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Introduction: Mean field between Physics and Mathematics Physics

Mean field in physics

In many physical situations the number of degrees of freedom of the system under consideration is
extremely high (even if finite).

This is due to the presence of a high number of “fundamental constituents” (particles) in
interaction.

It is not uncommon, e.g. in condensed matter physics, to consider systems with N = 104 − 107

particles.

To describe these systems, the so-called mean field approximation is often used: any particle is
subjected to an effective (nonlinear) self-interaction, that represents the averaged effect of all other
particles.

An N-dimensional problem is reduced to a one-dimensional problem.
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Introduction: Mean field between Physics and Mathematics Physics

How good is the approximation?

Mean field dynamics becomes exact only in the limit N →∞.

Do we have to take into account the error? At which (small) value of N does it becomes
significant?

Example (Grossmann and Holthaus [1996]; Dalfovo et al. [1999]). In Bose-Einstein
condensation (102 − 107 atoms) the leading error term is of order N−1/3, and becomes insignificant
when N & 104; higher order corrections are experimentally indistinguishable for N & 103.

It is thus physically relevant to provide an upper bound on the first order corrections (of mean field
approximations).
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Introduction: Mean field between Physics and Mathematics Mathematics

Rate of convergence in Mathematics

In mathematical physics, the rate of convergence towards mean-field limits is an active subject of
investigation.

A non-exhaustive list of recent results comprehends: Rodnianski and Schlein [2009]; Grillakis,
Machedon and Margetis [2010]; Knowles and Pickl [2010]; L.Chen, Lee and Schlein [2011];
Anapolitanos [2011]; Pickl [2011]; X. Chen [2012]; F. [2013].

The “optimal” rate of convergence after time evolution is considered to be N−1, but it is obtained
only for initial states with special structure (factorized, coherent). Also, the rate seems to depend
on the singularity of the interaction.

Marco Falconi (CHL, Univ. Rennes 1) Rate of convergence on mean field theories LODIQUAS meeting, December 9th 2014. 5 / 17



Introduction: Mean field between Physics and Mathematics Mathematics

Our contribution aims to clarify the following aspects:

• rate of convergence for general states;

• “optimality” of N−1;

• influence of time evolution on the rate of convergence.
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Mathematical framework States and reduced density matrices

A quantum bosonic system

A quantum system with a fixed number N of identical d-dimensional particles is usually set in a

suitable subspace of
⊗(N) L2(Rd).

If the particles are bosons, we take the symmetric subspace; we will assume our Hilbert space to be

the N-fold symmetric tensor copy of a separable Hilbert space H , that we denote HN =
⊗(N)

s H .

We define an N-particle state (or density matrix) ρN as a positive, self-adjoint trace-class operator
on HN with trace one.

Suppose that we have an operator that acts only on p ≤ N particles at a time; then in some sense
the other degrees of freedom of the N-particle state are “useless”. It is then convenient to

introduce the reduced density matrix ρ
(p)
N , an “inherited p-particle state” where the additional

N − p degrees of freedom have been taken out.
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Mathematical framework States and reduced density matrices

The p-particle reduced density matrix is therefore the state ρ
(p)
N on Hp such that for any bounded

operator A ∈ L(H ):

Tr[ρNA⊗ 1⊗N−p ] = Tr[ρ
(p)
N A] .

Remark: ρ
(p)
N is indeed a positive, self-adjoint trace class operator on Hp with trace one.

Under suitable regularity conditions, the reduced density matrices converge in the limit N →∞. In
the limit, p remains fixed.

We will always assume that the reduced density matrices ρ
(p)
N converge for any p ∈ N∗, to a limit

ρ
(p)
∞ characterized by a unique Wigner measure µ0 on H . The limit state has the form:

ρ(p)
∞ =

∫
H

|z⊗p 〉〈z⊗p |dµ0(z) .

Convergence has to be intended in the topology induced by the trace norm (that we will denote by
‖ · ‖1).
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Mathematical framework Dynamics

Time evolution

We consider a simple dynamics on our system, namely one described by a Hamiltonian operator of
the form:

HN =
N∑
j=1

Dj + VN .

D is a self-adjoint operator on the one-particle space H ; VN is a bounded operator on HN with
N-dependent bound.

Example [L2
s (RdN)]: D = −∆x , VN = 1

N

∑N
i<j V (xi − xj), V ∈ L∞(Rd) and symmetric.
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Mathematical framework Dynamics

The time-evolution of the state is ρN(t) = e−itHNρNe
itHN .

We denote by ρ
(p)
N (t) the corresponding p-particle reduced density matrices.

The regularity assumption on the state at time zero and on the Hamiltonian HN imply that for any

p ∈ N∗, t ∈ R there exists ρ
(p)
∞ (t) such that:

‖ρ(p)
N (t)− ρ(p)

∞ (t)‖1 −→
N→∞

0 .
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Bounds on the rate of convergence Initial time

Bounds at initial time

If the quantum evolution has not yet taken place, it is relatively easy to obtain bounds on the rate
of convergence.

There are N-particle states whose p-particle marginals coincide with their limit.

* Example [Hermite states]: |ϕ⊗N〉〈ϕ⊗N |, ϕ ∈H .

In general, given a state ρN ∈ L1(HN) we may expect to prove that there exist α(N) −→
N→∞

∞ such

that for any p ∈ N∗

‖ρ(p)
N − ρ

(p)
∞ ‖1 = O

( 1

α(N)

)
;

or at least

‖ρ(p)
N − ρ

(p)
∞ ‖1 ≤ O

( 1

α(N)

)
.
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Bounds on the rate of convergence Arbitrary time.

Bounds after evolution

What happens if we “switch on” evolution?

A priori the rate of convergence may be affected by time evolution, since the latter changes the
structure of states.

Theorem (Ammari, F., Pawilowski [2014])

Assume there exist C0, C > 2 and γ ≥ 1 such that for all N, p ∈ N∗ with N ≥ γp:

‖ρ(p)
N − ρ

(p)
∞ ‖1 ≤ C0

C p

α(N)
.

Then for any T > 0 there exists CT > 0 such that for all t ∈ [−T ,T ] and all N, p ∈ N∗ with N ≥ γp,

‖ρ(p)
N (t)− ρ(p)

∞ (t)‖1 ≤ CT
C p

min{α(N),N}
.
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Bounds on the rate of convergence Arbitrary time.

Remarks
Time evolution (in this regular situation) singles out the rate of convergence O(N−1) as the best
possible rate. Is it a true feature of the dynamics—O(N−1) is therefore “optimal”—or is it just a
technical limitation?

Numerical calculations performed by B. Pawilowski strongly indicate O(N−1) is optimal: the
Hartree states—whose marginals coincide with their limit at time zero—show numerically a
rate of convergence O(N−1) after time evolution.

Marco Falconi (CHL, Univ. Rennes 1) Rate of convergence on mean field theories LODIQUAS meeting, December 9th 2014. 13 / 17



Bounds on the rate of convergence Arbitrary time.

Time evolution cannot improve the rate of convergence. Suppose that ‖ρ(p)
N − ρ

(p)
∞ ‖1 = O( 1

ln N );

and that at a certain time t∗ ∈ R, ‖ρ(p)
N (t∗)− ρ(p)

∞ (t∗)‖1 = O( 1
N ). Then applying the theorem

backwards in time—with initial time t∗ and final time zero—we would have ‖ρ(p)
N − ρ

(p)
∞ ‖1 = O( 1

N ),
that is in contradiction with the original hypothesis.
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Bounds on the rate of convergence Arbitrary time.

Open questions

Does the evolution modify the rate of convergence more significantly in presence of singular
interactions (e.g. Hartree with Coulomb potential, Gross-Pitaevskii . . . )?

May the rate of convergence (after evolution) be better only for some particular p̄-particle marginal?

Is it possible to determine a bound if we have initial time informations only on some of the
marginals?
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Outline of the proof Proof

Brief outline of the proof

Translate the operator in the language of second quantization on the symmetric Fock space Γs(H ).

Let AWick be the Wick quantization of a p-particle operator. We write a mean field
(“semiclassical”) expansion of Tr[ρN(t)AWick].

Subtract the known classical limit
∫

Z 〈z
⊗p ,A z⊗p 〉dµt .

For short times, bound |Tr[ρN(t)AWick]−
∫

Z 〈z
⊗p ,A z⊗p 〉dµt | by bounding each term of the

expansion.

Iterate the procedure to extend the bound to arbitrary times.

Observe that the error made bounding the difference above instead of ‖ρ(p)
N (t)− ρ(p)

∞ (t)‖1 is
≤ O(N−1).
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Thank you for the attention.

Thank you for the attention.
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