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Abstract

The goal of this paper is to study operators sum of p-Laplacian type operators. We
address the problems of existence and uniqueness of solutions, this last point leading to
some challenging issues in the case of quasilinear combinations of such p-Laplacians.
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1 Introduction and notation

We will denote by Ω a bounded open subset of Rn, n ≥ 1. Let us consider p1, p2, ..., pN real
numbers such that

1 < p1 < p2 < ... < pN ,

and ai(x, u), i = 1, ..., N , Carathéodory functions, i.e. such that for every i

x→ ai(x, u) is measurable ∀u ∈ R,
u→ ai(x, u) is continuous a.e. x ∈ Ω.

We will suppose that for some positive constants λ, Λ

0 ≤ ai(x, u) ≤ Λ, ∀i = 1, . . . , N − 1, λ ≤ aN (x, u) ≤ Λ, ∀u ∈ R, a.e. x ∈ Ω. (1.1)

We would like to consider problems of the following type:{
u ∈W 1,pN

0 (Ω),

−∇ ·
(∑N

i=1 ai(x, u)|∇u|pi−2∇u
)

= f in Ω,
(1.2)

or under the weak form{
u ∈W 1,pN

0 (Ω),´
Ω

∑N
i=1 ai(x, u)|∇u|pi−2∇u · ∇vdx = 〈f, v〉 ∀v ∈W 1,pN

0 (Ω).
(1.3)
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W 1,p
0 (Ω) denotes the usual Sobolev space of functions in Lp(Ω) with derivative in Lp(Ω), van-

ishing on the boundary of Ω, f ∈W−1,p′N (Ω) the dual space of W 1,pN
0 (Ω) (Cf. [5]). (Recall that

for p ∈ R, p > 1, p′ denotes the conjugate of p given by p′ = p
p−1).

We will suppose the W 1,p
0 (Ω)-spaces equipped with the norm

∣∣|∇v|∣∣
p

=
( ˆ

Ω
|∇v|p dx

) 1
p

and their duals W−1,p′(Ω) with the strong dual norm defined as

|f |∗ = sup
v∈W 1,p

0 (Ω)\{0}
|〈f, v〉|/

∣∣|∇v|∣∣
p
.

Such operators appeared some decades ago in particular as Euler equation of problems of
calculus of variations. (Cf. [7], [8], [10]), the idea being to consider energy functionals presenting
at the same time different growth and to analyse the regularity of the possible minimisers (see
[9] which contains many interesting references and also [6]). Later (Cf. [4], [11]) problems of this
type were supposed to model situations where different phases coexist, two in general, leading to
the notion of (p, q)-Laplacian. Of course here we consider the sum of several pseudo p-Laplacians
and the equation (1.3) is not the Euler equation of some energy except perhaps in the case when
the ai’s are constant. We do not pretend either having in mind applications. We are more guided
by the challenges offered by this kind of problems when existence and uniqueness of solution are
concerned.

In the next section we develop a theory of existence of solution based on the theory of mono-
tone operators. The subsequent part addresses different issues of uniqueness or non uniqueness.
In dimension one we are able to construct some a1(x, u) = a(x, u) leading to non uniqueness
in the case N = 1 and to prove uniqueness when the ai’s are say continuous and Lipschitz
continuous in u. In higher dimensions one has to restrict ourselves to special ai’s or to a single
operator but the results that we are able to show do not rely on Lipschitz continuity.

2 Existence result

Let us first prove the following existence result :

Theorem 2.1. We assume that the ai(x, u) are Carathéodory functions satisfying (1.1). If
f ∈W−1,p′N (Ω) there exists u solution to (1.3).

Proof. Let w ∈ LpN (Ω). We claim that there exists a unique u = S(w) solution to{
u ∈W 1,pN

0 (Ω),´
Ω

∑N
i=1 ai(x,w)|∇u|pi−2∇u · ∇vdx = 〈f, v〉 ∀v ∈W 1,pN

0 (Ω).
(2.1)

Indeed the operator

−∇ ·
( N∑
i=1

ai(x,w)|∇u|pi−2∇u
)
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is monotone, hemicontinuous, coercive from W 1,pN
0 (Ω) into its dual since

ai(x,w)|∇u|pi−2∇u ∈ Lp′i ⊂ Lp′N (Ω).

Indeed pi < pN implies p′i > p′N . The coerciveness of the operator is insured by (1.1), Cf. the
inequality just below. We will be done if we can show that the mapping S has a fixed point.
First taking v = u in (2.1) we deduce

λ

ˆ
Ω
|∇u|pNdx ≤

ˆ
Ω

N∑
i=1

ai(x,w)|∇u|pi−2∇u · ∇udx = 〈f, u〉

≤ |f |∗
∣∣|∇u|∣∣

pN
.

Thus it comes ∣∣|∇u|∣∣
pN
≤
( |f |∗
λ

) 1
pN−1 .

We denote by CpN the constant in the Poincaré inequality (Cf [5]) such that

|u|pN ≤ CpN
∣∣|∇u|∣∣

pN
∀u ∈W 1,pN

0 (Ω).

(|u|p denotes the Lp(Ω)-norm of u). Then we have

|u|pN ≤ CpN
∣∣|∇u|∣∣

pN
≤ CpN

( |f |∗
λ

) 1
pN−1 = K. (2.2)

Thus the mapping S goes from the ball

B = {u ∈ LpN (Ω) : |u|pN ≤ K}

into itself and is relatively compact thanks to the estimate above. We will be done, by the
Schauder fixed point theorem, if we show that S is continuous from B into B. For that consider
a sequence wn such that

wn → w in LpN (Ω).

Without loss of generality we can assume that

wn → w a.e. in Ω.

Set un = S(wn). From (2.2) it follows that un is bounded in W 1,pN
0 (Ω) and up to a subsequence

there exists u ∈W 1,pN
0 (Ω) such that

∇un ⇀ ∇u in Lpi(Ω) ∀i, wn → w a.e. in Ω.

We know that un satisfies

ˆ
Ω

N∑
i=1

ai(x,wn)|∇un|pi−2∇un · ∇(v − un)dx ≥ 〈f, v − un〉 ∀v ∈W 1,pN
0 (Ω)
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and by monotonicity of the operators

ˆ
Ω

N∑
i=1

ai(x,wn)|∇v|pi−2∇v · ∇(v − un)dx ≥ 〈f, v − un〉 ∀v ∈W 1,pN
0 (Ω). (2.3)

By the Lebesgue theorem one has

ai(x,wn)|∇v|pi−2∇v → ai(x,w)|∇v|pi−2∇v in Lp
′
i(Ω).

Passing to the limit in (2.3) we get

ˆ
Ω

N∑
i=1

ai(x,w)|∇v|pi−2∇v · ∇(v − u)dx ≥ 〈f, v − u〉 ∀v ∈W 1,pN
0 (Ω). (2.4)

Replacing v by u± δv we obtain

ˆ
Ω

N∑
i=1

ai(x,w)|∇u± δv|pi−2∇(u± δv) · ∇(±δv)dx ≥ 〈f,±δv〉 ∀v ∈W 1,pN
0 (Ω),

i.e. ˆ
Ω

N∑
i=1

ai(x,w)|∇u± δv|pi−2∇(u± δv) · ∇(±v)dx ≥ 〈f,±v〉 ∀v ∈W 1,pN
0 (Ω).

Letting δ → 0 we obtain

ˆ
Ω

N∑
i=1

ai(x,w)|∇u|pi−2∇u · ∇vdx = 〈f, v〉 ∀v ∈W 1,pN
0 (Ω),

and thus u = Sw. Note that the whole sequence un converges toward u since the limit is unique.
This completes the proof of existence of a solution to (1.3).

3 Uniqueness issues

We suppose here that we are in dimension 1 with Ω = (η1, η2)

Theorem 3.1. One can construct a continuous function a(x, u) such the problem{
u ∈W 1,p

0 (Ω),´
Ω a(x, u)|u′|p−2u′v′ dx = 〈f, v〉 ∀v ∈W 1,p

0 (Ω)
(3.1)

admits several solutions.

Proof. We use a construction similar to one in [1]. Set

u(x) = (x− η1)(η2 − x), f = −
(
|u′|p−2u′

)′
.
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One has clearly {
u ∈W 1,p

0 (Ω),´
Ω |u

′|p−2u′v′ dx = 〈f, v〉 ∀v ∈W 1,p
0 (Ω).

(3.2)

Let ω be a nondecreasing, continuous function such that

ω(0) = 0, ω(t) > 0 ∀t > 0,

ˆ
0+

ds

ω(s)
< +∞ (3.3)

ω(t)

t
is nonincreasing. (3.4)

(tα, α < 1 would be suitable). Set

θ(s) =

ˆ s

0

ds

ω(s)
. (3.5)

θ is one-to-one mapping from [0, T ] into [0, θ(T )] for every T > 0. Let us denote by θ−1 its
inverse. One has

d

dy
θ−1(y) = ω(θ−1(y)). (3.6)

Then we define

v(x) =

{
u(x) + θ−1(x− η1) in a neighbourhood of η1,

u(x) + θ−1(η2 − x) in a neighbourhood of η2.
(3.7)

and we assume that

v > u,
u′

v′
> 0 on (η1, η2). (3.8)

(To fulfil the second condition it is enough to have v increasing on (η1,
η1+η2

2 ), decreasing on

(η1+η2
2 , η2), v′′(η1+η2

2 ) < 0 since lim
x→(

η1+η2
2

)
u′

v′ (x) = u′′

v′′ (
η1+η2

2 )). It is clear that it is always

possible to find such a v. Then for x, u ∈ R we define a(x, u) as

a(x, u) =


1, if x 6∈ (η1, η2),

1 if u ≤ u(x), x ∈ (η1, η2),

(u
′

v′ )
p−1 if u ≥ v(x), x ∈ (η1, η2),

δ + (1− δ)
(
u′

v′

)p−1
if u = δu(x) + (1− δ)v(x), x ∈ (η1, η2).

(3.9)

Clearly a(x, u) is continuous on R2. Note that u′(η1) = v′(η1) and u′(η2) = v′(η2). Now it is not
Lipschitz continuous in u. Indeed let us denote by ωa(t) the modulus of continuity of a(x, u)
with respect to u, namely

ωa(t) = sup
x∈Ω,|u−v|≤t

|a(x, u)− a(x, v)|.

For t small there exists x near η1 such that v(x)− u(x) = t. Moreover one has

a(x, u(x))− a(x, v(x)) = 1−
(u′(x)

v′(x)

)p−1

=
1

v′(x)p−1
(v′(x)p−1 − u′(x)p−1).
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Recall that for x close to η1

(v − u)′(x) =
d

dx
θ−1(x− η1) = ω(θ−1(x− η1)) = ω(v(x)− u(x)).

This implies that v′(x) > u′(x) for x close to η1. We have also

(v′(x)p−1 − u′(x)p−1) =

ˆ 1

0

d

ds
{u′(x) + s(v′(x)− u′(x))}p−1ds

=

ˆ 1

0
(p− 1){u′(x) + s(v′(x)− u′(x))}p−2ds (v − u)′(x)

= ω(t)

ˆ 1

0
(p− 1){u′(x) + s(v′(x)− u′(x))}p−2ds.

Clearly v′(x), u′(x) are bounded and bounded away from 0 near η1. Thus

a(x, u(x))− a(x, v(x)) =
1

v′(x)p−1

ˆ 1

0
(p− 1){u′(x) + s(v′(x)− u′(x))}p−2ds ω(t)

and
ωa(t) = sup

x∈Ω,|u−v|≤t
|a(x, u)− a(x, v)| ≥ Cω(t)

for some constant C. This implies that

ˆ
0+

ds

ωa(s)
≤
ˆ

0+

ds

ω(s)
< +∞

which is impossible if ωa(t) ∼ Kt. This shows that a(x, u) is not Lipschitz continuous in u.
Now one has

a(x, v(x))|v′|p−2v′ = (
|u′|
|v′|

)p−1|v′|p−2v′ = |u′|p−1 v
′

|v′|
= |u′|p−1 u

′

|u′|
= |u′|p−2u′,

a(x, u(x))|u′|p−2u′ = |u′|p−2u′,

since v′

|v′| = u′

|u′| . Thus both u and v are solution to (3.1). This completes the proof of the
theorem.

We study now a particular example in dimension 1 where, on the contrary, we are able to
prove uniqueness of solution. For that let us consider a function f defined on Ω = (η1, η2) and
satisfying

f ∈ L1(Ω). (3.10)

Note that in one dimension L1(Ω) ⊂W−1,p′N (Ω) since W 1,pN
0 (Ω) ⊂ L∞(Ω) (see for instance [2]).

For i = 1, . . . , N let ai(x, u) be continuous functions satisfying (1.1). Suppose that for

1 < p1 < p2 < ... < pN , (3.11)
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u is weak solution to

−
( N∑
i=1

ai(x, u(x))|u′|pi−2u′
)′

= f in Ω, u(η1) = u(η2) = 0. (3.12)

Let us first establish a lemma which will be useful in what follows to consider u as solution of a
Cauchy problem.

Lemma 3.1. Let us denote by ai, i = 1, . . . , N positive constants. For a = (a1, . . . , aN ) we
denote by Fa(z) the inverse function of the increasing function from R into R

X →
N∑
i=1

ai|X|pi−2X.

Then one has for some constant cp1, see (3.16),

|Fa(z)− Fa′(z)| ≤
1

cp1a1

N∑
i=1

|a′i − ai|
{( |z|
a1

) 1
p1−1 +

( |z|
a′1

) 1
p1−1

}pi−p1+1
. (3.13)

(a′ = (a′1, . . . , a
′
N )).

Proof. By definition of Fa = Fa(z), Fa′ = Fa′(z) one has

N∑
i=1

ai|Fa|pi−2Fa = z =
N∑
i=1

a′i|Fa′ |pi−2Fa′ . (3.14)

So we have first the estimate
N∑
i=1

ai|Fa|pi = zFa ≤ |z||Fa|

and thus
N∑
i=1

ai|Fa|pi−1 ≤ |z|,

which implies

|Fa| ≤
( |z|
a1

) 1
p1−1 . (3.15)

Next by subtraction in (3.14) we derive

N∑
i=1

ai{|Fa|pi−2Fa − |Fa′ |pi−2Fa′} =

N∑
i=1

(a′i − ai)|Fa′ |pi−2Fa′ .

Multiplying both sides by Fa − Fa′ we get

N∑
i=1

ai{|Fa|pi−2Fa − |Fa′ |pi−2Fa′}(Fa − Fa′) =
N∑
i=1

(a′i − ai)|Fa′ |pi−2Fa′(Fa − Fa′).
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Recall (see for instance [3]) that for p > 1 there exists a constant cp > 0 such that

cp(|ξ|+ |ζ|)p−2|ξ − ζ|2 ≤ (|ξ|p−2ξ − |ζ|p−2ζ) · (ξ − ζ) ∀ξ, ζ ∈ Rn. (3.16)

Thus for some constant cp1 we have

cp1a1{|Fa|+ |Fa′ |}p1−2|Fa − Fa′ |2 ≤
N∑
i=1

|a′i − ai||Fa′ |pi−1|Fa − Fa′ |

≤
N∑
i=1

|a′i − ai|{|Fa|+ |Fa′ |}pi−1|Fa − Fa′ |.

Combining this with (3.15) we get

|Fa − Fa′ | ≤
1

cp1a1

N∑
i=1

|a′i − ai|{|Fa|+ |Fa′ |}pi−p1+1

≤ 1

cp1a1

N∑
i=1

|a′i − ai|
{( |z|
a1

) 1
p1−1 +

( |z|
a′1

) 1
p1−1

}pi−p1+1
.

This completes the proof of the lemma.

Then we have :

Theorem 3.2. Under the assumptions (3.10), (3.11) suppose that the ai(x, u)’s are continuous
and Lipschitz continuous in u and that

0 < λ ≤ a1(x, u) ∀x, u. (3.17)

Then (3.12) admits a unique solution.

Proof. If u is solution to (3.12) one has

N∑
i=1

ai(x, u(x))|u′(x)|pi−2u′(x) = −
ˆ x

η1

f(s)ds+ c (3.18)

where c is some constant. This implies in particular that u′ is continuous. Note also that this
constant c satisfies

|c| ≤
ˆ η2

η1

|f(s)| ds

Indeed, since u(η1) = u(η2) = 0 there is a point m ∈ (η1, η2) where u′(m) = 0 which implies

c =

ˆ m

η1

f(s) ds,
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and the estimate above follows easily. We claim that this constant c is the same for any solution
to (3.12). To show that, let ũ be solution to (3.12) such that

N∑
i=1

ai(x, ũ(x))|ũ′(x)|pi−2ũ′(x) = −
ˆ x

η1

f(s)ds+ c′.

Suppose that c′ > c. Then one has by writing the equations above at ηk, k = 1, 2

N∑
i=1

ai(ηk, ũ(ηk))|ũ′(ηk)|pi−2ũ′(ηk) = −
ˆ ηk

η1

f(s)ds+ c′

> −
ˆ ηk

η1

f(s)ds+ c =

N∑
i=1

ai(ηk, u(ηk))|u′(ηk)|pi−2u′(ηk).

Thus since ai(ηk, ũ(ηk)) = ai(ηk, u(ηk)) and the function X →
∑N

i=1 ai(ηk, u(ηk))|X|pi−2X is
increasing, one gets

ũ′(ηk) > u′(ηk), k = 1, 2.

This implies that
ũ > u near η1 , ũ < u near η2,

recall that ũ = u = 0 at η1, η2. Starting from η1 let us denote by x0 the first crossing point of
the graphs of ũ and u. At this point one has again

N∑
i=1

ai(x0, ũ(x0))|ũ′(x0)|pi−2ũ′(x0) >

N∑
i=1

ai(x0, u(x0))|u′(x0)|pi−2u′(x0)

and thus ũ′(x0) > u′(x0). But this would imply, since ũ(x0) = u(x0) that ũ(x) < u(x) for
some x < x0 and a contradiction. If c′ < c then swapping ũ and u would lead to the same
contradiction. Thus, if u is solution to (3.12), there exists a fixed constant c such that

N∑
i=1

ai(x, u(x))|u′(x)|pi−2u′(x) = −
ˆ x

η1

f(s)ds+ c

i.e. such that

u′ = F
(
a(x, u(x)),−

ˆ x

η1

f(s)ds+ c
)
.

(We have set a(x, u(x)) = (a1(x, u(x)), . . . , aN (x, u(x))), F (a, z) = Fa(z)). It follows from the

Lemma 3.1 that F
(
a(x, u(x)),−

´ x
η1
f(s)ds + c

)
is Lipschitz continuous in u. Indeed, denoting

by K a positive constant bounding | −
´ x
η1
f(s)ds+ c|, one has by (3.13)

|F
(
a(x, u(x)),−

ˆ x

η1

f(s)ds+ c
)
− F

(
a(x, v(x)),−

ˆ x

η1

f(s)ds+ c
)
|

≤ 1

cp1λ

N∑
i=1

|ai(x, u(x))− ai(x, v(x))|
{

2
(K
a1

) 1
p1−1

}pi−p1+1
.

9



We have assumed the ai(x, u)’s Lipschitz continuous in u and thus F
(
a(x, u(x)),−

´ x
η1
f(s)ds+c

)
is also Lipschitz continuous in u. Since u solution to (3.12) satisfies{

u′ = F
(
a(x, u(x)),−

´ x
η1
f(s)ds+ c

)
, x ∈ (η1, η2),

u(η1) = 0,

u is unique. This completes the proof of the theorem.

Remark 1. In the case where f > 0 then by (3.12), x →
∑N

i=1 ai(u(x))|u′(x)|pi−2u′(x) is
decreasing and thus vanishes at exactly one point where the maximum of u is.

We turn now to the results that we are able to prove in higher dimensions. We consider first
a peculiar example.

Theorem 3.3. Suppose that there exist functions αi = αi(x) and a continuous function b(u)
such that for some positive constants λ0, λ1, b0, b1 one has

λ0 ≤ αi(x) ≤ λ1, a.e. x ∈ Ω, b0 ≤ b(u) ≤ b1, ∀u ∈ R,
ai(x, u) = αi(x)b(u)pi−1

(3.19)

for all i = 1, . . . , N , then (1.3) admits at most one solution. More generally if uk, k = 1, 2
denotes a solution to (1.3) corresponding to f = fk then

f1 ≤ f2 implies u1 ≤ u2.

(f1 ≤ f2 means, as usual in this context, 〈f1 − f2, v〉 ≤ 0 ∀v ∈W 1,pN
0 (Ω), v ≥ 0).

Proof. If uk is solution to (1.3) corresponding to f = fk, one sets

Uk(x) =

ˆ uk(x)

0
b(s) ds.

Then clearly

∇Uk(x) = b(uk)∇uk(x), |∇Uk(x)|pi−2∇Uk(x) = b(uk)
pi−1|∇uk(x)|pi−2∇uk(x),

in such a way that Uk satisfies for k = 1, 2{
Uk ∈W 1,pN

0 (Ω),´
Ω

∑N
i=1 αi(x)|∇Uk|pi−2∇Uk · ∇vdx = 〈fk, v〉 ∀v ∈W 1,pN

0 (Ω).

By subtraction one gets

ˆ
Ω

N∑
i=1

αi(x)
(
|∇U1|pi−2∇U1 − |∇U2|pi−2∇U2

)
· ∇vdx = 〈f1 − f2, v〉 ∀v ∈W 1,pN

0 (Ω).
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Taking v = (U1 − U2)+ the positive part of U1 − U2 one gets easily for some constants ci > 0
(see (3.16))

ˆ
Ω

N∑
i=1

αi(x)ci
(
|∇U1|+ |∇U2|

)pi−2|∇(U1 − U2)+|2dx

≤
ˆ

Ω

N∑
i=1

αi(x)
(
|∇U1|pi−2∇U1 − |∇U2|pi−2∇U2

)
· ∇(U1 − U2)+dx ≤ 0.

This implies that (U1 −U2)+ = 0 and thus U1 ≤ U2 which is equivalent to u1 ≤ u2. Uniqueness
follows by choosing f = f1 = f2. This completes the proof of the theorem.

Remark 2. Note that only one of the αi’s needs here to be positive, for instance αN if one
wants to rely on (1.1) to have existence of a solution.

In the case of one single operator, i.e. N = 1 the above theorem can be rephrased as follows :

Theorem 3.4. Let α1 be such 0 < λ0 ≤ α1(x) ≤ λ1 and a(u) be a continuous function such
that for some positive constants

b0 ≤ a(u) ≤ b1. (3.20)

For p > 1 consider u solution to{
u ∈W 1,p

0 (Ω),´
Ω α1(x)a(u)|∇u|p−2∇u · ∇vdx = 〈f, v〉 ∀v ∈W 1,p

0 (Ω).
(3.21)

Then (3.21) admits a unique solution. Moreover if uk, k = 1, 2 denotes a solution to (3.21)
corresponding to fk then

f1 ≤ f2 implies u1 ≤ u2.

If ak, k = 1, 2 denotes a function a satisfying (3.20) and if uk, k = 1, 2 denotes a solution to
(3.21) corresponding to ak, fk then

0 ≤ f1 ≤ f2 , a1 ≥ a2 implies u1 ≤ u2.

Proof. The first part of the theorem follows from Theorem 3.3 (see also the remark 2) by setting

b(u) = a(u)
1
p−1 .

For the second part of the theorem note first that, since the fk are nonnegative, one has
uk ≥ 0 for k = 1, 2. This is a consequence of the first part of the theorem. Set as previously

Uk(x) =

ˆ uk(x)

0
ak(s)

1
p−1 ds.

As in the proof of theorem 3.3 one notices that Uk satisfies for k = 1, 2{
Uk ∈W 1,p

0 (Ω),´
Ω α1(x)|∇Uk|p−2∇Uk · ∇vdx = 〈fk, v〉 ∀v ∈W 1,p

0 (Ω).
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By subtraction we get

ˆ
Ω
α1(x)

(
|∇U1|p−2∇U1 − |∇U2|p−2∇U2

)
· ∇vdx = 〈f1 − f2, v〉 ∀v ∈W 1,p

0 (Ω).

Taking v = (U1 − U2)+ one deduces as above that U1 ≤ U2 i.e.

U1(x) =

ˆ u1(x)

0
a1(s)

1
p−1 ds ≤ U2(x) =

ˆ u2(x)

0
a2(s)

1
p−1 ds ≤

ˆ u2(x)

0
a1(s)

1
p−1 ds. (3.22)

since a1 ≥ a2 and u2 ≥ 0. The result follows since

ˆ u1(x)

0
a1(s)

1
p−1 ds ≤

ˆ u2(x)

0
a1(s)

1
p−1 ds

is equivalent to u1 ≤ u2. This completes the proof of the theorem.

Remark 3. Note that without the positivity of fk one gets nevertheless a comparison principle
i.e. U1 ≤ U2 (Cf. (3.22)) and only the positivity of f2 is used subsequently. It is interesting to
see that the monotonicity result is here at two levels f and a and that one does not need any
Lipschitz continuity on a.

4 Concluding remarks

The same results as above hold for instance for the problems of the type{
u ∈W 1,pN

0 (Ω),

−
∑N

i=1 ∂xi
(
ai(x, u)|∂xiu|pi−2∂xiu

)
= f in Ω.

In fact, the two operators, i.e. the one just above and the one in (1.2), coincide in dimension
one.

In higher dimensions we suspect that the result obtained in the case where N = 1 go through
for any N when

ai(x, u) = αi(x)ai(u),

ai(u) being continuous, bounded and bounded away from 0. However, so far, we have been
unable to show it except in the particular case of Theorem 3.3.
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