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1. Preliminaries.

Let M be a 2n-dimensional Eculidean or Minkowski space; and let{
γ0, γ1, . . . , γ2n−1

}
⊂ M2n (C)

be the corresponding representation of the Clifford algebra Cl1,2n−1(R). It is customary to
define the 2n + 1-th gamma matrix γ as

γ = iγ0 · · · γ2n−1 .

If M is four dimensional, γ is often denoted as γ5. The matrix γ anticommutes with every
γµ, µ ∈ {0, 2n− 1}. We adopt the convention of summing over repeated indices; in addition
an index can be lowered or raised using the metric. The Dirac operator D is defined, in
local coordinates, by

(1) D = iγµ(∂µ − iAµ) ,

where A is a (external) gauge field. A Fermi field of mass m is denoted by ψ(x), x ∈ M,
and its adjoint is ψ̄(x) = ψ∗(x)γ0. The field ψ(x) is a 2n component spinor field that obeys
the Dirac equation

(2) Dψ = 0 .

There are two currents associated with the Dirac equation (2):

J µ = ψ̄γµψ , (standard current) ;(3)

J̃ µ = ψ̄γµγψ , (chiral or axial current) .(4)

The conservation of the standard current comes from the global U(1) invariance of the
action for the Fermi and gauge field; in particular, ∂µJ µ = 0 and ∂µJ̃ µ ∝ m when A = 0
(considered as an external field). Therefore if the Fermi field is massless, the chiral current
is also conserved: ∂µJ µ = 0 = ∂µJ̃ µ for m = 0 and A = 0. Let us denote by

Q =

∫
J 0(x, t)dx ,(5)

Q̃ =

∫
J̃ 0(x, t)dx(6)

the two conserved charges.
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Remark 1.1. It is possible to use a coordinate free language to define the currents and
charges. Let Iµ be a conserved current, ∂µIµ = 0. The 2n − 1 dual form associated to Iµ is
defined by

i = iµ1···µ2n−1 dxµ1 ∧ · · · ∧ dxµ2n−1 ,

with iµ1···µ2n−1 = εµ1···µ2n Iµ2n . The conservation ∂µIµ = 0 is true iff di = 0. In addition, di = 0
yields i = dβ, with β a 2n − 2 form (the potential of the conserved current). The conserved
charge Q can be written as the integral

Q =

∫
Σ

i

of the form i in the space hypersurface Σ.

2. n = 1.

By Poincaré’s lemma, ∂µJ µ = 0 ⇔ di = 0 ⇒ i =
Q
2πdϕ, where Q

2π is a normalization
factor and ϕ a scalar field. Therefore

(7) J µ =
Q
2πε

µν∂νϕ .

In addition, when n = 1 and m = 0 the following identity is satisfied: J̃ µ = εµνJν. It
follows that

(8) J̃ µ =
Q
2π∂

µϕ .

If Fµν = 0, then ∂µJ̃ µ = 0; hence �ϕ = 0, and its action is that of a free massless field

(9) S(ϕ) = 1
4π

∫
∂µϕ∂

µϕdx.

The conjugate momentum field π(x) is defined in the usual fashion

(10) π(x) =
δS(ϕ)
δϕ̇

= 1
2π ϕ̇ = − 1

QJ 1(x) .

Quantizing the field and its conjugate momentum canonically, we obtain the well known
equal-time commutation relation

[π(x, t), ϕ(y, t)] = −iδ(x − y) (} = 1 = c) .(11)

The axial current is given by J̃ 0 = Qπ, J̃ 1 =
Q
2πϕ

′; and yields the anomalous commutator

(12) [J 0(x, t), J̃ 0(y, t)] = i Q2

2π δ
′(x − y) .
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Let us now introduce the left and right currents J µ
`/r = J µ ± J̃ µ. The corresponding

left and right chiral spinors ψ`/r =
(1∓γ)

2 ψ satisfy

ψ
(q)
`/r(x, t) = : exp 2πi q

Q

∫ ∞

x
J 1

`/r(y, t)dy :

= : exp πiq
[
±ϕ(x, t) +

∫ ∞

x
π(y, t)dy

]
:

(13)

where q is a parameter yet to be defined. Using the commutation relations (11), it is
possible to calculate the commutator between the charge operator Q̂ =

Q
2π

∫
ϕ′(x, t)dx and

the chiral field operator

(14) [Q̂, ψ`/r(x)] = Qqψ`/r(x) .

It is therefore necessary that Qq = −1, for the electron to be observable. In addition,

(15) ψ`(x, t)ψ`(y, t) = eiπq2
ψ`(y, t)ψ`(x, t) ;

hence q = 1 to preserve the anticommutation relations.
In the presence of an external electromagnetic field E = εµν∂µAν the action reads

S(ϕ)→ S(ϕ, A) = S(ϕ) +

∫
J µ(x)Aµ(x)d2x = 1

4π

∫
[∂µϕ∂µϕ + 2QϕE]d2x .

The corresponding equation of motion is

(16) �ϕ = QE =
2π
Q
∂µJ̃

µ ;

and it yields the form of the chiral anomaly in 1 + 1 dimensions. It is also possible to define
a conserved (but not gauge invariant) current

(17) Ĵ µ
`/r = J µ

`/r ∓
Q2

2π ε
µνAν .

In fact, since the standard current is conserved, ∂µĴ
µ
`/r = ∂µJ̃ µ ∓

Q2

2π E = 0. The
corresponding charge

∫
Ĵ 0

`/r(x, t)dx is gauge invariant and conserved in time.

3. Arbitrary n ∈ N∗.

In arbitrary dimensions it is not possible to bosonize the Fermi fields as it was done
in (13). Therefore we introduce two gauge fields: the vector Aµ as before, and the axial
vector Zµ. The Dirac operator becomes

(18) DA,Z = iγµ(∂µ − iAµ − iZµγ) .
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The corresponding action for the Fermi fields is

(19) S(ψ̄, ψ; A,Z) =

∫
ψ̄(x)DA,Zψ(x)d2nx ,

that yields an effective action

(20) eiSeff (A,Z) = const.
∫

Berezin
eiS(ψ̄,ψ;A,Z)DψDψ̄ = detrenDA,Z .

The constant in (20) is chosen such that Seff(0, 0) = 0. The functional integral in (20) is
equivalent to a renormalized determinant with the condition detrenD0,0 = 1. The correlation
functions with respect to the effective action are calculated in the usual way:

(21) 〈J µ1 (x1) · · · J̃ ν1 (y1) · · · 〉corr
A,Z = (−i)

δ

δAµ1 (x1)
· · · (−i)

δ

δZν1 (y1)
· · · Seff(A,Z) .

Now if we perform a gauge and axial transformation

Aµ 7→ Aµ + ∂µχ ,(22)

Zµ 7→ Zµ + ∂µα ,(23)

a transformation is induced on the Fermi fields:

ψ 7→ ψχ,α = ei(χ+αγ)ψ ,(24)

ψ̄ 7→ ψ̄χ,α = ψ̄ei(−χ+αγ) .(25)

Therefore, at the classical level S(ψ̄, ψ; A,Z) = S(ψ̄χ,α, ψχ,α; A + dχ,Z + dα). The quantum
anomalies emerge if the Fermi fields’ transformation has a nontrivial Jacobian: the latter
modifies the Berezin integral, thus breaking the classical invariance. More explicitly, we
get

(26) DψDψ̄ = (J−1)Dψχ,αDψ̄χ,α ,

where, at least formally,

(27) J = exp[2i Tr(αγ)︸ ︷︷ ︸
∞

] .

To regularize the Jacobian, it is possible to proceed as follows. For simplicity, let us
consider the concrete case of a compact toric manifold M = T2n with imaginary time.
Then the Dirac operator has discrete spectrum σ(DA,0) =

{
iλm ∈ iR,m ∈ Z

}
, with the λm

symmetrically distributed with respect to zero. It follows that

Tr(αγ) =
∑
m∈Z

∫
ψ∗m(x)(αγψm)(x)d2nx = lim

M→∞

M∑
m=−M

e−
λ2

m
M2

∫
ψ∗m(x)(αγψm)(x)d2nx .(28)
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We suppose that [αγ,DA]+ = 0; and denote M−2 ≡ β, DA ≡ D. Then

d
dβ

Tr(αγeβD2
) = Tr(αγeβD2

D · D) = Tr(DαγeβD2
D)

= −Tr(αγDeβD2
D) = −

d
dβ

Tr(αγeβD2
) ,

therefore Tr(αγeβD2
) is independent of β. In addition, Tr(αγeD2

A/M
2
) = −

∫
α(x)A(x)d2nx,

withA the index density. For n = 2,A has the following form:

(29) A(x) = − 1
32π2 Fµν(x) F̃µν(x)︸ ︷︷ ︸

εµνλδFλδ

= − 1
8π2 E(x) · B(x) .

In general dimensions, it is a polynomial of degree n. The index density is calculated
by means of a Dyson expansion, in which all but one term vanish either because of the
properties of the gamma matrices or in the limit β→ 0. The only surviving term is the one
of degree n, that yields the result.

Now, it is possible to compute the transformed effective action.

(30) Seff(A + dχ,Z + dα) = Seff(A,Z) + 2i
∫

α(x)A(x)d2nx .

By means of equation (30), the chiral anomaly is obtained in a straightforward way:

∂µ〈J
µ(x)〉A,Z = −i

δSeff(A + dχ,Z + dα)
δχ(x)

∣∣∣∣∣
χ,α=0

= 0 ,(31)

∂µ〈J̃
µ(x)〉A,Z = −i

δSeff(A + dχ,Z + dα)
δα(x)

∣∣∣∣∣
χ,α=0

= 2A(x) .(32)

Alternatively, it is possible to compute the effective action perturbatively:

Seff(A,Z) =
[
tr(ln DA,Z)

]
renormalized

=
(ln(1+x)=

∑
j

(−1) j+1
n x j)

∞∑
j=1

(−1) j+1

j
γµAµ/γµγZµ

γµAµ/γµγZµ

1 j .

For n = 2, the relevant diagram is the one with j = 3 vertices (proportional to αE · B).
Finally, we review how to compute the anomalous commutators. Let J µ

`/r be defined
by (17), and define the new currents

(33) Ĵ µ
`/r(·) = J µ

`/r(·) ∓ 2ωµ(·; A) ,

where ω is the Chern-Simons form. Then ∂µĴ
µ
`/r = 0, and the corresponding conserved

charges are gauge invariant. However, the currents Ĵ µ
`/r themselves are not gauge invariant.



6

In n = 2, ω is a 3-form that has the form ω = A ∧ dA (for an Abelian gauge theory).
Therefore dω = dA ∧ dA = F ∧ F, that does not vanish since F is a 2-form. The Hodge
dual ∗(F ∧ F) of F ∧ F is the scalar FµνF̃µν that we already encountered in the definition
ofA, see equation (29).

Let us consider the general framework of an Hamiltonian field theory of free massless
chiral fermions in an external electromagnetic field. Denote by V the affine space of
vector potentials A, and FA the corresponding Fock space. The Hilbert bundle H is the
bundle with base space V and fibre FA over A ∈ V . On V , the gauge transformations
χ induce orbits of vector potentials. Let gχ(x) = eiχ(x), and G = {gχ(x)} be the group of
time-independent gauge transformations. It is possible to give a projective representation
U of G on H that satisfies

(34) U(g1)U(g2) = λ(g1, g2)U(g1g2) ,

with λ(g1, g2) a phase factor. The generator of U(eiχ) is denoted by
∫
χ(x)G(x)dx. G(x)

has the following form for left-handed fermions:

(35) G(x) = −i∇
δ

δA(x)
+ J 0

` (x, A) .

Locally, it is always possible to use Ĵ 0
`

instead of J 0
`

, obtaining

(36) Ĝ(x) = −i∇
δ

δA(x)
+ Ĵ 0

` (x, A) .

Since G is an abelian group, [Ĝ(x), Ĝ(y)] = 0. This gives the anomalous commutator by a
direct computation

(37) 0 = [Ĝ(x), Ĝ(y)] = [J 0
` (x),J 0

` (y)] − 2i∇
δ

δA(x)
ω0(y, A) + 2i∇

δ

δA(y)
ω0(x, A) .

For n = 1, equation (37) takes the well-known form

(38) [J 0
`/r(x),J 0

`/r(y)] = ± i
4π2

(
B(x) · ∇

)
δ(x − y) .
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