Malkemalical Aspects of the
BCS Theory of Super conductivity by Andreas Deuchert $(4 \times 75$ min $)$
1.) Physics baiground (Superconductivity)
2.) Fermionic For space and quasi-free states
3.) Formal derivation of the BCS functional
4.) Malnematical analysis of the translation invariant BCS functional
5.) The BCD functional in the presence of periodic external fields
6.) Relation between BCS and GL theory
7.) Upper bound for the BCS free energy 8.) Lowe bound for the BCS free energy

1. Plysics barground
(Examples of superfluids:
Superfluidity $=$ frichionless flow lisuid Helium 3 and 4)
superconductivity $=$ superfluid flow of chaged pasticles

- Superconductiving discovered loy Heike Kamerlaigh Ounes in 1911. He showed Mat Meranri is stating to be superconduching at 4.12 Kelvin. (Nobel prize in 1913) $\begin{aligned} & 31 \text { of lee hacwa } 118 \text { elements are } \\ & \text { Rurwa to be superconduding at low temperature. }\end{aligned}$ 18 addeitinal wre supercond. at low temp. and ligh
I. We 1933 W. Meissuer and R. Ochsengeld discovered presurue. That samples, in the presence of a magnetic field, expell the maguetic field from heir usterior offer being cooled below huir superconduching traustion temperature (Meissur-Odisenfeld effect).

$T>T_{c}$

type I superconductors: superconding saks braless down immediately I the external magnetic field reaches a cortical value (first order phase transition)
type II superconductors: If one raises the external magnetic field beyond a girt cortical value one stains a mixed state, where an increasing amount of localized magnetic flux tubes penetrate hue material. However, here remanis us resistance to the electric current if it is not too large. Some type II superconductors exhibit a small but finite resistance in the mixed state due to motion of the flux vortices induced by the Lorentz fores from the current. At a second critical field the supeccouduching states is destroyed.
- The London equations (F. and H. London, 1985) below have been he foist theoretical model hat
explained he e Meissner effect. They read
$\bar{j}_{s}=$ superconducting current density (vector)
$E, B=$ electric, magnetic field (vectors)
$e=$ elector change
$m=$ electron mass
$u_{s}=$ material constant

$$
\frac{\partial j_{s}}{\partial t}=\frac{u_{s} e^{2}}{m} E, \quad \operatorname{tot} j_{8}=-\frac{u_{s} e^{2}}{m} B
$$

- Isotope effect (Maxwell, Reynolds 1550-51)

Critical temperature for supercondeaclivity is, for a given material, approximately inversely propertional to the square root of the mass of the isotope used in the material (botopes have the same umber of electrons but a different number of neutrons in the unclens. They therefore have a different mass.).

- Ginzburg-Landan equations (Ginzburg, Landau 1850)

The GL equations have been introduced as a
phenomenological theory of superconduchirity. The vortex lattice structure heat emerges when magnetic vortex tubes penetrate a superconductor can be explained with them (Abrikosov lattice solutions, Nobel prize in 2003). In particular, hay describe the superconducting phase trantion as a function δ the external magnetic field. The $C L$ equations read
magualic vector potculial

$$
(-i \nabla+A(x))^{2} \underbrace{\not \approx(x)}=k^{2}\left(|f(x)|^{2}-1\right) \psi(x)
$$

function from $\mathbb{R}^{3} \rightarrow \mathbb{C}$
(order parameter)

In case of a superfluid, the particles cam ot create an external magnetic field (the magnetic field in the equation then usually describes a rotation of the system, where the Coriolis force has been compensated
by a harmonic potential ωx^{2}), and one therfore only considers the firs equation (for 7) to describe the matter past of the system. This equation successfully predicts heat the velocity field $V(x)$ of a super fid satisfies rot (x) (irrotacional flow)

- BCS theory d superconductivity (Bardeen, Cooper, Schrieffer, 1957, Dowel prize 1972). The firm microscopic theory of superconductivity. The main ingredients are:
(a) At low temperatwes there is an effective attractive miteraclion between the electrons in a metal or alloy coming from lattice Vibrations (phonons).
(b) This effective attraction leads to the formation of Cooper pairs in the system. These electron pairs ar not really bossing particles because in a typical metal each pair overlaps with order 1000 the pairs. Nevertheless, these pairs do condense as bosons do.
(c) BCS used a clever til state (we would bo day call it a quasi-fiee stack) to obtain a model
that displays the above phenomenon and can be Studied analytically. I describes the superconducting phase transition in many metals and alloys.
-I Of the many later developments we only mention the discovery of Ligh-temperatwe super conductivity by Beduor and littler in 1886 at he $1 B M$ research lab near Zurich.
(T_{c} Meravi 4.2 K , highest T_{c} in 18705 was 20K, Beduart, lille: $T_{c}=35.1 \mathrm{~K}$, highers T_{c} as of 2021: $133 k$ (at room pressure))

To his day hare is us satisfactory heretical explandion for the transition temperatwes above. It seems heat he superconducting state in Lase materials is more complicated than the one wi troduced by BCS.

In the next section we vitroduce the class of states of BCS (quari-free states on the fermionic For space) mathematically. Afterward, we give a formal derivation of lu e Bes functional. usu-rigordus
2. Fomionic Tor space and quasifree states,

Let us consider fermionic pastides will e spier $1 / 2$ in the $\operatorname{lox} \Lambda=[0, L]^{3}$.

- One particle Hilbert space: $\mathbb{H}_{1}=L^{2}(\Lambda) \otimes \mathbb{C}$.

One element: $\underbrace{\mathcal{F}(x, 6)}_{\text {complex-Valued }}$ wink $x \in \Lambda, \quad G \in\{\hat{1}, \downarrow\}$
lune r product : $\langle\varphi, \psi\rangle=\sum_{\sigma \in\{\uparrow \uparrow\}\}} \int_{\Lambda} \overline{\varphi(x, \sigma)} \psi(x, 6) d x$
.1. u-patine Hilbert space: ${H_{u}}^{\prime}=\underbrace{\mathbb{t}_{1} \wedge \ldots \wedge H_{1}}_{\text {u-times }}$
One element: $\mathcal{F}\left(x_{1}, \sigma_{1}, \ldots, x_{n}, \sigma_{n}\right)$ with $x_{i} \in \Lambda, \sigma_{i} \in\{\uparrow \downarrow\}$
What solis foes

$$
\begin{align*}
& \mathcal{F}\left(x_{1}, \sigma_{1}, \ldots, x_{i}, b_{i}, \ldots, x_{j}, \sigma_{j}, \ldots, x_{n}, \sigma_{n}\right) \tag{1}\\
& \quad=-\mathcal{F}\left(x_{1}, \sigma_{1}, \ldots, x_{j}, \sigma_{j}, \ldots, x_{i}, \sigma_{i}, \ldots x_{n}, \sigma_{n}\right)
\end{align*}
$$

for all $\Lambda \leqslant i<j \leqslant u$.

- Fermionic Fork space: $\overline{\mathcal{J}}=\bigoplus_{n=0}^{\infty} \mathcal{H}_{n}$ withe $\mathcal{H}_{0}=\mathbb{C}$.

One element $\psi_{=}=\left(\psi_{0}, \psi_{1}, \psi_{2}, \ldots\right)$ with $\psi_{n} \in \mathcal{t}_{n}$ and

$$
\begin{equation*}
\langle\psi, \psi\rangle=\sum_{n=0}^{\infty}\left\langle\psi_{n}, \psi_{n}\right\rangle\langle+\infty . \tag{2}
\end{equation*}
$$

The For space allows for her description of physical systems with a fludualing patrice umber.

- Creation and annihilation operators:

For $f \in \mathcal{H t}_{1}$, he creation operator $a_{i}^{*}(f)$ and he e anniluitation operator $a(f)$ are defied by $\left(\mathcal{F}_{\in} \in \mathbb{H}_{n}\right)$

$$
\begin{align*}
& \left(a^{*}(f) \psi\right)\left(x_{1}, \sigma_{n}, \ldots, x_{u+1}, \sigma_{u+1}\right) \tag{3}\\
& =\frac{1}{\sqrt{n!(u+1)!}} \sum_{s \in S_{u+1}} s g u(s) f\left(x_{s(u+1)}, b_{s(u+1)}\right) \psi\left(\begin{array}{l}
\left(x_{s(1)}, \sigma_{s(1)}, \ldots,\right. \\
\left.x_{s(u)}, \sigma_{s(u)}\right)
\end{array}\right.
\end{align*}
$$

and

$$
(a(f) \psi)\left(x_{1}, 6_{1}, \ldots, x_{n-1}, b_{n-1}\right)=\sqrt{u} \sum_{6 \in\{\uparrow,\lfloor \}} \int_{\wedge} \overline{f(x, 6)} \psi\left(x, 6, x_{1}, b_{1}, \ldots, \frac{3}{6} \begin{array}{c}
\left.x_{n-1} 6 b_{n-1}\right) d x
\end{array}\right.
$$

respectively. A short computation shows heat $a^{*}(f)$ is indeed the adjoint of $a(f)$ and that these operators Satisfy the Canonical Auticommutation Relations

$$
\begin{align*}
(C A R): & \left(\{A, B\}=A B+B A ; f, g \in L^{2}(1)\right) \\
& \left\{a(\delta), a^{*}(f)\right\}=\langle\delta, f\rangle L^{2}(1) \frac{1}{\bar{f}}, \\
& \left\{a^{*}(\delta), a^{*}(f)\right\}=0=\{a(8), a(f)\} . \tag{4}
\end{align*}
$$

Exercise 1: Please cher (4).

- States : A bomuded operator g on \bar{F} is called a state if $g \geqslant 0$ and tr g $=1$. By he spectral theorem it can be written in he form

$$
\begin{equation*}
\left.g=\sum_{\alpha=1}^{\infty} p_{\alpha} \mid \psi_{\alpha}\right)\left\langle\psi_{\alpha}\right| \tag{5}
\end{equation*}
$$

with $p_{\alpha} \geqslant 0$ for $\alpha \in \mathbb{N}$ and $\sum_{\alpha=1}^{\infty} \rho_{\alpha}=1$. That is, t

Can be interpreted as a probability distribution over rank one projections. In the following we will use the notation $(A \in B(F))$

$$
\begin{equation*}
\operatorname{tr}[A g]=\langle A\rangle_{\rho} \tag{6}
\end{equation*}
$$

Example 1 (Slater determinant): Let $\left\{\varphi_{i}\right\}_{i=1}^{N}$ be an orthonormal family δ vectors in t_{1} and define

$$
\begin{equation*}
\rho_{\psi}=|\psi>\psi| \text { will } \psi=\varphi_{1} \wedge \ldots \wedge \varphi_{N} . \tag{7}
\end{equation*}
$$

- Quasi-free states: a state g on F is called quasi-free if the Wick rule

$$
\begin{align*}
& \left\langle a_{1}^{\#} a_{2}^{\#} \ldots a_{2 n}^{\#}\right\rangle_{\rho}=\sum_{p \in S_{2 n}^{\prime}} \operatorname{sgn}(p)\left\langle a_{p(1)}^{\#} a_{p(2)}^{\#}\right\rangle_{\rho} \ldots\left\langle a_{p(2 n-1)}^{\#} a_{p(a n)}^{\#}\right\rangle_{\rho} \\
& \left\langle a_{1}^{\#} a_{2}^{\#} \ldots a_{2 n+1}^{\#}\right\rangle_{\rho}=0 \tag{8}
\end{align*}
$$

holds. Here $a_{j}^{\#}$ stands for either $a^{*}\left(f_{j}\right)$ or $a\left(f_{j}\right)$ with

Some $f_{j} \in A_{1}, S_{2 n}^{\prime}$ is the subset of the symmetric goop $S_{2 n}$ containing only permutations which satisfy $p(1)<p(3)<p(5)<\ldots<p(2 n-1)$ and $p(2 j-1)<p\left(2_{j}\right)$ for all $1 \leq j \leq u$.
Example 2 (Wick rule):

$$
\begin{align*}
\left\langle a^{*}\left(f_{1}\right) a^{*}\left(f_{2}\right)\right. & \left.a\left(f_{3}\right) a\left(f_{4}\right)\right\rangle \tag{9}\\
= & \left\langle a^{*}\left(f_{1}\right) a^{*}\left(f_{2}\right)\right\rangle\left\langle a\left(f_{3}\right) a\left(f_{4}\right)\right\rangle \\
& -\left\langle a^{*}\left(f_{1}\right) a\left(f_{3}\right)\right\rangle\left\langle a^{*}\left(f_{2}\right) a\left(f_{4}\right)\right\rangle \\
& +\left\langle a^{*}\left(f_{1}\right) a\left(f_{4}\right)\right\rangle\left\langle a^{*}\left(f_{2}\right) a\left(f_{3}\right)\right\rangle .
\end{align*}
$$

Example 3 (Quasi-free state): The Slater determinand uivroduced in (7) is a quasi-free state.
Exercise 2: Please cher heat ρ_{*} in (7) is a quasi-free state. Hint: Wine the vector \mathcal{F} in terns
of creation operators as

$$
\begin{equation*}
\psi=\varphi_{1} \wedge \ldots \wedge \varphi_{N}=a^{*}\left(\varphi_{1}\right) \ldots a^{*}\left(\varphi_{n}\right) \Omega \tag{10}
\end{equation*}
$$

where $\Omega=(1,0,0, \ldots)$ denotes he vacunm vector in \bar{f}.
Then use be CAR.

Let we recall heat for $\psi_{1} \in H_{n}$ and $\mathcal{F}_{2} \in \mathcal{H}_{m}$ we have (for the sake of smiplirite I omit son variables)

$$
\begin{align*}
& \psi_{1} \wedge \psi_{2}\left(x_{1}, \ldots, x_{n_{1}+u_{2}}\right)=\frac{1}{\sqrt{u_{1}!u_{2}!\left(u_{1}+u_{2}\right)!}} \times \tag{11}\\
& \sum_{p \in S_{n_{1}+u_{2}}} \operatorname{sgu}(p) \psi_{1}\left(x_{\left.p(1), \ldots, x_{p\left(n_{1}\right)}\right) \psi_{2}\left(x_{p\left(n_{1}+1\right)}, \ldots, x_{p\left(u_{1}+u_{2}\right)}\right) .} .\right.
\end{align*}
$$

Remark 1: A quati-free state is completely determined 1 we know $\left\langle a^{*}(f) a(8)\right\rangle_{g}$ and $\langle a(f) a(f)\rangle_{\rho}$ for all figs $\in t_{1}$. That is, he set of here states has a nice parametrization!
3. Formal derivation of he $3 C s$ functional

The Hamiltonian of ow s system of spin $1 / 2$ fermions in the box $[0, L]^{3}$ reads (Frowsier space, second quantization)

$$
\begin{align*}
& H=\sum_{p \in \frac{2 \pi}{L} R^{3}} p^{2} a_{p, 6}^{*} a_{p, 6}+\frac{(2 \pi)^{3 / 2}}{2 L^{3}} \sum_{p, \mu, v \in \frac{2 \pi}{L} R^{3}} \hat{V}(\rho) a_{\mu+\rho, L}^{*} a_{V-p, k}^{*} a_{v, k} a_{\mu_{1}, 6} . \tag{12}\\
& b \in\{\uparrow, \downarrow\} \\
& \sigma, k \in\{\uparrow, \downarrow\}
\end{align*}
$$

emetic term
wheracition potential

> ($\sum_{i=1}^{n}-\Delta_{i}$ in u-partide $\left(\sum_{1 \leq i j i \leqslant n} V\left(x_{i}-x_{i}\right)\right.$ in n-partite Sector)

$$
\begin{aligned}
& \left.\hat{v}(p)=(2 \pi)^{-3 / 2} \int_{\left[0, l^{3}\right.} v(x) e^{-i p x} d x\right)
\end{aligned}
$$

We we uterested in he grand canonical potential

$$
\begin{align*}
& F=-T \ln \left(\operatorname{tr} \exp \left(-\frac{1}{T}(H-\mu W)\right)\right), \tag{13}\\
& {\left[\begin{array}{l}
T=\text { temperature, } \quad U=\underbrace{\sum_{p<6}}_{p, 6} a_{p, 6}^{*} a_{p, 0} \\
\mu=\text { chemical potential }
\end{array}\right.}
\end{align*}
$$

particle number operator
whit satisfies the Gibbs Variational principle $\frac{2}{7}$

$$
\begin{align*}
F=\min \{d[H \Gamma]- & T S(\Gamma)\} \tag{14}\\
& \sim \\
& =-d \Gamma \ln (\Gamma)
\end{align*}
$$

Non Neman entropy
where the minimum is taken over al states on the For space. The unique minimizer is the grand Canonical Gibbs state

$$
\begin{equation*}
G=\frac{\exp \left(-\frac{1}{T}(H-\mu \omega)\right)}{W \exp \left(-\frac{1}{T}(H-\mu v)\right)} \tag{15}
\end{equation*}
$$

The ultimate goal is to show hat

$$
\begin{array}{r}
\lim _{|v| \rightarrow \infty} \lim _{L \rightarrow \infty}\langle a^{*}(f) a^{*}(g) a(\underbrace{\left(T_{v} g\right)} a\left(T_{v} f\right)\rangle_{G} \neq 0 \\
\left(T_{v} g\right)(x)=g(x-v) \tag{16}
\end{array}
$$

holds, what would, by physics arguments, idly
supercondudivity. But his problem is believed to be out $\frac{3}{7}$ ${ }_{f}$ read of present day mathematics.

The idea of BCS was to restrict a benton to quasiGree states in the minimization in (14) to obtain an approximation to he mutesaching Gibbs state G in (16).

In the following we restrict attention to Su(2) and transtation-invariaut quasi-free states, whirls are completely determined by the one-particle density mahix (1 -pom)

$$
\begin{equation*}
\gamma(p)=\left\langle a_{p, \pi}^{*} a_{p, \uparrow}\right\rangle_{\rho}=\left\langle a_{p, i}^{*} a_{p, \psi}\right\rangle_{\rho} \tag{17}
\end{equation*}
$$

and the Fourier transform of the Cooper pair wave function

$$
\begin{equation*}
\hat{\alpha}(p)=\left\langle a_{-p, \uparrow} a_{p, \downarrow}\right\rangle_{\rho}=-\left\langle a_{-p, \downarrow} a_{p, \imath}\right\rangle_{\rho} \tag{18}
\end{equation*}
$$

All over expectation values of quadratic expressions
are zero undo these symmetry assumptions. Using the Candey-Schwarz inequality, the $C A R$, and $\hat{\alpha}(P)$ $=\hat{\alpha}(-p)$ one easily cheri hat

$$
\begin{equation*}
0 \leqslant \gamma(p) \leq 1 \text { and }|\hat{\alpha}(p)|^{2} \leq \gamma(p)(1-\gamma(p)) \tag{19}
\end{equation*}
$$

holds for al $p \in \frac{2 \pi}{L} \mathbb{R}^{3}$.

A straight forward computation that uses the Wick Wearem shows hat he energy of ow state reads

$$
\begin{align*}
\langle H-\mu \omega\rangle_{\rho} & =2 \sum_{p}\left(p^{2}-\mu\right) \gamma(p)+\frac{(2 \pi)^{3 / 2}}{2 L^{3}} \sum_{p_{1} k} \hat{v}(k) \overline{\hat{\alpha}(k-p)} \hat{\alpha}(p) \tag{20}\\
+ & 2 \frac{(2 \pi)^{3 / 2}}{L^{3}} \hat{v}(0)\left(\sum_{p} \gamma(p)\right)^{2}-\frac{(2 \pi)^{3 / 2}}{L^{3}} \sum_{p_{1} k}^{\text {exchange tern }} \hat{k} \hat{v}(\hat{r}) \gamma(\rho-r) \gamma(\rho) .
\end{align*}
$$

I can also be shown (his is more complicated) that the entropy of an Su(2) and translation invariant quasi-fsee state g can be written as

$$
S(\rho)=-2 \sum_{p} \operatorname{tr}_{\mathbb{C}^{2}}[\Gamma(p) \ln (\Gamma(p))]
$$

where $\Gamma(P)$ is he 2×2 matin

$$
\Gamma(p)=\left(\begin{array}{cc}
p(p) & \hat{\alpha}(p) \tag{22}\\
\frac{\hat{\alpha}}{}(p) & 1-\gamma(p)
\end{array}\right)
$$

which satisfies the p.w. bound $O \leqslant \Gamma(p) \leqslant 1$.

The next step in the formal derivation of the BCS functional is to discard thee two muteraclion terms hat depend on γ (direct and exchange term). When we multiply $\langle H\rangle_{g}-\frac{1}{\beta} S(g)$ by $\frac{1}{2}\left(\frac{2 \pi}{L}\right)^{3}$, tare the livent $L \rightarrow \infty$, and absorb a factor $\frac{1}{2}$ in V, we fid the BCS functional

$$
\bar{f}(\gamma, \alpha)=\int_{\mathbb{R}^{3}}\left(p^{2}-\mu\right) \gamma(p) d p+\int_{\mathbb{R}^{3}} u(x)|\alpha(x)|^{2} d x
$$

Sometimes we also write $\bar{F}(r) / s(r) \quad-T S(\gamma, \alpha)$,
with here we used the special form of $\Gamma(P)$ to see

$$
\begin{aligned}
& \text { here we used the special form of } \Gamma(P) \text { to see } \\
& \text { withe } \begin{array}{l}
\text { (hat } I \lambda \text { is an } E U \text { of } \Gamma(P) \text { Ven 1-ג is one, too. }
\end{array} \frac{6}{7}
\end{aligned}
$$

$$
\begin{equation*}
S(\gamma, \alpha) \stackrel{1}{2} \int_{\mathbb{R}^{3}} d_{\mathbb{C}^{2}}[\Gamma(p) \ln \Gamma(p)+(1-\Gamma(p)) \operatorname{la}(1-\Gamma(p))] . \tag{24}
\end{equation*}
$$

We he e following we assume $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)$. Lu his case the natal domain of the BCS fundional is

$$
\begin{gather*}
D=\left\{(8, \alpha) \in L^{1}\left(\mathbb{R}^{3},\left(1+p^{2}\right) d p\right) \times H^{1}\left(\mathbb{R}^{3}, d x\right) \mid\right. \\
\alpha(x)=\alpha(-x), \quad 0 \leq \Gamma(p) \leq \Lambda\} . \tag{25}
\end{gather*}
$$

What is the meaning of superconduchivity be be framework of he BCS fundional? To answer his question, we replace the unteaching Gibbs state $G \operatorname{by} a_{n} S U(2)$ and translation mivariant quasi-free state g in (16). We also replace $a^{*}(8), a^{*}(8)$ by $a_{\hat{\imath}}^{*}(x), a_{\downarrow}^{*}(x)$, where $a_{\uparrow}^{*}(x)$ denotes the operator-value distribution
$a_{\hat{\imath}}^{*}(x)=\sum_{p} e^{i p x} a_{\hat{\lambda}, p}^{*}$. A short computation shows

$$
\begin{equation*}
\left\langle a_{\uparrow}^{*}(x) a_{\downarrow}^{*}(x) a_{\downarrow}(y) a_{\uparrow}(y)\right\rangle=[\gamma(x-y)]^{2}+|\alpha(0)|^{2} . \tag{26}
\end{equation*}
$$

We have $\int_{\mathbb{R}^{3}}\left(1+p^{2}\right) \gamma(p) d p$, and hence $\lim _{|x| \rightarrow \infty} \gamma(x)=0$
(Riemam-Lebesque lemma). We conclude heat

$$
\begin{equation*}
\lim _{|y| \rightarrow \infty}\left\langle a_{\uparrow}^{*}(x) a_{\downarrow}^{*}(x) a_{\downarrow}(y) a_{\uparrow}(y)\right\rangle \neq 0 \Leftrightarrow \tag{27}
\end{equation*}
$$

$|\alpha(0)|^{2} \neq 0$. This motivates he e definition heat he mivininizer of I is called syperconduching if the minimizer has a uon-Varisking Cooper pair wave function (note heat his is not exactly her same).

Remark 2: The long range oreler in (27) can be meserpreted as Bose -Einstein condensation of fermion pairs. We recall heat BECC Can be defied by

$$
\begin{equation*}
\lim _{|y| \rightarrow \infty} \lim _{L \rightarrow \infty}\left\langle a^{*}(x) a(y)\right\rangle_{G} \neq 0 . \tag{28}
\end{equation*}
$$

4. Mathematical analysis of the $3 C S$ functional $\frac{1}{8}$ in the translation-invariant case

In his section we study the $\mathcal{B C S}$ function $\mathcal{J}(\gamma, \alpha)$ in (23) for $V \in L^{3 / 2}\left(\mathbb{R}^{3}\right)$ and $(8, \alpha) \in D$ wile D in (25). As has been shown in
[1] C. Hainzl, E. Hamza, R. Seircinge, J.P. Solovej,
The Bes fuechisual for general pair unteradions, Common. Math. Phys. 281, 345-367 (2008)
the BCS functional is bounded from below and attains its rífimeme in he e set D, hat is, here exits a pair $(\tilde{\gamma}, \tilde{\alpha}) \in D$ sst.

$$
\begin{equation*}
\dot{u i f}_{(\gamma, \alpha) \in D} \bar{f}(\gamma, \alpha)=\bar{f}(\tilde{\gamma}, \tilde{\alpha}) \text {. } \tag{zs}
\end{equation*}
$$

This minimizer need not be nirique. The bree bound easily follows from (19) and he inequality $-\Delta+V \geqslant-C$, whir holds in he sense of quadratic forms. The
proof of he existence of a minimizer uses the direct $\frac{2}{8}$ method in the Calculus δ variations and is fairly standard.

If $V \equiv 0$ the BCS functional is minimized by the normal state

$$
\Gamma_{0}(p)=\left(\begin{array}{cc}
\gamma_{0}(p) & 0 \tag{30}\\
0 & 1-\gamma_{0}(p)
\end{array}\right), \quad \gamma_{0}(p)=\frac{1}{e^{\frac{1}{7}\left(p^{2}-\mu\right)}+1} .
$$

To prove his statement, we write he BCS functional in e thee form ($v \equiv 0$!)

$$
\gamma-\gamma_{0}
$$

$$
\begin{align*}
& \bar{f}(\Gamma)=\bar{f}\left(\Gamma_{0}\right)+ \\
&{ }_{\frac{1}{2}}^{\int_{\mathbb{C}^{2}}}{ }_{r_{\mathbb{C}^{2}}} \underbrace{H_{0}(\rho)}(\Gamma)-\bar{f}\left(\Gamma_{0}\right) \\
&\left(\begin{array}{cc}
p^{2}-\mu & 0 \\
0 & -\left(p^{2}-\mu\right)
\end{array}\right) \\
&\left.\left.=\bar{f}_{0}(\rho)-\Gamma_{0}(\rho)\right)\right] d p+\frac{T}{2}\left[\delta\left(\Gamma_{0}\right)-\delta(\Gamma)\right] \tag{1}\\
& \frac{T}{2} H\left(\Gamma_{1} \Gamma_{0}\right), \text { where }
\end{align*}
$$

$$
\begin{gather*}
\varphi(x)=x \ln (x)+(1-x) \ln (1-x) \\
\left.H\left(\Gamma_{1} \Gamma_{0}\right)=\int_{\mathbb{C}}{\sigma_{\mathbb{C}^{2}}}^{\hat{\rho}} \varphi(\Gamma(p))-\varphi\left(\Gamma_{0}(p)\right)-\varphi^{\prime}\left(\Gamma_{0}(p)\right)\left(\Gamma(p)-\Gamma_{0}(p)\right)\right] d p \tag{32}
\end{gather*}
$$

denotes fermionic relative entropy o \cap w.r.t. 「. We daim hat the trace on the r.h.s. is nonnegative and equals zero If $\Gamma(P)=\Gamma_{0}(p)$ a.e. This can be proved with Klein's inequality, whose statement is captured in the following Lemma.

Lemma 1 (Klein's inequality): Let A, B be two self-adjoint operators with spectra $L(t), G(B)$ and let $\left\{f_{r}\right\},\left\{S_{r}\right\}$ be two faeries of function will fr: $\sigma(A) \rightarrow \mathbb{C}, \quad g s: \sigma(B) \rightarrow \mathbb{C}$, and assume that

$$
\begin{equation*}
\sum_{l k} f_{r}(a) g_{r}(b) \geqslant 0 \text { for all } a \in G(A), b \in G(B) \text {. } \tag{33}
\end{equation*}
$$

Then

$$
\begin{equation*}
d r\left[\sum_{k} f_{r}(A) g_{r}(B)\right] \geqslant 0 . \tag{34}
\end{equation*}
$$

Exercise: Prove Klein's inequality in the case of matres A and B.

The above damns about len relate entropy follow from $\frac{4}{8}$ Wee strict convexity of he map $x \rightarrow \varphi(x)$ and Hem's niequality. This proves teat Γ_{0} is the wienie wiminizer $\partial \mathrm{f} \quad \mathrm{g} \equiv 0$.

The following theorem characterizes phase transitions in the BCS fundirnal and appeared in his form in [1].

Theorem 1: Let $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right), \mu \in \mathbb{R}$, and $T \in[0, \infty)$.
Then the following statements are equivalent:
(i) The normal state $(80,0)$ is unstable under pair formation, i.e.,

$$
\begin{equation*}
\inf _{(\gamma, \alpha) \in D} \bar{f}(\gamma, \alpha)<\bar{f}\left(\gamma_{0}, 0\right) \tag{35}
\end{equation*}
$$

(ii) There exists a pair $(8, \alpha) \in D$, will $\alpha \not \equiv 0$, sit.

$$
\begin{equation*}
\Delta(p)=-\frac{p^{2}-\mu}{\gamma(p)-\frac{1}{2}} \hat{\alpha}(p) \tag{36}
\end{equation*}
$$

Satisfies the BCS gap equation

$$
\Delta=-\hat{V} *\left(\frac{\Delta}{E} \operatorname{tank}\left(\frac{E}{2 T}\right)\right) \text { wile } E(p)=\sqrt{\left(p^{2}-\mu\right)^{2}+|\Delta(p)|^{2}} \text {. }
$$

(iii) The linear operator

$$
\rightarrow f * g(p)=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} f(p-q) g(q) d q
$$

$$
\begin{equation*}
K_{T, \mu}+U, \quad K_{T, \mu}=\frac{p^{2}-\mu}{\operatorname{ta\mu }\left(\frac{p^{2}-\mu}{2 T}\right)}, \tag{38}
\end{equation*}
$$

has at least one negative eigenvalue.

Remark 3: The operator in (38) is obtained by taknig he e second derivative of F w.r.t. α in the normal state $(8,0)$. Since he normal state is a cortical posit of \mp it is easy to see heat (iii) implies (i). The opposite direction says hat if $(8,0)$ is not a minimizer then it cannot be locally stable, and it is mst immediate.

Let us prove (i) \Rightarrow (iii). To kent end, we show lent the negation of (iii) implies blue negation of (i).

To that end, we need ha following lemma, whit is a Simplified version of Lemma 1 in [FHSS 2012] (see p. 2 in Sedion on GL Marry for the precise reforge).

Lemma 2: We have

$$
\begin{equation*}
H\left(\Gamma, \Omega_{0}\right) \geqslant \int_{\mathbb{R}^{3}} \psi_{\mathbb{C}^{2}}\left[\frac{\frac{1}{T} H_{0}(p)}{\tanh \left(\frac{H_{0}(\rho)}{2 T}\right)}\left(\Gamma(p)-\Gamma_{0}(\rho)\right)^{2}\right] d p . \tag{39}
\end{equation*}
$$

The proof of his inequality follows from the bound

$$
\begin{equation*}
x \ln \left(\frac{x}{y}\right)+(1-x) \ln \left(\frac{1-x}{1-y}\right) \geqslant \frac{\ln \left(\frac{1-y}{y}\right)}{1-2 y}(x-y)^{2} \tag{40}
\end{equation*}
$$

for $O<x, y<1$ and an application of Kim's hiequality.
To prove ow original claim, we write

$$
\begin{aligned}
& \bar{f}(\Gamma)-\bar{f}\left(\Gamma_{0}\right)=\frac{T}{2} \mathbb{H}\left(\Gamma_{1} \Omega_{0}\right)+\int_{R^{3}} v(x)|\alpha(x)|^{2} d x
\end{aligned}
$$

$\geqslant\left\langle\alpha_{1}\left(k_{T, \mu}+U\right) \alpha\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)}$.
If $K_{T, \mu}+V$ has no negative eigenvalues (the essential spectrum of the operator equals $[2 T, \infty)$) then the r.h.s. of (41) is nonnegative and we conduce mat $\bar{f}(\Gamma)-\bar{f}\left(\Gamma_{0}\right) \geqslant 0$. Sue his is the negation of (i) the dam is proved.

Remarl2 4:] The operator $k_{T, \mu}$ is strictly monotone in T in the sense leet

$$
\begin{equation*}
\left\langle\psi, k_{T, \mu} \psi\right\rangle \leq\left\langle\psi, k_{T, \mu} \psi\right\rangle \quad \forall \psi \in H^{2}\left(\mathbb{R}^{3}\right) \tag{42}
\end{equation*}
$$

if $T \leq T$. This allows us to conclude that there exists a unique cortical temperature $T_{c} \geqslant 0$ st. the cinque minimizer is the normal state if $T \geqslant T_{c}$ and hare exists a minimizes Γ with $\alpha \neq 0$ if $T<T_{c}$.
-] The characterization of T_{c} via ha linear operator
$K_{T_{c, u}}+U$ is the starting point for several studies of T_{c} in the weak corephing, the low density, and the high dentity limit.

I In physics textbook the gap equation in (37) is move prominently featured Mean the BCS fundirnal. Theorem 1 guarantees that the two approaches are equivalent.
5. The BCS fundisual in her presence $\frac{7}{5}$ _Periodic external fields

In the following we assleme hat $\omega: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is periodic with period a, i.e. $\omega(x+v)=\omega(x)$ for all $v \in a t^{3}, a>0$ (lattice constant). To study $B C S$ tHeory in the presence of ω we drop he assumption of translation invariance of the states and rather assume Heat they are periodic w.r.t. The lattice $a Z^{3}$.
he his setting a BCS state is g the form

$$
\Gamma=\left(\begin{array}{cc}
\gamma & \alpha \tag{43}\\
\bar{\alpha} & 1-\bar{\gamma}
\end{array}\right) \in B\left(L^{2}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)\right)
$$

and satisfies $0 \leq P \leq 1$. The operator $\bar{\alpha}$ is defcuid via its integral kernel in position space boy $\bar{\alpha}(x, y)$ $=\overline{\alpha(x, y)}$ (b ne Ops. we will consider have rétegral heels)

We highlight teat the condition $0 \leq \Gamma \leq 1$ is more complicated here than ie the draulation invariant case as γ and α are now operators on infinite dimensional Hilbert spaces that need not commute (in the translation invariant case hey commute). It uiplies $\gamma(x, y)=\overline{\gamma(y, x)}$, $\alpha(x, y)=\alpha(y, x)$, and $\alpha \alpha^{*} \leq \gamma(1-\gamma)$.

We call a Bes state Γ periodic (w.r.t. a \mathbb{F}^{3}) if

$$
\begin{align*}
& {\left[\left(T_{v} f\right)(x)=f(x+v)\right]} \\
& T_{v} \gamma T_{v}^{*}=\gamma \quad \Leftrightarrow \quad \gamma(x+v, y+v)=\gamma(x, y), \tag{44}\\
& T_{v} \propto T_{v}^{*}=\alpha \quad \Leftrightarrow \quad \alpha(x+v, y+v)=\alpha(x, y),
\end{align*}
$$

holds for all $v \in a \mathbb{Z}^{3}$. A periodic $B C S$ state is called admissible of

$$
\begin{equation*}
\partial_{Q_{a}}\left[(-\Delta+1)^{1 / 2} \gamma(-\Delta+1)^{1 / 2}\right]<+\infty, \tag{45}
\end{equation*}
$$

Neat is, I he state has finite trace and fiume rustic energy.

Here tran denotes the trace per mint volume of a periodic $\frac{3}{5}$ operator A, that is,

$$
\begin{equation*}
d_{Q_{a}}[A]=\frac{1}{\left|Q_{a l}\right|}+\underset{\gamma}{ }\left[X_{Q_{a}} A X_{Q_{a}}\right] . \tag{46}
\end{equation*}
$$

ノ
unctiplicalion Op. in position space with
Lebesgue measure characteristic funding the set $Q_{a}=[0, a]^{3}$. of Q.

For an admissible BCS state we define the BCS functional by

$$
-\operatorname{tr}_{2}[[\ln (\Gamma)]
$$

$$
\begin{equation*}
\bar{J}(\Gamma)=k_{a_{a}}[(-\Delta-\mu+\omega) \gamma]-\frac{1}{\beta} S(\Gamma)+\frac{1}{|Q|} \int_{\hat{\rho}} \alpha \alpha(r, X) v(r) d(r, x) \tag{47}
\end{equation*}
$$

nueltiplicalion operator with W(x)

Cooper pair ware function in symmetry relative and center of mass

$$
\begin{aligned}
& \alpha(x, y)=\alpha(y, x) \\
& \Leftrightarrow \alpha(r, x)=\alpha(-r, X) \\
& \alpha(x+v, y+v)=\alpha(x, y) \\
& \Leftrightarrow \alpha(r, X+v)=\alpha(r, X)
\end{aligned}
$$

By a slight abuse of notation we denote it by he same symbdr as the original function.

How do we add an external periodic magnetic field? $\frac{4}{5}$ We need to replace
leads to constant magnetic field

Note heat A is not periodic but $B(x)=\operatorname{rot} A(x)$ is.

- Let us define the magnetic translation

$$
\begin{equation*}
T_{B}(v) f(x)=e^{i \frac{B}{2} \cdot(v a x)} f(x+v) \text {, } \tag{49}
\end{equation*}
$$

whir satisfies $T_{B}^{*}(v)\left(-i \nabla+A_{B}(x)\right) T_{B}(v)=0 \quad \forall v \in \mathbb{R}^{3}$. We need to replace (44) by

$$
\begin{align*}
& T_{B}(v) \gamma T_{B}^{*}(v)=\gamma \Leftrightarrow \gamma(x, y)=e^{i \frac{B}{2} \cdot(v \wedge(x-y))} \gamma(x+u, y+v) \\
& T_{B}(v) \alpha \bar{T}_{B}^{*}(v)=\alpha \Leftrightarrow \alpha(x, y)=e^{i \frac{B}{2} \cdot(v \wedge(x+y))} \alpha(x+u, y+v) \tag{50}
\end{align*}
$$

\therefore The BCS functional in (47) by

$$
\begin{gather*}
\left.\bar{f}(\Gamma)=t_{Q_{a}}\left[(-i \nabla+A(x))^{2}+\omega(x)-\mu\right) \gamma\right]-T S(\Gamma) \\
+\int_{\mathbb{R}^{3} \times Q_{a}} V\left(r|\alpha(r, x)|^{2} d(r, x) .\right. \tag{51}
\end{gather*}
$$

Remarle 5: The fact that A can be chosen as in (48) and that α can be chosen to be gange periodic comes from the gauge symmetry of the problem. That is, we close a certain gauge.

Using Miss symmetry and Towier analysis, the following biequality has been proved in [Lemm an, FHSS 201]:

$$
(*)(0) \geqslant \text { coust. } h^{2} \int_{\mathbb{R}^{3} \times Q_{h}}\left|\left(\nabla_{x}+\nabla_{y}\right) \alpha(x, y)\right|^{2} d(x, y) . \quad \text { (104) }
$$

This would be easy to prove of K_{T} were replaced by $-\triangle$.
ln case of a constant magnetic field we wite the Cooper pair wave fundion as

$$
\alpha(r, X)=\alpha_{*}(r) \cos \left(\frac{r}{2} \cdot \pi_{x}\right) \psi(x)+\xi_{0}(r, x)
$$

Note that the relative- $=-i \nabla_{X}+A_{2 B}(X)$
and the center-g-mass
wave fundion are entangled.
The functions $\%$ and ξ_{0} are defied via he operator

$$
\left(A_{\alpha}\right)(X)=\int_{\mathbb{R}^{3}} \alpha_{*}(r) \cos \left(\frac{r}{2} \cdot \pi_{x}\right) \alpha(r, x) d r,
$$

