Clupter 2: Mean-field theory
2.1. The Curie-Weiss model

In the previous Chapter we sttanined some mudertanding I lue phase brantition in bue Jting model. Ov key remults followed from lendestanding sufficiently Leigh and sufficiently low teenperatees. But what abort temperatwes Close to he Critical point (where lhe phase breution leappens)? Lu hès Jing model hi's is a very difficult question, whose answer lies well beyoud hee scope of Reis lectwe.

As an alterakive wer shudy la suipler Cure-Weiss nedel, for whicl we will be able to auswer such kied of questions. The model is defeved as hee Jning madel on the complete graph, lleat is, eory

Spin interacts with all sher spans with the same streught Because y his, have is no spatial structure in the model.

The Hamiltonian on l spurs reads

$$
\begin{align*}
& J=-\frac{3}{2 N} \sum_{x i y=1}^{N} b_{x} b_{y}-k \sum_{x=1}^{N} \sigma_{x}, \quad b \in\{ \pm 1\}^{N} \\
& =\frac{B}{2} \sum_{x} \sigma_{x} \frac{1}{N} \sum_{y} \sigma_{y} \\
& m \text { " =" mean field } \\
& =-\frac{B N}{2} m^{2}-4 D m \tag{1}
\end{align*}
$$

and he e Gibbs distribution is given by

$$
\begin{equation*}
P_{\text {pin }}^{N}(\omega)=\frac{1}{z_{\text {pi }}^{N}} \exp (-\mathscr{X}(\omega)) . \tag{2}
\end{equation*}
$$

The CW model is one of the smiplest exactly solvable statistical mechanics models.

We stor ow analysis of he CW model with the following lemma, whit is an example of a HubbardStratanovich transformation. (*)

Lemma 1. For $\beta \geqslant 0$ and $h \in \mathbb{R}$, we leave

$$
\begin{align*}
& Z_{\beta, h}^{N}=\sqrt{\frac{\beta N}{2 \pi}} \int_{\mathbb{R}} e^{-N S(\varphi)} d \varphi \text { will } \\
& S(\varphi)=\frac{\beta}{2} \varphi^{2}-\ln (\cosh (\beta \varphi+h)) . \tag{3}
\end{align*}
$$

Proof: For any $t \in R$ we have

$$
\begin{equation*}
\sqrt{\pi}=\int_{\mathbb{R}} \exp \left(-\frac{1}{2} \varphi^{2}\right) d \varphi=\int_{\mathbb{R}} \exp \left(-\frac{1}{2}(\varphi-t)^{2}\right) d \varphi \tag{4}
\end{equation*}
$$

Hence,

$$
\exp \left(\frac{1}{2} t^{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \exp \left(-\frac{1}{2} \varphi^{2}+\varphi t\right) d \varphi^{(*)}
$$

For lue partition fundion of he (he model Whis miplies

$$
\begin{align*}
& z_{\beta, \mu}^{N}=\sum_{\omega \in\{ \pm 1\}^{N}} \underbrace{\exp (-\mathcal{X}(\omega))} \\
& =\exp \left(\frac{B N}{2} m^{2}(\omega)\right) \exp (h D m(\omega)) \\
& \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \exp \left(-\frac{1}{2} \varphi^{2}+\sqrt{\beta N} m(\omega) \varphi\right) d \varphi \\
& \varphi \rightarrow \varphi \sqrt{\beta N} \\
& \hat{\imath}=\sqrt{\frac{\beta N}{2 \pi}} \int_{\mathbb{R}} \exp \left(-\frac{\beta N}{2} \varphi^{2}+\beta N m(\omega) \varphi\right) d \varphi \\
& =\sqrt{\frac{\beta D}{2 \pi}} \int_{\mathbb{R}} \exp \left(-\frac{\beta N}{2} \varphi^{2}\right) \sum_{\omega \in\{ \pm 1\}^{N}} \exp (N(\beta \varphi+h) m(\omega)) d \varphi . \tag{6}
\end{align*}
$$

Dext, we wiste

$$
\begin{align*}
& \sum_{\omega \in\{ \pm 1\}^{N}} \exp (N(B \varphi+h) m(\omega)) \\
& \frac{1}{N} \sum_{x=1}^{N} \sigma_{x}(\omega) \\
& =\sum_{\omega \in\{ \pm n\}^{\omega}} \prod_{x=1}^{N} \exp \left((\beta \varphi+h) \sigma_{x}(\omega)\right) \\
& =\prod_{x=1}^{N} \underbrace{\sum_{\omega_{x}= \pm 1} \exp \left((\beta \varphi+h) \omega_{x}\right)}=[2 \cosh (\beta \varphi+h)]^{N} . \tag{7}\\
& =2 \cosh ((\beta+h) \varphi)
\end{align*}
$$

Lu combinalion, (6) and (7) vinply

$$
\begin{equation*}
t_{\beta, h}^{v}=\sqrt{\frac{\beta N}{2 \pi}} \int_{\mathbb{R}} \exp \left(-\frac{\beta N}{2} \varphi^{2}\right)[2 \cosh (\beta \varphi+h)]^{0} d \varphi, \tag{8}
\end{equation*}
$$

whil proves (3).

From the lemma we learn hat he sum over spuis can be replaced by an mitral, whir is easier to analyse.

To analyse the tutegral tie the large D limit, we apply Laplace's method. The precise result we need is captured in the following lemma.

Lemma 2: Assume lat $S: \mathbb{R} \rightarrow \mathbb{R}$ is a contimenores function, whir attains its (not necessary virque) in nimun at $\varphi_{0} \in \mathbb{R}$, and satisfies $\int_{\mathbb{R}} \exp (-S(\varphi)) d \varphi<+\infty$ as well as $|\{\varphi: S(\varphi) \leq \min s+1\}|<+\infty$. Then we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \ln \left(\int_{\mathbb{R}} \exp (-N S(e)) d \varphi\right)=-S\left(\varphi_{0}\right) \tag{g}
\end{equation*}
$$

Proof:- Step 1: Lower bound
We have

$$
\int_{\mathbb{R}} \exp (-D S(\varphi)) d \varphi \geqslant \int_{\{|S(\varphi)-\min S|<\delta\}} \exp \left(-N\left(S\left(\varphi_{0}\right)+\varepsilon\right)\right) d \varphi
$$

Continuity

This implies

$$
\begin{equation*}
\text { - }|\{|\delta(e)-\min s|<\delta\}| \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
& \hat{i}<+\infty \text { if } \\
& 0 \leqslant \delta<1
\end{aligned}
$$

$$
\begin{array}{r}
\operatorname{liming}_{N \rightarrow \infty} \frac{1}{N} \ln \left(\rho_{\mathbb{R}} \exp (-\operatorname{los}(\varphi))\right. \\
d \varphi) \tag{11}\\
\geqslant-S\left(\varphi_{0}\right)-\varepsilon
\end{array}
$$

for any $\varepsilon>0$, and hence also with $\varepsilon=0$.

Step 2: Upper bound
Here we write

$$
\begin{aligned}
\int_{\mathbb{R}} \exp \left(-N(S(\varphi)) d \varphi=\exp \left(-l S\left(\varphi_{0}\right)\right)\right. & \underbrace{\int_{\mathbb{R}} \exp (-l(\underbrace{\left.S(\varphi)-S\left(\varphi_{0}\right)\right)}_{\mathbb{R}})}_{\mathbb{R}}) \\
& \leq \int_{\mathbb{R}} \exp \left(-\left(S(\varphi)-S\left(e_{0}\right)\right)\right.
\end{aligned}
$$

$$
\begin{equation*}
\leqslant \exp \left(-N S\left(\varphi_{0}\right)\right) \exp \left(S\left(\varphi_{0}\right)\right) \underbrace{\int_{R} \exp (-S(\varphi)) d \varphi}_{<+\infty \text { by assumphiz }} \tag{12}
\end{equation*}
$$

We apply lu on bottle Fides, divide by N, take $\lim _{D \rightarrow \infty}$ and fid

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{1}{N} \ln \left(\int_{\mathbb{R}} \exp (-N(s(\varphi)) d \varphi) \leq-S\left(\varphi_{0}\right)\right. \tag{13}
\end{equation*}
$$

Ln combination writ (11) his proves the cain of the lemma.

The spenfic free energy of he CW model is defined by

$$
\begin{equation*}
f_{N}(\beta, l)=-\frac{1}{N} \ln \left(z_{\beta, h}^{N}\right), \tag{14}
\end{equation*}
$$

The maguetizalion reads

$$
\begin{align*}
m_{N}(\beta, h)=\left\langle G_{n}\right\rangle_{\beta_{1} h}^{N} & =\sum_{\omega \in\left\{ \pm_{n}\right\}^{N}} \sigma_{n}(\omega) p_{\beta_{1}, k}^{N}(\omega) \tag{15}\\
& =-\frac{\partial f_{N}\left(\beta_{1}, h\right)}{\partial h}
\end{align*}
$$

and the magnetic suszeptibitity is given by

$$
\begin{align*}
X_{N}(\beta, h)= & \sum_{x=1}^{N} \tag{16}\\
& \underbrace{\left\langle\sigma_{1} ; \sigma_{x}\right\rangle_{\beta_{1} h}^{N}=}=\frac{\partial m_{N}(\beta, h)}{\partial h} \\
& \left\langle\sigma_{n} \sigma_{x}\right\rangle_{\beta, h}^{N}-\left(\left\langle\sigma_{n}\right\rangle_{\beta_{c h}}^{N}\right)^{2}
\end{align*}
$$

The following statement is a direct consequence of Lemma 1 and 2.

Theorem 1: For all $\beta>0$ and $h \in \mathbb{R}$, he e following limits exist:
(a) $\lim _{N \rightarrow \infty} f_{N}(\beta, h)=\min S=: f(\beta, h)$,
(b) m($\beta, h)=\lim _{N \rightarrow \infty} m_{N}(\beta, h) \quad \begin{aligned} & \text { at }(\beta, h) \text {, when } \\ & \text { differentiable }\end{aligned}$
(C) $m_{+}(\beta)=\lim _{h \rightarrow 0} m(\beta, h) \quad$ (Spontaneous maguelizalion).

Moreover, the spontaneous magnetization satisfies

$$
m_{+}\left(\beta_{0}\right)=\left\{\begin{array}{lll}
>0 & \text { if } & \beta>\beta_{c} \tag{20}\\
=0 & \text { if } & \beta \leqslant \beta_{c}
\end{array} \quad \text { wink } \quad \beta_{c}=1\right.
$$

as well as

$$
\begin{equation*}
\lim _{\beta \downarrow \beta_{c}} \frac{m+(\beta)}{3\left(\beta-\beta_{c}\right)^{1 / 2}}=1 . \tag{21}
\end{equation*}
$$

Before we give ha proof of the above theorem, we state the following lemma, whit h will be proved ten the exercises.

Lemma 3: The following statements are true:
(a) For any $\beta \geqslant 0$ and $k \neq 0, S$ has a nuique global minimcem φ_{0} of the same sign as h.
(b) For $\beta \ll \wedge$ and $k \in \mathbb{R}, S$ is (strictly) convex and thus has a mingere global minimum, whens trends to 0 when $h \rightarrow 0$.
(c) For $\beta>1$ and $k=0, S$ has two global minima $\pm \varphi_{0} \neq 0$ and as $k \rightarrow \pm 0$ the unique global win tends to $\pm \varphi_{0} \neq 0$.
(d) The global minimmen is differentiable in he when $h \neq 0$ or $\beta<\Lambda$.

Remark 1. The minima of $S(\varphi)=\frac{\beta}{2} \varphi^{2}-\ln (\cosh (\beta \varphi+h))$
satisfy le equation

$$
\begin{align*}
S^{\prime}(\varphi) & =\beta \varphi-\beta \operatorname{tank}(\beta \varphi+k)=0 \\
\Leftrightarrow \quad \varphi & =\operatorname{tank}(\beta \varphi+k), \tag{22}
\end{align*}
$$

whin is sometimes called hue self-corsistant equation.

Proof of Them. 1: As a direct consequence of
Lemma 1 and 2 (please cher he assmuphions!) we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} f_{N}(\beta, L)=\min S \tag{23}
\end{equation*}
$$

Next, we note that he suszeplibility can be written as

$$
\begin{equation*}
\chi_{N}\left(\beta_{, h}\right)=\bigcup_{\omega_{\beta, L}}\left(m_{N}\right)=\left\langle m_{N}^{2}\right\rangle_{\beta, L}-\left(\left\langle m_{N}\right\rangle_{\beta, h}\right)^{2} \geqslant 0 \tag{24}
\end{equation*}
$$

Theat is, $\frac{\partial^{2} f_{s}}{\partial u^{2}} \leq 0$ and for is concave. We already proved in the exercises heat if $f_{u}(x) \rightarrow f(x)$ for all $x \in \mathbb{R}$ and f is convex, hen $f_{n}^{\prime}(x) \rightarrow f^{\prime}(x)$ at every point x, where f is differentiable. Accordingly,

$$
\begin{equation*}
m_{N}(\beta, h) \xrightarrow{b \rightarrow \infty} m(\beta, h) \tag{25}
\end{equation*}
$$

holds at such prats.

An applicalion δ Lemma 3 shows

$$
\begin{aligned}
& m_{+}(\beta)= \lim _{k \downarrow 0} m(\beta, h)=\lim _{u \downarrow 0}\left[-\frac{\partial f(\beta, u)}{\partial k}\right] \\
&=-\lim _{u \downarrow 0} \frac{\partial}{\partial u}[\underbrace{\frac{\beta}{2} \varphi_{0}^{2}(\beta, h)-\ln \left(\cosh \left(\varphi_{0}(\beta, k) \beta+h\right)\right)}_{S\left(\varphi_{0}, \beta, h\right)}
\end{aligned}
$$

unique sstulion to self-connitrant equalion at $\mathrm{l}=0$

$$
\begin{align*}
\frac{d S}{d h}\left(\varphi_{0,}, \beta_{0}\right) & =\underbrace{\frac{\partial s}{\partial \varphi_{0}}}_{=0} \frac{\partial \varphi_{0}}{\partial u})\left(\varphi_{0}, \beta, h\right)+\frac{\partial S}{\partial u}\left(\varphi_{0}, \beta, h\right) \\
& =-\frac{\partial}{\partial h} \operatorname{lu}\left(\cosh \left(\varphi_{0} \beta+h\right)\right)=-\tanh \left(\varphi_{0} \beta\right) \\
& =\lim _{h \downarrow 0} \tanh \left(\varphi_{0}(\beta, h)+h\right) \\
& =\left\{\begin{array}{lll}
0 & \text { i } \beta & \leqslant 1 \\
>0 & \text { i } \beta>1 .
\end{array}\right. \tag{26}
\end{align*}
$$

To see how $m_{+}(\beta)$ tends to O as $\beta \downarrow \wedge$, we note Wat

$$
\begin{equation*}
\operatorname{tank}\left(\varphi_{0} \gamma^{\gamma}\right)=\varphi_{0} \beta-\frac{1}{3}\left(\varphi_{0} \beta\right)^{3}+O\left(\left(\varphi_{0} \beta\right)^{5}\right) \tag{27}
\end{equation*}
$$

for $\varphi_{0} \beta \rightarrow 0$. For the seff-contistent equation his minglies

$$
\begin{equation*}
\varphi_{0}(1-\beta)=\frac{1}{3}\left(\varphi_{0} \beta\right)^{3}+0\left(\left(\varphi_{0} \beta\right)^{3}\right) \tag{28}
\end{equation*}
$$

Since $\varphi_{0}\left(\beta, O_{+}\right)>0$ for $\beta>\wedge$, we can divide by φ_{0} and find

$$
\begin{align*}
& 3(1-\beta)=\varphi_{0}^{2} \beta^{3}(1+0(1)) \\
\Rightarrow & \varphi_{0}(\beta, 0+) \simeq \sqrt{3(1-\beta)} \quad \text { for } \beta \downarrow 1 \tag{29}
\end{align*}
$$

Hence,

$$
\begin{align*}
m_{+}(\beta) & =\operatorname{tank}\left(\varphi_{0}(\beta, O+) \beta\right) \\
& \simeq \varphi_{0}\left(\beta, O_{+}\right) \simeq \sqrt{3(1-\beta)} \quad \text { for } \beta \downarrow 1 . \tag{30}
\end{align*}
$$

In the exercises you will show: The suszeptibitity is finite for all $u \in \mathbb{R}$ if $\beta<1$ and for $k \neq 0$ if $\beta>1$. horever,

$$
\begin{array}{ll}
\chi(\beta, 0) \simeq \frac{1}{\beta_{c}-\beta} & \text { for } \beta \uparrow \beta_{c} \quad \text { and } \\
X(\beta, 0+) \simeq \frac{1}{2\left(\beta-\beta_{c}\right)} & \text { for }\left(\beta \downarrow \beta_{c}\right) . \tag{31}
\end{array}
$$

Remark 2: The powers in he behavior of $m_{1} m_{+}$and X we called cortical exponents. Based on scaling mvariance at he cortical point $(\beta, h)=(\beta c, 0)$ one very generally expects that

$$
\begin{array}{ll}
m_{+}(\Omega) \simeq A_{1}\left(\beta-\beta_{c}\right)^{a} & \left(\beta \downarrow \beta_{c}\right) \\
m\left(\beta_{c} h\right) \simeq A_{2} k^{1 / \delta} & (h \downarrow 0) \\
x\left(\beta_{0}\right)=A_{3}\left(\beta_{c}-\beta\right)^{-\gamma} & \left(\beta \hat{\imath} \beta_{c}\right) \tag{32}
\end{array}
$$

For le C model we have $a=\frac{1}{2}, \delta=3, \gamma=1$.

The Sting model on \mathbb{R}^{d} has the same critical exp as the cw model if $d \geqslant 5$. The crit. exp. of the thing model on $\overbrace{}^{2}$ are given by $a=\frac{1}{8}, \delta=15, \gamma=7 / 4$.
2.2. Hean-field bounds for hae Using model

In his section we worse he Hamiltonian of ha (he model as

$$
\begin{equation*}
X_{N_{i} \beta, h}^{c \omega}(\omega)=-\frac{d \beta}{N} \sum_{i, j=1}^{N} \omega_{i} \omega_{j}-k \sum_{i=1}^{N} \omega_{i} \tag{33}
\end{equation*}
$$

What is, we replaced β by $2 d \beta$. Before we head $\beta_{c}=1$ and now we have $\beta_{c}^{\omega}=\frac{1}{2 d}$. By ${f_{\beta}^{\infty}}_{\infty}^{\infty}(l)=-f(\beta, h)$ we denote hae pressure and $u_{\beta}^{c \omega}(h)$ is the raguetizalion.

Then we have

Theorem 2: The following bounds hold for len Irking model on $\mathbb{A}^{d}, d \geqslant 1$:
(a) $\psi(\beta, h) \geqslant \psi_{\beta}^{\omega}(u)$, for all $\beta \geqslant 0$ and all $h \in \mathbb{R}$
(b) $\left\langle\sigma_{0}\right\rangle_{\beta, u}^{+} \leq \omega_{\beta}^{c \omega}(u)$, for all $\beta \geqslant 0$ and $k \geqslant 0$
(c) $\beta_{c}(d) \geqslant \beta_{c}{ }^{c \omega}$.

