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1. Physicsbackground -

(Examples I superfluids :

superfluidity = frictionless flow liquid Helium 3 and 4)

superconductivity = superfluid flow of charged particles

· Superconductively discovered by Heike Kamerligh
Onnes in 1811. He showed that Mercuri is

starting to be superconducting at 4 .

12 Kelvin
.

--Is ofLe knowa 118 element ar

(Nobel Prize in 1913) I Mora to be superconducing at low temperature .

1 addetitual aresuperat low temp,
and high1
pressure .

of be 1933 W
.
Meissner and R

. Ocksenfeld discovered

that samples ,
in the presence of a magnetic field ,

expell the magnetic field from their niterior after

being cooled below their superconducting transition

temperature (Meissner-Ochsenfeld effect) .

⑭ i
T> Tc
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typeI superconductors : superconding stake break down T

immediately if the external magnetic field reaches

a critical value (first order phase translite)

typeII superconductors : If one raises the external magnetic

field beyond a first cortical value one obtans a

mixed state ,

where an increasing amount of

localized magnetic flux tubes penetrate tee

material. However ,
ther remanis no resistance

to the electric current if it is not too large .

Some type II superconductors extabit a small

but finite resistance in the mixed state due to

motion of the flux
vortices induced by the

Zorulz forces from the current. At a second

critical field the superconducting states is destroyed.

7 The London equations (F.

and H .
London

, 1935)
below have been the first Moretical model that



3
-explained te Meissner effect. They read G

Is = superconducting current dentity (vector

E, B = electric
, magnetic field (vectors )

2 = election charge

m = electron mass

us = material constant

Ets= T rotjs = -B
=>

u

a Isotope effect (Maxwell , Reynolds 1950 -51)

Critical temperature for superconductivity is , for a given

material
, approximately inversely propertional to the

square roof of the mass of the Botope used in

the material (Isotopes have the same numberof electrons
but a different number of neutrons in the nucleus.

They therefore have a different mass
. )

.

9 Ginzburg-Landau equations (Ginzburg ,
Landau 1950)

The GL equations have been introduced as a
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-

phenomenological Merry of superconductivity. The
G

Vortex lattice structure that emerges when magnetic
Vortex tubes penetrate a superconductor can be

explained with them (Abrikosov lattice solutions ,

Nobel Rize in 2003) .

Lu particular , they describe
the superconducting phase transition as a fanchte

of the external magnetic field
. The 67 equatious

read

-magnetic
Vector potential

(iv+ () 4(x) = (((f(x)(- 1) +(x)
-

frudion from R
-> C

field Corder parameter)fall
magnetic
I

(wl(B(x) - Bexf(x)) =Re[() fix+ A(x) q(x)
.

-

(wA(x)<
external magnetic field Key carry

no

L charge

I case of a superfluid ,
the particles cannot create

an external magnetic field (the magnetic field in

ter equation then usually describes a rotation of the

system ,
where the Coriolis force has been compensated



by a harmonic potential (x) ,
and one therefore 5

-
G

only considers te first equation (for 4)
to describe

the matter part of the system.
This equation successfully

predicts that the velocity field UK) of a superfluid satisfies rott(
(irritational flowd

= 0
.

7 BCS theory of superconductivity (Bardeen , Cooper ,

Schrieffer ,
1957 ,

Nobel prize 1972). The first

microscopic theory of superconductivity. The main

ingredients are :

(a) At low temperatures there is an effective attractive
interaction between the electrons in a metal or alloy

coming from lattice vibrations (phonous) .

(b) This effective attraction leads to the formation

If Cooper pairs
in the system. These electron

pairs are not really bosonic particles because

in a typical metal ead pai overlaps will

order 1000 other pairs. Nevertheless ,
these pais

do conduse as bosons do.

(c) BCS used a clever hial state (we would today
call it a quasi-free state) to obtain a model
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that displays the above phenomenon and can be 6

Studied analytically. I describes the superconducting
phase transition in

many
metals and alloys.

of of the many later developments we only mention the

discovery of high-temperature superconductivity by
Beduorz and Miller in 1986 at te IBM research

lab near Zurid .

(To Meri 4 .

2K
, highest To in 1970s was 20K,

Bedworz
,

Miller : To = 35
.
1K

, highest To as of 2021 :

133K (at room presswell
To this day here is no satisfactory thematical explanation
for the transition temperatures above .

It seems heat te

superconducting state in these materials is more

complicated than the one introduced by BCS .

h the next section we introduce the class of states

of BCS (quari-free states on the fermionic For space
mathematically. Afterward ,

we give a formal drivation
↑

of te Bes functional . non-rigordes
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2. tomionicFock space and quasifree states -----

Zet us consider fermionic particles will spie V inWhe

box 1 = [0 ,L] .

· One particle Hilbert space : H ,

= [ (1) K
.

One element : #(x ,6) with xt1 ,
6 t[4 ,+]

-

complex-valued

Inner product : [4
,
% = [S (x2)4(x,6) dx

6-[TiN3 1

·f n-particle Hilbert space : Te = Her ... He
-

-times

One element : # (Xbe, .... Xuiba) wille xiE1 ,Gif[Ti]

that satisfies

#[Xeibe , e

, Xibig - es Xjidoj , -
Xa

,
ba (e)

= - [Xaibe , ---iXjabj ,
- , Xi ,

bi , ... Xubul

for all 1icjeu .



I Fermionic Fock space : F= In with <to = K.

One element # = (Fort
,
F2, ... ) with Ettn and

<FiE)= <Fuin) <+
.

(2)

The For space allows for the description of physical

systems with a fluctuating paticle number.

· Creation and annihilation operators :

For 8-H ,
the creation operator at(f) and te

annihilation operator alf) are defined by (#tHn)

(a
*(f)#) [xnibe , --- , Xatn , Gate) (3)

- sgu
(s) f(Xscatel Escetel) # (scal sa

X scal iEscal

and
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(al8)4) (Xebe .... Xaniban) =L S F(x,b . X be . ...
T

GERT, 5 1 Xubure) dx ,

respectively. A short computation shows that a (8) is

indeed the adjoint of alf) and that these operator
satisfy the Canonical Anticommutation Relations

(CAR) : (EA ,B] = AB +BA ; fig - [ (n)

& als) ,
a

+ (a)3 = (8 ,8)<4) 15 ,

[a
* (s) ,

a
* (8) 3 = 0 = [als) , al8l]

.

(4)

ise1) ! Please ched (4) .

% States : A bounded operator of on J is called

a state if gro and try = 1. By the spectral

Meorem it can be written in the form

g
=E Pa IF (5)

with pario for EI and E0px = 1. That is t



I
Can be interpreted as a probability distribution over G

ranl one projections .

In the following we will use

the notation (AEB(F)

h[Ag] = (A)
g

.

(6)

Example 1 (Slater determinant) : Zet Eli, be

an orthonormal family of vectors in the and define

9 = 14 <7) with & = 4-
1

... 140 . (a)

of Quasi-free states : a state of on F is called

quasi-free if the Wick rule

squ <Latat ... andg =E (p) <atat(2) ... Rail
pES'n

Lata ...
Atg = 0 (8)

holds. Here a stands for either a
*(fj) or alti) with
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some frett , Sin is the subset of the symmetric G

group San containing only permutations which satisfy

p(1) > p(3) < p(5) <... < p(2n2) and p(2j- 1) < p(zj)

for all 1<jzn .

Example 2 (Wick rule) :

(a*(f)*(12) a (A3) a (Ax) < (9)

= (A) a*(12)< a(83) a(84) >

- (aF(A) a(8s))(a
*

(fz) a (fu)L

+ (a*(81) a(fu)) (a*(12) a(As)) .

Example 3 (Quasi-free state) : The Slater determinand

introduced in (7) is a quasi-free state.

#ecise2 : Please ched that 97 in (7) is a

quasi-free state .

Hint : Write the Vector It in terms
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of creation operators
as G

# = In ... Yo = a
*(2) ...

a
*(a) &, (10)

where & = (1 ,
0

, 0 .... ) denotes the vacuum vector in F
.

Then use the CAR
.

Let me recall that for Enttu and Im we have

(for the Saleof simplicity J out spin variables)

-*& Fe(X, --- Xanthe ( =

1

- (1)
Tulhe ! (Un+ he) !

& squ (p) En (Xpai ... Xp(m)F2(XPltel1--1X Plantuel)
.

P-Suntuz

Remark 1 : A quasi-free state is completely determined

If we know (a
*(8) a(s)
,
and (alf) als)

o

for
all fift In .

That is
,
the setof these states

has a nice paramelization !
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↳Formal derivationofthe BCS funcional -
-° A

The Hamiltonian of our system of Spin fermions in

the box [0 . 2]3 reads (Fowier space ,
second quantization)

3/z
Iπ( ( *

A# = 2 p2a
*
a t -

> [Y(p) a
*
9

Up , ↳ vik us
.

(12)
pid Plb 2 u+pil

PERF P ,MET

6 -[TiN]
6

,ke[T ,N]

--
limeric term

unteraction potential

&Ai in umparticle (UXi-xj) in -partie
Sector) sector in position space ,

(p) = (π)
-* Su() "P dx (

[0 , ]3

We are interested in the grand canonical potential

F = - Tl(texp)- E(H -M())
,

(13)

-

1 = temperature ,
N=As

M
= chemical potential -[ particle number operator
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whil salisfies the Gibbs Variational principle 7

F = min [G[HT] -TS(n)] ,

(14)

-

=

- ↓Mb(f)

von Neumann entropy

where the minimum is taken over all states on the

For space .

The unique minimizer is the grand
Canonical Gibbs state

6= (15)

The ultimate goal is to show that

him him (a*(f) a*(g) a (Tr8) a(Tuf + 0

-

(Tug)(x) = g(x-v) (16)

holds
,
whit would

, by physics arguments , riply
·
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-

superconductivity. Butthis problem is believed to be out 7

of
reach of present day mathematics.

The idea of BCS was to restrict attention to quasi-

free states in the minimization in (14) to obtain an

approximation to te interacting Gibbs state 6 in (16) .

In the following we restrict attention to Sulz) and

translation-invariant quasi-free states
,
whil are

completely determined by the one-particle density
makix (1-pdm)

H(p) = (a*
p ,49p ,4) = (aF 94, t)g (17)

and the Fowier transform of the Cooper pair
wave funcion

< (p) = <q
- p, 9p,t),

=
- (2

- p , + 9p , 4 y .
(10)

# other expectation values of qudratic expressions
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are zero under these symmetry assumptions. Ulting the 7

Cauchy-Schwarz inequality ,
the CAR

,
and (d)

- 27p) one easily clucks that

<P = 1 and ((P < W() (1 - 5() as)

holds for all PE **.

A straight forward computation that uses the Wich

Morem shows that the energy of our state reads

<HN = 2 [ <PFMN(p)+**E Y(n)FFm - ) < CD
o ep

exchange ter
3k ↓

(2π
+ 2(π

*

Y(([0()) - [use)Unl .e.j
direct term

↓ can also be shown (this is more complicated)
that the entropy of an S4(z) and translation

invariant quasi-free state of can be written as



Ez
S(8) = - 2 Wx[ M(p) In (r(p1)] ,

(21)

where M(p) is the 2x2 malix

(r() =( (22)

which satisfies the piw .
bound O < T(p)E1 .

The next step in the formal derivation of the BCs

funcional is to discard the two interaction terms

that depend on 5 (direct and exchange term) .

When we multiply (H)g--S(g) by E,

take the liment L->o
, and absorb a factor in V,

we find the BCS functional

5(a ,2) = G(p2-u)8(p)dp + Ju()((x) de
↓ R3

Sometimes we

(23)
also write F(t)/sTS(tX) ,

-



her we
used the special form of M(P) to see 6

-
will

that if is is an EU of M(D) then 1-x is one
, too .

7

↓
S(w , 2) = =f(x[N(p) la 4(b) + (1--(p) la(1-+(0)]

.

(24)

R3

be the following we assume VE(K(R3). In this

case the natural domain of the BCS funcional
is

D = [(0 ,2) -> ((R3 ,
(+Pdp) x +Y(R3 , dx)I

<(x) = 27x) ,
0 = M(p) = 13. . (is)

What is the meaning of superconductivity in the

framework of the BCS functional ? To answer

His question ,
we replace the interaching Gibbs

state G by an Sh(z) and translation invariant

quasi-free state of in (16). We also replace

a
*(1)

,
a(8) by a f(x) , a 1(x)

,
where at()

denotes the operator-value distribution
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(x) = eipt atip .

A short computation shows
7

(26)

(a
- (x)a(x)a +

(2)a
,(2) = [W(x-y)] "+ ((0) ! :

We have ((+PYH(p)dp ,
and heavelin (x) = 0

R3

CRieman-Leberque Lemma) .

We conclude that

bin(a- (x)a+ (x)a +(y)9y(y) + 0 E) (27)

K(0)P 10. · This motivates the definition that the

minimizer of F is called superconducting iff the

minimizer has a kon-Vanishing Cooper pair Wave

function (hote that this is not exactly le same) .

Remark 2 : The long range order in (27) can be

interpreted as Bose-Einstein condensation of fermion
pais. We recall that BEC can be defined by

bin tino (a*(x) a (y)
,

. . (28)



Ethematicalanalysisofthe BCS facional o
in the translation-invariant case
-

In this section we study the BCS function F(5, <) in (23)

for UE(3/2(R3) and (Pic)ED with D in (25). As

has been shown in

[1] C
.
Hainze

,
E

.

Hanza , R . Seiriger , J.P. Solovej ,

The BCs functional for general pair interactions ,

Commun
.

Math.Phys .
281

,
345-367 (2008)

the BCS functional is bounded from below and attains

is Infinem in ther set D
,
that is

,
hore exists a

pair (5) ED sit

inded 5(0) = F(5 , 2) .

(2s)

This minimizer need not be unique. The lower bound

easily follows from (13) and he mequality - A+V-C
,

whi holds in the sense of quadratic forms. The
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proof of the existence of a minimizer reses the direct
*

method in the calculus of variations and isfairly
standard.

If V= 0 the BCS functional is minimized by the
normal state

Fold = (B)) , Po(p) =

.

(d)
e

To
prove

this statement
,

we write the BCS functional
inLee form (VEO

!) * - Bo

5(n) = F(t) + F(N) - F(r)
-

= S Wan[Ho(p) (M(p) -Po(p))]dp +#[8(f) - 8(r)]
KL -

(pipal)
- Fo(t) + E1(4 , Po)

,
where (31)



2(x) = xlu(x) + (1-x)((1 -x) :
-

↑ &

1)P , 10) = Start Excel-2(top) - (Tolp) (p() -T
. (p1)]

(32)

denotes fermionic relative entropy of ↑ writ
.
To

.

We daim

that the trace on the rus . is nonnegative and equals zero

it M(p) = Polp) a
.
e
.

This can be proved with Klein's in

equality ,
whose statement is captured in the following Lemma.

Lemma 1 (Klein's inequality) : Let A ,
B be two self-adjoint-

operators with spectra
6(A)

, 6(B) and let 481]
,
[S2] be two

families of functions with fr : 6(A) -K
, gr : 6(B) -> D

,

and assume that

& fuCalgn(b) 30 for all at6(A) .
b -6(3). (33)

Them

↓[f2(x)Sa(s)], 0
. (34)

Exercise : Prove Klein's inequality in the case of matizes
A and B

.



The above claims about the relative entropy follow from I
Whe strict convexity of the map X-4(x) and Klein's

nequality. This proves Hat To i li veiqee minimizer

of 5 if V = o
.

The following theorem characterizes phase transitions in

We BCS functional and appeared in this form in [-].

Theorem 1 : Let VE((R3)
, MER ,

and Te[0 ,d)
.

-

Then the following statements are equivalent :

(i) The normal state (No ,0) is unstable Lender pair

formation ,

i

. e.

ED 5(0 ,2) < F(50 ,
0). (35)

(ii) There exists a pair (PicED ,
with < E0 ,

sit.

A(p) =- (36)
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/p

Satisfies te BCS gap equation (37↓

E

1 = - x(tank(π) willEp
.

->
fxf(p) = 3mS8(-718(q)q(iii) The linear operator

K + V kT=P (30)T I
M

has at least one negahte eigenvalue .

Remark 3 : The operator in (38) is obtained by taking
-

the second derivative of F wirt
.

2 in the normal state

(To , 0). Since the normal state is a critical point of F

it is easy
to see that (iii) implice (i). The opposite direction

says that if (8 , 0) is not a minimizer then it cannot

be locally stable ,
and it is not immediate

.

Let us prove (i) => (iii)
.
To that end

,
we show that

the negation of (iii) implies the negation of (i) .
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To that end
, we need the following Lemma ,

which /

is a simplified version of Zemma 1 in [FHSS2012]

(see p
.

2 in Section on 62 Merry for the precise reference) ·

ama2 : We have

<+(190) Stan Hock ) (0(p)
-Po().. (39)

The proof of this inequality follows from the bound

x((z) + ( -x)lu(j), but (x (40)

for 0<x ,>1 and an application of Klein's visquality.

To prove ou original dain ,
we crite

Tf(n) -E(t) =

= H(t , P0) + fv()((x) P dx
> 2T R3
-

Skim (p) (8(b) -50(p)) dp + 8 Kim (d) 1560)Lemma 1
+ Su()(x) dx
R3
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( , (kin+V)x)

(R3)
: (41)

If Kin+ V has no negative eigenvales (the essential speche

ofUn operator equals [25 ,<) then Um r .
h

.
s

. Of (4)

is nonnegative and we conclude that E(M) -#(f) 2
, 0

.

Smiethis is the negation of (i) te claim is proved.

Remark 4 : 3) The operator Kim is strictly
--

monotone in T in the sense that

(F
, Kim) = (4

, k) #EH(R3) (42)
Tim

if TCT' .
This allows us to conclude that there

exists a unique cortical temperature Ta/ 0 sit
.

U unique minimizer is the normal state if TTo
and there exists a minimizer↑ with x to if
T To .

of The characterization of To via
Un linear operator



-
Kin+ V is the starting point for several studies

&

ofTo in the weak coupling , the low dentity,
and the high dentity limit.

I he physics textbook the gap equation in (37) is more

prominently featured than the BCS functional.Theorem 1

Guarantees that the two approaches are equivalent .
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* BCSfain te presenceof E↑

-Periodicexternal fields-

I the following we assume
that W : R-M is

periodic will period a ,
i . e. W(x+ V) = W(x) for

all UEa-, a >o (lattice constant). To study BCS

Meony in the presence of 1 we drop the assumption

of hanslation invariance of the
states and rather

answe that they are periodic w . ri

t
.

The lattice

a
.

In this setting a BCS state is of the form

r =(i) = B(((R3)④(2(R3) (43)

and salisfies 0<PE1 .
The operator I is definid

via its integral Rermel in position space by I (x 1y)

= x ,3) (the Ops .

We will consider have ritegral Kernels) .
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We highlight that the condition 0 =1 is more 5

complicated here tan in the traulation invariant case

asI anda are now operators on infinite dimensional

Hilbert spaces that
need not commute (title translation

invariant case they commute). It iiplies P(xy) =Flix) ,

2(x ,y) = <(y,)
,
and <

*
< %(15) .

We call a BCS state ↑ periodic (wird . att) iff

[[Tuf)(x) = f(x+v)]

*

TrBTv = 8 < (x+ v , y + u) = W(x ,y) , (44)

ToxT
*

= 2 E 2(x+ u , y+y) = C(x,y)
,

holds for all Vea?. A periodic BCS state is called

admissible if

Waa[7x+1)* y(-x+1)") < + 0
,

(45)

teat is
, if the state has finite trace and finite luvitic energy.
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Her Was denotes the have per wit volume of a periodic 5

operator A , that is ,

ra[A] = h[XaAXa]
.

(46)
a

↑
-

/ multiplication Op .

In position space with

Lebesque measure characteristic funcion & Hu set Q=50 , a] ?

of Q.

For an admissible BCS state we define the BCS functional
by - tafT(u(d)]

↑

5( = Wafx -

n+w(V] - S(4)+ f 2(r , x) U(r) dIrx)
.

1

/ (47)
multiplication operator

RxG. /
with W(x)

Cooper pair wave function in
symmetry relative and center of mass

<(x ,y) = x(y , x) - coordinatest = xy ,
X=*

= x(r . X) = 2fr .X) By a slight abusef
notation

we denots in by the same Symbol
2(x+v , y+u) = a(x ,y)

as he original function.

E2(r ,X + v) = C(r ,X)
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How do we add an external periodic magnetic field ? 5

We need to replace leads to constant

magnetic field (48)
-

. -xby -Ax = fi+ A) cl A( = b() + Aper() ,

- wedge or cross

H

AB(x) => begex product
-

where Aper(x+u) = Aper(x) # VE at .

B

Note that A is not periodic but B(x) = not A(x) is
.

· Zet us define the magnetic translation

TB(v)f(x) = mi *. (vex) g(x+ u)
, (49)

which satisfiesTr
*

(v) (-i0+ As() Tb(v) = 0 VER3
.

We

need to replace (44) by

TB(v)UT(v) = 8 = V(x,y) = ei *. (v-(x-f) g(x+v
,y+u)

TB(v)xT(u) =2()((xy) = eit . (un(x+y)a(x+v , y+d)

(50)
· Le BCS functional in (47) by

5(n) = (p()fi0+A(x))+ W(x) -M(6] - TS(n)
a

+ fv()((r ,X) Pd(r , X)
.

(51)
M3 x Qa
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Rals5 : The fact that A can be chosen as in (45) 5

and thata can be chosen to be garge periodic comes

fromHee gange symmetry of the problem. That is
,

we

choose a certain gange .
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↳
Uting this symmetry and Fowier analysis ,

he following
nequality has been proved in [Lemma 3

, FHSS2012] :

) (0) <
,
coust

. 4 f ((x+ Vy(a(x ,y)Pd(x,y)
.

(104)

↑ R3xQU

This would be easy to prove if Ki were

replaced by -A .

In case of a constant magnetic field we write the

Cooper pair wave funcion as

a(r .
X) = 2x(r)cos(E .T(x) #(X) + 30/riX)

.

Cost

d ↓

Note that the relative-

= - iDX + A2B(X)
and the center-of-mass
wave funcion are entangled .

The functions I and3o are defined via he operator

(Ax)(x) = Saa(r)cos(E -Tx) < (riX) dr
,

Got


