
Chapter 2:Meanfield theory
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Lurie-Weissmodel

In the previous Chapter we obtained some understanding

of the phase transition in the Stringmodel. Our key
mults followed from understanding sufficiently high and

sufficiently low temperatures. But what about temperties
close to the antical point (where the phase

transition

happens)?In this Zing model this isa very difficult

question, whose answer
lies will beyond the scope of

Reis lecture.

As an alternative we study the simpler (wie-Weiss

model, for which we will be able to answer such

Riad of questions. The model isdefined as the

Inigmodel on the complete graph, that is, every
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Spie interacts with all other spins with the same strength.

Because of this, have is
no spatial strucker inHer model.

The Hamiltonian on N
Spuis reads

I =- 6xby - 4,6eEE
x,y

=1

e

=Ex[4y
y
-

L

um -Lucau field

= - r - Let u f)

and the Gibbs distribution is given by

Pr(w) =nexp)-recall. (2)

The CW model isone of the samplest exactly solvable
statistical mechanics models.
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We start our analysis of the CW model with the

following lemma, whil is anexample of a Hubbard-

Stratanovich transformation.*

Zeruma 1:For Bo and het, we leave

-

Ze Nstel
de with

R

S(e) =EY - m(cosh(bx+h)). (3)

Roof.For any te we have

* =(ex)-zed =fe)- (e-rYde.(4)
Here,



↑

exp(E) -)e)de* (5)

For a partition function of the CW model Ks niplies

Zon= ese(-x(w)-
=exp(((r)) exp(km(w)
-

fexp(-z +rm(o)de

e-
e
*exp(-+a(n) e) de

R

-Sex-tw +h)wn)) de

(6)
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Next, we wate

[exp(w(be+n)w)
20-E=1JN

[Y6x(w)

=[exp((B +h)6x(w)
-In

=
↑ [exp((Beth) cx) =[2cosh(-e+hI? (H)
X=1wx=I1

-(the
be combination, (6) and (7) ripty

= Sexp(- fut [2 cosh(peth)] de, (8)

R

which Proves (31. B
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From the lemma we learn that the sum over spins can

be replaced by an integral, whil is easier to analyse.

To analyse the integral inthe large N limit, we apply

Zaplace's method. The precise
result are need is

captured inthe followinglemma.

Lemma 2:Assume that S:R-R is a continuous

-

function, while
attains its (not necessity uniquel winwinte

at Yoth, and satisfies Sexp(-Scell de no as

well as 194: S(e) =mins+13)-+0.
Then we have

diehr((exp(- Ns(el) de) =-steol. (S)

Proof:Step 1:Lower bound

We have
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Sexp(- scel) de fexp(- (sce.) +al) de
EIS(e) - mins/<8]

Continuity
↳
->exp(- N(s(e) +a)) Go

· 19(8(e) -wins/283)

This implies
x
<+0 if

0 =S1

little (Sex(-rssel) de)
-
- S(eo) - E (1)

for any aso, and hence also with 2 =0.

Step 2:Upper bound

Here we write

->

die
Sex)-NIScelldy =

ex-NSsewere
de



I

=exp(-Ns(ed) exp(scollSex-scel) de. An

-

<to by assumption

We apply be on both tides, divide by N, take list
and fund

i ha(exe)-wiscellde) E-sced. (13)

la combination rich (1) His proves
the dain of

the lemma.

B

The specific free energy of the CW model is defined

by
fr(,) =- ((2n), (14)
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The magnetization reads

min= (64 =[G(n) Prn(w) (15)

weEn

=- fee

and the magnetic susceptibility is given by

Xu(n)=Een =man (16)

Con6xLEn - KonLYn

The following statement is a direct consequence of Lemma

1 and 2.

em1:For all Bio and her, he following
linets exist:

(a) dio fr(ih) = wig=:f(Bin), (17)



(f) m(ih) =lioMobin)
at (pile), where I is

10

differentiable (18)

() m
+
(B) =lim(B,b) (spontaneous magnetization). (19

Moreover, the spontaneous magnetization satisfies

m+(z) =[= will B
=1 (20)

B =Bc

as well as

linee (1)

e

Before we give the proof of the above theorem, we state

the following lemma, which will be proved inthe exercises.

3:The followingstatements are true:

(a) For any so
and hto, I has a unique global

minimum 4 of the same sign as h
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(h) For BE1 and LER, S is (strictly) convex and

Mus has a unique global minimum, which feeds to

0 when 4- 0.

(C) For B1 and h=0, 5 has two global minima

I4. to and as he to the unique global rim

tends to I4 F0.

(d) The global minimum is differentiable in he when its

or<.

-

Remark 1: The minima & S(e)=E4"-lu (cosh(peth))
-

satisfy the equation

Sie) =B - Blauk(B4 +h) =0

=tank(4th), (2)

whil is sometimes called the self-consistent equation.
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Proofofli As a direct consequence of
Lemma 1 and 2 (please check the assumptions)we

have

difrob,t) =wims. 23)

Next, we note that the susceptibility can be wilten as

Xr(ch) =Varpin(m) =(misn-Kran)" 2.0. (4)

That is, it to and for is concave. We already

proved inthe exercises that iffu(x) -> f(x) for all xtR

and I is convex,
then fulxh -> f(x) at every port X, where

I is differentiable. Accordingly,

main) *,rspin) (25)

holds at such points.



13

An application of Lemma
3 shows

mi(r) =bem(it) =bi[-]
-- ((cosh(ro(an)+h))]

S(40,,h)

unique solution toself-consistent equation at les
28
tTapn)=G) (eopitl Euloin)

7

=O

L
-- be(cosh(40 +h)) = - tank (408)
-Mi tauk(4o(,h) +h)

S I=
1

-join. (26)
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To see how mux(p) tends to 0 as Bun, we note

that

rank(%) =4 - 5(0) +0(415) (27)

for Yo ->0. For the self-consistent equation
this implies

4.4 -) =5(4o) +0((o)"). (28)

Since 4ols, of10 for B1, we can divide by 40

and find
3(1 -3) =0.3(1 +0(1))

=>fo(B, oH =S) fort (es)

Hence,
m
+(0) =tanh)4o(B, ota)

= 40(3, ot) =p) for to. (0)

⑰



In the exercises you will show. The susceptibility is finite
for all herisan and for ht0 if21. Morever,

x(s0) =F for ATP and

x(B,0+) = ) for (B+). (31)

Rewark2:The powers
inthe behavior of me, myand

Xare called entical exponents. Based on scatinginvariance

at the calical port (B,h) = (B, 0) One very generally

expect that

m
+(B) =A.(B-bc)a (B +Bc)

m(a,h) =Anl"s (440)

x(b,0) =As(B)
-

(BT) (2)

.

For he CW model we have a =2,8 =3,5 =1.
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The Sting model on Ed has the same antical exp. as

He C model ifa 5. The cait.exp. of the Ing
model on are given by a=5,8 =15,8 =44.



Mean-fiedbunds forbingmodel

In this section we write the Hamiltonian of the CW model

as

jen(w) =-wiws-h a, (33)

that is, we replaced B by 2dB. Before we head but 1

and now we have B =Ed. By 4(k) = -f(B,h)

we denote the pressure
and mech) is the magnetization.

Then we have

em2:The following bounds hold for her bring

model on Ed, dis:

(a) E(Bin) -In(r), for all Buo and
all htR

(a) (ohtin* us(r), for all so and last

(34)
() Bi(d)B.


