
Chapter 5

Lattice Data:
Simulation and Estimation

Based on existing spatial R packages, we assess spatial dependency and fit simple
GMRF models to data. Emphasis on computational aspects is given as well.

R-Code for this chapter: www.math.uzh.ch/furrer/download/sta330/chapter05.R.

5.1 Spatial Objects in R

In the last chapter, we have (statistically) introduced GMRF for regular and irregular lattices.
The latter are more present in real-world applications. Unfortunately, much of the time in any
data analysis is spent visualizing the data and gathering and assembling each area’s boundary
information. Before the actual modeling, we look at some indispensable software components
when visualizing areal data.

For spatial data analysis, we need at least a list of (named) polygons from a database and
a list of neighbors for each of these. Ideally, we have direct access to plotting methods for the
polygons. The neighborhood structure is often given as a list or an adjacency matrix and may
often be constructed based the polygons themselves.

The packages sf, spdep, and spatialreg provide a framework for handling, analyzing, and
plotting spatial data. Often it is intimidating to get acquainted with the various R functions
and classes. The maintainers of the above packages tightly collaborate and are aware of the
technical overhead that might distract from a statistical analysis. For more details, a good start
is Chapter 2 of Bivand et al. (2013). The basic idea of the packages is to store all objects within a
family of classes, define many methods for these classes, and provide a useful number of helping
functions. Thus many situations, we do not need to worry about the underlying technical details.
For didactic purposes, we often illustrate the formal and the “manual” handling of the data.

In the R-Code below, we illustrate two approaches, a manual and a “formal” one. The former
one is based on simple lists containing the x and y coordinates of the polygons, bounding box,
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and polygon names. Thus the plotting can be done manually. The latter one relies on the formal
sf class. Thus the objects are more complicated but plotting is easier.

R-Code 5.1: Handling spatial objects in R.

### First example (simple version):

library(maps) # simple database

ncMaps <- map("county", region="North Carolina", fill=TRUE, plot=FALSE)

### "fill=TRUE" is very important! We need regular polygons.

str(ncMaps, strict.width="cut") # no formal class, just a particular list.

## List of 4

## $ x : num [1:3771] -79.5 -79.5 -79.5 -79.5 -79.5 ...

## $ y : num [1:3771] 35.8 35.9 35.9 36 36.2 ...

## $ range: num [1:4] -84.3 -75.5 33.9 36.6

## $ names: chr [1:102] "north carolina,alamance" "north carolina,alexand"..

## - attr(*, "class")= chr "map"

### 100 Counties, "currituck" consisting of 3 polygons. Polygons are separated

### with separated NAs.

sum(is.na(ncMaps$x))

## [1] 101

### Plotting is done with "plot=TRUE" (default) in the function `map()` and

### color specification. Alternatively:

plot(ncMaps$x, ncMaps$y, type="n")

polygon(ncMaps$x, ncMaps$y, col=sample(1:16))

### We import shape-files from different database:

nc <- st_read(system.file("shapes/sids.shp", package="spData")[1], quiet=TRUE)

nc$rates <- nc$SID74 / nc$BIR74

class(nc) # classes "sf" and "data.frame"

## [1] "sf" "data.frame"

dim(nc) # for each county a lot of information

## [1] 100 24

str(nc$geometry) # spatial info in one list element

## sfc_MULTIPOLYGON of length 100; first list element: List of 1

## $ :List of 1

## ..$ : num [1:27, 1:2] -81.5 -81.5 -81.6 -81.6 -81.7 ...

## - attr(*, "class")= chr [1:3] "XY" "MULTIPOLYGON" "sfg"

### see methods(class="sf")

### The following for an even more formal analysis

# st_crs(nc) <- "+proj=longlat +datum=NAD27"

# row.names(nc) <- as.character(nc$FIPSNO)



5.2. ASSESSING SPATIAL DEPENDENCY 67

5.2 Assessing Spatial Dependency

Correlation in time series is based on the evaluation of lagged values, e.g., analyzing Yt − Yt−1,
where Yt−1 is the lagged value of Yt. With lattice data, we can construct a spatial lag by
considering all first-order neighbors. Depending on the application, the neighbors are weighted:

n∑
j=1

wijYj . (5.1)

Weights such that rows sum to one are natural and are often considered.
In the case of (arbitrary) lattice data, Moran’s I and Geary’s C are often used metrics to

assess spatial dependencies. Let Y be a multivariate random n-vector and W = (wij) a matrix
of spatial weights, often encoding a first-order neighborhood structure. Moran’s I is defined as

I =
n∑
i,j
wij

∑
i,j
wij(Yi − Y )(Yj − Y )∑

i
(Yi −Y )2

∈ [−1, 1]. (5.2)

Positive (negative) values of the observed statistic indicate positive (negative) spatial autocorre-
lation. Note that under no spatial dependency E(I) = −1/(n− 1). Closed-form expressions for
the variance exist.

Geary’s C is defined as

C =
n− 1

2
∑

i,j
wij

∑
i,j
wij(Yi − Yj )

2∑
i
(Yi − Y )2

∈ [0, 2]. (5.3)

Smaller values indicate stronger positive spatial dependency. Hence, for interpretability and
comparability with Moran’s I, it would make more sense to consider 1−C instead of C. Moran’s
I and Geary’s C are measures of global spatial autocorrelation. However, Geary’s C is more
sensitive to local spatial autocorrelation.

Example 5.1. R-Code 5.2 illustrates the Moran’s I and Geary’s C for the SIDS data. The
construction of the spatial weight matrix W = (wij) is based on neighbors, i.e., if two counties i
and j are neighbors, wij = 1 and zero otherwise. Here we start with nc from Example 5.1, a sf

object, and construct the matrix using first the function poly2nb(). The argument queen=FALSE
implies that more than one shared boundary point is necessary. Typically, this means one
shared boundary segment. The neighbor structure is transformed to a spatial weight matrix
with nb2listw(). The argument style="B" enforces the binary coding of wij . Note that we
have 100 counties. Using the polygon definition from ncM results in 102 polygons, and we would
not have the appropriate number of neighbors. ♣

R-Code 5.2: Tests for spatial autocorrelation for the SIDS dataset.

(ncnb <- poly2nb(nc, queen=FALSE)) # polygons to neighbors
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## Neighbour list object:

## Number of regions: 100

## Number of nonzero links: 462

## Percentage nonzero weights: 4.62

## Average number of links: 4.62

ncW <- nb2listw(ncnb, style="B") # neighbors to weightmatrix

nc$rates <- nc$SID74 / nc$BIR74 # as in last chapter!

moran.test(nc$rates, ncW) # testing spatial dependencies 1

##

## Moran I test under randomisation

##

## data: nc$rates

## weights: ncW

##

## Moran I statistic standard deviate = 3.9, p-value = 4.8e-05

## alternative hypothesis: greater

## sample estimates:

## Moran I statistic Expectation Variance

## 0.2336975 -0.0101010 0.0039055

t2 <- geary.test(nc$rates, ncW) # testing spatial dependencies 2

1 - t2$estimate[1] # to better compare both

## Geary C statistic

## 0.32647

Moran’s I and Geary’s C measure the dependency “globally”, i.e., one single value. It is
possible to assess the dependency locally. For each individual area i the local version of Moran’s
I is given by

Ii =
(Yi − Ȳ )∑n

k=1(Yk − Ȳ )2/(n− 1)

n∑
j=1

wij(Yj − Ȳ ), (5.4)

where again, different books or software implementations use some variations. The local version
is linked to the global one, up to a slight difference in the normalization.

The local spatial autocorrelation can further be exploited with functions moran.plot() and
localmoran() (Bivand et al., 2013, Section 9.3.2). The output of these functions are not straight-
forward to interpret. Additionally, one needs to be careful not to over-interpret single p-values
from the many involved tests.

Example 5.2. R-Code 5.3 illustrates local Moran’s I for the SIDS data. The visualization is
based on a function adapted from https://github.com/gisUTM/spatialplots and included in
the chapter’s R script. The interpretation is not straightforward, as there seems to be a missing
symmetry. The lower panel of Figure 5.2 plots the lagged rates versus the rates. Alignment
along the diagonal line indicates spatial dependency. The plot also marks outlying values from
the regression lm(y˜Wy) where Wy=W %*% y are the lagged variables. ♣

https://github.com/gisUTM/spatialplots
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R-Code 5.3: Tests for spatial autocorrelation for the SIDS dataset.

ncW <- nb2listw(ncnb, style="W") # neighbors to weightmatrix, normalized!

local.moran <- localmoran(nc$rates, ncW)

plot.localmoran(nc, "rates", local.moran=local.moran, weights=ncW)

moran.plot(nc$rates, ncW, xlab="SIDS rates", ylab="Lagged variable",

labels=FALSE, ylim=c(0, .01), xlim=c(0, 0.01))

abline(c(0,1), col="gray")
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Figure 5.1: Visualization of local Moran’s I. (See R-Code 5.3.)

In certain situations, some areas/polygons do not have neighbors. In such situations, most
approaches may handle such polygons differently (e.g., the resulting value is zero or NA). The
argument zero.policy specifies the choices.

If data is available on a regular grid, autocovariances along the dimensions can be calculated
similarly to time series. Under the assumption of stationarity, it is possible to estimate an
autocovariance function based on the distance between the grid points. This approach is much
more natural in the framework of geostatistics, and we discuss it extensively in Chapter 10.



70 CHAPTER 5. SIMULATION AND ESTIMATION

5.3 Specific Models for GMRF

We now introduce a low-dimensional parametrization of a GMRFs by reducing the number of
parameters {bij} and τ2i under the symmetry constraint and positive definiteness of the precision
matrix.

We often assume that τi = τ , for all i. That means that the conditional precision is constant.
Another simplification is that the coefficients bij do not depend on j, i.e., bij = bi, no preference
is given to “neighboring” information. We might even further simplify to bij = b = θ for all j ∼ i,
leading to

Yi | y−i ∼ N
(∑
j,j∼i

θyj , τ
2
)
, τ > 0, i = 1, . . . , n, (5.5)

where j ∼ i indicates a first-order neighbor.
The neighbor structure can be encoded in a matrix, often denoted with A = (aij) (adjacency

matrix) or W (spatial weight matrix). In the former case, we have a aij = 1 if i ∼ j and zero
otherwise. In the latter case, we may have W = A, or wij is proportional to the number of
its neighbors or similar. To link with the last chapter and literature elsewhere, we often write
B = λW, for some λ.

Example 5.3. R-Code 5.4 illustrates the construction of the weight matrix W using the five
counties from the US state Rhode Island. The upper bound of λ is numerically determined. The
lower bound can be determined similarly. Note that there might be several zeros, and finding a
lower bound for the interval with uniroot() needs some care.

Constant conditional precision does not imply constant (marginal) variances, as illustrated,
i.e., we have a non-stationary model. ♣

R-Code 5.4: Construction of the weight matrices, valid parameter space, and resulting
covariance matrix.

ri <- map("county","Rhode Island", fill=TRUE, plot=FALSE)

str(ri, strict.width="cut")

## List of 4

## $ x : num [1:144] -71.3 -71.3 -71.2 -71.2 -71.2 ...

## $ y : num [1:144] 41.8 41.8 41.8 41.7 41.7 ...

## $ range: num [1:4] -71.9 -71.1 41.3 42

## $ names: chr [1:5] "rhode island,bristol" "rhode island,kent" "rhode i"..

## - attr(*, "class")= chr "map"

id <- sapply(strsplit(ri$names, ","), function(x) x[2])

ri.poly <- st_as_sf(ri, IDs=id) # Convert to sf-class

ri.nb <- poly2nb(ri.poly) # Convert sf to nb object

(ri.matB <- nb2mat(ri.nb, style="B")) # only 0-1 entries
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## [,1] [,2] [,3] [,4] [,5]

## 1 0 1 1 1 0

## 2 1 0 1 1 1

## 3 1 1 0 0 1

## 4 1 1 0 0 0

## 5 0 1 1 0 0

## attr(,"call")

## nb2mat(neighbours = ri.nb, style = "B")

(ri.matW <- nb2mat(ri.nb, style="W")) # row sums to one

## [,1] [,2] [,3] [,4] [,5]

## 1 0.00000 0.33333 0.33333 0.33333 0.00000

## 2 0.25000 0.00000 0.25000 0.25000 0.25000

## 3 0.33333 0.33333 0.00000 0.00000 0.33333

## 4 0.50000 0.50000 0.00000 0.00000 0.00000

## 5 0.00000 0.50000 0.50000 0.00000 0.00000

## attr(,"call")

## nb2mat(neighbours = ri.nb, style = "W")

### NOT symmetric (there are also styles "C" or "U")

### Valid parameter range for largest lambda:

f <- function(x, mat) det(diag(5)-x*mat) # needs to be positive

c(uniroot(f, c(0, 1), mat=ri.matB)$root, # gets upper bound for both cases

uniroot(f, c(0, 1.5), mat=ri.matW)$root)

## [1] 0.34066 1.00000

ll <- seq(-2, to=1.5, l=500) # plot is not shown in the script

plot(ll, sapply(ll, f, mat=ri.matB), type="l")

abline(h=0)

lines(ll, sapply(ll, f, mat=ri.matW), col=4)

### Example of resulting SAR-type covariance matrix. We assume iid structure

### for the errors (see Table 4.1). We fix lambda at 1/2 of possible range.

### We display only diagonal terms:

diag(solve(diag(5) - 0.17 * ri.matB) %*% solve(diag(5) - 0.17 * ri.matB))

## [1] 1.5108 1.7056 1.5108 1.3099 1.3099

diag(solve(diag(5) - 0.5 * ri.matW) %*% solve(diag(5) - 0.5 * ri.matW))

## [1] 1.5121 1.6454 1.5121 1.3769 1.3769

We refer to Example 5.8 and corresponding R-Code 5.11 for the discussion of a more complex
parameterization, where the coefficients bij depend on the degree of neighbor, bij = b1 for
adjacent cells (first order neighbors) and bij = b2 for adjacent cells of adjacent cells (second-
order neighbors).

The vignette cran.r-project.org/web/packages/spdep/vignettes/nb.pdf gives further insights
in building neighborhood structures (vignette("nb", package="spdep")) .

https://cran.r-project.org/web/packages/spdep/vignettes/nb.pdf
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Example 5.4. R-Code 5.5 fits a simple CAR model using the function spautolm(). For illus-
tration, we use a small setting based on artificial data. The function’s output is similar to a
classical lm() output. We revisit the output of the function in Example 5.7. ♣

R-Code 5.5: Using the spautolm function to fit a simple model.

library("spatialreg")

y <- c(-0.58, -1.22, 1.68, 0.98, 0.44) # artificial data for RI!

ri.B <- nb2listw(ri.nb, style="B") # neighbors to weight matrix

carfit <- spautolm(y ~ 1, listw=ri.B, family="CAR") # binary weight matix

summary(carfit, adj.se=FALSE)

##

## Call: spautolm(formula = y ~ 1, listw = ri.B, family = "CAR")

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.41115 -0.25837 -0.16130 0.37442 0.45640

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.15434 0.11912 1.2956 0.1951

##

## Lambda: -0.58653 LR test value: 4.8371 p-value: 0.027854

## Numerical Hessian standard error of lambda: 0.050678

##

## Log likelihood: -4.8976

## ML residual variance (sigma squared): 0.18747, (sigma: 0.43298)

## Number of observations: 5

## Number of parameters estimated: 3

## AIC: 15.795

rbind(yhat=fitted(carfit), resid=resid(carfit))

## 1 2 3 4 5

## yhat -0.4187 -0.96163 1.2236 1.39115 0.065581

## resid -0.1613 -0.25837 0.4564 -0.41115 0.374419

Remark 5.1. The function spautolm() with argument family="SAR" from package spatialreg
and the function errorsarlm() from the same package are essentially identical and thus deliver
the same results. ♡



5.3. SPECIFIC MODELS FOR GMRF 73

Example 5.5. As a more realistic example, we investigate the spatial dependency for the SIDS
dataset. R-Code 5.6 fits a CAR model (5.5) using (i) the neighbor structure used in the literature
and (ii) a first-order neighbor structure. As seen in Figure 4.2, the data contains a possible outlier.
The code illustrates the influence on the estimates and fit of this single value. For further details,
see cran.r-project.org/web/packages/spdep/vignettes/sids.pdf.

Depending on the data source, a slightly different neighborhood structure of the dataset is
used, resulting in minor differences. ♣

R-Code 5.6: SIDS again. See text for further explanations. (See Figure 5.3.)

ncW <- nb2listw(poly2nb(nc), style="B")

# summary(ncW)

library(spatialreg) # `spautolm()` was formerly part of package spdep

carfit1 <- spautolm(rates ~ 1, data=nc, listw=ncW, family="CAR")

# summary(carfit1) # we should look at

index <- which.max(nc$rates) # "remove" outlier:

as.character(nc$NAME[index])

## [1] "Anson"

nc$ratesNO <- nc$rates

nc$ratesNO[index] <- nc$rates[index]/10

carfit2 <- spautolm(ratesNO ~ 1, data=nc, listw=ncW, family="CAR")

# summary(carfit2)

nc$fit1 <- fitted(carfit1) # with outlier

nc$fit2 <- fitted(carfit2) # without outlier

nc$resid1 <- resid(carfit1)

nc$resid2 <- resid(carfit2)

nc$diff2to1 <- fitted(carfit2) - fitted(carfit1)

rbind(M1=c(coef(carfit1), s2=carfit1$fit$s2, resid=range(nc$resid1)),

M2=c(coef(carfit2), s2=carfit2$fit$s2, range(nc$resid2)))

## (Intercept) lambda s2 resid1 resid2

## M1 0.0020020 0.13062 2.1205e-06 -0.0021387 0.0076864

## M2 0.0018462 0.15057 1.4774e-06 -0.0022982 0.0033259

both <- c(nc$fit1, nc$fit2)

fitbreaks <- seq(min(both), max(both), by = diff(range(both))/10)

plot(nc[ c("fit1", "fit2")], reset=FALSE, breaks=fitbreaks)

both <- c(nc$resid1, nc$resid2)

residbreaks <- seq(min(both), max(both), by = diff(range(both))/10)

plot(nc[ c("resid1","resid2")], breaks=residbreaks)

plot(nc[ c("diff2to1")], reset=FALSE)

https://cran.r-project.org/web/packages/spdep/vignettes/sids.pdf
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Figure 5.2: Model fits (top row) residuals (middle row), and differences (bottom) in
the fits for SIDS rates. For the first fit the original data is used, for the second fit the
value of Anson county is divided by 10. (See R-Code 5.6.)

5.4 Exploiting the Sparsity Structure

In the case of GMRF, the off-diagonal non-zero elements of the precision matrix Q are associ-
ated with the conditional dependence structure. As by the Markovian property, the number of
neighbors is small, the precision matrix Q is sparse, i.e., contains only O(n) non-zero elements
compared to O(n2) for a regular, full matrix. To take advantage of the few non-zero elements,
special structures to represent the matrix are required, i.e., only the positions of the non-zeros
and their values are kept in memory. Because of these special structures, tailored algorithms are
required to fully exploit the sparsity structure. The package spam provides this functionality; see
Furrer and Sain (2009) for a detailed exposition.

The sparsity structure is very important for the calculation based on the precision matrix Q.
It determines the (conditional) dependency structure and drives the computational cost. Hence,
the sparsity structure is often represented using a graph with edges representing the non-zero
elements or a “pixel” image of the zero/non-zero structure. Figure 5.4 gives such an illustration
for an “arbitrary” 5× 5 matrix A.

It is important to note that the labeling (order of the variables) influences the structures that
result from relevant computations. Reordering is performed through a so-called permutation. In
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A =
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Figure 5.3: The symmetric positive-definite n = 5 matrix A and the sparsity structure
of A and P⊤AP (top row). The graph associated with the matrix A and the Cholesky
factors R and U of A and P⊤AP respectively are given in the bottom row. The nodes
of the graph are labeled according to A (upright) and P⊤AP (italics).

matrix notation, a permutation is a matrix having exactly one element 1 per row and column.
All other elements are zero.

5.4.1 The spam Package

There are several R packages available to handle sparse matrices: Matrix, SparseM, spam. We
use the last one, which provides an extensive set of functions for sparse matrix algebra. Major
differences with Matrix are: (1) spam only supports (essentially) one sparse matrix format, (2) it
is based on transparent and simple structure(s), (3) it is tailored for MCMC calculations within
GMRF and (4) S3 and S4 like-“compatible” . . . and it is fast. R-Code 5.8 gives a quick overview
and shows that the handling of sparse matrices is straightforward.

R-Code 5.7: The shortest possible illustration of the package spam. The second part
contains code for Figure 5.4.

library(spam)

mat <- spam(sample(c(0,1), size=18, replace=T, prob=c(.8,.2)), 2, 9)

mat

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

## [1,] 0 0 0 0 0 0 0 0 0

## [2,] 1 0 0 1 0 0 0 0 1

## Class 'spam' (32-bit)

class(mat)

## [1] "spam"

## attr(,"package")

## [1] "spam"
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str(mat)

## Formal class 'spam' [package "spam"] with 4 slots

## ..@ entries : num [1:3] 1 1 1

## ..@ colindices : int [1:3] 1 4 9

## ..@ rowpointers: int [1:3] 1 1 4

## ..@ dimension : int [1:2] 2 9

diag(mat) <- 4

solve(mat %*% t(mat), c(1:2))

## [1] 0.038194 0.097222

### Lets construct a second sparse matrix `A`

A <- 0.5 * diag.spam(5)

i <- c(2, 4, 4, 5, 5)

j <- c(1, 1, 2, 1, 3)

A[cbind(i, j)] <- rep(.5, length(i))

A <- t(A) + A # this is the matrix as in Figure 5.1

summary(A)

## Matrix object of class 'spam' of dimension 5x5,

## with 15 (row-wise) nonzero elements.

## Density of the matrix is 60%.

## Class 'spam' (32-bit)

U <- chol(A)

class(U) # Special class, you do not really need to work with.

## [1] "spam.chol.NgPeyton"

## attr(,"package")

## [1] "spam"

(pivot <- U@pivot) # The permutation is found automatically!

## [1] 3 5 1 2 4

U@invpivot # Inverse of the permutation, see also `?permutation`

## [1] 3 4 1 5 2

P <- diag.spam(5)[U@invpivot,]

norm(A[ pivot, pivot] - t(P) %*% A %*% P ) # sum of squared differences.

## [1] 0

spam::display(A)

spam::display(U)

5.4.2 Never Calculate the Actual Inverse of a SPD Matrix

Covariance matrices (and thus precision matrices) are symmetric and positive definite matri-
ces. When calculating or maximizing multivariate normal log-likelihoods, we need to calculate
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determinants (det(Σ)) and quadratic forms (y⊤Σ−1y).
To be more specific, assume we need to calculate A−1b with A a symmetric positive-definite

matrix featuring some sparsity structure, which is usually accomplished by solving Ax = b. We
proceed by factorizing A into R⊤R, where R is an upper triangular matrix, called the Cholesky
factor or Cholesky triangle of A, followed by solving R⊤y = b and Rx = y , called forwardsolve
and backsolve, respectively. Note that the exposition could be done with the lower triangular
matrix L = R⊤.

From a computational point of view, there is a huge difference between solve(A)%*% b and
solve(A, b) !

Calculating the determinant can be done through various paths. For symmetric positive
definite matrices, the best approach is to perform a Cholesky factorization and use the property

det(A) = det(R⊤R) = det(R)2 =
∏
i

r2ii, (5.6)

where rii are the diagonal entries of R.

Notice that the Cholesky factor can be seen as a matrix square root and is thus used when
drawing multivariate standard random variables as well; see Section 1.2.2.

5.4.3 Solving Linear Systems

The Cholesky factor of a banded matrix is again a banded matrix. However, arbitrary sparse
matrices may produce full Cholesky factors. To reduce this so-called fill-in of the Cholesky factor
R, we permute the columns and rows of A according to a (cleverly chosen) permutation P, i.e.,
U⊤U = P⊤AP, with U an upper triangular matrix. Many different algorithms exist to find
permutations that are optimal for specific matrices or at least close to optimal with respect to
different criteria. The cost of finding a good permutation matrix P is at least of order O(n3/2)

(for lattices in two dimensions).
Note that R and U cannot be linked through P alone. Figure 5.4 illustrates the factorization

with and without permutation. Two triangular solves are performed after the factorization for
solving a linear system. The determinant of A is the squared product of the diagonal elements
of its Cholesky factor R. Hence the same factorization can be used to calculate determinants
(a necessary and computational bottleneck in the computation of the log-likelihood of a Gaus-
sian model), illustrating that it is crucial to have a very efficient integration (with respect to
calculation time and storage capacity) of the Cholesky factorization.

A typical Cholesky factorization of a sparse matrix consists of the steps illustrated in the
following pseudo-code algorithm.

[1] Determine permutation and permute the input matrix A to obtain P⊤AP

[2] Symbolic factorization, where the sparsity structure of U is constructed
[3] Numeric factorization, where the elements of U are computed

When factorizing matrices with the same sparsity structure, Steps 1 and 2 do not need to be
repeated. In MCMC algorithms, this is commonly the case, and exploiting this shortcut leads
to very considerable gains in computational efficiency (we revisit this in the coming chapters).
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As for Step 1, there are many different algorithms to find a permutation, for example, the
multiple minimum degree (MMD) algorithm, (Liu, 1985), and the reverse Cuthill-McKee (RCM)
algorithm, (George, 1971). The resulting sparsity structure in the permuted matrix determines
the sparsity structure of the Cholesky factor. As an illustration, R-Code 5.9 and Figure 5.5
illustrate the sparsity structure of the Cholesky factor resulting from an MMD, an RCM, and
no permutation of a precision matrix induced by a second-order neighbor structure of the US
counties.

R-Code 5.8: Illustrating the sparsity structure of the Cholesky factor using different per-
mutation schemes implemented in spam. (See Figure 5.5.)

In <- diag.spam(nrow(UScounties.storder))

Q <- In + .1 * UScounties.storder + .1 * UScounties.ndorder

summary(Q)

## Matrix object of class 'spam' of dimension 3082x3082,

## with 59978 (row-wise) nonzero elements.

## Density of the matrix is 0.631%.

## Class 'spam' (32-bit)

struct <- chol(Q)

spam::display(Q, ylab="", xlab="", cex=1) # Without cex, a warning is issued

spam::display (struct, ylab="", xlab="", cex=1)

summary(struct)

## (Upper) Cholesky factor of class 'spam.chol.NgPeyton' of dimension 3082x

## 3082 with 146735 (row-wise) nonzero elements.

## Density of the factor is 1.54%.

## Fill-in ratio is 4.65

## (Optimal argument for 'chol' is 'memory=list(nnzR=146735)'.)

## Class 'spam.chol.NgPeyton'

(nnzMMD <- sum(struct@entries > .Machine$double.eps ))

## [1] 81345

struct <- chol(Q, pivot="RCM")

spam::display(struct, ylab="", xlab="", cex=1)

summary(struct)

## (Upper) Cholesky factor of class 'spam.chol.NgPeyton' of dimension 3082x

## 3082 with 256198 (row-wise) nonzero elements.

## Density of the factor is 2.7%.

## Fill-in ratio is 8.13

## (Optimal argument for 'chol' is 'memory=list(nnzR=256198)'.)

## Class 'spam.chol.NgPeyton'

(nnzRCM <- sum(struct@entries > .Machine$double.eps ))

## [1] 135457
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struct <- chol(Q, pivot=FALSE)

spam::display (struct, ylab="", xlab="", cex=1)

summary(struct)

## (Upper) Cholesky factor of class 'spam.chol.NgPeyton' of dimension 3082x

## 3082 with 689615 (row-wise) nonzero elements.

## Density of the factor is 7.26%.

## Fill-in ratio is 21.9

## (Optimal argument for 'chol' is 'memory=list(nnzR=689615)'.)

## Class 'spam.chol.NgPeyton'

(nnzNONE <- sum(struct@entries > .Machine$double.eps ))

## [1] 270140

How much fill-in with zeros is present depends on the permutation algorithm. In the example
of Figure 5.5 there are 146 735, 256 198 and 689 615 non-zero elements in the Cholesky factors
with MMD, RCM, and no permutation, respectively. Note that the actual number of non-zero
elements of the Cholesky factor may be smaller than what the constructed sparsity structure
indicates, Here, there are 81345, 135457 and 270140 zero elements (up to machine precision)
that are not exploited.

We finish this section with examples illustrating further the functionality of spam in the
context of GMRFs.

Example 5.6. We manually implemented the spautolm functionality. Once a model has been
specified for specific data (here function mle.CAR()), parameter estimation can be carried out,
here with the optim function. R Code 5.10 shows how to fit a CAR model based on (5.5) (and
data as in Example 5.4).

The function mle.CAR() is very similar to the function spam::mle.nomean(), both represent
a rudimentary approach to estimate parameters in a multivariate normal setting. ♣

R-Code 5.9: Defining a likelihood function of a CAR model, “manually” optimizing it and
comparing it with the output of the spautolm function.

options(spam.cholupdatesingular="null")

mle.CAR <- function (y, W, theta) {

n <- length(y)

In <- diag.spam(n)
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Figure 5.4: Top left represents the sparsity structure of a precision matrix induced by
a second-order neighbor structure of the US counties. Sparsity structure of the Cholesky
factor with MMD (top right), RCM (bottom left), and no permutation of the precision
matrix. (See R-Code 5.9.)

Qstruct <- chol(In - 0.0001 * W)

neg2loglikelihood <- function(theta) {

Q <- (In - theta[2] * W)

cholQ <- update(Qstruct, Q)

if (is.null(cholQ)) return(1e6)

resid <- y - theta[1]

return(n * log(2*pi * theta[3]) - 2*c(determinant(cholQ)$modulus) +
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sum(resid * (Q %*% resid))/theta[3] )

}

out <- optim(theta, neg2loglikelihood, method="L-BFGS-B",

lower=c(-Inf, -Inf, 1e-5), hessian=TRUE)

if (out$convergence !=0) cat("Convergence issues, please inspect\n")

return(out)

}

listw <- nb2listw(ri.nb, style="B")

W <- as.spam.listw(listw)

print(tm1 <- mle.CAR(y , W, c(0,-.1,1)))

## $par

## [1] 0.15433 -0.58652 0.18748

##

## $value

## [1] 9.7953

##

## $counts

## function gradient

## 50 50

##

## $convergence

## [1] 0

##

## $message

## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

##

## $hessian

## [,1] [,2] [,3]

## [1,] 140.9364476 -9.608 4.8488e-03

## [2,] -9.6080461 1127.902 -2.2225e+02

## [3,] 0.0048488 -222.249 1.4229e+02

rbind(spamautolm=c(coef(carfit), sigma2=carfit$fit$s2, logLik=carfit$LL),

manual=c(tm1[[1]],tm1[[2]]/-2))

## (Intercept) lambda sigma2 logLik

## spamautolm 0.15434 -0.58653 0.18747 -4.8976

## manual 0.15433 -0.58652 0.18748 -4.8976

### Differences in the uncertainty estimates, should not be compared 1-2-1

rbind(spamautolm=c(se.Inter=summary(carfit)$Coef[,2], se.lambda=

carfit$lambda.se), manual=c(sqrt(solve(tm1$hessian)[c(1,5)])))

## se.Inter se.lambda
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## spamautolm 0.119121 0.050678

## manual 0.084269 0.035803

Example 5.7. Illustration of numerically determine the valid parameter space. Consider a CAR
model with a first- and a second-order neighbor structure. More specifically, we consider

Yi | y−i ∼ N
(∑
j,j∼i

θ1yj +
∑
j,j≈i

θ2yj , τ
2
)
, τ > 0, i = 1, . . . , n, (5.7)

where j ∼ i and j ≈ i indicate first- and second-order neighbors, respectively. That means,
the resulting precision matrix Q has the structure Q = τ−2(I − θ1W1 − θ2W2) where Wi are
(binary) spatial weight matrices. We have to impose constraints on (θ1, θ2), such that Q is
positive definite, i.e., we need to determine the valid parameter space Θ ⊂ R2. Here, we do not
have a closed form description of the parameter space (recall Example 5.3).

We first construct an (arbitrary but valid) precision matrix based on the first- and second-
order structure to exploit the spam options. To ensure validity, we choose very small values
of (θ1, θ2), as we know that (0, 0) ∈ Θ. Then, we cycle over a specified fine grid of theta1

and theta2 and verify if the precision matrix is positive definite. If the matrix passed to
update is not symmetric positive definite, which means that the value of tmp is NULL, the pair
(theta1[i],theta2[2]) lies not within Θ. Figure 5.6 shows Θ. The valid range is color-coded
according to the value of log(detQ). Notice the domain’s asymmetry and the determinant’s very
small values. The maximum (being zero) is at the origin, see also Remark 5.2.

Based on the fine grid used, the loop takes several minutes. Naturally, the convexity of the
domain could easily be exploited. Of course, in practice, the precise space Θ is not necessary
for optimization in a maximum likelihood estimation context. Similarly, in Bayesian settings, it
would be possible to place a prior over Θ without knowing it explicitly. ♣

Remark 5.2. In the case of independence, the precision/covariance matrix is the identity. For
simplicity, assume σ2 = 1, then the determinant is equal to one, as all eigenvalues are 1. Adding
spatial structure will decrease the determinant, as some of the eigenvalues will be larger than
one, others smaller. However, since the sum of the eigenvalues remains constant (here n), the
product of these decreases. ♡
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R-Code 5.10 Determining the valid parameter space Θ through a numerical assessment of
the precision matrix. (See Figure 5.6.)

In <- diag.spam(nrow(UScounties.storder))

struct <- chol(In - .1 * UScounties.storder - .01 * UScounties.ndorder)

### which is a valid, but (arbitrary) precision matrix.

options(spam.cholupdatesingular="null") # We want to avoid errors.

len1 <- 300 # even

len2 <- 150

theta1 <- seq(-.515, .225, len=len1)

theta2 <- seq(-.19, .095, len=len2)

grid <- array(NA, c(len1, len2))

for (i in 1:len1) {

for(j in 1:len2) {

tmp <- update(struct, In - theta1[i]*UScounties.storder

- theta2[j]* UScounties.ndorder)

if(!is.null(tmp)) grid[i,j] <- determinant(tmp)$modulus

}

}

image.plot(theta1, theta2, grid, xlab=expression(theta[1]),

ylab=expression(theta[2]), xlim=c(-.45, .22), ylim=c(-.2, .1))

abline(v=0, h=0, lty=2)

Figure 5.5: The domain Θ for the US counties with a second-order neighbor structure.
The values represent log(detQ) and the white area represents Θc. (See R-Code 5.11.)
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5.5 Further Example

We consider here an additional example based on the oral cavity cancer data. We fit a simple
CAR model with a binary weight matrix to the standardized mortality rates. The weight matrix
is constructed in two different ways for illustrative purposes: once with the build-in function
adjacency.landkreis() from the package spam and second manually based on a file defining
the neighbor list. The same package also provides the latter. The range of possible values of λ is
approximately from -0.296 to 0.159. The estimated value λ̂ = 0.152 is quite close to the boundary
of the valid range. This often indicates that the proposed CAR model is not sufficiently flexible.
This might also be seen as the drawn realizations seem more speckled than the observed data (see
Figure 5.7). For a better comparison, we use the same seed, such that the first n = 544 random
numbers from rnorm() are equivalent (for the GMRF realization, they are further transformed).

Notice that only the marginal conditional precision is constant, not the marginal variances
or marginal standard deviation.

R-Code 5.11: Oral cavity cancer example. (See Figure 5.7.)

library(spam)

data(Oral, package="spam")

hist(Oral$SMR, main="", xlab="SMR")

abline(v=mean(Oral$SMR), col=4, lwd=2)

filename <- system.file("demodata/germany.adjacency", package="spam")

# system(paste("head ", filename), intern=F) # show content of the file

W <- adjacency.landkreis(filename)

barplot(table(diff(W@rowpointers)), xlab="# of neighbors")

### The following uses as input a classical ASCII format of nb files.

n <- as.numeric(readLines(filename, n=1))

nnodes <- nodes <- numeric(n)

adj <- list()

for (i in 1:n) {

tmp <- as.numeric(scan(filename, skip=i, nlines=1, quiet=T,

what=list(rep("", 13)))[[1]])

nodes[i] <- tmp[1]

nnodes[i] <- tmp[2]

adj[[i]] <- as.integer(tmp[-c(1:2)]+1)

}

adj <- adj[order(nodes)]

attr(adj, "region.id") <- germany.info$id

attr(adj, "sym") <- TRUE

class(adj) <- "nb"

Dlistw <- nb2listw(adj, style="B")

W1 <- as.spam.listw(Dlistw)

all.equal.spam(W, W1)
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## [1] TRUE

# summary(Dlistw)

# table(unlist(lapply(adj, length)))

### We can now start spatial modeling. For example a simple CAR:

carfit <- spautolm(SMR ~ 1, data=Oral, listw=Dlistw, family="CAR")

### strictly speaking, we should include an offset of 1 here:

# lm(SMR ~ offset(rep(1,n))+ 1, data=Oral)

### aparently spautolm() does not incorporate this.

options(spam.cholupdatesingular="null")

tm1 <- mle.CAR(Oral$SMR, W, c(0,.1,2))

### again, surprising similar results:

coefs <- c(coef(carfit), sigma2=carfit$fit$s2)

rbind(spamautolm= c(coefs, logLik=carfit$LL),

manual=c(tm1[[1]], tm1[[2]]/-2))

## (Intercept) lambda sigma2 logLik

## spamautolm 1.001 0.15219 0.088880 -141.58

## manual 1.001 0.15216 0.088894 -141.58

### Valid parameter range for lambda:

lambda <- c(seq(-.2959, to=-.2958, by=0.00005),

seq(.159, to=.1591, by=0.00005))

for (i in 1:length(lambda))

if (class(try(chol(diag.spam(n)-lambda[i]*W),silent=TRUE))!=

"spam.chol.NgPeyton") lambda[i] <- NA

lambda # estimates are quite on the boundaries!!!

## [1] NA -0.29585 -0.29580 0.15900 0.15905 NA

zl <- c(-0.6, 2.4)

germany.plot(Oral$SMR, main="SMR",border=NA, zlim=zl)

set.seed(14)

germany.plot(rnorm(n, mean=coefs[1], sd=sqrt(coefs[3])),

main="White noise", border=NA, zlim=zl)

N <- 1000 # We simulate many realizations with similar parameters

Q <- (diag.spam(n)- coefs[2]*W)/coefs[3]

set.seed(14)

ex <- rmvnorm.prec(N, mu=coefs[1], Q=Q)

lambdahat <- numeric(4) # We only look at four

for (i in 1:4) {

germany.plot(ex[i,], main=paste("Sample",i),border=NA, zlim=zl)

# mle.CAR(ex[i,], W, c(1,.12,09)) # leads often to convergence issues!!

lambdahat[i] <- spautolm(ex[i,] ~ 1, listw=Dlistw, family="CAR")$lambda

}
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lambdahat

## [1] 0.15437 0.15669 0.14492 0.15754

germany.plot(colMeans(ex), main="Means", border=NA)

germany.plot(apply(ex, 2, sd), main="SD", border=NA)

germany.plot(diag(solve(cov(ex))), main="Precision", border=NA)

We now extend our model to two parameters, much in the spirit of Equation (5.7). R-
Code 5.13 illustrates such an approach by defining a likelihood function. The estimates are
pretty close to zero. To evaluate if they are close to the boundary, we need a similar illustration
as in R-Code 5.11. Overall, the model fit is definitely better, and we reduce the negative log-
likelihood from 183.2 to 274.5 for one single additional parameter. Samples drawn from the
estimated precision matrix are somewhat smoother than with one parameter only, as shown by
Figure 5.8 for one specific example.

The estimation does not take a long time (less than a couple of seconds, although there are
363 likelihood evaluations (see tm2$counts[1]).

R-Code 5.12: Oral cavity cancer example. (See Figure 5.8.)

options(spam.cholupdatesingular="null")

mle.CAR2 <- function (y, W1, W2, theta) {

n <- length(y)

In <- diag.spam(n)

Qstruct <- chol(In - 0.0001 * W1 - 0.0001 * W2)

neg2loglikelihood <- function(theta) {

Q <- (In - theta[2] * W1 - theta[3] * W2)

cholQ <- update(Qstruct, Q)

if (is.null(cholQ)) return(1e6)

resid <- y - theta[1]

return(n * log(2*pi * theta[4]) - 2*c(determinant(cholQ)$modulus) +

sum(resid * (Q %*% resid))/theta[4] )

}

out <- optim(theta, neg2loglikelihood, method="L-BFGS-B",

lower=c(-Inf, -Inf, -Inf, 1e-5), hessian=TRUE)

if (out$convergence !=0) cat("Convergence issues, please inspect\n")

return(out)

}

listw2 <- nblag(adj,2)[[2]] # constructs higher order neighbors

W2 <- as.spam.listw(nb2listw(listw2, style="B"))

tm2 <- mle.CAR2(Oral$SMR, W1, W2, c(1,-0.0,-0.0,.1)) # W1 from above
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## Convergence issues, please inspect

print(unlist(tm2[c(2,1)])) # Hessian and other stuff not relevant here

## value par1 par2 par3 par4

## 274.491868 0.994615 0.033386 0.056566 0.105442

print(unlist(tm1[c(2,1)])) # quite a few function calls

## value par1 par2 par3

## 283.165444 1.001000 0.152156 0.088894

Q2 <- (diag.spam(n)- tm2$par[2]*W1 - tm2$par[3]*W2)/tm2$par[4]

set.seed(14)

ex2 <- rmvnorm.prec(1, mu=tm2$par[1], Q=Q2)

germany.plot(ex2[1,], main="Sample 1, 2 pars",border=NA, zlim=zl)

germany.plot(ex[1,], main="Sample 1", border=NA, zlim=zl)

germany.plot(ex2[1,]-ex[1,], main="Difference",border=NA)

5.6 *Details of Spatial Classes

All spatial objects (data, locations, etc.) are linked to a bounding box (defining the spatial
domain, slot bbox) and a coordinate reference system (defining map projections and transforma-
tions to references projections, slot proj4string, itself of class CRS) (Bivand et al., 2013, Section
4.1). For many years the package sp provided many different classes for spatial objects. The core
class for the spatial objects is Spatial with many subclasses, e.g., SpatialPoints (extending
with a coords slot), SpatialLines (extending with a lines slot), SpatialPolygons, etc.

R-Code 5.13: Spatial class of package sp.

library(sp)

# getClass("Spatial") # structure of the class and its subclasses

# vignette("intro_sp", package="sp")

getSlots("SpatialPolygons")

## polygons plotOrder bbox proj4string

## "list" "integer" "matrix" "CRS"

For example, the manual construction of a SpatialPolygons is very tedious and hardly done
in practice. Often the relevant objects are created by querying databases or other spatial objects
such as extracting the information from the maps or mapdata packages, for example.

Moreover, the entire framework has been shifted more towards ‘simple features’ provided by
the package sf. The mitigation is not entirely completed yet but it is generally recommended.
See also Figure 5.9.
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Figure 5.6: Top row: histogram of SMR of oral cavity cancer (left) and the number of
neighbors of each of the districts (right). Bottom panels: SMR, white noise comparison,
four samples having the same mean and precision matrix (unconditional simulation),
means, marginal standard deviation, and precision of 1000 samples. (See R-Code 5.12.)
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Figure 5.7: Comparison of a realization with a one-parameter and two-parameter
model. Middle panel is similar as Figure 5.7. (See R-Code 5.13.)

Figure 5.8: Similarities and differences between the packages sp and sf (source left)
and the R spatial ecosystem (source right).
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