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Abstract

The goal of this note is to study nonlinear parabolic problems nonlocal in time and space.
We first establish the existence of a solution and its uniqueness in certain cases. Finally we
consider its asymptotic behaviour.
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1 Introduction and notation

We will denote by Q a smooth bounded open set of R”, n > 2 with boundary 92. We would
like to consider the following problem. Find u = u(x,t) such that

up — a [ 9(z)u(z, t)dz) Au + B(fg h(s)u(z, s)ds)u = f in Q x (0,T),
(1.1)
u(-,t) =00n 09, t € (0,T), u(x,0) = up(x).

T is a positive number, ug, f, g, h are given data. The equation could be regarded as a model of
population dynamics where u(z,t) is the density of a population at the location x, at the time
t. The nonlinear terms are an account for a death or diffusion rate which at time ¢ depends
on the total population having been at the location z in the past or in Q at time t. To study
this issue we were inspired by the papers [7]-[10] where a similar problem was introduced at the
difference that in (1.1) the integral goes up to T which we think is an interesting point of view
but perhaps a bit surprising from a realistic one in our framework.
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The paper is divided as follows. In the next section we prove existence of a weak solution to
(1.1). In the subsequent section we establish a result of uniqueness. Note that in comparison to
[7]-[10] our result is global. Finally we study in a simple case the asymptotic behaviour of the
solution to (1.1).

2 A result of existence

We denote by LP(€2),1 < p < +oo the usual LP-space on 2. It is equipped with its usual norm
and for instance, in the case where p = 2, we denote it by | |2 i.e.

lv|3 = / v(x)?dr Vv € L*(Q).
Q

We refer the reader to [2]-[6] for the notation used in the sequel, for instance for HE(Q2) or its
dual H=(Q) or the spaces L?(0,T;V), L?(0,T; V') when V is a Banach space.

The main result of this section is the following :
Theorem 2.1. Set V = H}(Q), V' = H Q). Suppose
ug € L2(Q), f e L*0,T;V), a,f € C(R)NL®(R), g € L¥(Q),h € L>=(0,T), VT, (2.1)
and that for some positive constant a one has
0<a<a. (2.2)
Then there exists a weak solution to (1.1). C'(R) denotes the space of continuous functions.

Proof. 1. One can assume that g > 1.
Indeed, suppose that we can solve (1.1) in this case. w is solution to (1.1) iff

i=e My (2.3)
satisfies
t
(M), — a(/ g(z)eMa(z, t)da:)e)‘tAﬂ—{—ﬁ(/ h(s)e iz, s)ds)e)‘tﬂ =7,
Q 0
& M+ AeMi— of /
Q

t
~ M~ ~ As —)\t
& W —a(/gg(:v)e u(m,t)daj)Au—}— {)\—{—B(/O h(s)e**u(x, s)ds)} 7/,

t
g(x)eMa(z, t)dxz)e ’\tAu—i—ﬁ(/ h(s)e iz, s)ds)ektﬂ = f,
0

i.e. iff @ satisfies (1.1) with f, h, o replaced respectively by e f, e*h, a(e?.) and 8 by A + 3
which is greater than 1 for A large enough.

2. We suppose that g > 1.



Let w € L2(0,T;L?*())) C LY0,T;LY()). Then, see [2], there exists a unique u = S(w)
solution to

ue L*0,T;V), w € L*(0,T; V'),

L(u,v)+a [ 9(x)w(z, t)dz) [ Vu- Vodz + (8( fot h(s)w(z,s)ds)u,v) (2.4)
= (f,v) Yo e H}(), in D'(0,T).

In the equation above we denote by (, ) the canonical scalar product in L?(2) and by (, ) the
duality between H~1(Q) and HE(Q2), D(0,T) and D’'(0,T) denote respectively the space of C>
functions with compact support in (0,7") and its dual, the usual space of distributions on (0, 7).
(Cf. for instance [2]). We will be done if we can show that S has a fixed point. Taking in the
equation above v = u we get easily if a A 1 denotes the minimum of ¢ and 1

1d
sapluB+ant [ (VuP + u)ds < (f) <17V,
< — r+— .

|fly denotes the strong dual norm of f in H~1(Q) associated to the norm HVUHQ in H}(Q).
From this we derive

d 2 2 2 1 2
il < - ,
G+ @a) [ (VuP+ e < —ir

and after an integration in ¢

t 1 t
|u|%+(aA1)/ /(Ivul2+u2)dxds < |uoy§+/ £, 8)[2ds.
0 JQ A

It follows that

1 1 T
ulte oy iz 200y < CF = mouog + a/\l/o |f(w8)|%//d8>-

Set
B ={ve L*(0,T; L*()) | [v]r20m:22(0)) < C}-

Clearly, .S maps B into itself. Moreover since

t
up = a(/gg(x)w(x,t)dm)Au - ,6’(/0 h(s)w(z,s)ds)u+ f in V'

uy is uniformly bounded in L2(0,T;V’) and S(B) is relatively compact in B. The existence of
a weak solution to (1.1) will follow by the Schauder fixed point theorem if S is continuous. To
show that, let w, € L%(0,T; L?(f2)) such that

w, — w in L*(0,T; L*(Q)).



Denote u, = S(wy). The estimates above hold and one can extract a subsequence such that, if
we still label it by n

gw, — gw in L*(0,T; L*(Q)),
hw, — hw in L*(0,T;L*(Q)),
Uy — Uso in L2(0,T; L*(2)), (2.5)
Vi, — Vs in L*0,T;L*(Q)),
(un)t — (Uso) in L2(0,T; V7).
By definition of u,, we have for every v € H () and every ¢ € D(0,T)

/OT_(un,v)SD/(t)dt+/0T (p(t)/ga(/gg(x)w(g;,t)dg;)vun.vv dadt
+/0T Cp(t)/Qfg(/oth(S)wn(fI:,S)ds)unv dxdt = /0T<f,v>(p(t)dt.

By the Lebesgue theorem
t t
go(t)ﬁ(/o h(s)wn(x,s)ds)v% go(t)ﬁ(/o h(s)w(:n,s)ds)v in LQ(O,T; L2(Q)). (2.6)
Indeed, note that
t t
|/0 h(s)wn(x,s)ds—/o h(s)w(z, s)ds|
T
</0 (hlsolwn — wl(z, 5)ds
T 1
< ]h!oo\/f{/ (wy, — w)?(z,s)ds}2 — 0 a.e.
0

up to a subsequence. |h|s is the L>°(0,T")-norm of h. Using (2.6) and the analogue written for
a and g, one can pass to the limit in the equation satisfied by w,. It follows that us, = S(w).
Since the limit of w,, is unique the whole sequence u,, converges toward u, = S(w) and thus S
is continuous. This completes the proof of the theorem. O

Remark 1. The same existence result holds if in (1.1) one replaces the integral on (0,t) by

/Ot/ h(s)u(z, s)ds

where t' is any real number in (0,T].

3 Uniqueness issue

One has the following estimate for the solution to (1.1):



Proposition 3.1. Suppose that ug € L (), f € L=(Q x (0,T)), B > 1. Then it holds
lul < K = |fle V [tio]oo- (3.1)

(V stands for the mazimum of two numbers).

Proof. One has

d t
—(u—K)—-V- (a(/gudm)V(u—K)) —}—ﬁ(/ hu ds)u— K = f — K <0.
dt 0 0
It follows, using as test function (u — K)* where ( )* denotes the positive part of a function
)2 <
- \2+aA1/yv T ((u-K)")? <o,

This implies that
%(‘( —K) ‘2 2(anl)t ) <0

and since this quantity vanishes at 0 it vanishes for all time. This shows that « < K. Since —u
satisfies a similar equation one has also —u < K. This completes the proof of the proposition. [J

One can then prove the following uniqueness result :

Theorem 3.1. Suppose that ug € L*(Q), f € L*(Q x (0,T)), g € L*(Q), h € L>*(0.T).
Suppose that § > 1, o are Lipschitz continuous in the sense that for some positive constant Cl,
Cs

[a(§) —am)| < Cal§ —nl,  [B(E) =B < Cpl§ —nl V& neR, (3.2)

then the weak solution to (1.1) is unique.
Proof. Let uy,us be two solutions to (1.1). By subtraction one gets

d

p —(u1 — ug) — a(/gg(a:)ul(m,t)da:)A(ul —ug) + B(/O h(s)ui(z, s)ds) (uy — uz)

= (a(/gg(x)ul(x,t)dx) —oz(/ﬂg(x)w(x,t)dx))AUQ
_ {5(/; h(s)ul(x,s)ds) — 6(/(: h(s)uz(x,s)ds)}m.

Multiplying by (u; — u2) and integrating on 2 we get

%%Wl — ugl3 + Oé(/Qg(x)ul(x,t)dx) /Q IV (uy — ug)|?dz
+/Qﬁ(/0th(s)u1(x,s)ds)(u1 — up)?dx
= —/ (a(/ g(z)ui (2, t)dx) — a(/ﬂg(x)m(x,t)dx))Vug -V(up — ug)dz
/{5 / s)ui(z, s)ds) — ﬁ(/oth(s)ug(x, s)ds) bua(uy — ug)dz.
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By (2.2) and since 5 > 1 we derive

1d
2dt|u1 uz|2+a/ |V (u1 — ug)| dx—l—/(ul — up)?dx

§/ |a(/ g(z)ui (2, t)dz) a(/Qg(:c)UQ(a:,t)dx)| |Vusl| |V (u1 — ug)|dz
/ {B / s)ug(x, s)ds) ,8(/0 h(s)usa(x, s)ds)}] lugl [(u1 — ug)|dx,

which implies

1d
23 —|uy — u2|2—|—a/ |V (u1 — u2)] dw—l—/(ul —uz)zdx
4 Q

< [ Cal [ ata)unte.t) ~ uale0)del [V [9(0r )l
+ [ ol / (. 5) — us(a, 5))ds| fus| |(ur — uz)lda
/Cagoo / lui(z,t) (z t)|d:c>]VuQ| |V (u1 — ug)|dx
+/QCghoo/O lui(x, s) — ua(z, s)|ds |ua(z, t)||(u1 — uz)(x,t)|dx

where ¢o, hoo denote the L°(Q2) and L>°(0,7") norms of g and h. Now we use (3.1) and the
Young inequality

ab < ea® + C.b°
to get

2d ]ul uQ\Q—l-a/ |V (u1 —ug)| dx—i—/(m—uQ)de
t Q

2
S/Ce{Cagoo /\ul(:r,t)—ug(x,t)]dx)\VuQ\} +6|V(u1—uQ)|2d:U
Q Q

1d/ [ 2
+/QC*Bh°oK2dt(/0 \uﬂx,s)—uﬂx,s)]ds) dz.

Choosing € = 2 it comes
2

1d a
§£\u1 — u2|% + 5 /Q |V (ug — u2)|2d:r: + /Q(ul - u2)2d:v

2
< [ e vu( / jur (1) — us(a, )| da) d
Q
hoo d 2d
/Cg K2dt /|u1($,5)—u2(az,s)\ s) x

< / 0262 |Vua |0 fuy — us 3
Q

2

t
+/QCBh°°K;:lit</o lui(zx, s) —ug(m,s)\ds) dx.
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We used Hélder’s inequality, |2| denotes the measure of 2. Thus we obtain

1d

2 O 2 2
=2y — a —wp)[2d —up)?d
2dt‘u1 ugls + 2/Q|V(u1 us)| :L'+/Q(u1 ug)*dx

< CC2g% |Vusa 319 [uy — mr%

/C’gh K2dt / lui(x, s) — ua(z, s)|ds) dz.

Integrating between 0 and ¢ we derive

t
fuy — usf3 < 2 / C.C20% |Vua 31 fus — us[3ds
0

t 2
+/ C’ghooK</ ]ul(x,s)—ug(m,sﬂds) dx
Q 0

t
<2 [ C.O2G VU0 (e, 0) - (o, O
0
t
CghooKt/ lui (, 8) — ug(x, s)|*dsdx
Q 0
t
_ / (202219 Vusl3 + Cohoc 1) s — usf3dt
0

Since (2C€C§ggO]QHVU,2|% + CghooKt> € L'(0,T) the result follows from the Gronwall inequa-
lity. O

4 Stationary problem

In this section we consider u solution to (1.1) and we assume
f,u0,9,h > 0. (4.1)
Moreover we assume that
B(z) admits a limit when z — +oo0. (4.2)

First notice that (4.1) implies that v > 0. Indeed multiplying (1.1) by —u~ we get

1d 9 t N2 o
2dt|u \Q—i-a(/ﬂgud@/Q\Vu \dx—l—/ﬂﬂ(/o h uds)(u™)*de = —(f,u”) <0.

Since «, 8 are positive we get
1d

2dt
ie. u= =0 since u~ (z,0) = 0. Since u > 0, then

t— /Oth(s) u(z,s) ds

—lu"3<0



is nondecreasing in time and has a limit when ¢ — +o00 for almost every = € 2 and so does

ﬁ(/ot h(s) u(zx,s) ds).

We denote by f(z) € L*(Q2) this limit. Then the stationary problem associated to (1.1) is :
find us, weak solution to

{;a(:f%go(lflv)gg(x)daz)Auoo + Boolioo = f(x) in Q, (43)

For convenience we set
l(u) = / g(z)u(x)dz (4.4)
Q
and for any p > 0 we denote by u, the weak solution to

{—MAUN + Bootty = f(x) in Q,

(4.5)
uy, = 0 on OS2

As usual, solving a problem like (4.3) reduces to solve an equation in R (see [4], [1]). Here
arguing on ¢(u) or a(¢(u)) offers two different equations. Indeed we have first

Theorem 4.1. The mapping u — {(u) is a one-to-one mapping from the set of solutions to
(4.3) into the set of solutions of the equation in R

n= g(ua(u))' (4'6)

Proof. Suppose that us, is solution to (4.3). Then, with our notation for u,

Uoo = Ua(l(uco))
this implies
f(uoo) = g(ua(f(um)))

ie. l(us) is solution to (4.6). Conversely, suppose that p is solution to (4.6). Then, u
satisfies

a(p)
_Oé(:u)Aua(u) + 500uo¢(/4) = f(IL‘) in (2,
Ua(p) = 0 on 09).

Since, by (4.6), (i) = a(£(ta(p))); Ua(y) is solution to (4.3). The injectivity of the map u — £(u)
is due to the fact that if £(u1) = £(uz) when u; and ug are solutions to (4.3) then clearly u; = ua.
This completes the proof of the theorem. O

It is now interesting to remark that the set of solutions can also be characterised by another set
of fixed points namely :

Theorem 4.2. The mapping u — «(4(u)) is a one-to-one mapping from the set of solutions to
(4.3) into the set of solutions of the equation in R

i= at(w,). (4.7)



Proof. Suppose that us is solution to (4.3). Then, with our definition for u,

Uoo = Ua(l(uce))
this implies that
a(l(tso)) = a(l(ta(e(un)))

i.e. a(f(ux)) is solution to (4.7). Conversely, suppose that y is solution to (4.7). Then w,, is
solution to

—a(l(uy))Auy + Boouy = f(x) in Q,
uy, = 0 on 052,

i.e. uy is solution to (4.3). To prove the injectivity of the map u — a(¢(u)) one has just to notice
that if a(f(u1)) = a(f(uz)) when u1,up are solutions to (4.3) then clearly u; = uz = uq(p(u,))-
This completes the proof of the theorem. O

Then we can now show

Theorem 4.3. Suppose that o is continuous and for some constants ag, a1 one has
O<ap<a<a, (4.8)

then the problem (4.3) admits at least one solution.

Proof. Due to (4.8) the strait line y = p is cutting the curve y = a(¢(1)) and the result follows
from the theorem 4.2. O]

Remark 2. Of course (4.7) can have several solutions and even an infinity. In the case of a
single solution it would be interesting and non trivial to show the convergence of u(t) toward use.
In the next paragraph we address a simple case to show what is on stake. We made it voluntary
stmple in a didactic spirit.

Let us suppose that g is an eigenvalue of the Dirichlet problem i.e. that for some A > 0, ¢
satisfies in a weak sense

—Ag=MXgin Q, ¢g=0on 9. (4.9)
Then we have

Theorem 4.4. Let g be solution to (4.9). Suppose that (3 is a positive constant, (f,g) > 0 and
that the equation

(Aa(p) +B)p = (f,9) (4.10)

admits a unique solution. Then if u(x,t) is solution to (1.1) and us solution to (4.3) one has

|u(z,t) — tusol2 — 0 when t — 4o0. (4.11)



Proof. Tt is enough to show (see [2]) that ¢(u(z,t)) — l(us) when t — oo. Multiplying the
equation (1.1) by ¢ and integrating on € one gets

%(u, 9) + a(f(u)) /Q VuVgdx + B(u,g) = (f,9)

i.e. using the definition of ¢ and ¢ it comes

%au) + Xa(€(w))(u) + BE(u) = (f,g).

Denote by i the unique solution to (4.10). Since we assume (f,g) > 0 one has us > 0 and

(Aa(p) + B < (f,g) for p < pso. Indeed, for p =0 (Aa(p) + B)u < (f,g) and the inequality
follows for any u < o since the solution to (4.10) is supposed to be unique. Suppose that

L(up) < poo-
Since ¢(u) is solution to the differential equation
d
—/{
dt
¢(u) is increasing and of course converging toward pe. Similarly ¢(ug) > poo implies that
¢(u) is decreasing toward pi (indeed for pn > poo, (f,9) — (Aa(p) + B)p cannot take another
time the value 0, but also cannot be positive since in this case since (f,g) — (Aa(p) + B)u <

(f,9) — (Aag + B)p — —oo when p — +oo, (f,9) — (Aa(p) + B)p would have another 0). This
completes the proof of the theorem. O

(u) = (f,9) = (Aa(l(u)) + B)E(u)

Remark 3. In the case that we just considered one could describe the asymptotic behaviour of u
using the same argument when the equation (4.10) admits different isolated solutions. We leave
the proof to the reader.
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