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Physical motivation

Physical motivation

Optical lattices –

Traps

1

∴ Finely tuned external potentials acting on quantum particles
(obtained by the interaction with radiation fields)

1Picture courtesy of Rainer Blatt and David Wineland. Nature, 453(7198) 1008–1015. 2008.
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Linear interactions

The full quantum system

L2(RdN)⊗ Γs(H) , H =

{
`2(Zd) (cavity radiation)

L2(Rd) (free radiation)
.

H =
N∑
j=1

(
−∆j + A(xj)

)
+ W (x1, . . . , xN)︸ ︷︷ ︸

L2
loc(Rd ,R+)+P�1(−∆)

+


∑
n∈Zd

|kn|a∗nan∫
Rd

ω(k)a∗(k)a(k)dk

;

A(x) =



∑
n∈Zd

λn︸︷︷︸
`2(Zd )

a∗ne
−ikn·x + λ̄nane

ikn·x

∫
Rd

λ(k)︸︷︷︸
L2(Rd )

a∗(k)e−ik·x + λ̄(k)a(k)e ik·xdk
.
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Linear interactions

Reduced Hamiltonian

Definition 1 (Partial trace)

X self-adjoint on L2 ⊗ Γs, qX (·) = 〈 · ,X · 〉. ∀Ψ ∈ Γs, we define 〈X 〉Ψ to be the
operatora on L2(RdN) associated to the quadratic form

q〈X〉Ψ (·) = qX ( · ⊗Ψ) .

aIn this talk, every partial trace yields a closed and bounded from below quadratic
form, hence it defines a unique self-adjoint operator.
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Linear interactions

Taking the partial trace of the full Hamiltonian we obtain

H := 〈H 〉Ψ − c =
N∑
j=1

(
−∆j + VΨ,λ(xj)

)
+ W (x1, . . . , xN)

c = 〈Ψ,
{ ∑

n∈Zd
|kn|a
∗
n an

∫
Rd

ω(k)a∗(k)a(k)dk

Ψ〉Γs
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Linear interactions

Taking the partial trace of the full Hamiltonian we obtain

H := 〈H 〉Ψ − c =
N∑
j=1

(
−∆j + VΨ,λ(xj)

)
+ W (x1, . . . , xN)

c = 〈Ψ,
{ ∑

n∈Zd
|kn|a
∗
n an

∫
Rd

ω(k)a∗(k)a(k)dk

Ψ〉Γs

Macroscopic Field.

Take a (squeezed) coherent state: f ∈ H,

〈C(f ),

{ ∑
n∈Zd

a∗n an

∫
Rd

a∗(k)a(k)dk

C(f )〉Γs = ‖f ‖2
H .
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Linear interactions

Taking the partial trace of the full Hamiltonian we obtain

H := 〈H 〉Ψ − c =
N∑
j=1

(
−∆j + VΨ,λ(xj)

)
+ W (x1, . . . , xN)

c = 〈Ψ,
{ ∑

n∈Zd
|kn|a
∗
n an

∫
Rd

ω(k)a∗(k)a(k)dk

Ψ〉Γs

Macroscopic Field.

Take a (squeezed) coherent state: f ∈ H,

〈C( 1√
ε
f ),

{ ∑
n∈Zd

a∗n an

∫
Rd

a∗(k)a(k)dk

C( 1√
ε
f )〉Γs =

1

ε
‖f ‖2

H .

Marco Falconi (Roma Tre) Quasi-classical limit Spectral Days 2017, Stuttgart. 5 / 12



Linear interactions

Taking the partial trace of the full Hamiltonian we obtain

Hε := 〈Hε 〉Ψε
− cε =

N∑
j=1

(
−∆j + VΨε,λ(xj)

)
+ W (x1, . . . , xN)

cε = 〈Ψε,

{ ∑
n∈Zd

|kn|a
∗
n (ε)an(ε)

∫
Rd

ω(k)a∗ε (k)aε(k)dk

Ψ
ε
〉Γs

Macroscopic Field.

Take a (squeezed) coherent state: f ∈ H,

〈Cε( 1
ε f ),

{ ∑
n∈Zd

a∗n (ε)an(ε)

∫
Rd

a∗ε (k)aε(k)dk

Cε(
1
ε f )〉Γs

= ‖f ‖2
H .

[aε(f ), a∗ε(g)] = ε〈f , g〉H .
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Convergence of the Hamiltonian

limε→0 Hε: semiclassical analysis of the quantum field

Suppose that2

〈Ψε, · Ψε〉Γs

T−→
ε→0

µ ∈M 2
rad(H) .

In addition, define for a.a. x ∈ Rd , and any α ∈ H:

A(x , α) =


∑
n∈Zd

λnᾱne
−ikn·x + λ̄nαne

ikn·x

∫
Rd

λ(k)ᾱ(k)e−ik·x + λ̄(k)α(k)e ik·xdk

.

2See e.g. Zied Ammari and Francis Nier. Ann. Henri Poincaré, 9(8) 1503-1574. 2008 ;

Marco Falconi. ArXiv 1605.04778, 2016.
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Convergence of the Hamiltonian

Theorem 1 (Norm resolvent convergence of Hε)

Hε
‖·‖-res−→
ε→0

H0(µ) ∈ SelfAdj
(
L2(RdN)

)
,

H0(µ) =
N∑
j=1

(
−∆j +

∫
H

A(xj , α)dµ(α)
)

+ W (x1, . . . , xN)
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Convergence of the Hamiltonian

Cavity radiation. Optical lattices: ∃µ∗ ∈M 2
rad(`2), ∃λ∗ ∈ `2,

Vµ∗,λ∗(x) =
∑
n∈Zd

(
bn cos(kn · x) + cn sin(kn · x)

)
.

Nelson. ∀µ ∈M 2
rad(L2), ∀λ ∈ L2,

Vµ,λ ∈ C∞(Rd) .

Polaron. ∀µ ∈M 2
rad(L2),

V
µ,|k|

1−d
2
∈ P�1(−∆) .

No trapping!
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Trapping

Trapping potentials

To obtain trapping, we need more “singular” states of the field:

〈Ψε, · Ψε〉Γs

T−→
ε→0

M ∈Mcyl(L
2) .

Concrete (simple) case.

Ψε = Cε(
1
ε fε) = ea

∗
ε(fε)−aε(fε)Ω , D(Rd) 3 fε

D′uw−→
ε→0

f0 ∈ D ′(Rd) \ L2(Rd) :

〈Ψε, · Ψε〉Γs

T−→
ε→0

δf0 ∈Mrad(D ′) , δf0 (L2) = 0 .
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Trapping

Theorem 2 (Trapping potentials)

∀V ∈ L2
loc(Rd ,R+), ∀λ ∈ L2 with multiplicative inverse, ∃(fV ,ε)ε∈(0,1) ⊂ D(Rd)

(explicit) such that w.r.t. C ( 1
ε fε):

Hε
s-res−→
ε→0

N∑
j=1

(
−∆j + V (xj)

)
+ W (x1, . . . , xN) .

In particular,
∑N

j=1

(
−∆j + x2

j

)
+ W (x1, . . . , xN) can be obtained.

Price to pay: cε −→
ε→0
∞!

(For linearly coupled systems, trapping requires a large amount of energy
from the radiation field).
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Convergence of the ground state energy

Quasi-classical characterization of the ground state energy

Can we characterize the effective ground state energy

lim
ε→0

σ(H)

in terms of the ground state energies of H0(µ) (for suitable µ)?
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Convergence of the ground state energy

Theorem 3

Let ω(k) =

{√
k2 + 1

1
, L2 ⊇ ω1/2L2 = {f ∈ S ′, ω1/2f ∈ L2}. Then

lim
ε→0

σ(H) = inf
µ∈M 2

rad(ω1/2L2)
σ
(
H0(µ) + c0(µ)

)
.

c0(µ) =

∫
ω1/2L2

‖ω1/2α‖2
2 dµ(α) .
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