way.

We often denote the set of eigenvectors with γ1, . . . ,γn. Let Γ be the matrix with columns
γi, i.e., Γ = (γ1, . . . ,γn). Thus AΓ = (Aγ1, . . . ,Aγn) = (λ1γ1, . . . , λnγn). Therefore,
Γdiag(λ1, . . . , λn) = AΓ. Since the inverse of Γ is Γ⊤ (due to the orthogonality property of
the eigenvectors Γ⊤Γ = I), we get Γ⊤Γdiag(λ1, . . . , λn) = Γ⊤AΓ and, hence,

Γ⊤AΓ = diag(λ1, . . . , λn) and A = Γdiag(λ1, . . . , λn)Γ
⊤. (B.8)

In cases of non-square matrices, an eigendecomposition is not possible and a more general
approach is required. The so-called singular value decomposition (SVD) works or any n × m
matrix B,

B = UDV⊤ (B.9)

where U is an n × min(n,m) orthogonal matrix (i.e., U⊤U = In), D is an diagonal matrix
containing the so-called singular values and V is an min(n,m) × m orthogonal matrix (i.e.,
V⊤V = Im).

We say that the columns of U and V are the left-singular vectors and right-singular vectors,
respectively.

Note however, that the dimensions of the corresponding matrices differ in the literature, some
write U and V as square matrices and D as a rectangular matrix.

Remark B.2. Given an SVD of B, the following two relations hold:

BB⊤ = UDV⊤(UDV⊤)⊤ = UDV⊤VDU⊤ = UDDU⊤ (B.10)

B⊤B = (UDV⊤)⊤UDV⊤ = VDU⊤UDV⊤ = VDDV⊤ (B.11)

B.5. POSITIVE DEFINITE MATRICES 265

and hence the columns of U and V are eigenvectors of BB⊤ and B⊤B, respectively, and most
importantly, the elements of D are the square roots of the (non-zero) eigenvalues of BB⊤ or
B⊤B. ♣

Besides an SVD there are many other matrix factorization. We often use the so-called
Cholesky factorization, as - to a certain degree - it generalizes the concept of a square root for
matrices. Assume that all eigenvalues of A are strictly positive, then there exists a unique lower
triangular matrix L with positive entries on the diagonal such that A = LL⊤. There exist very
efficient algorithm to calculate L and solving large linear systems is often based on a Cholesky
factorization.

The determinant of a square matrix essentially describes the change in “volume” that associ-
ated linear transformation induces. The formal definition is quite complex but it can be written
as det(A) =

∏n
i=1 λi for matrices with real eigenvalues.

The trace of a matrix is the sum of its diagonal entries.

B.5 Positive Definite Matrices

Besides matrices containing covariates, we often work with variance-covariance matrices, which
represent an important class of matrices as we see now.

Definition B.7. A n× n matrix A is positive definite (pd) if

x⊤Ax > 0, for all x ̸= 0. (B.12)

Further, if A = A⊤, the matrix is symmetric positive definite (spd). ♢

Relevant properties of spd matrices A = (aij) are given as follows.

Property B.3. 1. rank(A) = n

2. the determinant is positive, det(A) > 0

3. all eigenvalues are positive, λi > 0

4. all elements on the diagonal are positive, aii > 0

5. aiiajj − a2ij > 0, i ̸= j

6. aii + ajj − 2|aij | > 0, i ̸= j

7. A−1 is spd

8. all principal sub-matrices of A are spd.

266 APPENDIX B. LINEAR ALGEBRA

If

A =

(
A11 A12

A21 A22

)
∈ Rp+q×p+q (B.13)

with A11 ∈ Rp×p nonsingular (an inverse exists), then A is nonsingular if and only if C =

A11 −A12A
−1
22 A21 is nonsingular. Further,

A−1 =

(
A11 A12

A21 A22

)−1

=

(
A−1

11 −A−1
11 A12C

−1A21A
−1
11 −A−1

11 A12C
−1

−CA21A
−1
11 C−1

)
. (B.14)

It also holds that det(A) = det(A11) det(C).

Appendix C

Random Variables

C.1 Basics of Probability Theory

In order to define the term random variable, some basic principles are needed first.
The set of all possible outcomes of an experiment is called the sample space, denoted by Ω.

Each outcome of an experiment ω ∈ Ω is called an elementary event. A subset of the sample
space Ω is called an event, denoted by A ⊂ Ω.

Informally, a probability P can be considered the value of a function defined for an event of
the sample set and assuming values in the interval [0, 1], that is, P(A) ∈ [0, 1].

In order to introduce probability theory formally one needs some technical terms (σ-algebra,
measure space, . . .). However, the axiomatic structure of A. Kolmogorov can also be described
accessibly as follows and is sufficient as a basis for our purposes.

A probability measure must satisfy the following axioms:

1. 0 ≤ P (A) ≤ 1, for every event A,

2. P (Ω) = 1,

3. P (∪iAi) =
∑

i P (Ai), for Ai ∩Aj = ∅, i ̸= j.

Informally, a probability function P assigns a value in [0, 1], i.e., the probability, to each
event of the sample space constraint to:

1. the probability of an event is never smaller than 0 or greater than 1,

2. the probability of the whole sample space is 1,

3. the probability of several events is equal to the sum of the individual probabilities, if the
events are mutually exclusive.

Probabilities are often visualized with Venn diagrams (Figure C.1), which clearly and intu-
itively illustrate more complex facts, such as:

P (A ∪B) = P (A) + P (B)− P (A ∩B), (C.1)

P (A | B) =
P (A ∩B)

P (B)
. (C.2)

267

268 APPENDIX C. RANDOM VARIABLES

We consider a random variable as a function that assigns values to the outcomes (events)
of a random experiment, that is, these values or values in the interval are assumed with certain
probabilities. These values are called realizations of the random variable.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

A

B
Ω

C

Figure C.1: Venn diagram

The following definition gives a (unique) characterization of random variables. In subsequent
sections, we will see additional characterizations. These, however, will depend on the what type
of values the random variable can take.

Definition C.1. The distribution function (cumulative distribution function, cdf) of a random
variable X is

F (x) = FX(x) = P(X ≤ x), for all x. (C.3)

♢

Property C.1. A distribution function FX(x) is

1. monotonically increasing, i.e. for x < y, FX(x) ≤ FX(y).

2. right-continuous, i.e. lim
ϵ↘0

FX(x+ ϵ) = FX(x), for all x ∈ R.

3. normalized, i.e. lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1.

Random variables are denoted with uppercase letters (e.g. X, Y), while realizations are
denoted by the corresponding lowercase letters (x, y). This means that the theoretical concept,
or the random variable as a function, is denoted by uppercase letters. Actual values or data,
for example the columns in your dataset, would be denoted with lowercase letters. For further
characterizations of random variables, we need to differentiate according to the sample space of
the random variables.

C.2 Discrete Distributions

A random variable is called discrete when it can assume only a finite or countably infinite number
of values, as illustrated in the following two examples.

C.2. DISCRETE DISTRIBUTIONS 269

Example C.1. Let X be the sum of the roll of two dice. The random variable X assumes
the values 2, 3, . . . , 12. Figure C.2 illustrates the probabilities and distribution function. The
distribution function (as for all discrete random variables) is piece-wise constant with jumps
equal to the probability of that value. ♣

Example C.2. A boy practices free throws, i.e., foul shots to the basket standing at a distance
of 15 ft to the board. Let the random variable X be the number of throws that are necessary
until the boy succeeds. Theoretically, there is no upper bound on this number. Hence X can
take the values 1, 2, ♣

Another way of describing discrete random variables is the probability mass function, defined
as follows.

Definition C.2. The probability mass function (pmf) of a discrete random variable X is defined
by fX(x) = P(X = x). ♢

In other words, the pmf gives probabilities that the random variables takes one single value,
the cdf gives probabilities that the random variables takes that or any smaller value.

Property C.2. Let X be a discrete random variable with mass function fX(x) and distribution
function FX(x). Then:

1. The probability mass function satisfies fX(x) ≥ 0 for all x ∈ R.

2.
∑
i

fX(xi) = 1.

3. The values fX(xi) > 0 are the “jumps” in xi of FX(x).

4. FX(xi) =
∑

k;xk≤xi

fX(xk).

The last two points show that there is a one-to-one relation (also called a bijection) between
the cdf and pmf. Given one, we can construct the other.

Figure C.2 illustrates the pmf and cdf of the random variable X as given in Example C.1.
The jump locations and sizes (discontinuities) of the cdf correspond to probabilities given in the
left panel. Notice that we have emphasized the right continuity of the cdf (see Proposition C.1.2)
with the additional dot.

270 APPENDIX C. RANDOM VARIABLES

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

xi

p i

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
X
(x

)

Figure C.2: Probability mass function (left) and cumulative distribution function
(right) of X = the sum of the roll of two dice.

C.3 Continuous Distributions

A random variable is called continuous if it can (theoretically) assume any value from one or
several intervals. This means that the number of possible values within the sample space is un-
countably infinite. Therefore, it is impossible to assign one probability value to one (elementary)
event. Or in other words, given an infinite amount of possible outcomes, the likeliness of one
particular value being the outcome becomes zero. For this reason, we need to consider outcomes
that are contained in some interval. Hence, the probability is described by an integral, as areas
under the probability density function, which is formally defined as follows.

Definition C.3. The probability density function (density function, pdf) fX(x), or density for
short, of a continuous random variable X is defined by

P(a < X ≤ b) =
∫ b

a
fX(x)dx, a < b. (C.4)

♢

The density function does not give directly a probability and thus cannot be compared to the
probability mass function. The following properties are nevertheless similar to Property C.2.

Property C.3. Let X be a continuous random variable with density function fX(x) and distri-
bution function FX(x). Then:

1. The density function satisfies fX(x) ≥ 0 for all x ∈ R and fX(x) is continuous almost
everywhere.

2.
∫ ∞

−∞
fX(x)dx = 1.

C.3. CONTINUOUS DISTRIBUTIONS 271

3. fX(x) = F ′
X(x) =

dFX(x)

dx
.

4. FX(x) =

∫ x

−∞
fX(y)dy.

5. The cumulative distribution function FX(x) is continuous everywhere.

6. P(X = x) = 0.

As given by Property C.3.3 and 4, there is again a bijection between the density function and
the cumulative distribution function: if we know one we can construct the other. Actually, there
is a third characterization of random variables, called the quantile function, which is essentially
the inverse of the cdf. That means, we are interested in values x for which FX(x) = p.

Definition C.4. The quantile function QX(p) of a random variable X with (strictly) monotone
cdf FX(x) is defined by

QX(p) = F−1
X (p), 0 < p < 1, (C.5)

i.e., the quantile function is equivalent to the inverse of the distribution function. ♢

For discrete random variables the cdf is not continuous (see the plateaus in the right panel
of Figure C.2) and the inverse does not exist. The quantile function returns the minimum value
of x from amongst all those values with probability p ≤ P(X ≤ x) = FX(x), more formally,

QX(p) = inf
x∈R
{p ≤ FX(x)}, 0 < p < 1. (C.6)

Definition C.5. The median ν of a continuous random variable X with cdf FX(x) is defined by

ν = QX(1/2). (C.7)

♢

Example C.3. The continuous uniform distribution U(a, b) is defined by a constant density

function over the interval [a, b], a < b, i.e. f(x) =

1

b− a
, if a ≤ x ≤ b,

0, otherwise.
The quantile function is QX(p) = a+ p(b− a) for 0 < p < 1. Figure C.3 shows the density and
cumulative distribution function of the uniform distribution U(0, 1). ♣

272 APPENDIX C. RANDOM VARIABLES

−1.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f X
(x

)

−1.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
X
(x

)

Figure C.3: Density and distribution function of the uniform distribution U(0, 1).

C.4 Expectation, Variance and Moments

Density, cumulative distribution function or quantile function uniquely characterize random vari-
ables. Often we do not require such a complete definition and “summary” values are sufficient.
We introduce a measure of location and scale.

Definition C.6. The expectation of a discrete random variable X is defined by

E(X) =
∑
i

xi P(X = xi) . (C.8)

The expectation of a continuous random variable X is defined by

E(X) =

∫
R
xfX(x)dx , (C.9)

where fX(x) denotes the density of X. ♢

The expectation is “linked” to the average (or empirical mean, mean) if we have a set of
realizations thought to be from the particular random variable. Similarly, the variance, the
expectation of the squared deviation of a random variable from its expected value is “linked” to
the empirical variance (var). This link will be more formalized in later chapters.

Definition C.7. The variance of X is defined by:

Var(X) = E
(
(X − E(X))2

)
. (C.10)

The standard deviation of X is defined by

SD(X) =
√

Var(X) . (C.11)

♢

C.5. INDEPENDENT RANDOM VARIABLES 273

Property C.4. For an “arbitrary” real function g we have:

1. E(g(X)) =
∑
i

g(xi) P(X = xi), X discrete,

E(g(X)) =

∫
R
g(x)fX(x)dx, X continuous.

Regardless of whether X is discrete or continous, the following rules apply:

2. Var(X) = E(X2)−
(
E(X)

)2 ,

3. E(a+ bX) = a+ bE(X), for a a and b given constants,

4. Var(a+ bX) = b2Var(X), for a a and b given constants,

5. E(aX + bY) = aE(X) + bE(Y), for a random variable Y .

The second but last property seems somewhat surprising. But starting from the definition of
the variance, one quickly realizes that the variance is not a linear operator:

Var(a+ bX) = E
((
a+ bX − E(a+ bX)

)2)
= E

((
a+ bX − (a+ bE(X))

)2)
. (C.12)

Example C.4. We consider again the setting of Example C.1, and straightforward calculation
shows that

E(X) =
12∑
i=2

iP(X = i) = 7, by equation (C.8), (C.13)

= 2

6∑
i=1

i
1

6
= 2 · 7

2
, by using Property C.4.5 first. (C.14)

♣

C.5 Independent Random Variables

Often we not only have one random variable but many of them. Here, we see a first way to
characterize a set of random variables.

Definition C.8. Two random variables X and Y are independent if

P(X ∈ A ∩ Y ∈ B) = P(X ∈ A) P(Y ∈ B) . (C.15)

for A,B ⊂ R. The random variables X1, . . . , Xn are independent if

P(

n⋂
i=1

Xi ∈ Ai) =

n∏
i=1

P(Xi ∈ Ai) . (C.16)

for A1, . . . , An,⊂ R. ♢

274 APPENDIX C. RANDOM VARIABLES

The definition of independent random variables also implies that the joint density and joint
cumulative distribution is simply the product of the individual ones, also called marginal ones.

We will often use many independent random variables with a common distribution function.

Definition C.9. A random sample X1, . . . , Xn consists of n independent random variables with
the same distribution F . We write X1, . . . , Xn

iid∼ F where iid stands for “independent and
identically distributed.” The number n of random variables is called the sample size or sample
range. ♢

The iid assumption is very crucial and relaxing it has severe implications on the statistical
modeling. Luckily, independence also implies a simple formula for the variance of the sum of two
or many random variables.

Property C.5. Let X and Y be two independent random variables. Then

1. Var(aX + bY) = a2Var(X) + b2Var(Y) .

Let X1, . . . , Xn
iid∼ F with E(X1) = µ and Var(X1) = σ2. Denote X =

1

n

n∑
i=1

Xi. Then

2. E(X) = E
(1
n

n∑
i=1

Xi

)
= E(X1) = µ .

3. Var(X) = Var
(1
n

n∑
i=1

Xi

)
=

1

n
Var(X1) =

σ2

n
.

The latter two properties will be used when we investigate statistical properties of the sample

mean, i.e., linking the empirical mean x =
1

n

n∑
i=1

xi with the random sample meanX =
1

n

n∑
i=1

Xi.

C.6 Common Discrete Distributions

There is of course no limitation on the number of different random variables. In practice, we can
reduce our framework to some common distributions.

C.6.1 Binomial Distribution

A random experiment with exactly two possible outcomes (for example: success/failure, heads/tails,
male/female) is called a Bernoulli trial. For simplicity, we code the sample space with ‘1’ (success)
and ‘0’ (failure).

P(X = 1) = p, P(X = 0) = 1− p, 0 < p < 1. (C.17)

Thus

E(X) = p, Var(X) = p(1− p). (C.18)

C.7. COMMON CONTINUOUS DISTRIBUTIONS 275

Note that we exclude the cases p = 0 and p = 1, which are typically not relevant anyway.
If a Bernoulli experiment is repeated n times (resulting in n-tuples of zeros and ones), the

random variable X = “number of successes" is intuitive. The distribution of X is called the
binomial distribution, denoted with X ∼ Bin(n, p) and the following applies:

P(X = k) =

(
n

k

)
pk(1− p)n−k, 0 < p < 1, k = 0, 1, . . . , n, (C.19)

and

E(X) = np, Var(X) = np(1− p). (C.20)

C.6.2 Poisson Distribution

The Poisson distribution gives the probability of a given number of events occurring in a fixed
interval of time if these events occur with a known and constant rate over time. One way to
formally introduce such a random variable is giving its probability mass.

Definition C.10. A random variable X, whose probability function is given by

P(X = k) =
λk

k!
exp(−λ), 0 < λ, k = 0, 1, . . . , (C.21)

is said to follow a Poisson distribution, denoted by X ∼ Pois(λ). Further,

E(X) = λ, Var(X) = λ. (C.22)

♢

The Poisson distribution is also a good approximation for the binomial distribution with large
n and small p.

C.7 Common Continuous Distributions

Example C.3 introduced a first common continuous distribution. In this section we see first the
most commonly used one, i.e., the normal distribution, and then some distributions that are
derived as functions from normally distributed random variables. We will encounter these later,
for example, the t distribution when discussing tests about means and the F distribution when
discussing tests about variances.

C.7.1 The Normal Distribution

The normal or Gaussian distribution is probably the most known distribution, having the om-
nipresent “bell-shaped” density. Its importance is mainly due the fact that the sum of many
random variables (under iid or more general settings) is distributed as a normal random vari-
able. This is due to the celebrated central limit theorem. As in the case of a Poisson random
variable, we define the normal distribution by giving its density.

276 APPENDIX C. RANDOM VARIABLES

Definition C.11. The random variable X is said to be normally distributed if

FX(x) =

∫ x

−∞
fX(y)dy (C.23)

with density function

f(x) = fX(x) =
1√
2πσ2

exp

(
−1

2
· (x− µ)

2

σ2

)
, (C.24)

for all x (µ ∈ R, σ2 > 0). We denote this with X ∼ N (µ, σ2).
The random variable Z = (X−µ)/σ (the so-called z-transformation) is standard normal and

its density and distribution function are usually denoted with φ(z) and Φ(z), respectively. ♢

While the exact form of the density (C.24) is not important, a certain recognizing factor will
be very useful. Especially, for a standard normal random variable, the density is proportional to
exp(−z2/2).

The following property is essential and will be consistently used throughout the work. We
justify the first one later in this chapter. The second one is a result of the particular form of the
density.

Property C.6. 1. Let X ∼ N (µ, σ2), then
X − µ
σ

∼ N (0, 1). Conversely, if Z ∼ N (0, 1),

then σZ + µ ∼ N (µ, σ2).

2. Let X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) be independent, then aX1 + bX2 ∼ N (aµ1 +

bµ2, a
2σ21 + b2σ22).

The cumulative distribution function Φ has no closed form and the corresponding probabilities
must be determined numerically. In the past, so-called “standard tables” were often used and
included in statistics books. Table C.1 gives an excerpt of such a table. Now even “simple”
pocket calculators have the corresponding functions. It is probably worthwhile to remember
84% = Φ(1), 98% = Φ(2), 100% ≈ Φ(3), as well as 95% = Φ(1.64) and 97.5% = Φ(1.96).

Example C.5. Let X ∼ N (4, 9). Then

1. P(X ≤ −2) = P
(X − 4

3
≤ −2− 4

3

)
= P(Z ≤ −2) = Φ(−2) = 1− Φ(2) = 1− 0.977 = 0.023 .

2. P(|X − 3| > 2) = 1− P(|X − 3| ≤ 2) = 1− P(−2 ≤ X − 3 ≤ 2)

= 1− (P(X − 3 ≤ 2)−P(X − 3 ≤ −2)) = 1−Φ

(
5− 4

3

)
+Φ

(
1− 4

3

)
≈ 0.5281.

♣

The following theorem is of paramount importance and many extensions thereof exist.

C.7. COMMON CONTINUOUS DISTRIBUTIONS 277

Table C.1: Probabilities of the standard normal distribution. The table gives the
value of Φ(zp). For example, Φ(0.2 + 0.04) = 0.595.

zp 0.00 0.02 0.04 0.06 0.08
0.0 0.500 0.508 0.516 0.524 0.532
0.1 0.540 0.548 0.556 0.564 0.571
0.2 0.579 0.587 0.595 0.603 0.610
0.3 0.618 0.626 0.633 0.641 0.648
0.4 0.655 0.663 0.670 0.677 0.684
0.5 0.691 0.698 0.705 0.712 0.719
...

1.0 0.841 0.846 0.851 0.855 0.860
...

1.6 0.945 0.947 0.949 0.952 0.954
1.7 0.955 0.957 0.959 0.961 0.962
1.8 0.964 0.966 0.967 0.969 0.970
1.9 0.971 0.973 0.974 0.975 0.976
2.0 0.977 0.978 0.979 0.980 0.981
...

3.0 0.999 0.999 . . .

−2 −1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x

dn
or

m

Figure C.4: Density (black), distribution function (green), and quantile function
(blue) of the standard normal distribution.

Property C.7. (Central Limit Theorem, classical version) Let X1, X2, X3, . . . an infinite se-
quence of iid random variables with E(Xi) = µ and Var(Xi) = σ2. Then

lim
n→∞

P
(Xn − µ

σ/
√
n
≤ z
)
= Φ(z) (C.25)

where we kept the subscript n for the sample mean to emphasis its dependence on n.

278 APPENDIX C. RANDOM VARIABLES

Using the central limit theorem argument, we can show that the distribution of a binomial
random variable X ∼ Bin(n, p) converges to a distribution of a normal random variable as
n → ∞. Thus, the distribution of a normal random variable N (np, np(1 − p)) can be used as
an approximation for the binomial distribution Bin(n, p). For the approximation, n should be
larger than 30 for p ≈ 0.5. For p closer to 0 and 1, n needs to be much larger.

To calculate probabilities, we often apply a so-called continuity correction, as illustrated in
the following example.

Example C.6. Let X ∼ Bin(30, 0.5). Then P(X ≤ 10) = 0.049, “exactly”. However,

P(X ≤ 10) ≈ P
(X − np√

np(1− p)
≤ 10− np√

np(1− p)

)
= Φ

(10− 15√
30/4

)
= 0.034, (C.26)

P(X ≤ 10) ≈ P
(X + 0.5− np√

np(1− p)
≤ 10 + 0.5− np√

np(1− p)

)
= Φ

(10.5− 15√
30/4

)
= 0.05. (C.27)

♣

C.7.2 Chi-Square Distribution

Let Z1, . . . , Zn
iid∼ N (0, 1). The distribution of the random variable

X 2
n =

n∑
i=1

Z2
i (C.28)

is called the chi-square distribution (X 2 distribution) with n degrees of freedom. The following
applies:

E(X 2
n) = n; Var(X 2

n) = 2n. (C.29)

Here and for the next two distributions, we do not give the densities as they are very com-
plex. Similarly, the expectation and the variance here and for the next two distributions are for
reference only.

The chi-square distribution is used in numerous statistical tests.

The definition of a chi-square random variable is based on a sum of independent random
variables. Hence in view of the central limit theorem, the following result are not surprising. If
n > 50, we can approximate the chi-square distribution with a normal distribution, i.e., X 2

n is
distributed approximately N (n, 2n). Furthermore, for X 2

n with n > 30 the random variable
X =

√
2X 2

n is approximately normally distributed with expectation
√
2n− 1 and standard

deviation of 1.

C.7. COMMON CONTINUOUS DISTRIBUTIONS 279

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

D
en

si
ty

1
2
4
8
16
32
64

Figure C.5: Densities of the Chi-square distribution for various degrees of freedom.

C.7.3 Student’s t-Distribution

In later chapters, we use the so-called t-test when, for example, comparing empirical means. The
test will be based on the distribution that we define next.

Let Z ∼ N (0, 1) and X ∼ X 2
m be two independent random variables. The distribution

Tm =
Z√
X/m

(C.30)

is called the t-distribution (or Student’s t-distribution) with m degrees of freedom. We have:

E(Tm) = 0, for m > 1; (C.31)

Var(Tm) =
m

(m− 2)
, for m > 2. (C.32)

The density is symmetric around zero and as m → ∞ the density converges to the standard
normal density φ(x) (see Figure C.6).

Remark C.1. For m = 1, 2 the density is heavy-tailed and the variance of the distribution does
not exist. Realizations of this random variable occasionally manifest with extremely large values.
♣

C.7.4 F -Distribution

The F -distribution is mainly used to compare two empirical variances with each other.
Let X ∼ X 2

m and Y ∼ X 2
n be two independent random variables. The distribution

Fm,n =
X/m

Y/n
(C.33)

280 APPENDIX C. RANDOM VARIABLES

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty

1
2
4
8
16
32
64

Figure C.6: Densities of the t-distribution for various degrees of freedom. The normal
distribution is in black. A density with 27 = 128 degrees of freedom would make the
normal density function appear thicker.

is called the F -distribution with m and n degrees of freedom. It holds that:

E(Fm,n) =
n

n− 2
, for n > 2; (C.34)

Var(Fm,n) =
2n2(m+ n− 2)

m(n− 2)2(n− 4)
, for n > 4. (C.35)

Figure C.7 shows the density for various degrees of freedom.

C.7.5 Beta Distribution

A random variable X with density

fX(x) = c · xα−1(1− x)β−1, x ∈ [0, 1], α > 0, β > 0, (C.36)

where c is a normalization constant, is called the beta distributed with parameters α and β. We
write this as X ∼ Beta(α, β). The normalization constant cannot be written in closed form for
all parameters α and β. For α = β the density is symmetric around 1/2 and for α > 1, β > 1

the density is concave with mode (α− 1)/(α+ β − 2). For arbitrary α > 0, β > 0 we have:

E(X) =
α

α+ β
; (C.37)

Var(X) =
αβ

(α+ β + 1)(α+ β)2
. (C.38)

Figure C.8 shows densities of the beta distribution for various pairs of (α, β).
The beta distribution is mainly used to model probabilities and thus often encountered in

Bayesian modelling.

C.8. FUNCTIONS OF RANDOM VARIABLES 281

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

D
en

si
ty

F1, 1
F2, 50

F5, 10

F10, 50

F50, 50

F100, 300

F250, 250

Figure C.7: Density of the F -distribution for various degrees of freedom.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

D
en

si
ty

α, β
1 1
2 2
3 3
4 4
5 5
6 6
0.8 0.8
0.4 0.4
0.2 0.2
1 4
0.5 4
2 4

Figure C.8: Densities of beta distributed random variables for various pairs of (α, β).

C.8 Functions of Random Variables

In the previous sections we saw different examples of often used, classical random variables.
These examples are often not enough and through a modeling approach, we need additional
ones. In this section we illustrate how to construct the cdf and pdf of a random variable that is
the square of one from which we know the density.

Let X be a random variable with distribution function FX(x). We define a random variable

282 APPENDIX C. RANDOM VARIABLES

Y = g(X). The cumulative distribution function of Y is written as

FY (y) = P (Y ≤ y) = P
(
g(X) ≤ y

)
. (C.39)

In many cases g(·) is invertable (and differentiable) and we obtain

FY (y) =

P
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
, if g−1 monotonically increasing,

P
(
X ≥ g−1(y)

)
= 1− FX

(
g−1(y)

)
, if g−1 monotonically decreasing.

(C.40)

To derive the probability mass function we apply Property C.2.3. In the more interesting setting
of continuous random variables, the density function is derived by Property C.3.3 and is thus

fY (y) =
∣∣∣ d
dy
g−1(y)

∣∣∣fX(g−1(y)). (C.41)

Example C.7. Let X be a random variable with cdf FX(x) and pdf fX(x). We consider Y =

a+bX, for b > 0 and a arbitrary. Hence, g(·) is a linear function and its inverse g−1(y) = (y−a)/b
is monotonically increasing. The cdf of Y is thus FX

(
(y−a)/b

)
and the pdf is fX

(
(y−a)/b

)
·1/b.

This fact has already been stated in Property C.6 for the Gaussian random variables. ♣

Example C.8. Let X ∼ U(0, 1) and for 0 < x < 1, we set g(x) = − log(1 − x), thus g−1(y) =

1− exp(−y). Then the distribution and density function of Y = g(X) is

FY (y) = FX(g−1(y)) = g−1(y) = 1− exp(−y), (C.42)

fY (y) =
∣∣∣ d
dy
g−1(y)

∣∣∣fX(g−1(y)) = exp(−y), (C.43)

for y > 0. This random variable is called the exponential random variable (with rate parameter
one). Notice further that g(x) is the quantile function of this random variable. ♣

As we are often interested in summarizing a random variable by its mean and variance, we
have a very convenient short-cut.

The expectation and the variance of a transformed random variable Y can be approximated by
the so-called delta method. The idea thereof consists of a Taylor expansion around the expectation
E(X):

g(X) ≈ g(E(X)) + g′(E(X)) · (X − E(X)) (C.44)

(two terms of the Taylor series). Thus

E(Y) ≈ g(E(X)), (C.45)

Var(Y) ≈ g′(E(X))2 ·Var(X). (C.46)

C.8. FUNCTIONS OF RANDOM VARIABLES 283

Example C.9. Let X ∼ B(1, p) and Y = X/(1−X). Thus,

E(Y) ≈ p/(1− p); Var(Y) ≈
(1

(1− p)2
)2
· p(1− p) = p

(1− p)3
. (C.47)

♣

Example C.10. Let X ∼ B(1, p) and Y = log(X). Thus

E(Y) ≈ log(p), Var(Y) ≈
(1
p

)2
· p(1− p) = 1− p

p
. (C.48)

♣

Of course, in the case of a linear transformation (as, e.g., in Example C.7), equation (C.44) is
an equality and thus relations (C.45) and (C.46) are exact, which is in sync with Property C.6.

284 APPENDIX C. RANDOM VARIABLES

Appendix D

Multivariate Normal Distribution

In Chapter C we have introduced univariate random variables. We now extend the framework
to random vectors (i.e., multivariate random variables). We will mainly focus on continuous
random vectors, especially Gaussian random vectors.

D.1 Random Vectors

A random vector is a (column) vector X = (X1, . . . , Xp)
⊤ with p random variables as components.

The following definition is the generalization of the univariate cumulative distriubtion function
(cdf) to the multivariate setting (see Definition C.1).

Definition D.1. The multidimensional (or multivariate) distribution function of a random vec-
tor X is defined as

FX(x) = P(X ≤ x) = P(X1 ≤ x1, . . . , Xp ≤ xp), (D.1)

where the list in the right-hand-side is to be understood as the intersection (∩). ♢

The multivariate distribution function generally contains more information than the set of

marginal distribution functions, because (D.1) only simplifies to FX(x) =
p∏

i=1
P(Xi ≤ xi) under

independence of all random variables Xi (compare to Equation (C.3)).

A random vector X is a continuous random vector if each random variable Xi is continuous.
The probability density function for a continuous random vector is defined in a similar manner
as for univariate random variables.

Definition D.2. The probability density function (or density function, pdf) fX(x) of a p-
dimensional continuous random vector X is defined by

P(X ∈ A) =
∫
A
fX(x)dx , for all A ⊂ Rp. (D.2)

♢

285

286 APPENDIX D. MULTIVARIATE NORMAL DISTRIBUTION

For convenience, we summarize here a few facts of random vectors with two continuous
components, i.e., for a bivariate random vector (X,Y)⊤. The univariate counterparts are stated
in Properties C.1 and C.3.

• The distribution function is monotonically increasing:
for x1 ≤ x2 and y1 ≤ y2, FX,Y (x1, y1) ≤ FX,Y (x2, y2).

• The distribution function is normalized:
lim

x,y→∞
FX,Y (x, y) = FX,Y (∞,∞) = 1.

We use the slight abuse of notation by writing ∞ in arguments without a limit.

• FX,Y (−∞,−∞) = FX,Y (x,−∞) = FX,Y (−∞, y) = 0.

• FX,Y (x, y) (fX,Y (x, y)) are continuous (almost) everywhere.

• fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).

• P(a < X ≤ b, c < Y ≤ d) =
∫ b

a

∫ d

c
fX,Y (x, y)dydx

= FX,Y (b, d)− FX,Y (b, c)− FX,Y (a, d) + FX,Y (a, c).

In the multivariate setting there is also the concept termed marginalization, i.e., reduce a
higher-dimensional random vector to a lower dimensional one. Intuitively, we “neglect” compo-
nents of the random vector in allowing them to take any value. In two dimensions, we have

• FX(x) = P(X ≤ x, Y arbitrary) = FX,Y (x,∞);

• fX(x) =

∫
R
fX,Y (x, y)dy.

Definition D.3. The expected value of a random vector X is defined as

E(X) = E

X1

...
Xp

 =

E(X1)

...
E(Xp)

 . (D.3)

♢

Hence the expectation of a random vector is simply the vector of the individual expectations.
Of course, to calculate these, we only need the marginal univariate densities fXi(x) and thus the
expectation does not change whether (D.1) can be factored or not. The variance of a random
vector requires a bit more thought and we first need the following.

Definition D.4. The covariance between two arbitrary random variables X1 and X2 is defined
as

Cov(X1, X2) = E
(
(X1 − E(X1))(X2 − E(X2))

)
. (D.4)

♢

D.2. MULTIVARIATE NORMAL DISTRIBUTION 287

Using the linearity properties of the expectation operator, it is possible to show the following
handy properties.

Property D.1. We have for arbitrary random variables X1, X2 and X3:

1. Cov(X1, X2) = Cov(X2, X1),

2. Cov(X1, X1) = Var(X1),

3. Cov(a+ bX1, c+ dX2) = bdCov(X1, X2), for arbitrary values a, b, c and d,

4. Cov(X1, X2 +X3) = Cov(X1, X2) + Cov(X1, X3).

The covariance describes the linear relationship between the random variables. The correla-
tion between two random variables X1 and X2 is defined as

Corr(X1, X2) =
Cov(X1, X2)√
Var(X1)Var(X2)

(D.5)

and corresponds to the normalized covariance. It holds that −1 ≤ Corr(X1, X2) ≤ 1, with
equality only in the degenerate case X2 = a+ bX1 for some a and b ̸= 0.

Definition D.5. The variance of a p-variate random vector X = (X1, . . . , Xp)
⊤ is defined as

Var(X) = E
(
(X− E(X))(X− E(X))⊤

)
(D.6)

= Var

X1

...
Xp

 =

Var(X1) . . . Cov(Xi, Xj)

. . .

Cov(Xj , Xi) . . . Var(Xp)

 , (D.7)

called the covariance matrix or variance–covariance matrix. ♢

The covariance matrix is a symmetric matrix and – except for degenerate cases – a positive
definite matrix. We will not consider degenerate cases and thus we can assume that the inverse
of the matrix Var(X) exists.

Similar to Properties C.4, we have the following properties for random vectors.

Property D.2. For an arbitrary p-variate random vector X, vector a ∈ Rq and matrix B ∈ Rq×p

it holds:

1. Var(X) = E(XX⊤)− E(X) E(X)⊤,

2. E(a+BX) = a+BE(X),

3. Var(a+BX) = BVar(X)B⊤.

D.2 Multivariate Normal Distribution

We now consider a special multivariate distribution: the multivariate normal distribution, by
first considering the bivariate case.

288 APPENDIX D. MULTIVARIATE NORMAL DISTRIBUTION

D.2.1 Bivariate Normal Distribution

Definition D.6. The random variable pair (X,Y) has a bivariate normal distribution if

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dvdu (D.8)

with density

f(x, y) = fX,Y (x, y) (D.9)

=
1

2πσxσy
√
1− ρ2

exp

(
− 1

2(1− ρ2)

(
(x− µx)2

σ2x
+

(y − µy)2

σ2y
− 2ρ(x− µx)(y − µy)

σxσy

))
,

for all x and y and where µx ∈ R, µy ∈ R, σx > 0, σy > 0 and −1 < ρ < 1. ♢

The role of some of the parameters µx, µy, σx, σy and ρ might be guessed. We will discuss
their precise meaning after the following example.

Example D.1. Figure D.1 show the density of a bivariate normal distribution with µx = µy = 0,
σx = 1, σy =

√
5, and ρ = 2/

√
5 ≈ 0.9. Because of the quadratic form in (D.9), the contour lines

(isolines) are ellipses whose axes are given by the eigenvectors of the covariance matrix. ♣

The bivariate normal distribution has many nice properties.

Property D.3. For the bivariate normal distribution we have: The marginal distributions are
X ∼ N (µx, σ

2
x) and Y ∼ N (µy, σ

2
y) and

E

((
X

Y

))
=

(
µx

µy,

)
Var

((
X

Y

))
=

(
σ2x ρσxσy

ρσxσy σ2y

)
. (D.10)

Thus,

Cov(X,Y) = ρσxσy, Corr(X,Y) = ρ. (D.11)

If ρ = 0, X and Y are independent and vice versa.

Note, however, that the equivalence of independence and uncorrelatedness is specific to jointly
normal variables and cannot be assumed for random variables that are not jointly normal.

Example D.2. Figure D.2 shows realizations from a bivariate normal distribution for various
values of correlation ρ. Even for large sample shown here (n = 500), correlations between −0.25
and 0.25 are barely perceptible. ♣

D.2. MULTIVARIATE NORMAL DISTRIBUTION 289

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

0.00

0.05

0.10

0.15

x

−3
−2

−1
0

1
2

3
y

−3 −2 −1 0 1 2 3

density

0.00

0.05

0.10

0.15

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

0.0

0.2

0.4

0.6

0.8

x

−3 −2 −1 0 1 2 3

y

−3
−2
−1

0
1
2
3

cdf

0.2

0.4

0.6

0.8

Figure D.1: Density of a bivariate normal distribution.

D.2.2 Multivariate Normal Distribution

In the general case we have to use vector notation. Surprisingly, we gain clarity even compared
to the bivariate case.

Definition D.7. The random vector X = (X1, . . . , Xp)
⊤ is multivariate normally distributed if

FX(x) =
∫ x1

−∞
· · ·
∫ xp

−∞
fX(u1, . . . , up)du1 . . . dup (D.12)

with density

fX(x1, . . . , xp) = fX(x) =
1

(2π)p/2 det(Σ)1/2
exp
(
−1

2
(x − µ)⊤Σ−1(x − µ)

)
(D.13)

for all x ∈ Rp (µ ∈ Rp and symmetric, positive-definite Σ). We denote this distribution with
X ∼ Np(µ,Σ). ♢

290 APPENDIX D. MULTIVARIATE NORMAL DISTRIBUTION

−4 −2 0 2 4

−
4

−
2

0
2

4

ρ = −0.25

−4 −2 0 2 4

−
4

−
2

0
2

4

ρ = 0

−4 −2 0 2 4

−
4

−
2

0
2

4

ρ = 0.1

−4 −2 0 2 4

−
4

−
2

0
2

4

ρ = 0.25

−4 −2 0 2 4

−
4

−
2

0
2

4

ρ = 0.75

−4 −2 0 2 4

−
4

−
2

0
2

4

ρ = 0.9

Figure D.2: Realizations from a bivariate normal distribution.

Property D.4. For the multivariate normal distribution we have:

E(X) = µ , Var(X) = Σ . (D.14)

Property D.5. Let a ∈ Rq, B ∈ Rq×p, q ≤ p, rank(B) = q and X ∼ Np(µ,Σ), then

a+BX ∼ Nq

(
a+Bµ,BΣB⊤). (D.15)

This last property has profound consequences. It also asserts that the one-dimensional
marginal distributions are again Gaussian with Xi ∼ N

(
(µ)i, (Σ)ii

)
, i = 1, . . . , p. Similarly,

any subset of random variables of X is again Gaussian with appropriate subset selection of the
mean and covariance matrix.

We now discuss how to draw realizations from an arbitrary Gaussian random vector, much
in the spirit of Property C.6.2. Let I ∈ Rp×p be the identity matrix, a square matrix which has
only ones on the main diagonal and only zeros elsewhere, and let L ∈ Rp×p so that LL⊤ = Σ.
That means, L is like a “matrix square root” of Σ.

To draw a realization x from a p-variate random vector X ∼ Np(µ,Σ), one starts with
drawing p values from Z1, . . . , Zp

iid∼ N (0, 1), and sets z = (z1, . . . , zp)
⊤. The vector is then

(linearly) transformed with µ+Lz . Since Z ∼ Np(0, I) Property D.5 asserts that X = µ+LZ ∼
Np(µ,LL

⊤).
In practice, the Cholesky decomposition of Σ is often used. This decomposes a symmetric

positive-definite matrix into the product of a lower triangular matrix L and its transpose. It
holds that det(Σ) = det(L)2 =

∏p
i=1(L)

2
ii.

D.2. MULTIVARIATE NORMAL DISTRIBUTION 291

D.2.3 Conditional Distributions

We now consider properties of parts of the random vector X. For simplicity we write

X =

(
X1

X2

)
, X1 ∈ Rq, X2 ∈ Rp−q. (D.16)

We divide the matrix Σ in 2× 2 blocks accordingly:

X =

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
(D.17)

Both (multivariate) marginal distributions X1 and X2 are again normally distributed with X1 ∼
Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) (this can be seen again by Property D.5).

X1 and X2 are independent if Σ21 = 0 and vice versa.

Property D.6. If one conditions a multivariate normally distributed random vector (D.17) on
a subvector, the result is itself multivariate normally distributed with

X2 | X1 = x1 ∼ Np−q

(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12

)
. (D.18)

The expected value depends linearly on the value of x 1, but the variance is independent of
the value of x 1. The conditional expected value represents an update of X2 through X1 = x 1:
the difference x 1 − µ1 is normalized by the variance and scaled by the covariance. Notice that
for p = 2, Σ21Σ

−1
11 = ρσy/σx.

Equation (D.18) is probably one of the most important formulas you encounter in statistics
albeit not always explicit.

292 APPENDIX D. MULTIVARIATE NORMAL DISTRIBUTION

Bibliography

Abraham, B. and Ledolter, J. (2006). Introduction To Regression Modeling. Duxbury applied
series. Thomson Brooks/Cole. 20, 161

Abramowitz, M. and Stegun, I. A., editors (1970). Handbook of Mathematical Functions. Dover.
213

Barnston, A. G. and Livezey, R. E. (1987). Classification, seasonality and persistence of low-
frequency atmospheric circulation patterns. Month. Weath. Rev., 115, 1083–1126. 47

Bergmeir, C. and Benítez, J. M. (2012). Neural networks in R using the stuttgart neural network
simulator: RSNNS. Journal of Statistical Software, 46, 1–26. 251

Box, G. E. P. and Draper, N. R. (1987). Empirical Model-building and Response Surfaces. Wiley.
2

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (2008). Time Series Analysis, Forecasting, and
Control. Wiley, fourth edition. 200

Breiman, L. (2001). Random Forest. Machine Learning, 45, 5–32. 96

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regres-
sion Trees. Belmont, CA: Wadsworth. 96

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer-Verlag,
second edition. 200

Brockwell, P. J. and Davis, R. A. (2010). Introduction to time series and forecasting. Springer
texts in statistics. Springer, second edition. 200

Buehlmann, P. and Hothorn, T. (2007). Boosting algorithms: regularization, prediction and
model fitting. Statistical Science, 22, 477–505. 96

Butler, D. G., Cullis, B. R., Gilmour, A. R., and Gogel, B. J. (2009). ASReml-R reference
manual. 130

Chilès, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. John Wiley &
Sons Inc. 216

Choi, Y., Taylor, J., and Tibshirani, R. (2015). Selecting the number of principal components:
estimation of the true rank of a noisy matrix. arXiv:1410.8260, to appear in Annals of Statistics.
47

293

294 BIBLIOGRAPHY

Christensen, R. (2011). Plane Answers to Complex Questions: The Theory of Linear Models.
Springer Texts in Statistics. Springer. 112

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer series in
statistics. Springer. 221, 229

Collett, D. (2014). Modelling Survival Data in Medical Research. Chapman & Hall/CRC Texts
in Statistical Science. Taylor & Francis, third edition. 187

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman & Hall/CRC Monographs
on Statistics & Applied Probability. Taylor & Francis. 187

Cressie, N. A. C. (1990). The origins of kriging. Mathematical Geology, 22, 239–252. 217

Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, revised edition. 216

Dalal, S. R., Fowlkes, E. B., and Hoadley, B. (1989). Risk Analysis of the Space Shuttle: Pre-
Challenger Prediction of Failure. Journal of the American Statistical Association, 84, 945–957.
168

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge
University Press. 20

Davison, A. C., Padoan, S. A., and Ribatet, M. (2012). Statistical Modeling of Spatial Extremes.
Statistical Science, 27, 161–186. 229

Diggle, P., Heagerty, P., Liang, K.-Y., and Zeger, S. (2002). Analysis of Longitudinal Data.
Oxford University Press, second edition. 119

Dobson, A. J. (2001). An Introduction to Generalized Linear Models, Second Edition. Chapman
& Hall/CRC Texts in Statistical Science. Taylor & Francis. 168

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics, 7,
1–26. 20

Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insur-
ance and Finance. Springer. 229

Euromonitor (1979). European Marketing Data and Statistics. London: Euromonitor Publica-
tions. 27

Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. (2013). Regression: Models, Methods and
Applications. Springer. 112, 168

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications: Monographs
on Statistics and Applied Probability 66. Chapman & Hall/CRC Monographs on Statistics &
Applied Probability. Taylor & Francis. 153

Faraway, J. J. (2006). Extending the Linear Model with R: Generalized Linear, Mixed Effects
and Nonparametric Regression Models. CRC Press. 168

BIBLIOGRAPHY 295

Fleuret, F. (2023). The Little Book of Deep Learning. ISBN 9781447678618. 250

Freund, Y. and Shapire, R. (1995). A decision-theoretic generalization of on-line learning and an
application to boosting. In Proceedings of the Second European Conference on Computational
Learning Theory, 23–37. 91

Furrer, R. and Genton, M. G. (1999). Robust Spatial Data Analysis of Lake Geneva Sediments
with S+SpatialStats. Systems Research and Information Science, 8, 257–272. 204

Gavish, M. and Donoho, D. L. (2014). The optimal hard threshold for singular values is \(4/\sqrt
{3}\). IEEE Transaction on Information Theory, 60, 5040–5053. 47

Gilmour, A. R., Cullis, B. R., Welham, S. J., Gogel, B. J., and Thompson, R. (2004). An efficient
computing strategy for prediction in mixed linear models. Computational Statistics and Data
Analysis, 44, 571–586. 130

Gilmour, A. R., Thompson, R., and Cullis, B. R. (1995). Average information REML: An
efficient algorithm for variance parameter estimation in linear mixed models. Biometrics, 51,
1440–1450. 130

Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear regression
model. Journal of the American Statistical Association, 57, 369–375. 217

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear
Models. Chapman & Hall. 153, 168

Haan, L. d. and Ferreira, A. (2006). Extreme Value Theory : an Introduction. Springer series in
operations research and financial engineering. Springer. 229

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis. 153, 168

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, second edition. 20, 96

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4, 251–257. 240

Hornik, K., Buchta, C., and Zeileis, A. (2009). Open-source machine learning: R meets Weka.
Computational Statistics, 24, 225–232. 250

Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M. (2013). An Overview of the North
Atlantic Oscillation, 1–35. American Geophysical Union. 47

Jolliffe, I. T. (2002). Principal Component Analysis. Springer-Verlag, second edition. 47

Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press. 211, 216

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data.
John Wiley & Sons, Inc. 187

296 BIBLIOGRAPHY

Kirchner, N., Furrer, R., Jakobsson, M., Zwally, H. J., and Robbins, J. W. (2013). Statistical
modeling of a former Arctic Ocean ice shelf complex using Antarctic analogies. Journal of
Geophysical Research: Earth Surface, 118, 1105–1117. 16

Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and
Truncated Data. Springer, second edition. 187

Kleinbaum, D. and Klein, M. (2012). Survival Analysis: A Self-Learning Text. Springer, New
York, 3rd edition. 187

Kolmogoroff, A. (1941). Interpolation und Extrapolation von stationären zufälligen Folgen. Bull.
Acad. Sci. URSS Sér. Math. [Izvestia Akad. Nauk. SSSR], 5, 3–14. 217

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the
Witwatersrand. Journal of the Chemical, Metallurgical and Mining Socciety of South Africa,
52, 119–139. 217

Makridakis, S. G., Wheelwright, S. C., and Hyndman, R. J. (1998). Forecasting: Methods and
Applications. John Wiley & Sons: New York. 2, 135

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Academic Press. 38,
47, 96, 112

Matheron, G. (1962). Trait? de G?ostatistique Appliqu?e, Tome I. M?moires du Bureau de
Recherches G?ologique et Mini?res, No. 14, Editions Technip, Paris. 209, 210

Matheron, G. (1963). Trait? de G?ostatistique Appliqu?e, Tome II: Le Krigeage. Mémoires du
Bureau de Recherches Géologique et Minières, No. 24, Editions Technip, Paris. 217

Matheron, G. (1969). Le Krigeage Universel. Cahiers du Centre de Morphologie Math?matique,
No. 1, Fontainebleau, France. 217

McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models. Chapman & Hall. 168

Minka, T. P. (2000). Automatic choice of dimensionality for PCA. In Leen, T. K., Dietterich,
T. G., and Tresp, V., editors, NIPS, 598–604. MIT Press. 47

Moore, D. F. (2016). Applied Survival Analysis Using R (Use R). Springer Verlag. 187

Nason, G. (2010). Wavelet Methods in Statistics with R. Use R! Springer. 153

North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J. (1982). Sampling errors in the
estimation of empirical orthogonal functions. Monthly Weather Review, 110, 699–706. 34

Olea, R. A. (1999). Geostatistics for Engineers and Earth Scientists. Kluwer Academic Publish-
ers. 216

Penedo, G., Malartic, Q., Hesslow, D., Cojocaru, R., Cappelli, A., Alobeidli, H., Pannier, B.,
Almazrouei, E., and Launay, J. (2023). The refinedweb dataset for falcon llm: Outperforming
curated corpora with web data, and web data only. 244

BIBLIOGRAPHY 297

Poole, J. H. (1989). Mate guarding, reproductive success and female choice in African elephants.
Animal Behavior, 37, 842–849. 163

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco,
2nd edition. 96

Resnick, S. I. (2008). Extreme Values, Regular Variation and Point Processes. Springer series in
operations research and financial engineering. Springer, 1987 edition. 229

Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons Inc. 216

Roche, J. R., Friggens, N. C., Kay, J., Fisher, M. W., Stafford, K. J., and Berry, D. P. (2009).
Invited review: Body condition score and its association with dairy cow productivity, health,
and welfare. Journal of Dairy Science, 92, 92(12):5769–5801. 116

Rosenblatt, F. (1957). The perceptron - a perceiving and recognizing automaton. Technical
Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca, New York. 235

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592. 69

Sabates-Bellver, J., Van der Flier, L. G., de Palo, M., Cattaneo, E., Maake, C., Rehrauer,
H., Laczko, E., Kurowski, M. A., Bujnicki, J. M., Menigatti, M., Luz, J., Ranalli, T. V.,
Gomes, V., Pastorelli, A., Faggiani, R., Anti, M., Jiricny, J., Clevers, H., and Marra, G.
(2007). Transcriptome profile of human colorectal adenomas. Molecular Cancer Research, 5,
1263–1275. 69

Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis.
Chapman & Hall/CRC. 216

Self, S. G. and Liang, K. (1987). Asymptotic properties of maximum likelihood estimators
and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical
Association, 82, 605–610. 129

Sherman, M. (2011). Spatial Statistics and Spatio-Temporal Data: Covariance Functions and
Directional Properties. Wiley. 216

Shumway, R. H. and Stoffer, D. S. (2010). Time Series Analysis and Its Applications. With R
Examples. Springer, third edition. 200

Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric
curve fitting. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 47,
1–52. 136

Stein, M. L. (1999). Interpolation of Spatial Data. Springer-Verlag. 216

Strobl, C., Malley, J., and Tutz, G. (2009). An Introduction to Recursive Partitioning: Rationale,
Application and Characteristics of Classification and Regression Trees, Bagging and Random
Forests. Psychological Methods, 14, 323–348. 96

298 BIBLIOGRAPHY

Suhr, D. (2009). Principal component analysis vs. exploratory factor analysis. In SUGI 30
Proceedings, Paper 203-30, 1–11. http://www2.sas.com/proceedings/sugi30/203-30.pdf. 42

Therneau, T. M. and Grambsch, P. M. (2010). Modeling Survival Data: Extending the Cox
Model. Springer. 187

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic
Geography, 46, 234–240. 204

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New
York, fourth edition. 250

von Storch, H. and Zwiers, F. W. (1999). Statistical Analysis in Climate Research. Cambridge
University Press. 47

Wackernagel, H. (1995). Multivariate Geostatistics. An Introduction with Applications. Springer.
216

Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference
Series in Applied Mathematics. SIAM. 153

Webster, R. and Oliver, M. (2001). Geostatistics for Environmental Scientists. John Wiley &
Sons Inc. 216

Wiener, N. (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time Series. With
Engineering Applications. The Technology Press of the Massachusetts Institute of Technology,
Cambridge. 217

Wilks, D. S. (2005). Statistical Methods in the Atmospheric Sciences. Academic Press, second
edition. 47

Wold, H. O. A. (1938). A Study in the Analysis of Stationary Time Series. Almqvist and Wiksell.
217

Wood, S. (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC
Texts in Statistical Science. Taylor & Francis. 153, 168

Zell, A., Mache, N., Hübner, R., Mamier, G., Vogt, M., Schmalzl, M., and Herrmann, K. (1994).
Snns (stuttgart neural network simulator). In Skrzypek, J., editor, Neural Network Simula-
tion Environments, volume 254, 165–186. The Kluwer International Series in Engineering and
Computer Science, Springer, Boston, MA. 251

Zhu, J., Zou, H., Rosset, S., and Hastie, T. (2009). Multi-class adaboost. Statistics and Its
Interface, 2, 349–360. 96

http://www2.sas.com/proceedings/sugi30/203-30.pdf

Glossary

Throughout the document we tried to be consistent with standard mathematical notation. We
write random variables as uppercase letters (X, Y , . . .), realizations as lower case letters (x, y,
. . .), matrices as bold uppercase letters (Σ, X, . . .), and vectors as bold italics lowercase letters
(x , β, . . .). (The only slight confusion arises with random vectors and matrices.)

The following glossary contains a non-exhaustive list of the most important notation. Stan-
dard operators or products are not repeatedly explained.

:= Define the left hand side by the expression on the other side.

♣, ♢ End of example, end of definition∫
,
∑

,
∏

Integration, summation and product symbol. If there is no ambiguity, we omit
the domain in inline formulas.

∪, ∩ Union, intersection of sets or events.

θ̂ Estimator or estimate of the parameter θ.

x Arithmetic mean of the sample:
∑n

i=1 xi/n.

|x| Absolute value of the scalar x.

||x || Norm of the vector x , Euclidean distance.

X⊤ Transpose of an matrix X.

x(i) Order statistics of the sample {xi}: x(1) ≤ x(2) ≤ · · · ≤ x(n).

0, 1 Vector or matrix with components 0 respectively 1.

Cov(X,Y) Covariance between two random variables X and Y .

Corr(X,Y) Correlation between two random variables X and Y .
d
dx , ′, ∂

∂x Derivative and partial derivative with respect to x.

diag(A) Diagonal entries of an (n× n)-matrix A.

ε, εi Random variable or process, usually measurement error.

E(X) Expectation of the random variable X.

e, exp(·) Transcendental number e = 2.71828 18284, the exponential function.

In = I Identity matrix, I = (δij).

I{A} Indicator function, talking the value one if A is true and zero otherwise.

lim Limit.

log(·) Logarithmic function to the base e.

299

300 Glossary

max{A}, min{A} Maximum, minimum of the set A.

N, Nd Space of natural numbers, of d-vectors with natural elements.

N (µ, σ2) Normal (Gaussian) distribution with mean µ and variance σ2.

Np(µ,Σ) Normal p dimensional distribution with mean vector µ and variance matrix
Σ.

φ(x) Gaussian probability density function φ(x) = (2π)−1/2 exp(−x2/2).

Φ(x) Gaussian cumulative distribution function Φ(x) =
∫ x
−∞ φ(z) dz.

π Transcendental number π = 3.14159 26535.

P(A) Probability of the event A.

R, Rn, Rn×m Space of real numbers, real n-vectors and real (n×m)-matrices.

rank(A) The rank of a matrix A is defined as the number of linearly independent rows
(or columns) of A.

tr(A) Trace of an matrix A defined by the sum of its diagonal elements.

Var(X) Variance of the random variable X.

Z, Zd Space of integers, of d-vectors with integer elements.

The following table contains the abbreviations of the statistical distributions (dof denotes degrees
of freedom).

N (µ, σ2) Gaussian or normal random variable with parameters µ and σ2.

N (0, 1), zp Standard standard normal random variable, p-quantiles thereof.

Bin(n, p), Binomial random variable with n trials and success probability p,
bn,p,1−α 1− α-quantile thereof.

X 2
ν , χ2

ν,p Chi-squared distribution with ν dof, p-quantile thereof.

Tn, tn,p Student’s t-distribution with n dof, p-quantile thereof.

Fm,n, fm,n,p F -distribution with m and n dof, p-quantile thereof.

The following table contains the abbreviations of the statistical methods, properties and quality
measures.

EDA Exploratory data analysis.

dof Degrees of freedom.

MAD Median absolute deviation.

MAE Mean absolute error.

ML Maximum likelihood (ML estimator or ML estimation).

MM Method of moments.

MSE Mean squared error.

OLS, LS Ordinary least squares.

Glossary 301

RMSE Root mean squared error.

WLS Weighted least squares.

302 Glossary

Dataset Index

Page numbers in upright, slanted and ital-
ics refer to main explanation in text, use in
R chuncks and in figures, respectively.

bicoal, 3, 136, 139

elephant, 163, 164, 166

geyser, 65, 66

handwash, 162, 163

jobs, 28, 29, 57, 58, 58

leman, 204, 205, 206, 211, 212, 215, 216
LifeCycleSavings, 10, 12, 14, 36, 104, 105

mcycle, 136, 136, 139, 140, 141, 142, 143,
144, 145

orings, 156, 158, 159

peng, 238
Penguin, 54, 55, 55, 56, 57, 57, 59, 60, 61
penguin, 51, 62
penguins, 236
pigs, 129, 130

rehab, 109
rhone, 220, 223, 224, 226, 227

scor, 38, 40
Sitka, 126
Sitka89, 128
swiss, 33

UKDriverDeaths, 198, 199, 200

303

304 Dataset Index

Command Index

Only first or main appearance listed.

acf, 193
aggregate, 224
ar, 195
arima, 197
arima.sim, 195
ARMAacf, 195

bagging, 88, 89
biplot, 33
boosting, 89, 91

cancor, 36
compile, 246
complete.cases, 236, 238
cooks.distance, 10
cov.spatial, 209
cox.zph, 183
coxph, 181
ctree, 85

dataset_ cifar10, 245

expand.grid, 215
exractAIC, 105

factanal, 38
fit, 247
fit_ , 248

gev.fit, 224
glm, 158

hatvalues, 10

image.plot, 43

keras_ model_ sequential, 246
Krig, 215

layer_ *, 246

map, 43
mKrig, 233
mrlplot, 227
muhaz, 184

neuralnet, 236, 238

pacf, 193
pip, 215
prcomp, 33, 45
predict

arima, 197
bagging, 88, 89
boosting, 91
glm, 158
Krig, 215
krig, 233
predict, 236, 238
randomForest, 89

predictSE, 233

quilt.plot, 215

randomForest, 89
rasterImage, 245
residuals, 10
rmvnorm.spam, 233
rstandard, 10

screeplot, 33
step, 105
Surv, 178
survdiff, 180
survfit, 178
survreg, 186

threshrange.plot, 227

vgram, 211

305

306 Command Index

Package Index

Only first appearance in each chapter listed.

adabag, 88
asreml-R, 130

Epi, 187
extRemes, 224

fields, 43, 205, 233
fma, 3

geoR, 209
ggplot, 136
ggplot2, 129

imager, 250

keras, 244, 245

lattice, 123
lme4, 129, 130

maps, 43
MASS, 79
MCMCglmm, 130
mgcv, 130
muhaz, 184
mvtnorm, 79

ncdf4, 43
neuralnet, 236, 238
nlme, 130
nnet, 250

palmerpenguins, 54, 236, 238
partykit, 85
plyr, 131
png, 95

randomForest, 89

rpart, 95
RSNNS, 250
Rweka, 250

spam, 233
splancs, 215
splines, 136
survival, 178

wavethresh, 146

307

308 Package Index

Video Index

The following gives a short description of the video, including a link. Make sure that you are
currently, i.e., actively, authenticated at tube.switch.ch/.

Chapter 0
What are all these videos about?, v

Chapter 2
More insights into the factor analysis model, 39

Chapter 5
Comments about deriving the SS decomposition, 111
Distributions of various estimators in the regression setting, 101
Some features of the hat matrix, 101
Stacking a multivariate regression problem for a multiple regression setting, 112

Chapter 9
Deriving the standard error of the Kaplam–Meier estimate, 178
Deriving the variance of the Log-rank test, 179

309

https://tube.switch.ch/

310 Video Index

	Preface
	Resampling and Model Validation
	What is a Statistical Model?
	Sampling
	Cross-Validation
	Bootstrap
	Example: Description of Antarctic Ice Shelves
	Bibliographic remarks
	Exercises and Problems

	Principal Component Analysis
	Finding some Representative Dimensions
	PCA as a functional Decomposition: EOF
	Theoretical Aspects of PCA
	PCA and Related Decompositions and Concepts
	Example: Sea-Level Pressure Over the Northern Atlantic
	Bibliographic remarks
	Exercises and Problems

	Clustering
	Hierarchical Clustering
	The k-Means Algorithm
	Model-Based Clustering
	Longitudinal Clustering
	Example: A Bioinformatics Data Analysis
	Bibliographic remarks
	Exercises and Problems

	Discrimination and Classification
	Classification in the Gaussian Case
	Classification Trees
	Bagging, Boosting and More
	Machine Learning and Data Mining
	Example: Optical Character Recognition
	Bibliographic remarks
	Exercises and Problems

	Linear Models
	Multiple Regression
	Analysis of Variance
	Extensions of the Linear Model
	Bibliographic remarks
	Exercises and Problems

	Mixed Models
	Motivation
	Mixed Effects Models
	Linear Mixed Models for Longitudinal Data
	Additional Examples
	Bibliographic remarks
	Exercises and Problems

	Non-Parametric Regression
	Motivation
	Kernel Approaches
	Splines
	Locally Adaptive Approaches
	Example: Image Compression
	Bibliographic remarks
	Exercises and Problems

	Generalized Linear Models
	Motivation
	Logistic Regression
	Poisson Regression
	Generalized Linear Models
	Bibliographic remarks
	Exercises and Problems

	Survival Analysis
	Censoring
	Survivor and Hazard Function
	Non-Parametric Methods for Survival Data
	Parametric Modeling of Survival Data
	Bibliographic remarks
	Exercises and Problems

	Time Series
	Introduction
	ARMA Models
	ACF and PACF and Their Estimation
	Prediction
	Example: Car Drivers Accidents
	Bibliographic remarks
	Exercises and Problems

	Spatial Statistics
	Introduction
	Geostatistical Data
	Lattice Data
	Bibliographic remarks
	Exercises and Problems

	Extreme Value Theory
	Motivation
	Modeling the Maxima
	Modeling Peaks over Thresholds
	*Comparing the Approaches Through Profile Estimates
	Bibliographic remarks
	Exercises and Problems

	Neural Networks and Deep Learning
	Learning as in Machine Learning
	Concept of Neural Networks
	Deep Learning
	Tensorflow and Keras
	Bibliographic remarks
	Exercises and Problems

	Postscript
	Calculus
	Functions
	Functions in Higher Dimensions
	Approximating Functions

	Linear Algebra
	Vectors, Matrices and Operations
	Linear Spaces and Basis
	Projections
	Matrix Decompositions
	Positive Definite Matrices

	Random Variables
	Basics of Probability Theory
	Discrete Distributions
	Continuous Distributions
	Expectation, Variance and Moments
	Independent Random Variables
	Common Discrete Distributions
	Common Continuous Distributions
	Functions of Random Variables

	Multivariate Normal Distribution
	Random Vectors
	Multivariate Normal Distribution

	References
	Glossary
	Dataset Index
	Command Index
	Package Index
	Video Index

