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Abstract

This paper proposes a mathematical model of a pressure-sensitive conductive

fabric sensor, which adopts the technique of electrical impedance tomography

(EIT) with a composite fabric being capable of changing its effective electrical

property due to an applied pressure. We model the composite fabric from an

electrically conductive yarn and a sponge-like non-conductive fabric with high

pore density, and the conductive yarn is woven in a wavy pattern to possess a

pressure-sensitive conductive property, in the sense of homogenization theory.

We use a simplified version of EIT technique to image the pressure distribution

associated with the conductivity perturbation. A mathematical ground for the

effective conductivity in one-direction is provided. We conduct an experiment

to test the feasibility of the proposed pressure sensor.

Keywords: flexible sensor, pressure sensor, homogenized conductivity,

asymptotic analysis, mathematical modeling

1. Introduction

There has been considerable attention drown to conductive fabric pressure

sensors in the field of wearable sensors [16]. This type of sensors has sev-

eral advantages including flexibility, low-cost, and washability. These devices
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have a wide range of applications, including in smart textiles[13, 8, 12], tactile5

sensors[3], artificial skins[18], and patient’s movement monitoring technologies[14,

2]. It is intended to sense a pressure distribution exerted over the fabric sur-

face by generating changes in electrical property over the touched area. This

property is called piezoresistance [5] or piezoimpedance [19], depending on the

frequency of the signal used to measure the electrical property variation, and10

in opposition to piezoelectricity, whose application in the field of wearables and

e-textiles is extremely difficult due to materials science issues [6].

Recently, electrical impedance tomography (EIT) has been used to develop

sensors monitoring pressure distribution[18, 20, 21]. While this type of sensors

is fast and simple (requiring only a conductive fabric and a EIT system), it has15

difficulties in image reconstruction[11]. In this paper, we propose a mathemat-

ical model of a effective pressure mapping system that exploit EIT technique,

but uses a simple reconstruction method for recovery of pressure distribution.

This pressure mapping system is designed by a pressure-sensitive conductive

fabric, taking into account changes in the effective conductivity due to the pres-20

sure exerted over the fabric surface. As shown in Figure 1 and 2, an electri-

cally conductive yarn is woven into a sponge-like non-conductive fabric with

high pore density so that its periodic wavy pattern is designed to produce a

pressure sensitivity. The pressure sensing matrix is made by a double layer of

these conductive fabrics patterned in rows and columns of the matrix. When25

a pressure due to contact is applied over the surface of the fabric, the effective

admittivity changes over the corresponding squeezed area. We attach several

electrodes to the boundary of the fabric, and adopt the technique of electrical

impedance tomography[4, 11] to visualize the pressure distribution by measuring

the pressure-induced admittivity changes.30

For systematic studies for development of higher performance fabric sensors,

we describe its mathematical framework by introducing a concept of directional

effective conductivity. This theoretical study is intended to achieve higher per-

formance sensors. We carry out theoretical study on directional homogenized

admittivity property associated with the composite fabric with its periodic wave35
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Figure 1: A schematic of the proposed pressure sensor

Figure 2: Structure of the composite fabric and the wave pattern of the conductive fabric

pattern.

2. Method

For a systematic study, let us describe the corresponding mathematical

framework. For ease of explanation, we assume that the surface of the fabric

sensor occupies the region Ω := {(x, y) : −a < x < a, − b < y < b} as shown in

Figure 1. We inject two linearly independent currents of I mA at low-frequency

in the x-direction and y-direction. Let σp denote the effective conductivity(see

Remark 1) in response to the pressure distribution p. The effective conductiv-

ity is explained rigorously in Section 3. The proposed fabric sensor is designed
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such that the resulting electrical potentials v
(1)
p and v

(2)
p approximately satisfy,

respectively, the following equations:
∂
∂x

(
σp(x, y) ∂

∂xv
(1)
p (x, y)

)
= 0 for (x, y) ∈ Ω,

σp(−a, y)
∂v(1)p
∂x (−a, y) = I = σp(a, y)

∂v(1)p
∂x (a, y) for − b < y < b,

(1)


∂
∂y

(
σp(x, y) ∂∂yv

(2)
p (x, y)

)
= 0 for (x, y) ∈ Ω,

σp(x,−b)∂v
(2)
p

∂y (x,−b) = I = σp(x, b)
∂v(2)p
∂y (x, b) for − a < x < a.

(2)

The equation (1) expresses that the induced electrical current flows only in the

x-direction, whereas the equation (2) describes the induced electrical current

flows in the y-direction. Note that the equation (1) has a unique solution up40

to functions of the y-variable (i.e., if v
(1)
p (x, y) and ṽ

(1)
p (x, y) are solutions to

(1), then v
(1)
p (x, y)− ṽ(1)

p (x, y) = f(y) for a function f(y)). Similarly, (2) has a

unique solution up to functions of the x variable.

Remark 1. From the structure of the composite fabric shown in Figure 2,

electrical currents flow along the wavy conductive fabrics. Hence, currents flows

only in the x-direction on the top layer, whereas currents flow only in the y-

direction on the bottom layer. Assume that we inject a current of I mA in the

Figure 3: The two currents flowing independently on the top layer (in the x-direction) and

on the bottom layer (in the y-direction) of the fabric sensor, and the effective conductivity σp

at (x, y)
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x-direction to the top layer of the sensor as shown in Figure 3. Let v
(1)
p denote

the resulting potential due to this current. According to Ohm’s law, the effective

conductivity σp at (x, y) can be expressed approximately as:

σp(x, y) ≈ I ∆x

∆v
(1)
p (x, y)

, (3)

where ∆v
(1)
p (x, y) = v

(1)
p (x− ∆x

2 , y)− v(1)
p (x+ ∆x

2 , y). This relation (3) leads to

σp(x, y)
∆v

(1)
p (x, y)

∆x
≈ I(constant) (4)

Therefore, v
(1)
p approximately satisfies ∂

∂x (σp(x, y)
∂v(1)p
∂x (x, y)) = 0. Similarly,

the potential v
(2)
p on the bottom layer approximately satisfies ∂

∂y (σp(x, y)
∂v(2)p
∂y (x, y)) =45

0 with the same conductivity σp (i.e. the top and bottom layers are assumed to

have the same pressure response).

In the proposed fabric sensor, we measure the following potential differences

on the boundary:

V (1)
p (y) = v(1)

p (a, y)−v(1)
p (−a, y) and V (2)

p (x) = v(2)
p (x, b)−v(2)

p (x,−b). (5)

Similarly, the potential differences V
(1)
0 and V

(2)
0 in the absence of pressure

(p = 0) are, respectively, denoted by

V
(1)
0 (y) = v

(1)
0 (a, y)−v(1)

p (−a, y) and V
(2)
0 (x) = v

(2)
0 (x, b)−v(2)

0 (x,−b), (6)

where v
(1)
0 and v

(2)
0 are the corresponding potentials of (1) and (2). When a

pressure is exerted over the fabric surface, the fabric is compressed. In this

compressed region, the air goes out and the conductive yarns touch each other,

making the current paths shorter or generating other current paths. This re-

sults in conductivity increase at the compressed region and the decrease of the

measured voltage, namely, at (x, y), a position in the compressed region,

V (1)
p (y)− V (1)

0 (y) < 0 and V (2)
p (x)− V (2)

0 (x) < 0. (7)

To be more specific, for each y, the sign of the voltage difference δV
(1)
p (y) :=

V
(1)
p (y)− V (1)

0 (y) associated with the x-directional current determines whether
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a pressure is applied in the line segment Ly := {(x, y) : − a < x < a} shown50

in Figure 4. In the same way, for each x, the voltage difference δV
(2)
p (x) :=

V
(2)
p (x) − V (2)

0 (x) associated with y-directional current determines whether a

pressure is applied in the line segment Lx := {(x, y) : − b < y < b}. Both

signs of δV
(1)
p (y) and δV

(2)
p (x) become negative when a pressure is applied over

a region which contains (x, y), the intersection of the line segments Ly and Lx.55

Figure 4: The domain Ω and the line segments Lx, Ly with their intersection point (x, y),

where the colored region depicts the compressed region. The right figure is the domain after

discretization.

For ease of explanation, we consider the simplest discrete setting, where

the pressure image p = (pij)1≤i≤Nx,1≤j≤Ny are discrete with pij ∈ {0, 1}. The

discrete pressure pij can be viewed as pij = p(xi, yj) with xi = −a+(2i−1)a/Nx

and yj = −b+ (2j − 1)b/Ny. Here, pij ∈ {0, 1} means that the fabric can have

only the two states: not compressed or totally compressed. In this situation,

the voltage differences δV
(1)
p (yj) and δV

(2)
p (xi) can be considered as a multiple

of the numbers of pressured positions along the line segments Lyj and Lxi ,

respectively:

δV (1)
p (yj) = (−β) |{i : pij = 1}| , (8)

δV (2)
p (xi) = (−β) |{j : pij = 1}| , (9)

where |A| denotes the cardinality of the set A, β is a positive constant and

represents the amount voltage change for the pressure applied at one pixel.
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In Figure 4, we have drawn graphs of −δV (1)
p (yj) and −δV (2)

p (xi), which

show the relations (8) and (9). The proposed fabric sensor is designed to have

the following important properties:60

(i) If pij = 1, then δV
(1)
p (yj)δV

(2)
p (xi) 6= 0.

(ii) If δV
(1)
p (yj) = 0, then pij = 0 along Lyj .

(iii) If δV
(2)
p (xi) = 0, then pij = 0 along Lxi .

The property (i) comes from (7). The property (ii) means that if the voltage

difference δV
(1)
p (yj) is zero, no pressure is applied over the line Lyj . Similarly,65

the property (iii) means that no pressure is applied over Lxi when the voltage

difference is zero, δV
(2)
p (xi) = 0.

Now, we are ready to explain our reconstruction method. We adapts the

idea of back-projection [22] used in the computerized tomography. The pro-

posed reconstruction method is based on the following adapted back-projection

formula, which takes into account the above properties (i), (ii), (iii) and the

relations (8), (9):

p̃ij :=


1

2β

(
−δV (1)

p (yj)∣∣∣{k : δV
(2)
p (xk)6=0

}∣∣∣ +
−δV (2)

p (xi)∣∣∣{k : δV
(1)
p (yk)6=0

}∣∣∣
)

if δV
(1)
p (yj) δV

(2)
p (xi) 6= 0

0 otherwise.

(10)

The relation between p̃ij and pij can be shown by substituting (8) and (9) for

δV
(1)
p (yj) and δV

(2)
p (xi), respectively, in (10). In this process, β is canceled out

in the output value p̃ij .

p̃ij =
1

2β

 −δV (1)
p (yj)∣∣∣{k : δV
(2)
p (xk) 6= 0

}∣∣∣ +
−δV (2)

p (xi)∣∣∣{k : δV
(1)
p (yk) 6= 0

}∣∣∣


=
1

2

( |{k : pkj = 1}|
|{k : (β |{` : pk` = 1}||) 6= 0} +

|{k : pik = 1}|
|{k : (β |{` : p`k = 1}|) 6= 0}|

)
=

1

2

( |{k : pkj = 1}|
|{k : |{` : pk` = 1}| 6= 0}| +

|{k : pik = 1}|
|{k : |{` : p`k = 1}| 6= 0}|

)
(11)

It follows from the fact that |{` : pk` = 1}| 6= 0 is equivalent to that pk` =

1 for some `.

p̃ij =
1

2

( |{k : pkj = 1}|
|{k : pk` = 1 for some `}| +

|{k : pik = 1}|
|{k : p`k = 1 for some `}|

)
(12)
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In the case that the pressure is applied at only one pixel, the proposed algorithm

exactly recovers the pressure distribution, p̃ij = pij .

Figure 5 shows the above back projection method(10). For each j, we back-70

project the data δV
(1)
p (yj) to the all pixels

{
pij : δV

(2)
p (xi) 6= 0

}
along the hor-

izontal direction. Next, for each i, we backproject the data δV
(2)
p (xi) to the all

pixels
{
pij : δV

(1)
p (yj) 6= 0

}
along the vertical direction. The value of p̃ij can

be viewed as a scaled version of the sum of these two backprojections.

(a) pij (b) p̃ij (c)

Figure 5: Adapted back-projection method. (a) The true pressure distribution in discretiza-

tion; (b) Image correction using the data.

As shown in Figure 5(b), the reconstructed image of p̃i,j is somewhat dif-75

ferent from the true pij . One may reduce the mismatch using the knowledge

of |{i : pij = 1}| for all j and |{j : pij = 1}| for all i. Figure 5(c) shows a

corrected image. However, in general, the two directional data are insufficient

to recover pij correctly. To identify pij accurately, we may use a few more lay-

ers in the fabric sensor to produce the current-voltage data in more directions.80

Then the adapted back-projection method can recover the pressure distribution

accurately.

Remark 2. The conductivity of conductive layer, the wave pattern of the con-

ductive fabric, and the thickness of the layers affect the effective conductivity

and the measured voltages. More importantly, the wave pattern of the conductive85

fabric dominantly determines the amount of change in the effective conductivity

and the measured voltage due to compression in the way that how much the con-

ductive fabrics are touching each other after compression. To be more specific,
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we have drawn figures of 2D cross sections of the composite fabrics without and

with compression, as shown in Figure 6. When a current flows in transverse90

direction, it flows along the conductive fabric depicted as arrowed lines colored

in red in Figure 6. After compression, the conductive fabrics touch each other

generating other current paths as shown in the right figure in Figure 6. This

results in an increase of the effective conductivity after compression.

Figure 6: Cross sections of the composite fabrics without and with compression

In particular, the wave pattern affects the amount of voltage change for the95

pressure applied at one pixel, which we denoted by β. In the proposed model,

if β is bigger than measurement errors or noises, β does not significantly affect

the final output value p̃ij obtained by the reconstruction algorithm (10) since the

algorithm includes the division process by β.

3. Directional effective conductivity100

In this section, we explain the directional effective conductivity σp introduced

in (1) and (2) in the previous section. Let us consider a point (x, y) ∈ Ω over the

fabric surface. Taking a closer look inside of it, the point (x, y) can be considered

as a voxel of double layers of composite fabrics in micro-scale, shown in Figure

7. Since currents flow independently through each fabric sheet layer and each105

layer consists of conductive yarns with a periodic pattern, let us focus on a

single conductive yarn for ease of analysis. As shown in Figure 7, a rectangular

domain in two-dimension represents the vertical cross-section of a piece of the

composite fabric sheet consisting of a sponge-like non-conductive fabric with air

gaps(gray) and a conductive yarn(blue).110

9



Figure 7: Vertical cross-section of a piece of the composite fabric sheet and the potential

profile.

Consider that a transverse current flows from the right to the left side of

the rectangular domain. The behavior of the current can be seen by drawing

a graph of the corresponding potential. We show in Figure 7 the potentials

over a profile line with and without compression. In either case, the potential

over the profile line is oscillatory due to the periodic pattern of high and low115

conductive regions. In macroscale, these oscillations are insignificant and the

potentials are considered as linear. By using Ohm’s law, we define the directional

effective conductivity as the inverse of the slope of the linear function. We

perform this process rigorously using an asymptotic analysis in the following

subsection. In Figure 7, with compression, the inverse of the slope is bigger120

than without-compression, which implies increase of the effective conductivity

after compression.

Local changes in the effective conductivity come from structural changes

in the conductive fabric subject to pressure. With an applied pressure, the

wavy conductive fabrics are compressed and come into contact with each other.125

Hence, the local pressure results in the increase of the conductivity.

3.1. Asymptotic analysis

To explain the directional effective conductivity rigorously, we consider a

simplified model. Let Y` be the domain defined as Y` = {x : −` < x < `} ×Θ

with Θ = {z : 0 < z < 1}, Γ±` = {±`} × Θ (see Figure 8). Let σ be the

10



point-wise conductivity in the region Y`, and assume that σ is periodic in the

x direction such that

σ(x+ 1, z) = σ(x, z) for (x, z) ∈ Y`. (13)

We also assume

0 < λ ≤ σ ≤ Λ for some positive constants λ,Λ. (14)

x

z

−` `

Γ−
` Γ+

`

Θ

1

Figure 8: The domain Y`

We consider the potential u` satisfying the following Neumann boundary

value problem: 
∇ · (σ∇u`) = 0 in Y`,
n · (σ∇u`) = ±1 on Γ±` ,

n · (σ∇u`) = 0 on ∂Y` \
(
Γ+
` ∪ Γ−`

)
,

(15)

where n is the outward unit normal to ∂Y`. The solution u` of (15) is unique

within the following Hilbert space

S` =

{
ϕ ∈ H1(Y`) :

∫
Θ

ϕ(0, z) dz = 0

}
, (16)

where H1 denotes the standard Sobolev space of order 1 (See Ref. [1, 15]).

The domain Y` can be considered as a piece of vertical cross-section of the

fabric sensor after scaling, as shown in Figure 9. By scaling, we fix the thickness130

as 1 and consider the length as 2`. When we regard the fabric sensor as a surface

and its thickness h is almost zero (h → 0), we can regard the length 2` of Y`
as almost infinity (` → ∞). In the scaled domain Y`, we analyze the behavior

of the potential u` when ` goes to infinity, and define the directional effective

conductivity.135
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Figure 9: The domain Y` and scaling.

We claim that

(i) u` converges as ` goes to infinity (in some sense).

(ii) ∇u∞ is periodic in the x, where u∞ := lim`→∞ u`.

(iii) u∞ can be expressed as u∞ = up+uh, where up periodic in the x-direction

and uh is harmonic with respect to the x variable.140

The claim (iii) tells that u∞ can be viewed as a harmonic function uh (with

respect to the x variable) in macro-scale. The directional effective conductivity

can be defined as the inverse of the slope of uh. We restate the claims precisely,

and verify them one by one.

Theorem 3. u` converges in H1(Y`0) for any `0 ≤ `
2 .145

The convergence of u` can be verified by showing that ∇u` is a Cauchy

sequence in L2-norm, then the convergence of u` follows from the norm equiv-

alence between the H1-norm and the gradient norm ‖∇u‖L2(Y`) in the space

S`.

Proof. Let u` be the weak solution in S` to (15):

u` ∈ S`,
∫
Y`
σ∇u` · ∇ϕ+

∫
Γ−`

ϕ−
∫

Γ+
`

ϕ = 0 ∀ϕ ∈ S`. (17)

We first show that ∇u` is a Cauchy sequence in L2(Y`0) for any `0 ≤ `
2 . Let150

0 ≤ η ≤ 1. For `1 ≤ `− 1, ρ`1 is the following function of x.
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−`1 − 1 −`1 `1 + 1`1

x

1

`−` 0

Figure 10: The test function ρ`1

Then (u` − u`+η)ρ is a test function for the problem in Y` and Y`+η. By

subtraction we get ∫
Y`
σ∇(u` − u`+η) · ∇ ((u` − u`+η)ρ) = 0

⇒
∫
Y`1+1

σ|∇(u` − u`+η)|2ρ = −
∫
D`1

σ∂x(u` − u`+η)(∂xρ)(u` − u`+η)

= −
∫
D−`1

σ∂x(u` − u`+η)(u` − u`+η)

+

∫
D+
`1

σ∂x(u` − u`+η)(u` − u`+η)

where D`1 = Y`1+1 \ Y`1 , D+
`1

= {(x, y) ∈ D`1 : x > 0}, and D−`1 = {(x, y) ∈
D`1 : x < 0}.

Claim :

∫
D±`1

σ∂x(u` − u`+η) = 0.

Take as test function of x in Figure 11 contained in the both Y` and Y`+η155

the functions below

−`1 − 1 −`1

1

x

−` 0

Figure 11: test function

we get ∫
D−`1

σ∂xu` −
∫

Γ+
`

1 = 0,

∫
D−`1

σ∂xu`+η −
∫

Γ+
`+η

1 = 0

13



By subtraction the claim follows for D−`1 . A similar proof goes for D+
`1
.

Thus below (17) it follows that for any constants C−, C+ one has∫
Y`1+1

σ|∇(u` − u`+η)|2ρ =

∫
D−`1

σ∂x(u` − u`+η)(u` − u`+η − C−)

−
∫
D+
`1

σ∂x(u` − u`+η)(u` − u`+η − C+)

and thus by (14)

λ

∫
Y`1
|∇(u` − u`+η)|2 ≤ Λ‖∂x(u` − u`+η)‖L2(D−`1

)‖(u` − u`+η − C−)‖L2(D−` )

+ Λ‖∂x(u` − u`+η)‖L2(D+
`1

)‖(u` − u`+η − C+‖L2(D+
` ),

where ‖ ‖L2(A) denotes the usual L2(A)-norm (See Ref. [7, 9]).

Taking C± = −
∫
D±`1

u` − u`+η,

(
−
∫
A

:=
1

|A|

∫
A

)
we obtain easily by the

Poincaré-Wirtinger inequality∫
Y`1
|∇(u` − u`+η)|2 ≤ C

∫
D`1

|∇(u` − u`+η)|2,

with C = C(λ,Λ). Writing

∫
D`1

· =
∫
Y`1+1

·−
∫
Y`1
·, it comes with γ = C

1+C < 1

∫
Y`1
|∇(u` − u`+η)|2 ≤ γ

∫
Y`1+1

|∇(u` − u`+η)|2.

Then starting from `1 = `
2 and doing

[
`
2

]
iterations ([ ] the integer part of a

number) one gets∫
Y`/2
|∇(u` − u`+η)|2 ≤ γ[ `2 ]

∫
Y `

2
+[ `2 ]

|∇(u` − u`+η)|2.

Since `
2 − 1 <

[
`
2

]
≤ `

2 one obtains∫
Y`/2
|∇(u` − u`+η)|2 ≤ 1

γ
γ
`
2

∫
Y`
|∇(u` − u`+η)|2. (18)

We estimate now u`. Taking v = u` in (15) we get

λ

∫
Y`
|∇u`|2 ≤

∫
Y`
σ|∇u`|2 =

∫
Γ+
`

u` −
∫

Γ−`

u`,

=

∫
Y`
∂xu` ≤ |Y`|1/2

(∫
Y`
|∇u`|2

)1/2

,

14



where | | denotes the measure of sets (See Ref. [9]). Thus we get∫
Y`
|∇u`|2 ≤

|Y`|
λ2

=
2`

λ2
.

From (18) we deduce∫
Y`/2
|∇(u` − u`+η)|2 ≤ 1

γ
e−

`
2 ln( 1

γ ) 2

∫
Y`
|∇u`|2 + |∇u`+η|2

≤ Ce− `2 ln 1
γ {`+ `+ η} = Ce−`α

′
(2`+ η) with α′ =

1

2
ln

1

γ

≤ Ce−`α for α < α′.

We have obtained that

‖∇ (u` − u`+η)‖L2(Y`/2) ≤ Ce−`α for 0 ≤ η ≤ 1.

Thus for any t we obtain

‖∇ (u` − u`+t)‖L2(Y`/2) ≤ ‖∇ (u` − u`+1)‖L2(Y`/2) + ‖∇ (u`+1 − u`+2)‖L2(Y`/2) + · · ·

+
∥∥∇ (u`+[t] − u`+t

)∥∥
L2(Y`/2)

,

≤ ‖∇ (u` − u`+1)‖L2(Y`/2) + ‖∇ (u`+1 − u`+2)‖L2(Y(`+1)/2) + · · ·

+
∥∥∇ (u`+[t] − u`+t

)∥∥
L2(Y(`+[t])/2)

,

≤ Ce−α` + Ce−α(`+1) + · · ·+ Ce−α(`+[t]),

≤ Ce−α` 1

1− e−α ,

= C̃e−α` for C̃ =
C

1− e−α .

Then, ∇u` is a Cauchy sequence in the L2(Y`0) for any `0 ≤ `
2 . It only remains

to show that the gradient norm ‖∇ · ‖L2(Y`) is equivalent to the H1(Y`)-norm

in the space S`: for ϕ ∈ S`,

‖∇ϕ‖L2(Y`) . ‖ϕ‖H1(Y`), (19)

‖∇ϕ‖L2(Y`) & ‖ϕ‖H1(Y`), (20)

where the expression X . Y is used to mean that there is a positive constant

C independent of ϕ such that X ≤ CY . The inequality (19) is straightforward,
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and (20) comes from the fact that
∫

Θ
ϕ(0, z) dz = 0. To be more precisely, if we

assume that (20) does not hold, for each positive integer n there exists ϕn ∈ S`
such that

‖∇ϕn‖L2(Y`) <
1

n
‖ϕn‖H1(Y`). (21)

Setting ϕ̃n := ϕn/‖ϕn‖H1(Y`), we have

‖∇ϕ̃n‖L2(Y`) <
1

n
‖ϕ̃n‖H1(Y`) with ‖ϕ̃n‖H1(Y`) = 1. (22)

Since ϕ̃n is bounded in H1(Y`), up to a subsequence, one has

ϕ̃n ⇀ ϕ̃ in H1(Y`), ϕ̃n → ϕ̃ in L2(Y`), (23)

where ”⇀” denotes weak convergence (See Ref. [1, 7, 9]). Since by (22), one

has ∇ϕ̃ = 0, i.e., ϕ̃ = const. This constant vanishes since
∫

Θ
ϕ̃n dz = 0 and∫

Θ
ϕ̃n →

∫
Θ
ϕ̃. Then, we have

ϕ̃n → 0 in H1(Y`), (24)

which contradicts ‖ϕ̃n‖H1(Y`) = 1 in (22). This completes the proof.

Theorem 4. ∇u∞ is periodic in the x-direction such that

∇u∞(x+ 1, z) = ∇u∞(x, z) for (x, z) ∈ Y`0 almost everywhere.

Because the similar argument used in the proof of Theorem 3 can be applied,160

we omit the proof.

Corollary 5. The limit u∞ is decomposed into a periodic function up in the

x-direction and a harmonic function uh with respect to the x variable:

u∞ = up + uh, (25)

where up and uh are given by

up(x, z) = u∞(x, z)−
(∫ 1

0

∂u∞
∂x

(t, z) dt

)
x, (26)

uh(x, z) =

(∫ 1

0

∂u∞
∂x

(t, z) dt

)
x. (27)
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Proof. Showing ∂xxu
h = 0 is straightforward. Now, we show that up(x+1, z) =

up(x, z). It follows from (26) that

up(x+ 1, z) =u∞(x+ 1, z)−
(∫ 1

0

∂u∞
∂x

(t, z) dt

)
(x+ 1). (28)

Note that by Theorem 4, ∂xu∞ is periodic in the x-direction. It follows from

the periodicity of ∂xu∞ and (28) that

up(x+ 1, z) =u∞(x+ 1, z)−
(∫ x+1

x

∂u∞
∂x

(t, z) dt

)
(x+ 1), (29)

=u∞(x, z)−
(∫ 1

0

∂u∞
∂x

(t, z) dt

)
x, (30)

=up(x, z). (31)

This completes the proof.

At last, in the aid of Corollary 5, we can define the directional effective

conductivity as (the harmonic average of) the inverse of the slope of uh:

σef :=

(
1

|Θ|

∫
Θ

∂uh

∂x
(0, z) dz

)−1

. (32)

Here, we took the harmonic average of the inverse of the slope of uh over Θ.

Remark 6. If σ is independent in z variable, i.e., ∂zσ = 0, then σef is the

harmonic average of σ over the cell {x : 0 < x < 1} ×Θ:

σef =

(
1

|Θ|

∫
Θ

∫ 1

0

1

σ(x, z)
dx dz

)−1

. (33)

4. Experiment

To test the performance of our reconstruction algorithm (10), we conducted165

numerical simulations on a rectangular domain. The domain is discretized into

6 × 11 rectangles as shown Figure 12. We consider various cases of pressure

distributions pij shown in (a) and (c) of Figure 12-13. Given pij , the measured

voltage differences δV
(1)
p and δV

(2)
p are computed by (8) and (9), where we

assumed that the amount of voltage change for pressure applied at one pixel170
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is unit (β = 1). The pressure distributions are reconstructed by using the

formula (10) to obtain p̃ij . Figure 12(b) and (d) are the reconstructed images

corresponding to (a) and (c), respectively. In Figure 12, we observe that the

proposed algorithm identically recovers the pressure distribution. Figure 13

shows that the proposed algorithm produces the same reconstructed images for175

different pressure distributions. In this case, the proposed algorithm does not

uniquely recover pressure distribution.

(a) pij (b) p̃ij

(c) pij (d) p̃ij

Figure 12: Pressure distribution reconstruction. (a) and (c) true pressure distribution pij ;

(b) and (d) the reconstructed pressure distributions p̃ij by the proposed formula (10).

We test the feasibility of the proposed sensor by validating the effective

conductivity change with pressure. For the test, we made a simple composite

fabric by weaving a conductive fabric into a non-conductive sponge with high180

pore density as shown on Figure 14. Here, the conductive fabric is manufac-

tured by Eeonyx (NW170-SLPA-2000), and its surface resistivity is 2000 ohm

per square. For the non-conductive sponge, we used a melanin sponge that

is commonly used for cleaning purpose. We use the four-electrode method to

measure the effective conductivity of the fabric sheet; one pair of electrodes is185
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(a) pij (b) p̃ij

(c) pij (d) p̃ij

Figure 13: Pressure distribution reconstruction. (a) and (c) true pressure distribution pij ;

(b) and (d) the reconstructed pressure distributions p̃ij by the proposed formula (10).

used to inject the current and the other pair of electrodes is used to measure

the resulting voltage drop. We use Sciospec 8-channel EIT system to inject

a sinusoidal current of 1mA at 1kHz and measure the resulting voltage drop

every 0.04 seconds.

Figure 14: The pressure sensor and Sciospec EIT system

During the current-voltage measurement, we apply a vertical pressure on190

the upper surface of the composite sponge to observe the change in voltage
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drop. Figure 15 illustrates voltage versus time plot. It shows that the change

in voltage with the pressure is significant. According to Ohm’s law, this change

in voltage with pressure implies the increase of the homogenized conductivity.

Figure 15: The measured voltages over time.

5. Conclusions195

We have proposed a potentially manufacturable flexible pressure sensor and

its mathematical model, where the sensor is intended to visualize the pressure

distribution applied over the surface of it. This sensor is made of a double layer

of thin composite fabric, which is a sponge-like, non-conductive fabric woven

with electrically conductive yarns in a wavy pattern along a transverse direc-200

tion. Here, the weaving directions of the upper layer and the lower layer are

selected independently. When current flows along the conductive yarn inside

each composite fabric, the directions of the current flowing through the upper

layer and the lower layer are independent. A number of electrodes are attached

on the edge of the sensor to inject electrical currents and to measure the induced205

voltages for recovery of the pressure distribution. When pressure is applied to

the surface of the sensor, the composite fabrics are locally compressed. The con-

ductive yarns in the compressed region come into contact, resulting in a decrease

in impedance. In the proposed mathematical model, the sensor is described in

a two-dimensional domain. In order to describe the electrical properties of the210

sensor in this two-dimensional domain, we performed an asymptotic analysis

and defined the effective conductivity. This effective conductivity can be seen

as the harmonic average of the conductivities of the conductive yarns and the
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sponge-like fabrics. The decrease in impedance due to compression can be in-

terpreted as an increase in the effective conductivity. In order to recover the215

pressure distribution, we have proposed a back-projection type algorithm and

verified the performance by numerical experiment. We then made a simplified

sensor and conducted an experiment to show the existence of a pressure-sensitive

composite fabric.

The double-layered sensor, which uses two independent currents, may not220

be sufficient to recover the pressure correctly as show in Figure 13. For better

accuracy and to obtain more voltage data (induced by the various currents),

one may employ more layers to induce more independent currents in various

directions.

As the experiment showed in section 4, while the simplified sensor is pressure-225

sensitive, it is only able to verify whether pressure is applied to the sensor.

However, it does not identify the region(s) where the pressure is being applied.

In order to make more useful sensors, more impedances should be measured.

This requires EIT systems that have many channels. Note that in order to inject

n number of currents and measure n different impedances at the same time, we230

need an EIT system that has at least 4n channels: 2n channels for injecting n

number of different currents and the other 2n for measuring n number of voltage

differences.
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