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What is this talk about?

Young diagrams λ ⊢ n:

We consider a random Young diagram of size n (the measure is not
uniform, it will be described later).

Question: asymptotic behaviour of the lengths of its first rows, its first
columns, . . .

Tool: representation theory of symmetric groups.
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Model of random Young diagrams A short course of representation theory

What is a representation?

Sn: group of permutations of elements 1, 2, · · · , n.

A representation of Sn is a couple (V , ρ) where:

V is a finite dimensional C vector space;

ρ is a morphism Sn → GL(V ).
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Model of random Young diagrams A short course of representation theory

What is a representation?

Sn: group of permutations of elements 1, 2, · · · , n.

A representation of Sn is a couple (V , ρ) where:

V is a finite dimensional C vector space;

ρ is a morphism Sn → GL(V ).

We are interested in irreducible representations.

Theorem

Irreducible representations of Sn are in bijection
with partitions λ ⊢ n or, equivalently, Young
diagrams λ with n boxes.

Ex: n = 10,
λ = (5, 3, 2).
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Model of random Young diagrams A short course of representation theory

Characters

Let (V , ρ) be a representation of Sn. We define:

χρ(σ) =
Tr

(

ρ(σ)
)

dim(λ)
for σ ∈ Sn.

It i s the (normalized) character of ρ.

No loss of information!

(ρ,V ) ≃Sn (ρ′,V ′) ⇔ χρ = χρ′ .
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Model of random Young diagrams A short course of representation theory

Characters

Let (V , ρ) be a representation of Sn. We define:

χρ(σ) =
Tr

(

ρ(σ)
)

dim(λ)
for σ ∈ Sn.

It i s the (normalized) character of ρ.

Note that
χρ(τ−1στ) = χρ(σ).

Indeed,

χρ(τ−1στ) =
Tr

(

ρ(τ−1στ)
)

dim(λ)

=
Tr

(

ρ(τ)−1 · ρ(σ) · ρ(τ)
)

dim(λ)
=

Tr
(

ρ(σ)
)

dim(λ)

V. Féray (CNRS, LaBRI) Large Young diagrams Zurich, 2011-04-13 5 / 25



Model of random Young diagrams A short course of representation theory

Characters

Let (V , ρ) be a representation of Sn. We define:

χρ(σ) =
Tr

(

ρ(σ)
)

dim(λ)
for σ ∈ Sn.

It i s the (normalized) character of ρ.

Note that
χρ(τ−1στ) = χρ(σ).

i.e. χρ is a central function on Sn.

V. Féray (CNRS, LaBRI) Large Young diagrams Zurich, 2011-04-13 5 / 25



Model of random Young diagrams A short course of representation theory

Characters

Let (V , ρ) be a representation of Sn. We define:

χρ(σ) =
Tr

(

ρ(σ)
)

dim(λ)
for σ ∈ Sn.

It i s the (normalized) character of ρ.

Note that
χρ(τ−1στ) = χρ(σ).

i.e. χρ is a central function on Sn.

Theorem

The characters χλ of irreducible representations ρλ of the symmetric group
Sn form an (orthogonal) basis of the space of central functions on Sn.
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Model of random Young diagrams Definition of our probability measures

Some central functions on
⋃

Sn

Let ω = (α1, α2, . . . ;β1, β2, . . . , γ) with

α and β infinite non-increasing sequences;

αi , βi , γ ≥ 0;
∑

i αi +
∑

i βi + γ = 1.
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Some central functions on
⋃

Sn

Let ω = (α1, α2, . . . ;β1, β2, . . . , γ) with

α and β infinite non-increasing sequences;

αi , βi , γ ≥ 0;
∑

i αi +
∑

i βi + γ = 1.

Define

p1(ω) = 1

pk(ω) =
∑

ak
i + (−1)k−1

∑

bk
i

p(µ1,µ2,... )(ω) =
∏

j

pµj
(ω).
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Model of random Young diagrams Definition of our probability measures

Some central functions on
⋃

Sn

Let ω = (α1, α2, . . . ;β1, β2, . . . , γ).

p1(ω) = 1

pk(ω) =
∑

ak
i + (−1)k−1

∑

bk
i for k ≥ 2.

p(µ1,µ2,... )(ω) =
∏

j

pµj
(ω).

We will consider the following central function on
⋃

Sn.

Fω(σ) = pt(σ)(ω),

where t(σ) is the cycle-type of σ.
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Model of random Young diagrams Definition of our probability measures

Examples

Fω(Id) = 1
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Model of random Young diagrams Definition of our probability measures

Examples

Fω(Id) = 1

ω = ((1 − q), (1 − q)q, (1 − q)q2, . . . ; 0, 0, . . . ; 0)

Fω((1 2 3)(4 5)) =





∑

i≥0

(

(1 − q)qi
)3









∑

i≥0

(

(1 − q)qi
)2





=
(1 − q)5

(1 − q3)(1 − q2)

= Fω((1 2 3)(4 5)(6))
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Model of random Young diagrams Definition of our probability measures

Examples

Fω(Id) = 1

ω = ((1 − q), (1 − q)q, (1 − q)q2, . . . ; 0, 0, . . . ; 0)

Fω((1 2 3)(4 5)) =





∑

i≥0

(

(1 − q)qi
)3









∑

i≥0

(

(1 − q)qi
)2





=
(1 − q)5

(1 − q3)(1 − q2)

= Fω((1 2 3)(4 5)(6))

ω = (0, 0, . . . ; 0, 0, . . . ; 1)

Fω(σ) =

{

1 if σ = Id;

0 else.
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Model of random Young diagrams Definition of our probability measures

Probability measure on Yn

Fix a parameter ω an integer n.
Fω/Sn is a central function on Sn. Therefore, as function on Sn,

Fω =
∑

λ⊢n

cλχ
λ.

Note that
∑

λ⊢n

cλ =
∑

λ⊢n

cλχ
λ(Id) = Fω(Id) = 1.
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Model of random Young diagrams Definition of our probability measures

Probability measure on Yn

Fix a parameter ω an integer n.
Fω/Sn is a central function on Sn. Therefore, as function on Sn,

Fω =
∑

λ⊢n

cλχ
λ.

Note that
∑

λ⊢n

cλ =
∑

λ⊢n

cλχ
λ(Id) = Fω(Id) = 1.

Proposition

∀ λ, cλ ≥ 0.

Hence, the cλ define a probability measure P
ω
n on Yn

P
ω
n (X = λ) = cλ.
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Model of random Young diagrams Definition of our probability measures

Pursuing the examples

ω = (0, 0, . . . ; 0, 0, . . . ; 1).
A classical result in representation theory states that:

C[Sn] ≃Sn

⊕

λ⊢n

V
dim(Vλ)
λ

We look at the trace of the action of σ:

Fω =
∑

λ⊢n

dim(Vλ)
2

n!
χλ.

Hence P
ω
n (X = λ) = dim(Vλ)

2

n! . This measure is known as Plancherel
measure.
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Model of random Young diagrams Definition of our probability measures

Pursuing the examples

ω = (0, 0, . . . ; 0, 0, . . . ; 1).
A classical result in representation theory states that:

C[Sn] ≃Sn

⊕

λ⊢n

V
dim(Vλ)
λ

We look at the trace of the action of σ:

Fω =
∑

λ⊢n

dim(Vλ)
2

n!
χλ.

Hence P
ω
n (X = λ) = dim(Vλ)

2

n! . This measure is known as Plancherel
measure.

ω = ((1 − q), (1 − q)q, (1 − q)q2, . . . ; 0, 0, . . . ; 0).
P
ω
n is in this case a q-deformation of Plancherel measure already

considered by Kerov in another context.
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Model of random Young diagrams Results

Main theorem of the talk

Theorem

Fix a parameter ω. For each n, we pick a random Young diagram λ(n) with
the distribution Pn,ω. Then, one has the convergences in probability:

∀ i ,
λ
(n)
i

n
→ αi

∀ i ,
(λ(n))′i

n
→ βi
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Model of random Young diagrams Results

Main theorem of the talk

Theorem

Fix a parameter ω. For each n, we pick a random Young diagram λ(n) with
the distribution Pn,ω. Then, one has the convergences in probability:

∀ i ,
λ
(n)
i

n
→ αi

∀ i ,
(λ(n))′i

n
→ βi

proved by Kerov and Vershik in 1981.

method of proof used here (which gives also information on the
fluctuations): F., Méliot (2010) in the case of q-Plancherel measure.

Generalization with the same argument to all Pω
n : Méliot 2011.
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Model of random Young diagrams Results

Examples

q = 1/2, ω = ((1 − q), (1 − q)q, (1 − q)q2, . . . ; 0, 0, . . . ; 0).

λi

n
→ (1/2)i ,

λ′
i

n
→ 0

Here is a random Young diagram of size 200 (computed and drawn by
PL Méliot).

λ = (101, 51, 28, 8, 7, 3, 1, 1).
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Model of random Young diagrams Results

Examples

q = 1/2, ω = ((1 − q), (1 − q)q, (1 − q)q2, . . . ; 0, 0, . . . ; 0).

λi

n
→ (1/2)i ,

λ′
i

n
→ 0

Here is a random Young diagram of size 200 (computed and drawn by
PL Méliot).

λ = (101, 51, 28, 8, 7, 3, 1, 1).

ω = (0, 0 . . . ; 0, 0, . . . ; 1) (Plancherel case)

λi

n
→ 0,

λ′
i

n
→ 0

⇒ no big rows and columns (but no precise information!).
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Transition

Normalized character values have simple expectations!

Fix σ ∈ Sn. Let us consider the random variable:

Xσ(λ) = χλ(σ) =
Tr

(

ρλ(σ)
)

dim Vλ
.
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Normalized character values have simple expectations!

Fix σ ∈ Sn. Let us consider the random variable:

Xσ(λ) = χλ(σ) =
Tr

(

ρλ(σ)
)

dim Vλ
.

Let us compute its expectation:

EPω
n
(Xσ) =

∑

λ⊢n

cλχ
λ(σ) = Fω(σ),

by the very definition of Pω
n !
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Transition

Normalized character values have simple expectations!

Fix σ ∈ Sn. Let us consider the random variable:

Xσ(λ) = χλ(σ) =
Tr

(

ρλ(σ)
)

dim Vλ
.

Let us compute its expectation:

EPω
n
(Xσ) =

∑

λ⊢n

cλχ
λ(σ) = Fω(σ),

by the very definition of Pω
n !

Strategy: express other functions of Young diagrams in terms of Xσ.
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Polynomial functions on Young diagrams Normalized characters

Definition of normalized characters

Let us define

Chµ :
Y → C;
λ 7→ |λ|(|λ| − 1) . . . (|λ| − k + 1)χλ(σ),

where k = |µ|.
and σ is a permutation in S|λ| of cycle type µ1|λ|−k .

In particular,
Chµ(λ) = 0 as soon as |λ| < |µ|

Examples:

Ch1k (λ) = |λ|(|λ| − 1) . . . (|λ| − k + 1)

Ch(2)(λ) = |λ|(|λ| − 1)χλ
(

(1 2)
)

=
∑

i

(λi )
2 − (λ′

i )
2

Chµ∪1(λ) = (|λ| − |µ|)Chµ(λ)
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Polynomial functions on Young diagrams Normalized characters

Product of normalized characters

Chµ(λ) = |λ|(|λ| − 1) . . . (|λ| − k + 1)χλ(σ).

Proposition

The functions Chµ, when µ runs over all partitions, are linearly independent
(over C).
Moreover, they span a subalgebra Λ⋆ of functions on Young diagrams.

Example: Ch(2) ·Ch(2) = 4 · Ch(3) +Ch(2,2)+2Ch(1,1).
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Polynomial functions on Young diagrams An algebraic basis of Λ⋆

Frobenius coordinates and their power sums

If λ is a Young diagram, define its Forbenius coordinates (ai , bi ), 1 ≤ i ≤ h
as follows:

bi = λ′
i − i + 1/2 > 0, ai = λi − i + 1/2 > 0
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Polynomial functions on Young diagrams An algebraic basis of Λ⋆

Frobenius coordinates and their power sums

If λ is a Young diagram, define its Forbenius coordinates (ai , bi ), 1 ≤ i ≤ h
as follows:

Mk(λ) :=
∑

ak
i + (−1)k−1

∑

i

bk
i
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Polynomial functions on Young diagrams An algebraic basis of Λ⋆

An algebraic basis of Λ⋆

Theorem (Kerov, Olshanski, 1994)

(λ 7→ Mk(λ))k≥1 is an algebraic basis of Λ⋆.

Example:

Ch4 = M4 − 4M2 · M1 +
11
2

M2.

Not very explicit formula for the change of basis

Chk = [tk+1]







−1
k

k
∏

j=1

(1 − (j − 1/2)t) · exp





∞
∑

j=1

Mj t
j

j
(1 − (1 − kt)−j)










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Polynomial functions on Young diagrams Gradation and change of basis

Asymptotic change of basis

We consider a gradation on Λ⋆:

deg(Mk) = k

The highest degree term of the change of basis is easy:

Chµ =
∏

i

Mµi
+ smaller degree terms.
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Proof of the result Convergence of M
k
’s

Filtration and order of magnitude

Lemma

x ∈ Λ⋆ ⇒ EPω
n
(x) = O(ndeg(x))

Proof:

EPω
n
(Chµ) = n(n − 1) . . . (n − |µ|+ 1)E

(

λ 7→ χλ(µ)
)

= n(n − 1) . . . (n − |µ|+ 1)pµ(ω)

= O(n|µ|)

so the lemma is true for x = Chµ.
As it is a basis, this is enough.
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Proof of the result Convergence of M
k
’s

Asymptotic behaviour of the Mk

Using the previous lemma,

EPω
n
(Mk) = EPω

n
(Ch(k)) + O(nk−1)



Proof of the result Convergence of M
k
’s

Asymptotic behaviour of the Mk

Using the previous lemma,

EPω
n
(Mk) = EPω

n
(Ch(k)) + O(nk−1)

= n(n − 1) . . . (n − k + 1)EPω
n

[

χ·
(

(1 . . . k)
)]

+ O(nk−1)

= nkpk(ω) + O(nk−1).
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Proof of the result Convergence of M
k
’s

Asymptotic behaviour of the Mk

Using the previous lemma,

EPω
n
(Mk) = EPω

n
(Ch(k)) + O(nk−1)

= n(n − 1) . . . (n − k + 1)EPω
n

[

χ·
(

(1 . . . k)
)]

+ O(nk−1)

= nkpk(ω) + O(nk−1).

We can also estimate its variance:

EPω
n
(M2

k )− EPω
n
(Mk)

2 = EPω
n
(Ch(k,k))− EPω

n
(Ch(k))

2

+ O(n2k−1)

= n2kp(k,k)(ω)− (nkpk(ω))
2 + O(n2k−1)

= O(n2k−1)
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Proof of the result Convergence of M
k
’s

Asymptotic behaviour of the Mk

Using the previous lemma,

EPω
n
(Mk) = EPω

n
(Ch(k)) + O(nk−1)

= n(n − 1) . . . (n − k + 1)EPω
n

[

χ·
(

(1 . . . k)
)]

+ O(nk−1)

= nkpk(ω) + O(nk−1).

We can also estimate its variance:

EPω
n
(M2

k )− EPω
n
(Mk)

2 = EPω
n
(Ch(k,k))− EPω

n
(Ch(k))

2

+ O(n2k−1)

= n2kp(k,k)(ω)− (nkpk(ω))
2 + O(n2k−1)

= O(n2k−1)

Mk(λ)

nk
converges in probability towards pk(ω).

V. Féray (CNRS, LaBRI) Large Young diagrams Zurich, 2011-04-13 20 / 25



Proof of the result Convergence of lengths of rows and columns

End of the proof of the theorem

Mk (λ)
nm is the (k − 1)-th moment of the probability measure

Xλ =

d
∑

i=1

(a∗i (λ)/n) δ(a∗i (λ)/n) + (b∗i (λ)/n) δ(−b∗

i
(λ)/n).

and pk(omega) the k − 1-th moment of

Xω = γδ0 +
∑

i≥1

αiδαi
+ βiδ−βi

.
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Proof of the result Convergence of lengths of rows and columns

End of the proof of the theorem

Mk (λ)
nm is the (k − 1)-th moment of the probability measure

Xλ =

d
∑

i=1

(a∗i (λ)/n) δ(a∗i (λ)/n) + (b∗i (λ)/n) δ(−b∗

i
(λ)/n).

and pk(omega) the k − 1-th moment of

Xω = γδ0 +
∑

i≥1

αiδαi
+ βiδ−βi

.

We have convergence in probability of the repartition function at each
point x 6= 0, αi ,−βi .

⇒ easy to check that it implies the theorem.
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A few remarks Second order

Fluctuations of the Mk

it is easy to compute the dominant term of Var(Mk) and Cov(Mk ,Ml ).

One can show that the fluctuations of the Mk ’s form a Gaussian
vector (using joint cumulants).
It requires combinatorial computations in Λ⋆ and some technical tools
(introduced by P. Śniady)
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A few remarks Second order

Fluctuations of row and column lengths

Consider the case β1 = β2 = · · · = γ = 0. Let

Yi =
√

n

(

λi

n
− αi

)

.

Then

Mk(λ) ∼
∑

i

λk
i = nk

(

∑

αk
i +

k√
n

∑

αk−1
i Yi + . . .

)

i.e.
∀ k , k

∑

αk−1
i Yi = fluctuations(Mk).

We can recover the Yi only if the αi are distinct!
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A few remarks Second order

Fluctuations of row and column lengths (2)

If the αi are distinct, it’s working. For instance,
if ω = ((1 − q), (1 − q)q, (1 − q)q2, . . . ; 0, 0, . . . ; 0),

Theorem (F., Méliot 2010)

Denote Yn,q,i the rescaled deviation

√
n

(

λi

n
− (1 − q) qi−1

)

.

Then we have convergence of the finite-dimensional laws of the random
process (Yn,q,i )i≥1 towards those of a gaussian process (Yq,i)i≥1 with:

E[Yq,i ] = 0 ; E[Y 2
q,i ] = (1 − q) qi−1 − (1 − q)2 q2(i−1) ;

cov(Yq,i ,Yq,j) = −(1 − q)2 qi+j−2.

Otherwise, we need another method (cf. Pierre-Loïc’s talk).
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A few remarks Plancherel measure

Remark on the Plancherel case

The theorem does not give much information.

There is a deterministic limit shape (Logan, Shepp 77 and Kerov,
Vershik 77). The fluctuations around this shape is known (Ivanov,
Kerov, Olshanski 2002).

They used the same kind of method, replacing power sums of
Frobenius coordinates by free cumulant of the transition measure (in
fact, we have adapted their ideas!).

End of the talk. Thanks!
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