Asymptotic behaviour of some anisotropic problems
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Abstract

The goal of this paper is to explore the asymptotic behaviour of anisotropic problems
governed by operators of the pseudo p-Laplacian type when the size of the domain goes to
infinity in different directions.
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1 Basic notation

When €2 is a bounded open set of R, we denote by I/VO1 "(Q), r > 1, the usual Sobolev space
constructed on L"(Q2), of functions vanishing on the boundary of Q. That is to say we set

WL (Q) = {ve L"(Q) | pv € L"(Q) |Vi=1,...,n}. (1.1)

We equip this space with the norm

n 1
lelling = ( [ 1o + 3 lowold)” (12)
=1

and we set
W, () = D(Q) = the closure of D(2) in W (). (1.3)

(D(€2) denotes the space of C'*°-functions with compact support in Q). It is well known that
VVO1 "(€) is a reflexive Banach space which can be equipped with the equivalent norm

1900 = ( [ 1wo@ar)” (1.4
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(V denotes the usual gradient an | | the euclidean norm, i.e. |Vo(x)| = (Z?(@xiv)%%, | |ro
denotes the L™-norm on ). The dual of Wol’r (Q) is denoted by W17 (Q), v/ = — and consists
in the distributions of the form
f=1fo=> 0ufii fieL" (D). (1.5)
=1

We use the notation .
(f,v) = / fov+ > fi0y,vda. (1.6)

Q i=1

The paper is organised as follows. In the next section we address the case of a simple problem
set on a rectangle with one side going to infinity. We consider all the possible values of (p, q),
p,q > 1 for the pseudo (p, q)-operator at hand allowing to present a variety of techniques. Some
of them are issued of previous works. We refer the reader to [11], [10], [4], [5], [15], for details.
The section 3 relies on the experience acquired on the simple model investigated in section 1 to
extend some results to more complex situations. The operators at hand are Euler equations of
some anisotropic functionals of calculus of variations introduced for other reasons in [17], see
also [18]. For basic notions on Sobolev spaces we refer to [2], [12], [13], [14], [16].

2 A model problem

We denote by €2, the open subset of R? defined as
Qp=(—=0,0) x (—1,1). (2.1)
We will set w = (—1,1) and 02, will denote the boundary of €, see the figure 2.1 below.
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Figure 2.1: The domain €2,

If p,q > 1 are two positive numbers we would like to consider u, solution to

0, (\8331Ug\p’28z1u5) _ 8x2<\612ug]q’28$2w> —f inQ,
up =0 on 9.



More precisely we are interested to the asymptotic behaviour of uy when ¢/ — 4oco. f is a
function or distribution depending only on x5. A natural candidate for the limit of the problem
1S Uso solution to

{—am (\amuoqu*?amuoo) —f inw, 2.3

Uso = 0 on Jw,

where Ow = {—1,1} is the boundary of w. First let us recast these problems under their natural
weak form.

We can first introduce the weak formulation of (2.3). If f € W17 (w) is given by

f=f(@2) = folz2) — Oz, f1(22), (2.4)
where fo, f1 € LY (w) then, the weak formulation to (2.3) corresponding to f reads
Uoo € W()Lq(w)? (2 5)
N |00 U009 202) Uoo Oy v dxg = (f,0) = |, fov+ f10z,vdzy Vv € Wol’q(w). '

To arrive to a weak formulation for (2.2) one introduces
WhPa(Qy) = {v € LP(Q) N LY(Q) | Opyv € LP(Qy), Opv € LI(Q)}. (2.6)

It is a reflexive Banach space when equipped with the norm

HUHLp,%Qe = ‘U|p79£ + |U‘q79z + [0y v P T |8xzv‘q,9r (2.7)

Then we define
W, P4(9y) = D() = the closure of D(€) in WhP4(Qy). (2.8)

If f is defined by (2.4) if follows easily that there exists a unique u, weak solution to (2.2) i.e.
satisfying

Uy € Wol’p’q(Qg),
sz |0, e P20, 10O, 0 + |0y g1 200y gDy v didiy (2.9)
= (f,0) = Jo, fov + [10u,v dardzy Yo € WyPI(Qy).

We are interested in showing that uy — u., when £ — oo, but also to investigate at what speed.
We will now denote dxidxo by dx.

The operators defined by (2.2), (2.3) are strictly monotone, hemicontinuous, coercive from
VVO1 PA(Qy), I/VO1 “I(w) into their duals. Existence and uniqueness of a solution for (2.9), (2.5)
follows from classical arguments (see [3], [12], [16]).

Let us first prove the following lemma.



Lemma 2.1. Suppose that f is given by (2.4). If uy is the solution to (2.9) there exists a
constant C independent of { such that

/ 100, el + 19sy ue]? der < CL. (2.10)
Q
Proof. Taking v = uy in (2.9) we get

/Q Ol + Ol do = (fru) = [ o+ fidryue do
¥4 74

< |f0|q’,ﬂe‘W’q,Qz + |f1’q’794|axzuf|q,ﬂe (2'11)

< (Cliolyo, +1filg., ) 1Oesuelge,

this by the Holder and the Poincaré inequality. Let us recall regarding this last point an argument
that we will use several times later on. If u € Wol’p’q(Qg), let u, € D(Qy) such that u, — u in
I/VO1 P4(Qy). By the Poincaré inequality on w one has for some constant C' independent of /

/ |un (21, 22) |7 dxe < C’q/ |Opptin (1, 22) |7 dxo, a.e. x1 € (=4, 0).

Integrating in z; we deduce
[unlq,0e < ClOzyunlq0,

and passing to the limit in n the same inequality holds for u or wu,.

Then let us notice that for ¢ = 0,1 one has

1
2

| filg 0, = (/_i/w |fi($2)|q/d1?2dw1)q = (2€)$|fi|q’,w-

Thus from (2.11) we derive for some constant C' = C(q, f)

1
|8x2u€‘g,m < Cts |8962u€

ngl

Since ¢’ = qfql this is equivalent for some new constant to

1
‘8Z2uﬁ|q792 < Cla.
Going back to (2.11), the result follows. O
Somehow one can ignore f thanks to the following remark.

Lemma 2.2. If uy is the solution to (2.9) and us solution to (2.5) one has

\8x1ug|p’28x1u38mlv + {\8I2udq*28x2ug—lﬁmuoo|q*28x2uoo}8@1) de =0

Q (2.12)

Yo e WyP9(Qy).



Proof. First by (2.9) ifv € Wol’p’q(Qg) one has

/ |8x1w\p*28xlug Oy v + ]8m2u4|q*28$2ug Op, 0 = / fov + f10z,v dx (2.13)
Qp Q

If v € WyP%(Qy) one has for almost every z;
v(z1,-) € Wy(w).

Thus by (2.5)

/ ]8@%0]‘1_28332%0 Op,v(x1,x2) dxg = / fov + f10z,vdxs.

Integrating in z; it comes

|0y oo |1 2Oy oo Oyv d = fov + f10z,vdz. (2.14)
Qy Q

Subtracting from (2.13), (2.12) follows. O

Let us recall the following result (see [3], [6]) which garanties also the strict monotonicity of
the operators at hand.

Lemma 2.3. For any q > 1 there exist positive constants cq, Cq such that
11972 — n177%n] < Clé —nl(l€] + [n)*™* W& n € R™, (2.15)

(1€1772€ = [0l ") - (€ = n) > cql€ = n(I&] + 0T V&, n € R™. (2.16)

Then one has :

Lemma 2.4. Let uy = uy(f) be the solution to (2.9) and us = us(f) be the solution to (2.5).
Suppose that f1 > fo, f > 0 then one has

ue(f2) <ue(f1) o 0 <w(f) < uool(f). (2.17)
(If f is not a function, f > 0 means (f,v) >0 Yv € Wol’q(w), v>0).

Proof. We use the notation u; = uy(f;). From (2.9) by subtraction we get

/ {19, s P20 1z — |00y 01 [P0, ur } Oy, v
Q

+ {‘aﬂczu2|q72aﬂc2u2 - ‘amul‘inazlul}awzv = (fo— f1, U)'

Taking v = (ug — u1)+ one deduces easily using the lemma 2.3 that (ug — ul)+ =01i.e. u; > us

(see below (2.18) for a similar argument).

If f >0 taking fi = f, fo = 0 one gets 0 < up(f).



Regarding uq, taking v = u in (2.5) one gets for f >0
/ |0, Uoo|P 20y Uoo Oy Uy + |Oy oo |92 Dy Uhe Oy Uiy, :/ fous, + f10z,us dx > 0.
Qy Q
This reads also

2 Yoo

/ |0y g P20y Uy By g + |y |2y usy, Dyuzg < 0.
Qg
Thus uy, = 0 and ueo(f) > 0. Then taking v = (uy — uso)™ in (2.12) one gets

/ ’a:c1u€|p728x1u€ Oz, (ug — UOO)Jr
Q (2.18)

+ {‘83;2Ug|q728x21u — |3z2uoo\q728x2uoo}8x2 (g — Uoo) T dz =0
i.e.

—2
/ 100 telP 20, e Dayuig
{urg—uco>0}

+ {|3m2w\q_281«2u£ - \812uoo|q_28x2u00}8w2 (ug — uso) dx = 0.

This implies that the set {uy — uoo > 0} is of measure 0 since V(uy — us) = 0 on this set i.e.
V(ug — o)™ = 0 (see [14]). This completes the proof of the Lemma. O

Let us now show :

Lemma 2.5. If uy is the solution to (2.9) and us solution to (2.5) one has for every smooth
functin ¢ = p(x1) vanishing at {—£.0}

/ {]&Tluz\p + (\8z2ug]q_28m2ug—lﬁmuoo\q_Qamuoo) Oy (ug — uoo)}gp dx
Q (2.19)
S
0

Proof. Taking v = (uy — uxo)@ in (2.12) one gets

/Q {100y 0el? + (102067200100~ Dy 100 | 2Dyt ) Oy (s = o) pip

e (2.20)
= _/ ‘8l"1uf|p_28x1u£ 8:51‘,0 (Uz — Uoo) dx.
Qe
(Recall that us is independent of x1). Then (2.19) follows easily. O

Denote by p = p(z1) a smooth function such that
11

0<p<1l p=1lon (75, 5), p=0mnear {—1,1}, |0z, p| < C. (2.21)
and set

where a > 0. We can now prove:



Lemma 2.6. Let f = fo € L7 (w) and ug, us be the solutions to (2.9), (2.5). Then it holds for
some constant C' independent of ¢

C
1 (2:22)

I = / {lﬁxlw\p + (]8@14@\‘1*28“1% — \8@%0]“25‘@%0) Oy (g — uoo)}pa dx <
Q
Proof. From (2.19) one derives

/ {|8xlw|p + <|612ug|q_20x2ug—|8w2uoo|q_2612u00> Oy (ug — uoo)}po‘ dx

2 C (2.23)

< / \&cludp*l\ug — uoo\po‘f1 dzx.
14 Q,

Noting that p®~! = pﬁ p%_l and using Holder’s inequality it comes

I= / {|3z1udp+(!8x2ue|q*28x2ue - \3@%0!(1723@%0) Oy (ug — uoo)}pa dx
Q

ol N , (2.24)
< ¥ p v’ —u PP P
< (/m |0y ue|Pp de) (/m [ug — uso|Pp diﬂ)

Thus it follows that

aC\p aC\p
< P =P < p .
I ( 7 ) e ]w uoo| p dzx ( 7 ) Z |uz uoo| dzx, (2 25)

provided we chose o > p. From the lemma 2.4 one has

w(f) < ue(fM) <uso(F7) o too(—f7) S ue(—F7) < ue(f),

(notice that ug(—f) = —ug(f)). Then one derives
e — tioo| < Jue| + [too| < max{uce(f7); oo (f7)} + |t (f)]-
Since this last function is independent of x; one derives from (2.25)
I= / {100,100l + (10,1017 204 100 — 1 yoelT20ny10) Do — ) bo™ dr <
Q et

P

for some new constant C. This is (2.22). This completes the proof of the lemma.
O

We give now a very simple proof of the convergence of uy toward u., which is valid for every
p and q.

Theorem 2.1. Let f = fo € LY (w) and uy, us be the solutions to (2.9), (2.5). Then for any
lo it holds when £ — 400

Opyug — 0 in LP(Qyy) , Opytp — OpyUoo in LI(SYy,). (2.26)



Proof. The first part of (2.26) follows immediately from (2.22) if one chooses g > fy. For the

second part let us consider a smooth function p = p(x;) such that for £y < ¢ — 1 fixed
0<p<1, p=1 on (—¥y,¥y), phascompact supportin (—ly—1,¢y+ 1), |0s,p| <C.

Since p®uy € Wol’p’q(ﬂg) one gets from (2.9)

[ Aol + 10wt} do = = [ onudou it et [ o da

Q41 Qog+1 Qog+1

< aC / Bl gl + / follugl de.
QgOJrl £o+1

a—1

Noticing that p = pﬁp%fl and using the Young inequality ab < l%ap' + %bp, a,b> 0 we get
for some new constant C

/ {Oayugl? + Oyl p* d
Qog+1

1
< // |0y we|P p* d:c—i—C/ |wg|Pp™P da:+/ | fol|we| de.
DI Qeg+1 Qog+1

Using the inequality
Jug| < max {uoo(fg"), uoo(fy )}
which is due to

ue(fo) < welfy') < uss(fe) o we(=f) = —ue(f),

we derive easily taking o > p that

/ |8xQUg|q dx < C(fo)
[/

0

where C'({y) is independent of ¢. Thus up to a subsequence there exists voo € LI(€y,), Woo €
L9 (Qy,) such that

OgoUy — Voo € LA(Qy,) |00y 16| 20pptty — Woo € qu(Qg()).
From (2.22) one derives that up to a subsequence
{|8x2ug|q_28x2w - |8x2uoo\q_2812uoo}6m(ug —Uso) — 0 a.ein Q.

Thus, up to a subsequence, 0;,uy — Oz,Uso a.€ on §y,. To see this point one notices that by
(2.16) one has

89:2(”6 - Uoo) 8:]02(“2 - uoo){|amguﬁ| + |8:rguoo|}q_2 — 0 aein ng.
If 0, (up — uso) # 0 then

B (g — 10) { Oy ] + |Op oo }2 = 0 aein O,



and by (2.15) it follows that
{lamuz\q_2812ug — \8z2uoo]q_28$2uoo} — 0 a.ein

and again due to the strict monotonicity of the function |z|9~2z one has Oy, up — Oz, U0o a.e on
Qy,

From this it follows (see for instance [19] lemma 8.3) for a proof that
Drytie — Opoting € LI(Qpy) » [Onytie| T 20pyttp — [Opytioe|I 2 0aytice € LI (Q, ).

Now from (2.22) one has
/Q {|812w|q_28x2ug — |8x2uoo|q_26m2uoo}3x2 (ug — uso) — 0,
‘o

that is

/ 1Oy 110]7 — (D t1g] 20100 s — |y tho |92 hos Dyt + Dy 1|z — 0.
4

J

and the result, i.e. the strong convergence, follows. O

It follows that
|0z ue|? dz — / |0y oo | d
Q,

)

One can estimate the convergence rate in some situations. Indeed one has :

Theorem 2.2. Let f = fo € LY (w) and uy, uss be the solutions to (2.9), (2.5). Then it holds
for some constant C' independent of £

C
[ 100 e )P 10y e = o) = [ 100yl 0y s — )1 o < (220

Qg Qg
3 3

where ¢ A 2 denotes the minimum of q and 2.
Proof. 1t follows from the lemmas 2.3 and 2.6 that

- Vo ) .
I= /m {laxluzlp + (\&mwl + |3x2uoo\> Dy, (g — Uoo)2}p <

If ¢ > 2, since |0y, (ur — Uoo)| < |Opyue| + |0y tso|, One derives immediately (2.27), i.e.

/ 19 (1 — 1000)|? 4 9y (1t — 0)|? iz = / O ttl? + 1Oy (1 — 007 d <

Qy Qg
2 2

12



If ¢ < 2 one has thanks to Holder’s inequality
/ |0y (g — uoo)|1p™ ™ d =
Q

—_2)4 4
/ (‘aﬂﬂzuﬂ + |8w2uoo’)(q 22 |0 (g — UOO)‘an_q(’(?mQUA + ‘6362“00’)(2 )3 da
QZ 2 q (2.28)
_9 a2 g
< (/Q (|8332u5’ + |622uoo|)(q )|8:v2(Ug — uoo)|2p( 905 d.l‘)
¢

1—-4
([ (0msul + o))" d)
Q

Chosing (a — q)% > « and taking into account the lemmas 2.1, 2.3 we get for different constants
independent of ¢

/ |0, (Ur — Uoo)|1p* ™ d
Q

< (/ (|622u£| + |6x2uoo|)(q72)|axg(uﬁ - Uoo)’2,0a dl‘>§

Q

1-4
([ (0l + 100yusl)? da) (229
14

CIE( [ (10usu] + [orcl)” o)
Q,

~q 17% ¥4 194
< 012(/ 19y t0] T + Dy oo |? dm) <ofte-t <
Q,

IN

C
p(r—-1)3

3,

(Note that {|a| + ||} < 297 {|a|? + |b|?}). Choosing also o > ¢ we are ending up with

C
/| ran ) <

2
Combining this with (2.22) we arrive also to (2.27). O

In the case where p < ¢ one can consider a general f and not only assume that it is in
LY (wy). Indeed one has first :

Lemma 2.7. Suppose that p < q. If p® is defined by (2.21) and if « is chosen such that
a% —q > « it holds for some constant C

I = / {\&tludp + <|8$2udq*28m2ue — ]8m2uoo\q*28$2uoo> O, (ug — uoo)}pa dx
o (2.30)

1-2

C D
< — — 7p~ ! :
< Ep(/gé |02, (g — uso)|2p dx) 0

10



Proof. Since (2.19) is valid for a general f one derives as in (2.23), (2.24)

I= / {’811UZ|p + (|8x2ue|q_20x2u@ - |8x2uoo|q_20x2uoo) Oy (g — uoo)}po‘ dx
Q

3=

< Of(/ﬂ |0y ue|? p® dw)pl/ (/Q [ue = uce|”p*P dx) (2.31)
14 12

cC 5
el ( lug — uoo[Pp* P daz) r
¢ Q,

From this inequality it follows since a% — ¢ > « for various constant C

I< (aeC) |up — Uuso|Pp* P dx
< (%5 ( /W_u et o) ([ var)
l
(2.32)
C g -2
< — (/ |up — Uso|1p™ daz) (/le d:z:)

?%
’U

C’ L o_e
? / |02, (g — Uso) |7 dx) 0
(In the last inequality we used the Poincaré inequality on w). This completes the proof of the
lemma. O
Then we have :

Theorem 2.3. Suppose that p < q. One has

C
S 1l 410 ) < (233
£

q9—p

2

Proof. 1f ¢ > 2 one has by (2.16)
(€772 = nl""n) - (€ = m) = cql€ = nP*(g] + )" = cgl€ —ml” VEmeR™  (2.34)

Thus from (2.30) one deduces for some constant C

J = / {’811u€|p+|ax2(uﬁ - Uoo)|q}pa dx
Q

D
_EP / |0y (g — Uoso) |7 dx)qfl_g.

From this it follows that

g<Crrt o g Y
op Pre

and (2.33) follows by definition of p.

11



In the case when p < ¢ < 2, noting S = |0z, (u¢)| + |0z, (Ueo )| one derives from (2.16), (2.30)

for some constant

I= / {’ax1u€|p+8q_2ax2(u€ - Uoo)2}pa dx
Q

C -
-_— i q q
gﬁ,(/ﬂé\a@(uZ w10 da)

Thanks to Holder’s inequality one has as in (2.28)

|0y (w — uo0)|*p™ d = S%(q72)|8x2 (ue — Um)|qpa%5%(27q)Pa(17%) dx

Q Q

g 1—-4
q—2 . 2 « 2 q 2
< (f, 57 0uatoe — o) ) (/WS i)
-3
< P ([ A10wan)] + 0ns a1 )
Q
It follows from (2.10) that

|02, (Up — Uso) |19 da < Cf%(

Qp Q,
Going back to (2.35) we obtain
= C g1 a1 0 Cp i p
Igg—p(jzfl z)qf q :ﬁlzfl 2
Hence 8.
I<——,
EEra
and

The inequality (2.32) follows from these two estimates.

1-¢ .
|0 (we) | + 10y (t00) | dl‘) ’ < CI:03.

(2.35)

O

In the case p > g > 2 one can show that uy; — u exponentially quickly (see [6], [15] and

also this issue in the next section). Indeed one has :

Theorem 2.4. Suppose that p > q > 2, f € LY(w). It holds for some positive constants C,

/ 100, P + 10, (10 — 00)|? d < Ce—o,

Qy
3

Proof. Since f € L'(w) one has
T2
—8z2(|8$2u00‘q728$2u00) =f & \83321100]‘1728@7100 = _/ f(§) dé+C.
0

12

(2.36)



This implies that u.. is a C'-function which is bounded as wuy is (see the lemmas 2.4 and 2.6).
Let us set A = |0z, ug|P + |0z, (us — uso)|?. For o > 0 consider as in [1]
0= (e—a\xl\ o e—aﬁ)

in (2.19). Taking into account the lemma 2.3 and the fact that 9., = +oe 1%l we get
[ 1m0 + 0~ )1 d
Qg
<C / {100, wel? + (10000l 200,100 = 10ry 00| 20uyt1oe ) Oats — uoc) fp d (2.37)
Qp

<oC [ e 70, up|PHup — uoo| daz.
Q
Using the Young inequality in this last integral i.e. |al|b|] < %]a\p/ + %\b[p we get for some new
constants

A (e7olml — 7o 4y
Q

< O‘C/ e_"|$1|{|3;p1ue|p + |ug — uso|?} da.
Q (2.38)
< O'C/ 67‘7|m1|{|81;1ue|p + |ug — uso|?} da.
Q

<oC / e~ 7118, uplP + |00y (ue — uso)|?} dz = 0C | Ae~l71l dg.
QZ Qg

(In the above, we used the fact that uy and us are uniformly bounded independently of ¢ and
the Poincaré inequality on the section w). Choosing cC = % it comes

1

S| Aelgr<et | Ada (2.39)
2 Qg QZ

that is to say
e“’ﬁ/ Adz < 2e—"f/ A dz. (2.40)

Qp Qy
2
It follows from the lemma 2.1 that
/ Adr = / |0y el + |0y (Up — Uso)|? da < 23 / A dx < Cle™7% . (2.41)
Qy Qy Q
2 2
The reslt follows by choosing o < 5. O

The last case to address is when p > ¢, ¢ < 2. In this case one can prove :

13



Theorem 2.5. Suppose that p > q, ¢ < 2, f € L*(w). It holds for some positive constants C

| 0l + 1o 0wt i < (2.42)
Qé (2—11
Proof. Choosing p as in (2.21) one has - see (2.16), (2.23)
:/ |8x1u€‘p + Sq72|8902 (uf - u00)|2pa dx
Q
< / |0, e |P g — uoo|p® 7t da
% A (2.43)
< — / |0, we|P p© da: Up — Uso|Pp* P dx)p

hSAl

\
C’ ~1 C i 1
—Iv ( |up — Uoo| 1P dl’) —Iv ( |02, (U — Uso) |9 7P d:v) v
g Q,g E QZ
Recall that S = |0y, (us)| + |0z, (uso)|. In the two last inequalities we used the fact that u, and
Uso are uniformly bounded and the Poincaré inequality. Arguing as before we have

10 (e — uo0) | 707 da = | S50, (up — o) [9p*2 SEDE p2 070 iy
Qg QZ
a 1-4
< ( S(q_2)|(912(uz _ uoo)’2pa) 2 (/ 4 dx) 2 (2.44)
Qp Q,
< CI373,

provided a(1 — 4) —p > 0. Thus from (2.43) we derive
i<Civiinty o e <lnh o 1< O (2.45)
‘ ‘ P
Going back to (2.44) one has if o > p
C C
R e e LA s
< Q (03=a 13 02-q

Combining this with (2.45) leads easily to (2.42) since pg < 2p. This completes the proof. [J

3 Some generalisations

Let us denote by w; a bounded convex domain of R™ containing 0 and by ws a bounded domain
in R"™™ m > 1. Let us set for £ > 0

Qg = &ul X wa.
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We will denote the points in 2y by
Tr = (Xl, XQ)

where X1 = x1,...,2p, Xo = Zpq1, ..., 2p. U pj,i=1,...,m, q¢;,j =m+1,...,n are numbers
larger than 1 set
ﬁ: (pla---apm) ) (7: (qurl""7qn)'

Then we define

Wl’ﬁ"f(Qg) = {v € LV (Q) N LY (Qy) | Op,v € LP(Qp), Op,v € LY (), Vi, j},

L . | . (3.1)
W (wg) = {v € LY (wa) | Oy;v € LY (wa), Vj}.

In the definition above the indices i are running from 1 to m and the indices j from m + 1 to n.
Clearly W1P4(Q,), Wh9(wsy) are reflexive Banach spaces when equipped with the norms

m n
Hle,ﬁ,(j’: Z (|U‘pi,ﬂe + lamiv‘piyﬂé) + Z (|U‘qjvﬂé + ’8$jU‘Qj79£)
i=1 j=m+1
: (3.2)
HUHLQ': Z (’v‘qnge + ’aij‘QﬁQe)'
j=m+1

One denotes by VVO1 2 "i(Qg) (respectively VVO1 "T(wg)) the closure of D(€) (respectively D(ws)) in
these spaces and by u, the solution to

{ U € W()l’ﬁ@(gf) )

- 3.3
ng |0, 0 |Pi=20,,up Oy, v + |axjuz|qﬂ'_28xjw Oz;v dx = (f,v) Vv € Wol’p’q(Qg). (3:3)

In the formula above we make the summation convention, i.e. we are summing in ¢ and j.
. . . 1,q
[ = f(X2) is a continuous linear form on W, (w;y) defined as

F=fo— D 0ufis fo€ML%wa), fj € L%(w2),
Jj=m+1

(f,v) = ngv + Z [iOx;v d.

j=m+1

(3.4)

We would like to sketch some behaviour of uy when £ — oo, in particular to show that uy — v
where 1y, is the solution to

{uoo € Wi l(w,),

. 3.5
wa \8zjuoo]qj*28mjuoo Oz;v dXo = (f,v) Vv € Wol’q(wg). (3:5)

Note that by the same arguments as in section 2 the problems (3.3), (3.5) admit a unique
solution.

The analogue of lemma 2.1 is the following.
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Lemma 3.1. Let uy be the solution of (3.3) for f given by (3.4). There exists a constant C
independent of £ such that

/ S el 4 Y (Ol da < CO™. (3.6)
Q= j=m+1

Proof. Let ¢ = max(q;) = gj, for some jo. Taking v = uy in (3.3) we get with the summation
convention in ¢, j

/Q |0, we[P* + |(9$juﬂqj dr = /Q {foUz + fjoagchUg + Z fjasz,g} dx
¢ ¢

J#jo
< / {1 folluel + [ £l 10w, el + Y 1 £5110u; el } dac (3.7)
£ J#3jo
< |folg' . luelg.00 + [ Fiolgs, 20102 welgj00 + > 1Fil )y Qul Oy uelgs, Q.
Jj#jo

Using the Poincaré inequality

‘uf‘q@e = ’udqg'oﬂz < C‘a%uﬂqjmg)e
we derive
/Q |a$iug|pi + |8a:ju€|qj dr < {C|f0|q;0,Qg + |fj0|q;0,QgHaCL‘jou€|qg‘o7Qe + Z |fj|q;.,(2g|axjuf‘qj:9£‘
¢ J730
Note now that for f € L% (ws) one has for some constant C' independent of ¢

1

[l = </ ’f(X2)|qldX2dX1)q, <Ctd. (3.8)
by J wa
Thus we get
[ 1l 4102, d < €3 €% o, w0,
Q -
e Y (39)
<ed |0nulf o, + Cl™,
J
using the Young inequality |ab| < €|a|? + C¢|b|?. The result follows by choosing e = 3. O

With the same proofs we have the analogues of Lemmas 2.2 and 2.4 namely with the sum-
mation convention

|8xiuf‘pi_281iufaxiv + {|azjuﬁ|qj_28xjué_|8wjuoo’q‘7_2azjuoo}azjv dr =0

Qp (310)

Yo e WaPi(Qy).

Similarly if uy = we(f) is the solution to (3.3) and us = uoo(f) the solution to (3.5) and if
f1 > fa, f > 0 then one has

ue(f2) Sue(fr) 5 0 < w(f) < ueolf) (3.11)
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Remark 1. Note that (3.10) allows a perhaps simpler proof of (3.6) where, however, the de-
pendence in f is lost. Indeed taking v = up in (3.10) we get with the summation convention in
i and j

/ |0z, we [P + [0, ue|V dx :/ \axjuoo|%'—2ax].uooaxjw dx
Qp Qg
S/ \(%juoo]qj*l](?xjud dx.
Q

Using the Young inequality |ab| < %\ar]s’ + q%_\b]qf it comes
J

) ) 1 ) 1 _
O, uglP + 00wl da g/ 1B, oo ¥+ — | ug] ¥

QZ Qg q] q]

, 1
< ‘axjuﬂqj + —

- in: a. ) /|8$ju°°’qj dz
Q, Min; g; min; g;

and thus for some constant C' since min; g; > 1

1O, ugl + 100wl di < o/ 100, e d < CO™
Qg QZ

Then we can turn to the generalisation of lemma 2.6. Denote by p = p(X7) a smooth function
such that

0<p<1l p=1lon %wl, p =0 near dw;, |Vx,p| <C, (3.12)
where Vx, p denotes the gradient of p in X3, i.e. Vx,p = (0pyp,---,0,,0)-
We can show :
Lemma 3.2. Let f = fo € LY (w2), ¢ = maxgq; and uy, us be the solutions to (3.3), (3.5).
Then it holds for some constant C independent of £
I= /Q {\Gxiudm + (|8xju€]qj_28mjué — |8mjuoo|qf_28xjuoo) Oz (ug — uoo)}pCY dx
Z C

gp—m’

(3.13)

<

(p = min;(p;) denotes the smallest p;)

Proof. From (3.10) taking v = po‘(%)(w—um) one derives easily with the summation convention
in ¢ and j

/Q {yaziumi + (\amjueyqﬂamjw—yamjum\qj—anjuoo) By, (g — um)}pa dw
¢ (3.14)

< — 10,10 [P g — oo | 01 .
¢ Ja,

17



Noting that p*~1 = p?i ppifl and using Young’s inequality it comes

I= / {’aIiuf|pi+<|8Iju£’qj*28xjuf - |8xjuoo|qj723xjuoo) By (g — Uoo)}pa dr
Q
1 C (3.15)
< ,/ ‘ariudpipa dx + / |u£ _ uoo|pipoz—pi da.
pi Qy fpi Q

Recalling our summation in ¢ and the fact that p} > 1 it follows that for some constant C
1 1
_ Pi ,Q—Pi _ pi
I1<cC % 75 /QZ |up — uso|Pip de < C EZ oo /m |up — Uuoo|P? d, (3.16)

provided we chose « large enough. Note that at this point we did not use the assumption
f=foe L? (w2), ¢ =maxg;.

Arguing now like in Lemma 2.6 one can bound |u; — us| by something depending only on
Xo to get

1
I<cC Z =t (3.17)
(2
This completes the proof of the lemma. O

The convergence of uy toward u«, is insured for general p;, g; by the following result.

Theorem 3.1. Let f = fo € L9 (wa), ¢ = maxq;. Let ug, us be the solutions to (3.3), (3.5)
respectively. If p; > m Vi one has for every £g > 0 when { — 400

Oz;ug — 0 in LP (Qyy) O — OpjUoo in LY (Sy,). (3.18)

Proof. The first part of (3.18) follows directly from (3.13). For the second part let us consider
a smooth function p such that for fg < ¢ —1

0<p<1, p=1lonfyw; , phasasupportin ({p+ 1w , |Vx,pl <C.

Then p®uy is a test function for (3.3) and one has

[ {jonu + o uiw o da
Qpy4+1

——a [ PO udnp i [ o do
ng_‘_l Q

fo+1

<aC [ ol ulp dot [ |follud da
Qeg+1

Qog+1
Lo
Using the fact that p@~1 = p*i p»i ' we get by Young’s inequality for some constant C

/ {10n,uel + 100, )™ da
Qog+1

1 _ .
<o [ e dove [ e ok [ (follud de.
i J Qg Qg+1 Qio+1

18



We assume here that o > p;. We know that by (3.11)
[ug] < max{uss(fo"), use(fy )}
and since this bound is independent of ¢ we get
91, utlg, 2, < Cl00).

The rest of the proof follows as in Theorem 2.1 since by (3.13) we have for every j

/Q (|8xjug\qf28$jw — lﬁxjuoo|q9’728xjuoo) Oz (ug — uoo) dz. — 0.

)

This completes the proof of the theorem. O
We have then an analogue to theorem 2.3 for a general f.

Theorem 3.2. Let uy, us be the solutions to (3.3), (3.5). Suppose that
Vi=1,---,m, Jj;€{m+1,...,n} such that p; < gj,. (3.19)

Then there exists a constant C such that

1= /Q {lﬁmiudpi + (|8’”J’W|qj_26%uf_|azj“00|Qj_28wju00) O, (ug — Uoo)}pa dx
14

(3.20)
<¢ Z g +C Z
5, >2 (95 Pi 5, <2 €2 i
pr=yp (&) is as in Lemma 3.2.
Proof. Going back to (3.16) one has if (o — pi)% >a Vi
I< C’Z = |up — Uso|PIp™ Pt dx
> _ i a2 l o)
q] Py 1— 2o
C’Zm / g — 1o 9ip!* P dx) i </Qe 1 dx) i
. o m—2h)
7
Using the Poincaré inequality we get
1 = om(1- 2
1=y g /Q 00, (g — o) |5 dr) e ™00 (3.21)
i ¢
If gj, > 2 one has
{10a,, ué|qn_28xji ug — [0y, uoo|qji_28xji Uoo Oz (U — Uoo) = Co; [, (e — oo |V (3.22)
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and thus for some constant

/ |0z;, (ue — uoo)|¥ip* dz < CIL. (3.23)
Qg
If p; < gj, < 2 one has (see the theorem 2.3)

[ 10, G = g s
Qg
‘Zjl-

j, 1—Ji
< 1% ([ fan, s+ 100, w05 o) (321)
Q
< ore =5,
Thus from (3.21) we derive replacing p; by p and g;, by ¢

r<cy’ glpﬁem(l‘%) +oy gipl%em“‘%)%zm(l‘%)
T o T . (3.25)
§ng—plq£ 4 +OZ€7’IQ€ 2

The first sum is for ¢ such that g;, > 2, the second one for the i’s such that ¢;; < 2. Using the
Young inequality with € we get

I<eI+C’Z(

Choosing € small enough we get

I<CZ +CZ Lp_m (3.27)

m(1— ) 1 [m(l ) 1

) q+eI+CZ< )@ (3.26)

Coming back to our notation in p;, g, (3.19) follows. This completes the proof of he theorem. [
Theorem 3.3. We suppose that p; > 2, Vi =1,--- ,m. In addition we assume that
Vi=1,---,m, 3Jj;€{m+1,...,n} suchthat p; = g;,. (3.28)

Then there exists constants C, a independent of £ such that

[ 0n e w10, (o
g im (3.29)
+ Z{\@x‘judqﬂ'ﬂ@%w — |8xjuoo\qf’26xjuoo}8xj(ug — Usg) dz < Ce .
J#di
Note that when j # j;, q; is only assumed to be greater than 1 and that the q;, are not necessarily
distinct as the p;.
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Proof. For {1 < { —1 we denote by py, = pg, (X1) a smooth function satisfying
0<pp <1, ppy,=1onlw; , pp =0outside ({1 + w1 , |Vx,pp| <C (3.30)
where C' is some positive constant. Taking v = py, (uy — us) as test function in (3.10) we get

m
[ > onur
Qgy 41

=1
n

+ Z {]c'?x].ug|‘1j_26mjw - \Omjuoquﬂ'—zﬁxjuoo}ﬁxj (ug — uoo)}pg1 dx

J=mea (3.31)
m
= —/ Z |0, 10 [P 20, 100, po, (g — Uoo) dz
Qo 41\ 2y =1
m L 1
< CZ (/ |0, g | P dx) i (/ [ug — Uoo|P? d:(:) b
i=1 YDy Dy,
where we have set Dy, = Qp, 11\Qy,. Let us define A as
m
A= Z |0z, (ue — uoe) [P + |893ji (we — oo )|V
=1 (3.32)
+ Z{ijw\qj_Q@jW — lam].uoo|qﬂ'_28wjuoo}8zj (g — Uoo).
J#Ji

Using the lemma 2.3, (3.32) and the Poincaré inequality on the section of the domain one deduces
from (3.31)

/ Adz < / Apy, dx
Qg Qe 4+1
1

m 1
< C; (/Dll |0 g d:v) & (/D |0, (e — oo )| ¥ d:v) " (3.33)

21

1

m L 1
SCZ(/[)ZlAdx>pi(/[)elAda;>pl —C DZlAdx.
It follows that

Adx < C/ A (3.34)
Qg C+1 Qg +1

Denote by [g] the integer part of %. Setting a = CLH and iterating this formula [g] times starting

from g we obtain easily taking into account the inequality % -1< [%] < %

/ Adz < a[g]
Q Q

£
2

Adx < aé_l/ A dx. (3.35)
Q



To evaluate this last integral one relies on the lemma 3.1. Indeed using the lemma 2.3 one has

A< Z(‘auu‘ + ’8$iu00’)pi + (‘azjiW’ + laﬂcjiuoo)‘pi + Z C‘Ij(’8$ju€‘ + ‘6363-“00)‘%
i=1 J#Ji

Using again the formula (|a| + [b])4 < 297%(]a|? + |b|9) one derives for some constant

m n
A< C{ Z |0z, ul”* + |0z, uco[”* + Z |0 we| ¥ + ’awjuoo‘qj}
i=1 j=m+1

Since uq is independent of X it follows from (3.6) that

Adx < Cl™
Qg
and from (3.35) one derives
Adz < Celzlnam, (3.36)
g
2
This leads to (3.29) provided we chose v < 11In 1. O

In the case where f € L°°(w2) one can show the following.

Theorem 3.4. We suppose that f € L>(w2) and p; > 2, Yi =1,--- ,;m. In addition we assume
that
Vi=1,---,m, Jjie{m+1,...,n} suchthat p; > q; > 2. (3.37)

Then there exists constants C, «a independent of £ such that

m
/ D10, (e = oo P + |8, (11 — )
Q, 4
% =1 (338)
+ Z{\@ijg]qu@gchg — |8xjuoo\qj*28xjuoo}8xj(ue — Uso) dx < Ce .
J#Ji
Proof. As in Theorem 3.3 we derive (3.31) that is

m
[ > onur
Qg 41

=1
n

+ Z {100,109 205 g — O, oo 920yt } O, (g — uoo)}pgl dx (3.39)
Jj=m+1

1 1

< Clzl (/Dgl ‘axiudpi d:C) p; (/Dél ’ug —Uoo’pi dl‘) pi’
where Dy, = Qg 11\, -
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One claims that for some constant C' independent of ¢ one has
lup — uso| < C. (3.40)

Then, we derive that

1 1
(/ [t — Uoo|P? dx) h< C(/ [t — Uoo |1 dx) o
Dy, Dy,

Recalling the notation (3.32), (3.33) follows easily and the rest of the proof as well.

To prove (3.40), suppose that ws is contained in the strip
{Xo | |on| < s}

for some positive s (recall that wy is supposed to be bounded in R™"~""). Then set

1
n —
One finds easily since (8 —1)(g, — 1) = 1 that

=1+ P — |zl

179:3

8:cng = _5‘%1‘6_233717 ‘azng’qn_26xng = _5%_11'717 - 6mn(|aa:ng‘qn_28$ng) = Bqn_l-

If | f|oo denotes the L®-norm of f setting

h=(|flec)in12

B
one has (see (3.3))
- Zaxi(|ax¢u€‘pi_2amu€) - Z 8:1:]' (|8xju6‘qj_2&rjuf) = f < |f|oo
=1 j=m+1
= —0r, (100, 17" 200, h) = = > 0r, (|00, hP 200, k) — > 0r, (10,87 205, h).
=1 j=m+1

Using in the weak formulation v = (uy — h)™ one deduces easily that

Since —uy(f) = we(—f), (3.40) follows easily. This completes the proof of the theorem. O

Remark 2. One could try to miz assumptions of the type of Theorem 8.2 and 3.4 however it will
make the result regarding the speed of convergence messy, the convergence being insured by the
theorem 3.1 for the p;’s large enough. In the case of theorems 3.3, 3.4 one can take advantage of
the exponential speed of convergence to get existence results in unbounded domains in the spirit

of [9], [7].
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Remark 3. The operators that we have considered here are the sum of p-Laplacians in one
dimension. One can consider also operators sums of p-Laplacians in larger dimensions. For
instance, with the notation of this section, if uy is the weak solution to

—Vx, - <|VXIUAP_2VX1U() —Vx, - (|VX2Uf|q_2VX2Ug) =f in
up =0 on 0y,

one can show if p = q > 2, using the technique of theorem 3.3, that uy converges exponentially
quickly toward the solution to.

Uso =0 on  Ows.

{VX2 . <|VX2uoo]q_2VX2uoo) =f in w

(Vx,- denotes the divergence in R™ or R"™™ ). Similarly one can consider operators sums of
p-Laplacians of different dimensions i.e. problems of the type

->:Vy, - (‘VYZ.UAPFQVYZU@) =f i
up =0 on 0y,

where Y; denotes some subset of the coordinates, and develop results similar to the ones of this
note. The case of the sum of n-dimensional p-Laplacians was considered in [8].
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