Classical and mean field limit of field-particle systems

Roscoff, February 5th 2014
Outline

1 Overview
Outline

1. Overview

2. The Nelson model
Outline

1. Overview
2. The Nelson model
3. Future developments
Overview
Classical limit

Classical limit

Classical limit

Classical limit
Classical limit

A quantum system should behave as its classical counterpart when quantum effects become negligible.
Classical limit

A quantum system should behave as its classical counterpart when quantum effects become negligible. That can be thought as the limit $\hbar \to 0$.

A quantum system should behave as its classical counterpart when quantum
effects become negligible. That can be thought as the limit $\hbar \to 0$. The easiest
example is, on $L^2(\mathbb{R})$:

$$H = -\hbar^2 \Delta / 2m + V(x),$$
Classical limit

A quantum system should behave as its classical counterpart when quantum effects become negligible. That can be thought as the limit $\hbar \to 0$. The easiest example is, on $L^2(\mathbb{R})$:

$$H = -\hbar^2 \Delta / 2m + V(x),$$

that should reduce classically to Newton equations

$$\begin{cases}
\frac{d\xi}{dt}(t) = \frac{1}{m} \pi(t) \\
\frac{d\pi}{dt}(t) = -\nabla V(\xi(t))
\end{cases}.$$
Mean field limit
A system consisting of a large number n of identical particles is very difficult to describe microscopically, due to the large number of system’s degrees of freedom.
A system consisting of a large number n of identical particles is very difficult to describe microscopically, due to the large number of system’s degrees of freedom. However it is expected that, when n is sufficiently large, each particle moves as it is subjected to the same external potential (the mean field), generated by the totality of the particles.
Mean field limit

- A system consisting of a large number n of identical particles is very difficult to describe microscopically, due to the large number of system’s degrees of freedom. However it is expected that, when n is sufficiently large, each particle moves as it is subjected to the same external potential (the mean field), generated by the totality of the particles.

- Formally, we are looking to reduce a very big phase-space (the n particle one), to a single-particle phase space; in the limit $n \to \infty$.
Mean field theory for many bosons

Consider the system of n non-relativistic bosons described by the following Hamiltonian of $L^2(\mathbb{R}^d)$:

$$H = \sum_{j=1}^{n} -\Delta x_j + 1 \sum_{i<j} V(x_i - x_j).$$

We expect that when n is very large the dynamics of each particle should be dictated by the mean field Hartree equation:

$$i \frac{\partial}{\partial t} \phi_t = -\Delta \phi_t + (V \ast |\phi_t|^2) \phi_t.$$
Mean field theory for many bosons

Consider the system of n non-relativistic bosons described by the following Hamiltonian of $L^2(\mathbb{R}^{nd})$:

$$H = \sum_{j=1}^{n} -\Delta_{x_j} + \frac{1}{n} \sum_{i<j}^{n} V(x_i - x_j).$$
Mean field theory for many bosons

Consider the system of n non-relativistic bosons described by the following Hamiltonian of $L^2(\mathbb{R}^{nd})$:

$$H = \sum_{j=1}^{n} -\Delta_{x_j} + \frac{1}{n} \sum_{i<j}^{n} V(x_i - x_j).$$

We expect that when n is very large the dynamics of each particle should be dictated by the mean field Hartree equation:

$$i\partial_t \varphi_t = -\Delta \varphi_t + (V \ast |\varphi_t|^2) \varphi_t.$$
Overview

The physical setting

Particles interacting with fields
Particles interacting with fields

- **Nelson model.** \([\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))]\)
Particles interacting with fields

- **Nelson model.** \([\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))]\) Consider a system of non-relativistic bosons interacting with a relativistic scalar boson field, described by the following Hamiltonian:

\[
H = \frac{1}{2M} \int (\nabla \psi)^*(x) \nabla \psi(x) dx + \int \omega(k)a^*(k) a(k) dk + \lambda \int \varphi(x) \psi^*(x)\psi(x) dx
\]
Particules interacting with fields

- Nelson model. \([\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))]\) Consider a system of non-relativistic bosons interacting with a relativistic scalar boson field, described by the following Hamiltonian:

\[
H = \frac{1}{2M} \int (\nabla \psi)^*(x) \nabla \psi(x) dx + \int \omega(k) a^*(k) a(k) dk + \lambda \int \varphi(x) \psi^*(x) \psi(x) dx
\]

with \(\omega(k) = \sqrt{k^2 + \mu^2}\), \(M > 0, \mu \geq 0\), coupling constant \(\lambda > 0\) and

\[
\varphi(x) = \int \frac{\chi(k)}{\sqrt{\omega}} (a(k) e^{ikx} + a^*(k) e^{-ikx}) dk.
\]
In the mean field limit, we expect to obtain the following dynamics:
In the mean field limit, we expect to obtain the following dynamics:

\[
\begin{aligned}
 \left(i \partial_t + \frac{1}{2M} \Delta \right) u &= (2\pi)^{-3/2} (\check{\chi} \ast A) u \\
 (\partial^2_t - \Delta + \mu^2) A &= -(2\pi)^{-3/2} \check{\chi} \ast |u|^2.
\end{aligned}
\]
In the mean field limit, we expect to obtain the following dynamics:

\[
\begin{align*}
\left(i \partial_t + \frac{1}{2M} \Delta \right) u &= (2\pi)^{-3/2} (\check{\chi} \ast A) u \\
(\partial_t^2 - \Delta + \mu^2) A &= -(2\pi)^{-3/2} \check{\chi} \ast |u|^2
\end{align*}
\]

(The precise meaning of the mean field limit in this system will be explained in detail.)
Particle QED. $[L^2(\mathbb{R}^3) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3) \otimes \mathbb{C}^2)]$
Particle QED. $[L^2(\mathbb{R}^3) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3) \otimes \mathbb{C}^2)]$ A rigid charge interacting with its own electromagnetic field can be described by:

$$H = \frac{1}{2m} \left(p - eA(q) \right)^2 + \hbar \sum_{\lambda=1,2} \int \omega(k) a^* (k, \lambda) a(k, \lambda) dk ,$$
The physical setting

- **Particle QED.** $[L^2(\mathbb{R}^3) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3) \otimes \mathbb{C}^2)]$ A rigid charge interacting with its own electromagnetic field can be described by:

$$H = \frac{1}{2m} \left(p - eA(q) \right)^2 + \hbar \sum_{\lambda=1,2} \int \omega(k) a^*(k, \lambda) a(k, \lambda) dk ,$$

where $p = -i\sqrt{\hbar}\nabla$, $q = \sqrt{\hbar}x$, $\omega(k) = c|k|$ and

$$A(x) = \sum_{\lambda=1,2} \int \sqrt{\frac{\hbar}{\omega(k)}} e_{\lambda}(k) \chi(k) (a(k, \lambda)e^{ik\cdot x} + a^*(k, \lambda)e^{-ik\cdot x}) dk .$$
Classically ($\hbar \to 0$), the same system is described by the Abraham model:
Classically ($\hbar \to 0$), the same system is described by the Abraham model:

\[
\begin{align*}
\partial_t B + \nabla \times E &= 0 \\
\partial_t E - \nabla \times B &= -j \\
\dot{\xi} &= v \\
\dot{v} &= e[(\varphi \ast E)(\xi) + v \times (\varphi \ast B)(\xi)]
\end{align*}
\]
Classically ($\hbar \to 0$), the same system is described by the Abraham model:

\[
\begin{align*}
\partial_t B + \nabla \times E &= 0 \\
\partial_t E - \nabla \times B &= -j \\
\dot{\xi} &= v \\
\dot{v} &= e[(\varphi \ast E)(\xi) + v \times (\varphi \ast B)(\xi)]
\end{align*}
\]

\[
\begin{align*}
\nabla \cdot E &= \rho \\
\nabla \cdot B &= 0
\end{align*}
\]

\[
\begin{align*}
j &= ev\varphi(\xi - x) \\
\rho &= e\varphi(\xi - x)
\end{align*}
\]
Mean field theory for many particles
Mean field theory for many particles

- **BBGKY method.**
Mean field theory for many particles

- **BBGKY method.** Hierarchy (in the number n of particles) of equations can be written for the reduced density matrices; they follow from the Schrödinger equation of the system.
Mean field theory for many particles

- **BBGKY method.** Hierarchy (in the number n of particles) of equations can be written for the reduced density matrices; they follow from the Schrödinger equation of the system. This hierarchy is proved to converge in the limit $n \to \infty$, and the unique limit solution is written explicitly.
Mean field theory for many particles

- **BBGKY method.** Hierarchy (in the number n of particles) of equations can be written for the reduced density matrices; they follow from the Schrödinger equation of the system. This hierarchy is proved to converge in the limit $n \to \infty$, and the unique limit solution is written explicitly. This approach has been introduced by Spohn [1980], and then developed by many authors [e.g. Bardos et al., 2000; Erdös and Yau, 2001; Erdős et al., 2010, ...]
Mean field theory for many particles

BBGKY method. Hierarchy (in the number n of particles) of equations can be written for the reduced density matrices; they follow from the Schrödinger equation of the system. This hierarchy is proved to converge in the limit $n \to \infty$, and the unique limit solution is written explicitly. This approach has been introduced by Spohn [1980], and then developed by many authors [e.g. Bardos et al., 2000; Erdös and Yau, 2001; Erdős et al., 2010, ...]

PROs: Applicability in a large number of systems (Hartree, Gross-Pitaevskii, Hartree-Fock, ...).
Mean field theory for many particles

- **BBGKY method.** Hierarchy (in the number n of particles) of equations can be written for the reduced density matrices; they follow from the Schrödinger equation of the system. This hierarchy is proved to converge in the limit $n \to \infty$, and the unique limit solution is written explicitly. This approach has been introduced by Spohn [1980], and then developed by many authors [e.g. Bardos et al., 2000; Erdös and Yau, 2001; Erdös et al., 2010, ...]

PROs: Applicability in a large number of systems (Hartree, Gross-Pitaevskii, Hartree-Fock, ...).

CONs: Very specific initial states has to be considered (factorized states).
Mean field theory for many particles

- **BBGKY method.** Hierarchy (in the number \(n \) of particles) of equations can be written for the reduced density matrices; they follow from the Schrödinger equation of the system. This hierarchy is proved to converge in the limit \(n \to \infty \), and the unique limit solution is written explicitly. This approach has been introduced by Spohn [1980], and then developed by many authors [e.g. Bardos et al., 2000; Erdös and Yau, 2001; Erdös et al., 2010, ...]

PROs: Applicability in a large number of systems (Hartree, Gross-Pitaevskii, Hartree-Fock, ...).

CONs: Very specific initial states has to be considered (factorized states).
No information on rate of convergence (apart for small times, in some systems); nor on fluctuations around the mean field solution.
Hepp method.
Hepp method. Hepp [1974] proved that the dynamics of quantum variables $-i\sqrt{\hbar}\nabla$ and $\sqrt{\hbar}x$, averaged on suitable \hbar-dependent coherent states, reduces to Newton dynamics in the limit $\hbar \to 0$. This result was extended by Ginibre and Velo [1979, 1980] to systems of non-relativistic bosons with infinite degrees of freedom. Recently, these ideas have been applied to the mean field limit, in order to obtain a rate of convergence for reduced density matrices [see Rodnianski and Schlein, 2009; Chen and Lee, 2011; Chen et al., 2011; Benedikter et al., 2013, ...] in various systems of bosons (and also fermions).
Hepp method. Hepp [1974] proved that the dynamics of quantum variables $-i\sqrt{\hbar}\nabla$ and $\sqrt{\hbar}x$, averaged on suitable \hbar-dependent coherent states, reduces to Newton dynamics in the limit $\hbar \to 0$. This result was extended by Ginibre and Velo [1979, 1980] to systems of non-relativistic bosons with infinite degrees of freedom.
Hepp method. Hepp [1974] proved that the dynamics of quantum variables $-i\sqrt{\hbar}\nabla$ and $\sqrt{\hbar}x$, averaged on suitable \hbar-dependent coherent states, reduces to Newton dynamics in the limit $\hbar \to 0$. This result was extended by Ginibre and Velo [1979, 1980] to systems of non-relativistic bosons with infinite degrees of freedom. Recently, these ideas has been applied to the mean field limit, in order to obtain a rate of convergence for reduced density matrices [see Rodnianski and Schlein, 2009; Chen and Lee, 2011; Chen et al., 2011; Benedikter et al., 2013, . . .] in various systems of bosons (and also fermions).
Hepp method. Hepp [1974] proved that the dynamics of quantum variables $-i\sqrt{\hbar}\nabla$ and $\sqrt{\hbar}x$, averaged on suitable \(\hbar\)-dependent coherent states, reduces to Newton dynamics in the limit $\hbar \to 0$. This result was extended by Ginibre and Velo [1979, 1980] to systems of non-relativistic bosons with infinite degrees of freedom. Recently, these ideas has been applied to the mean field limit, in order to obtain a rate of convergence for reduced density matrices [see Rodnianski and Schlein, 2009; Chen and Lee, 2011; Chen et al., 2011; Benedikter et al., 2013, . . .] in various systems of bosons (and also fermions).

PROs: Informations on the evolution of fluctuations (between coherent states).
Hepp method. Hepp [1974] proved that the dynamics of quantum variables $-i\sqrt{\hbar}\nabla$ and $\sqrt{\hbar}x$, averaged on suitable \hbar-dependent coherent states, reduces to Newton dynamics in the limit $\hbar \to 0$. This result was extended by Ginibre and Velo [1979, 1980] to systems of non-relativistic bosons with infinite degrees of freedom. Recently, these ideas has been applied to the mean field limit, in order to obtain a rate of convergence for reduced density matrices [see Rodnianski and Schlein, 2009; Chen and Lee, 2011; Chen et al., 2011; Benedikter et al., 2013, ...] in various systems of bosons (and also fermions).

PROs: Informations on the evolution of fluctuations (between coherent states). Bound on the rate of convergence of reduced density matrices.
Hepp method. Hepp [1974] proved that the dynamics of quantum variables $-i\sqrt{\hbar}\nabla$ and $\sqrt{\hbar}x$, averaged on suitable \hbar-dependent coherent states, reduces to Newton dynamics in the limit $\hbar \to 0$. This result was extended by Ginibre and Velo [1979, 1980] to systems of non-relativistic bosons with infinite degrees of freedom. Recently, these ideas has been applied to the mean field limit, in order to obtain a rate of convergence for reduced density matrices [see Rodnianski and Schlein, 2009; Chen and Lee, 2011; Chen et al., 2011; Benedikter et al., 2013, . . .] in various systems of bosons (and also fermions).

PROs: Informations on the evolution of fluctuations (between coherent states).
Bound on the rate of convergence of reduced density matrices.

CONs: Specific initial states has to be considered, namely factorized and coherent ones (also partially factorized and linear combinations of the above [F., 1305]).
Hepp method. Hepp [1974] proved that the dynamics of quantum variables $-i\sqrt{\hbar}\nabla$ and $\sqrt{\hbar}x$, averaged on suitable \hbar-dependent coherent states, reduces to Newton dynamics in the limit $\hbar \to 0$. This result was extended by Ginibre and Velo [1979, 1980] to systems of non-relativistic bosons with infinite degrees of freedom. Recently, these ideas has been applied to the mean field limit, in order to obtain a rate of convergence for reduced density matrices [see Rodnianski and Schlein, 2009; Chen and Lee, 2011; Chen et al., 2011; Benedikter et al., 2013, …] in various systems of bosons (and also fermions).

PROs: Informations on the evolution of fluctuations (between coherent states). Bound on the rate of convergence of reduced density matrices.

CONs: Specific initial states has to be considered, namely factorized and coherent ones (also partially factorized and linear combinations of the above [F., 1305]). Even if, due to symmetries, the natural setting of the system is $L^2(\mathbb{R}^{nd})$, the whole Fock space $\mathcal{F}(L^2(\mathbb{R}^d))$ has to be considered to prove convergence (since the method relies on the Weyl operators of the whole Fock space).
- Wigner measures approach.
Wigner measures approach. Inspired by semiclassical analysis results on finite dimensions, Ammari and Nier [2008, 2009, 2011a,b] studied infinite dimensional Wigner measures and their propagation in the mean field limit.
Wigner measures approach. Inspired by semiclassical analysis results on finite dimensions, Ammari and Nier [2008, 2009, 2011a,b] studied infinite dimensional Wigner measures and their propagation in the mean field limit. The time evolved density matrices of general states are proved to converge, in the mean field limit, to the push forward by the classical flow (e.g. Hartree flow) of a probability measure.
Wigner measures approach. Inspired by semiclassical analysis results on finite dimensions, Ammari and Nier [2008, 2009, 2011a,b] studied infinite dimensional Wigner measures and their propagation in the mean field limit. The time evolved density matrices of general states are proved to converge, in the mean field limit, to the push forward by the classical flow (e.g. Hartree flow) of a probability measure. This result implies the convergence of reduced density matrices as well.
Wigner measures approach. Inspired by semiclassical analysis results on finite dimensions, Ammari and Nier [2008, 2009, 2011a,b] studied infinite dimensional Wigner measures and their propagation in the mean field limit. The time evolved density matrices of general states are proved to converge, in the mean field limit, to the push forward by the classical flow (e.g. Hartree flow) of a probability measure. This result implies the convergence of reduced density matrices as well.

PROs: On one hand the infinite dimensional setting makes the approach very suitable for quantum field theories
Wigner measures approach. Inspired by semiclassical analysis results on finite dimensions, Ammari and Nier [2008, 2009, 2011a,b] studied infinite dimensional Wigner measures and their propagation in the mean field limit. The time evolved density matrices of general states are proved to converge, in the mean field limit, to the push forward by the classical flow (e.g. Hartree flow) of a probability measure. This result implies the convergence of reduced density matrices as well.

PROs: On one hand the infinite dimensional setting makes the approach very suitable for quantum field theories; on the other hand its relation with finite dimensional analysis makes it suitable also for systems with a finite dimensional phase space.
Wigner measures approach. Inspired by semiclassical analysis results on finite dimensions, Ammari and Nier [2008, 2009, 2011a,b] studied infinite dimensional Wigner measures and their propagation in the mean field limit. The time evolved density matrices of general states are proved to converge, in the mean field limit, to the push forward by the classical flow (e.g. Hartree flow) of a probability measure. This result implies the convergence of reduced density matrices as well.

PROs: On one hand the infinite dimensional setting makes the approach very suitable for quantum field theories; on the other hand its relation with finite dimensional analysis makes it suitable also for systems with a finite dimensional phase space. The mean field limit is proved for a very general class of states.
- **Wigner measures approach.** Inspired by semiclassical analysis results on finite dimensions, Ammari and Nier [2008, 2009, 2011a,b] studied infinite dimensional Wigner measures and their propagation in the mean field limit. The time evolved density matrices of general states are proved to converge, in the mean field limit, to the push forward by the classical flow (e.g. Hartree flow) of a probability measure. This result implies the convergence of reduced density matrices as well.

PROs: On one hand the infinite dimensional setting makes the approach very suitable for quantum field theories; on the other hand its relation with finite dimensional analysis makes it suitable also for systems with a finite dimensional phase space.

CONs: No information on the fluctuations, nor on the rate of convergence.
Other approaches.

- Recently, other methods have been developed that deserve further mention. The first has been developed by Pickl [2011], and it is based on counting the particles that are not condensed at some time t; provided we started with an initial state completely factorized, he proves that this number goes to zero when $n \to \infty$, hence obtaining convergence for the reduced density matrix.

- Another approach is due to Lewin et al. [2013]. They are able to describe the evolution of fluctuations around Hartree states, instead of coherent ones, in the limit $n \to \infty$. Their result implies as well the convergence of reduced density matrices and gives a bound on the rate of convergence.

- Using the construction of a truncated Fock space (and of a map that substitutes the Weyl operators) [see Lewin et al., 2012], they restrict the analysis to a space isomorphic to $L_2(\mathbb{R}^d)$, instead of considering the whole Fock space as in the Hepp method.

- Also, I mention a work of Fröhlich et al. [2007], where they provide asymptotics for observables in the mean field and classical limit.
Other approaches. Recently, other methods have been developed that deserve further mention. The first has been developed by Pickl [2011], and it is based on counting the particles that are not condensed at some time t; provided we started with an initial state completely factorized, he proves that this number goes to zero when $n \to \infty$, hence obtaining convergence for the reduced density matrix.
Other approaches. Recently, other methods have been developed that deserve further mention. The first has been developed by Pickl [2011], and it is based on counting the particles that are not condensed at some time t; provided we started with an initial state completely factorized, he proves that this number goes to zero when $n \to \infty$, hence obtaining convergence for the reduced density matrix.

Another approach is due to Lewin et al. [2013]. They are able to describe the evolution of fluctuations around Hartree states, instead of coherent ones, in the limit $n \to \infty$.
Other approaches. Recently, other methods have been developed that deserve further mention. The first has been developed by Pickl [2011], and it is based on counting the particles that are not condensed at some time t; provided we started with an initial state completely factorized, he proves that this number goes to zero when $n \to \infty$, hence obtaining convergence for the reduced density matrix.

Another approach is due to Lewin et al. [2013]. They are able to describe the evolution of fluctuations around Hartree states, instead of coherent ones, in the limit $n \to \infty$. Their result implies as well the convergence of reduced density matrices and gives a bound on the rate of convergence.
Other approaches. Recently, other methods have been developed that deserve further mention. The first has been developed by Pickl [2011], and it is based on counting the particles that are not condensed at some time t; provided we started with an initial state completely factorized, he proves that this number goes to zero when $n \to \infty$, hence obtaining convergence for the reduced density matrix.

Another approach is due to Lewin et al. [2013]. They are able to describe the evolution of fluctuations around Hartree states, instead of coherent ones, in the limit $n \to \infty$. Their result implies as well the convergence of reduced density matrices and gives a bound on the rate of convergence. Using the construction of a truncated Fock space (and of a map that substitutes the Weyl operators) [see Lewin et al., 2012], they restrict the analysis to a space isomorphic to $L^2(\mathbb{R}^{nd})$, instead of considering the whole Fock space as in the Hepp method.
Other approaches. Recently, other methods have been developed that deserve further mention. The first has been developed by Pickl [2011], and it is based on counting the particles that are not condensed at some time t; provided we started with an initial state completely factorized, he proves that this number goes to zero when $n \to \infty$, hence obtaining convergence for the reduced density matrix.

Another approach is due to Lewin et al. [2013]. They are able to describe the evolution of fluctuations around Hartree states, instead of coherent ones, in the limit $n \to \infty$. Their result implies as well the convergence of reduced density matrices and gives a bound on the rate of convergence. Using the construction of a truncated Fock space (and of a map that substitutes the Weyl operators) [see Lewin et al., 2012], they restrict the analysis to a space isomorphic to $L^2(\mathbb{R}^{nd})$, instead of considering the whole Fock space as in the Hepp method.

Also, I mention a work of Fröhlich et al. [2007], where they provide asymptotics for observables in the mean field and classical limit.
Overview Mathematical results

Particles interacting with fields

Mean field limit of the Nelson model. Ginibre et al. [2006] studied the partial limit of the Nelson model without cut off, using the Hepp method. In [F., 1301], I analyzed the complete mean field limit of the Nelson model, but with cut off. I will describe the results in detail in the following section.

Classical limit of Particle QED.

No result yet!
Particles interacting with fields

- Mean field limit of the Nelson model.
Particles interacting with fields

Mean field limit of the Nelson model. Ginibre et al. [2006] studied the partial limit of the Nelson model without cut off, using the Hepp method.
Particles interacting with fields

- **Mean field limit of the Nelson model.** Ginibre et al. [2006] studied the partial limit of the Nelson model without cut off, using the Hepp method. In [F., 1301], I analyzed the complete mean field limit of the Nelson model, but with cut off. I will describe the results in detail in the following section.
Part0icles interacting with fields

- **Mean field limit of the Nelson model.** Ginibre et al. [2006] studied the partial limit of the Nelson model without cut off, using the Hepp method. In [F., 1301], I analyzed the complete mean field limit of the Nelson model, but with cut off. I will describe the results in detail in the following section.

- **Classical limit of Particle QED.**
Overview Mathematical results

Particles interacting with fields

- **Mean field limit of the Nelson model.** Ginibre et al. [2006] studied the partial limit of the Nelson model without cut off, using the Hepp method. In [F., 1301], I analyzed the complete mean field limit of the Nelson model, but with cut off. I will describe the results in detail in the following section.

- **Classical limit of Particle QED.** No result yet!
The Nelson model
The mean field limit as $\lambda \to 0$

Recall the Nelson Hamiltonian:

$$H = \frac{1}{2M} \int (\nabla \psi)^*(x) \nabla \psi(x) dx + \int \omega(k) a^*(k) a(k) dk + \lambda \int \varphi(x) \psi^*(x) \psi(x) dx.$$
The mean field limit as $\lambda \to 0$

Recall the Nelson Hamiltonian:

$$H = \frac{1}{2M} \int (\nabla \psi)^*(x) \nabla \psi(x) dx + \int \omega(k) a^*(k) a(k) dk + \lambda \int \varphi(x) \psi^*(x) \psi(x) dx.$$

Consider a state ϕ_{n_1,n_2} such that $\langle \phi_{n_1,n_2} , (N_1 + N_2) \phi_{n_1,n_2} \rangle \sim n_1 + n_2$; we would like to describe its dynamics in the limit $n_1, n_2 \to \infty$ as a mean field theory, with the particles coupled as described above.
The mean field limit as $\lambda \to 0$

Recall the Nelson Hamiltonian:

$$H = \frac{1}{2M} \int (\nabla \psi)^*(x) \nabla \psi(x) dx + \int \omega(k) a^*(k) a(k) dk + \lambda \int \varphi(x) \psi^*(x) \psi(x) dx.$$

Consider a state ϕ_{n_1,n_2} such that $\langle \phi_{n_1,n_2}, (N_1 + N_2) \phi_{n_1,n_2} \rangle \sim n_1 + n_2$; we would like to describe its dynamics in the limit $n_1, n_2 \to \infty$ as a mean field theory, with the particles coupled as described above.

In order to do that n_1 and n_2 has to be related, and it turns out that they have also to be related to the coupling constant λ, as $n_1 \sim n_2 \sim \lambda^{-2}$. So the mean field limit is also a weak coupling limit $\lambda \to 0$.

Marco Falconi (CHL, Univ. Rennes1) Classical and mean field limit of field-particle systems Roscoff, February 5th 2014 17 / 36
Quantum dynamics

Proposition

\(H \) is essentially self-adjoint on \(\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3)) \).
Quantum dynamics

Proposition

H is essentially self-adjoint on $\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))$.

Consider the subspace $\mathcal{H}_{n_1} = L^2(\mathbb{R}^{3n_1}) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))$ of the whole Fock space with fixed number n_1 of non-relativistic particles, $H\big|_{n_1}$ the restriction of H to that subspace.
Quantum dynamics

Proposition

H is essentially self-adjoint on $\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))$.

Consider the subspace $\mathcal{H}_{n_1} = L^2(\mathbb{R}^{3n_1}) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))$ of the whole Fock space with fixed number n_1 of non-relativistic particles, $H|_{n_1}$ the restriction of H to that subspace. Then $\forall \varepsilon < 1$, $\exists C(\varepsilon, n_1)$ such that $\forall \phi \in D(H_0|_{n_1})$:

$$\|H_i|_{n_1}\phi\|^2 \leq \varepsilon^2 \|H_0|_{n_1}\phi\|^2 + C(\varepsilon, n_1)\|\phi\|^2.$$
\[H \big|_{n_1} \text{ is self-adjoint with domain } D(H_0 \big|_{n_1}), \quad \forall n_1 \in \mathbb{N}. \]
H_{n_1} is self-adjoint with domain $D(H_0|_{n_1})$, $\forall n_1 \in \mathbb{N}$.

Since ε does not depend on n_1, we can define H as the direct sum:

$$H = \bigoplus_{n_1=0}^{\infty} H_{n_1}.$$
Classical dynamics

Recall the classical equation,

\[
\begin{align*}
\left(i \partial_t + \frac{1}{2M} \Delta \right) u &= (2\pi)^{-3/2} (\tilde{\chi} \ast A) u \\
(\partial_t^2 - \Delta + \mu^2) A &= -(2\pi)^{-3/2} \tilde{\chi} \ast |u|^2.
\end{align*}
\]
Recall the classical equation,

\[
\begin{cases}

 (i \partial_t + \frac{1}{2M} \Delta) u = (2\pi)^{-3/2} (\tilde{\chi} * A) u \\

 (\partial_t^2 - \Delta + \mu^2) A = -(2\pi)^{-3/2} \tilde{\chi} * |u|^2
\end{cases}
\]

A can be written as

\[
A(x) = \int \frac{1}{\sqrt{\omega}} \left(\alpha(k)e^{ikx} + \bar{\alpha}(k)e^{-ikx} \right) dk .
\]
The system of equations for u and α then becomes:

$$\begin{align*}
 i\partial_t u &= -\frac{1}{2M} \Delta u + (2\pi)^{-3/2} (\tilde{\chi} * A) u \\
 i\partial_t \alpha &= \omega \alpha + (\omega)^{-1/2} \chi(|u|^2).
\end{align*}$$
The system of equations for u and α then becomes:

\[
\begin{align*}
 i\partial_t u &= -\frac{1}{2M} \Delta u + (2\pi)^{-3/2} (\tilde{\chi} * A)u \\
 i\partial_t \alpha &= \omega \alpha + (\omega)^{-1/2} \chi(\|u\|^2)
\end{align*}
\]

Proposition

Let (u_0, α_0) in $L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)$. Then the equation above admits an unique global solution $(u(t), \alpha(t)) \in C^0(\mathbb{R}, L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3))$.
Evolution of fluctuations

Let $u, \alpha \in L^2(\mathbb{R}^3)$. Define the Weyl operator:

$$C(u, \alpha) = \exp\{\psi^*(u) - \psi(u)\} \otimes \exp\{a^*(\alpha) - a(\alpha)\}$$

where

$$\psi(u) = \int \overline{u}(x) \psi(x) \, dx,$$

$$\psi^*(u) = (\psi(u))^*,$$

analogous for $a^*(\alpha)$.
Evolution of fluctuations

Let $u, \alpha \in L^2(\mathbb{R}^3)$.

Define the Weyl operator:

$$
C(u, \alpha) = \exp \{ \psi^*(u) - \psi(u) \} \otimes \exp \{ a^*(\alpha) - a(\alpha) \},
$$

where $\psi(u) = \int \bar{u}(x) \psi(x) \, dx$, $\psi^*(u) = (\psi(u))^*$, analogous for $a^*(\alpha)$.

Marco Falconi (CHL, Univ. Rennes1) Classical and mean field limit of field-particle systems Roscoff, February 5th 2014 22 / 36
Evolution of fluctuations

Let $u, \alpha \in L^2(\mathbb{R}^3)$. Define the Weyl operator:

$$C(u, \alpha) = \exp\{\psi^*(u) - \psi(u)\} \otimes \exp\{a^*(\alpha) - a(\alpha)\}$$
Evolution of fluctuations

Let $u, \alpha \in L^2(\mathbb{R}^3)$. Define the Weyl operator:

$$C(u, \alpha) = \exp\{\psi^*(u) - \psi(u)\} \otimes \exp\{a^*(\alpha) - a(\alpha)\}$$

($\psi(u) = \int \bar{u}(x)\psi(x)dx$, $\psi^*(u) = (\psi(u))^*$, analogous for $a^#(\alpha)$).
Then we can define the quantum evolution between coherent states as:

\[W(t, s) = C^*(u(t)/\lambda, \alpha(t)/\lambda) \exp\{-i(t - s)H\} C(u(s)/\lambda, \alpha(s)/\lambda)e^{i\Lambda(t,s)} ; \]
Then we can define the quantum evolution between coherent states as:

\[W(t, s) = C^*(u(t)/\lambda, \alpha(t)/\lambda) \exp\{-i(t - s)H\} C(u(s)/\lambda, \alpha(s)/\lambda) e^{i\Lambda(t, s)} ; \]

where \((u(t), \alpha(t))\) is the solution of the classical equation with initial state \((u(s), \alpha(s))\)
Then we can define the quantum evolution between coherent states as:

\[
W(t, s) = C^*(u(t)/\lambda, \alpha(t)/\lambda) \exp\{-i(t - s)H\} C(u(s)/\lambda, \alpha(s)/\lambda) e^{i\Lambda(t, s)};
\]

where \((u(t), \alpha(t))\) is the solution of the classical equation with initial state \((u(s), \alpha(s))\) and

\[
\Lambda(t, s) = -\frac{1}{2} (2\pi)^{-3/2} \lambda^{-2} \int_s^t \int_{\mathbb{R}^3} (\tilde{\chi} * A)(\tau) \tilde{u}(\tau) u(\tau) dx d\tau.
\]
More difficult to define is its putative limit when $\lambda \rightarrow 0$: we call it $U_2(t, s)$.
More difficult to define is its putative limit when $\lambda \to 0$: we call it $U_2(t, s)$. $U_2(t, s)$ is formally generated by the time-dependent Hamiltonian:

$$H_2(t) = \frac{1}{2M} \int (\nabla \psi)^*(x) \nabla \psi(x) dx + \int \omega a^*(k)a(k) dk + \left[\int \left(\frac{1}{2}(2\pi)^{-3/2} (\tilde{\chi} * A(t))\psi^*\psi + u(t)\varphi\psi^* \right) dx \right. h.c.$$
More difficult to define is its putative limit when $\lambda \to 0$: we call it $U_2(t, s)$. $U_2(t, s)$ is formally generated by the time-dependent Hamiltonian:

$$H_2(t) = \frac{1}{2M} \int (\nabla \psi)^*(x) \nabla \psi(x) dx + \int \omega a^*(k) a(k) dk + \left[\int \left(\frac{1}{2} (2\pi)^{-3/2} \left(\check{\chi} * A(t) \right) \psi^* \psi + u(t) \varphi \psi^* \right) dx + \text{h.c.} \right].$$

$U_2(t, s)$ can be rigorously defined by means of a truncated Dyson series in the interaction representation.
Theorem 1 ([F., 1301])

Let $\phi \in \mathcal{H}$. Then

$$\lim_{\lambda \to 0} W(t, s)\phi = U_2(t, s)\phi$$

in the strong topology of \mathcal{H}; uniformly in t and s on compact intervals.
Theorem 1 ([F., 1301])

Let $\phi \in \mathcal{H}$. Then

$$\lim_{\lambda \to 0} W(t, s)\phi = U_2(t, s)\phi$$

in the strong topology of \mathcal{H}; uniformly in t and s on compact intervals.

$U_2(t, s)$ describes the evolution of quantum fluctuations operators $\psi^\# - u(s)/\lambda$ and $a^\# - \alpha(s)/\lambda$ in the limit $\lambda \to 0$.
Mean field limit of quantum variables

- The quantum variables of the system are the annihilation and creation operators for the two species of particles: $\psi^\#(x)$ and $a^\#(k)$.

The multiplicative factor λ is necessary, otherwise $\psi^\#$ and $a^\#$ would diverge in the limit as $\sqrt{n_1} \sim \lambda^{-1}$ and $\sqrt{n_2} \sim \lambda^{-1}$ respectively.
Mean field limit of quantum variables

- The quantum variables of the system are the annihilation and creation operators for the two species of particles: $\psi^\#(x)$ and $a^\#(k)$.
- We expect that, in some sense, in the limit $\lambda \to 0$: $\lambda \psi_t^\#(x) \sim u^\#(t, x)$, $\lambda a_t^\#(k) \sim \alpha^\#(t, k)$.
Mean field limit of quantum variables

- The quantum variables of the system are the annihilation and creation operators for the two species of particles: $\psi^\#(x)$ and $a^\#(k)$.

- We expect that, in some sense, in the limit $\lambda \to 0$: $\lambda \psi_t^\#(x) \sim u^\#(t, x)$, $\lambda a_t^\#(k) \sim \alpha^\#(t, k)$.

 (the multiplicative factor λ is necessary, otherwise $\psi^\#$ and $a^\#$ would diverge in the limit as $\sqrt{n_1} \sim \lambda^{-1}$ and $\sqrt{n_2} \sim \lambda^{-1}$ respectively)
Mean field limit of quantum variables

- The quantum variables of the system are the annihilation and creation operators for the two species of particles: $\psi^\#(x)$ and $a^\#(k)$.

- We expect that, in some sense, in the limit $\lambda \to 0$: $\lambda \psi^\#_t(x) \sim u^\#(t, x)$, $\lambda a^\#_t(k) \sim \alpha^\#(t, k)$.
 (the multiplicative factor λ is necessary, otherwise $\psi^\#$ and $a^\#$ would diverge in the limit as $\sqrt{n_1} \sim \lambda^{-1}$ and $\sqrt{n_2} \sim \lambda^{-1}$ respectively)

- We may consider the mean field limit for initial states that are coherent $(C(u_0/\lambda, \alpha_0/\lambda)\Omega)$
Mean field limit of quantum variables

- The quantum variables of the system are the annihilation and creation operators for the two species of particles: $\psi^\#(x)$ and $a^\#(k)$.

- We expect that, in some sense, in the limit $\lambda \to 0$: $\lambda \psi^\#(x) \sim u^\#(t,x)$, $\lambda a^\#(k) \sim \alpha^\#(t,k)$.
 (the multiplicative factor λ is necessary, otherwise $\psi^\#$ and $a^\#$ would diverge in the limit as $\sqrt{n_1} \sim \lambda^{-1}$ and $\sqrt{n_2} \sim \lambda^{-1}$ respectively)

- We may consider the mean field limit for initial states that are coherent ($C(u_0/\lambda, \alpha_0/\lambda)\Omega$) or factorized ($u_0^{\otimes n_1} \otimes \alpha_0^{\otimes n_2}$)
Mean field limit of quantum variables

- The quantum variables of the system are the annihilation and creation operators for the two species of particles: $\psi^#(x)$ and $a^#(k)$.

- We expect that, in some sense, in the limit $\lambda \to 0$: $\lambda \psi^#_t(x) \sim a^#(t, x)$, $\lambda a^#_t(k) \sim a^#(t, k)$.

 (the multiplicative factor λ is necessary, otherwise $\psi^#$ and $a^#$ would diverge in the limit as $\sqrt{n_1} \sim \lambda^{-1}$ and $\sqrt{n_2} \sim \lambda^{-1}$ respectively)

- We may consider the mean field limit for initial states that are coherent ($C(u_0/\lambda, \alpha_0/\lambda)\Omega$) or factorized ($u_0^{\otimes n_1} \otimes \alpha_0^{\otimes n_2}$) or factorized in the first species and coherent in the second one ($u_0^{\otimes n_1} \otimes C(\alpha_0/\lambda)\Omega_2$).
Mean field limit of quantum variables

- The quantum variables of the system are the annihilation and creation operators for the two species of particles: $\psi^#(x)$ and $a^#(k)$.

- We expect that, in some sense, in the limit $\lambda \to 0$: $\lambda \psi_t^#(x) \sim u^#(t, x)$, $\lambda a_t^#(k) \sim \alpha^#(t, k)$.
 (the multiplicative factor λ is necessary, otherwise $\psi^#$ and $a^#$ would diverge in the limit as $\sqrt{n_1} \sim \lambda^{-1}$ and $\sqrt{n_2} \sim \lambda^{-1}$ respectively)

- We may consider the mean field limit for initial states that are coherent ($C(u_0/\lambda, \alpha_0/\lambda)\Omega$) or factorized ($u_0^\otimes n_1 \otimes \alpha_0^\otimes n_2$) or factorized in the first species and coherent in the second one ($u_0^\otimes n_1 \otimes C(\alpha_0/\lambda)\Omega_2$).

- Each one of these states has the property that $\langle \psi, (N_1 + N_2)\psi \rangle \sim n_1 + n_2 \sim \lambda^{-2}$.
Let $\psi_#(x) = \exp\{itH\} \psi_#(x) \exp\{-itH\}$, $a_#(k) = \exp\{itH\} a_#(k) \exp\{-itH\}$.
Let \(\psi_t^#(x) = \exp\{itH\} \psi^#(x) \exp\{-itH\} \), \(a_t^#(k) = \exp\{itH\} a^#(k) \exp\{-itH\} \).

Also, let \((u(t), \alpha(t))\) be the classical solution corresponding to initial datum \((u_0, \alpha_0)\) with \(\|u_0\|_2 = \|\alpha_0\|_2 = 1 \).
Let $\psi_t^#(x) = \exp\{itH\} \psi^#(x) \exp\{-itH\}$, $a_t^#(k) = \exp\{itH\} a^#(k) \exp\{-itH\}$. Also, let $(u(t), \alpha(t))$ be the classical solution corresponding to initial datum (u_0, α_0) with $\|u_0\|_2 = \|\alpha_0\|_2 = 1$.

Theorem 2

As functions of $L^2(\mathbb{R}^3)$, we have the following convergence:

$$\lim_{\lambda \to 0} \langle C(u_0/\lambda, \alpha_0/\lambda)\Omega, \lambda \psi_t^#(x) C(u_0/\lambda, \alpha_0/\lambda)\Omega \rangle = u^#(t, x) ;$$

$$\lim_{\lambda \to 0} \langle C(u_0/\lambda, \alpha_0/\lambda)\Omega, \lambda a_t^#(k) C(u_0/\lambda, \alpha_0/\lambda)\Omega \rangle = \alpha^#(t, k) .$$
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators.
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators, converging to products of the classical solutions.
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators, converging to products of the classical solutions.

The rate of convergence is of order λ^2.
- The convergence result holds for arbitrary products of normal ordered annihilation and creation operators, converging to products of the classical solutions.
- The rate of convergence is of order λ^2 (obtained using quantum fluctuations).
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators, converging to products of the classical solutions.

The rate of convergence is of order λ^2 (obtained using quantum fluctuations).

We obtain the same convergence and rate if we replace $C(u_0/\lambda, \alpha_0/\lambda)\Omega$ with $u_0^\otimes n_1 \otimes C(\alpha_0/\lambda)\Omega_2$.
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators, converging to products of the classical solutions.

The rate of convergence is of order λ^2 (obtained using quantum fluctuations).

We obtain the same convergence and rate if we replace $C(u_0/\lambda, \alpha_0/\lambda)\Omega$ with $u_0^{\otimes n_1} \otimes C(\alpha_0/\lambda)\Omega_2$; in this case the limit is different from zero only if we consider a product with the same number of ψ^* and ψ.
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators, converging to products of the classical solutions.

The rate of convergence is of order λ^2 (obtained using quantum fluctuations).

We obtain the same convergence and rate if we replace $C(u_0/\lambda, \alpha_0/\lambda)\Omega$ with $u_0^{\otimes n_1} \otimes C(\alpha_0/\lambda)\Omega_2$; in this case the limit is different from zero only if we consider a product with the same number of ψ^* and ψ.

Up to a normalization factor, the result above (for products with the same number of creation and annihilation operators of each type) is equivalent to the convergence of reduced density matrices in the Hilbert-Schmidt norm.
The result for factorized vectors $u_0^{\otimes n_1} \otimes \alpha_0^{\otimes n_2}$ deserves special attention.
The result for factorized vectors $u_0 \otimes^{n_1} \alpha_0 \otimes^{n_2}$ deserves special attention. Let $(u_\theta(t), \alpha_\theta(t))$ be the classical solution corresponding to initial datum $(u_0, \exp\{-i\theta\} \alpha_0)$.
The result for factorized vectors $u_0 \otimes^{n_1} \alpha_0 \otimes^{n_2}$ deserves special attention. Let $(u_\theta(t), \alpha_\theta(t))$ be the classical solution corresponding to initial datum $(u_0, \exp\{ -i\theta \} \alpha_0)$.

Theorem 3

As functions of $L^2(\mathbb{R}^6)$ and $L^2(\mathbb{R}^3)$ respectively, we have the following convergence:

$$\lim_{\lambda \to 0} \langle u_0 \otimes^{n_1(\lambda)} \alpha_0 \otimes^{n_2(\lambda)}, \lambda^2 \psi_t^*(x) \psi_t(y) u_0 \otimes^{n_1(\lambda)} \alpha_0 \otimes^{n_2(\lambda)} \rangle = \int_0^{2\pi} \bar{u}_\theta(t,x) u_\theta(t,y) \frac{d\theta}{2\pi}$$

$$\lim_{\lambda \to 0} \langle u_0 \otimes^{n_1(\lambda)} \alpha_0 \otimes^{n_2(\lambda)}, \lambda a_t^\#(k) u_0 \otimes^{n_1(\lambda)} \alpha_0 \otimes^{n_2(\lambda)} \rangle = \int_0^{2\pi} \alpha^\#_\theta(t,k) \frac{d\theta}{2\pi}.$$
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators.
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators.

The rate of convergence is of order λ^2.
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators.

The rate of convergence is of order λ^2.

Up to a normalization factor, the result above (for products with the same number of creation and annihilation operators of each type) is equivalent to the convergence of reduced density matrices in the Hilbert-Schmidt norm.
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators.

The rate of convergence is of order λ^2.

Up to a normalization factor, the result above (for products with the same number of creation and annihilation operators of each type) is equivalent to the convergence of reduced density matrices in the Hilbert-Schmidt norm.

The quantum evolution does not preserve the number n_2 of relativistic particles.
The convergence result holds for arbitrary products of normal ordered annihilation and creation operators.

The rate of convergence is of order λ^2.

Up to a normalization factor, the result above (for products with the same number of creation and annihilation operators of each type) is equivalent to the convergence of reduced density matrices in the Hilbert-Schmidt norm.

The quantum evolution does not preserve the number n_2 of relativistic particles; this affects the classical limit, for initial states that have a fixed number of relativistic particles, in an unexpected fashion.
Mean field limit for a general class of states
Mean field limit for a general class of states

In a joint work with Ammari (in preparation) we utilize the Wigner measures approach on the Nelson model.
The Nelson model: Wigner measures

Mean field limit for a general class of states

In a joint work with Ammari (in preparation) we utilize the Wigner measures approach on the Nelson model. Let \(p_1, p_2 \in \mathbb{N} \), we call \(\gamma^{p_1,p_2}_\lambda \) the reduced density matrix corresponding to a state \(\rho_\lambda \) (\(p_1 \) and \(p_2 \) stands for the number of particles of the non-relativistic and relativistic type respectively).
Mean field limit for a general class of states

In a joint work with Ammari (in preparation) we utilize the Wigner measures approach on the Nelson model. Let $p_1, p_2 \in \mathbb{N}$, we call γ^{p_1,p_2}_λ the reduced density matrix corresponding to a state ρ_λ (p_1 and p_2 stands for the number of particles of the non-relativistic and relativistic type respectively).

We say that a family of density matrices $(\rho_\lambda)_{\lambda \in (0,\bar{\lambda})}$ on a Fock space $\mathcal{F}_s(\mathcal{L})$ converges to a measure μ on \mathcal{L}
Mean field limit for a general class of states

In a joint work with Ammari (in preparation) we utilize the Wigner measures approach on the Nelson model. Let $p_1, p_2 \in \mathbb{N}$, we call $\gamma_{\lambda}^{p_1, p_2}$ the reduced density matrix corresponding to a state ρ_λ (p_1 and p_2 stands for the number of particles of the non-relativistic and relativistic type respectively).

We say that a family of density matrices $(\rho_\lambda)_{\lambda \in (0, \bar{\lambda})}$ on a Fock space $\mathcal{F}_s(\mathcal{L})$ converges to a measure μ on \mathcal{L} if a probability measure on \mathcal{L} exists such that for all $\xi \in \mathcal{L}$:

$$\lim_{\lambda \to 0} \text{Tr} \left[\rho_\lambda \exp \left\{ i \left(a^\dagger (\xi) + a(\xi) \right) / \sqrt{2} \right\} \right] = \int_{\mathcal{L}} e^{i \sqrt{2} \text{Re} \langle \xi, \zeta \rangle} \, d\mu(\zeta).$$
Proposition

Let \((\rho_\lambda)_{\lambda \in (0, \lambda]} \) be a family of normal states on \(\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3)) \) (satisfying some regularity properties) that converges to a probability measure \(\mu_0 \) of \(\mathcal{L} := L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3) \) when \(\lambda \to 0 \).
Proposition

Let $(\rho_\lambda)_{\lambda \in (0, \bar{\lambda})}$ be a family of normal states on $\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))$ (satisfying some regularity properties) that converges to a probability measure μ_0 of $\mathcal{Z} := L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)$ when $\lambda \rightarrow 0$. Also, let $\Phi(t, s)$ be the classical flux, i.e. $(u(t), \alpha(t)) = \Phi(t, s)(u(s), \alpha(s))$, and $\mu_t = \Phi(t, 0)_* \mu_0$.
Proposition

Let \((\rho_\lambda)_{\lambda \in (0, \lambda)}\) be a family of normal states on \(\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))\) (satisfying some regularity properties) that converges to a probability measure \(\mu_0\) of \(\mathcal{Z} := L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)\) when \(\lambda \to 0\). Also, let \(\Phi(t, s)\) be the classical flux, i.e. \((u(t), \alpha(t)) = \Phi(t, s)(u(s), \alpha(s))\), and \(\mu_t = \Phi(t, 0)_* \mu_0\). Then in the \(L^1_s(L^2(\mathbb{R}^{3p_1}) \otimes L^2(\mathbb{R}^{3p_1}))\)-norm, for all \(p_1, p_2 \in \mathbb{N}\):
Proposition

Let $\left(\rho_\lambda\right)_{\lambda \in (0, \bar{\lambda})}$ be a family of normal states on $\mathcal{F}_s(L^2(\mathbb{R}^3)) \otimes \mathcal{F}_s(L^2(\mathbb{R}^3))$ (satisfying some regularity properties) that converges to a probability measure μ_0 of $Z := L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)$ when $\lambda \to 0$. Also, let $\Phi(t, s)$ be the classical flux, i.e. $(u(t), \alpha(t)) = \Phi(t, s)(u(s), \alpha(s))$, and $\mu_t = \Phi(t, 0)_* \mu_0$. Then in the $L^1_s(L^2(\mathbb{R}^3p_1) \otimes L^2_s(\mathbb{R}^3p_1))$-norm, for all $p_1, p_2 \in \mathbb{N}$:

$$\lim_{\lambda \to 0} \gamma_{\lambda}^{p_1, p_2}(t) = \frac{1}{\int_{\mathcal{X}} |Z_1|^{2p_1} |Z_2|^{2p_2} d\mu_t(Z)} \int_{\mathcal{X}} |Z_1^{\otimes p_1} \otimes Z_2^{\otimes p_2} \rangle \langle Z_1^{\otimes p_1} \otimes Z_2^{\otimes p_2}| d\mu_t(Z).$$
Future developments
Future developments

Classical limit of particle QED.
Mean field limit of the Nelson model without cut off.
Scattering in the mean field limit.
Future developments

- Classical limit of particle QED.
Future developments

- Classical limit of particle QED.
- Mean field limit of the Nelson model without cut off.
- Classical limit of particle QED.
- Mean field limit of the Nelson model without cut off.
- Scattering in the mean field limit.
References

Thank you.