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Abstract

The goal of this paper is to explore the asymptotic behaviour of anisotropic problems
governed by operators of the pseudo p-Laplacian type when the size of the domain goes to
infinity in different directions.
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1 Basic notation

When Ω is a bounded open set of Rn, we denote by W 1,r
0 (Ω), r > 1, the usual Sobolev space

constructed on Lr(Ω), of functions vanishing on the boundary of Ω. That is to say we set

W 1,r(Ω) = {v ∈ Lr(Ω) | ∂xiv ∈ Lr(Ω) | ∀i = 1, . . . , n}. (1.1)

We equip this space with the norm

||v||1,r,Ω =
(ˆ

Ω
|v|r +

n∑
i=1

|∂xiv|rdx
) 1
r

(1.2)

and we set
W 1,r

0 (Ω) = D(Ω) = the closure of D(Ω) in W 1,r(Ω). (1.3)

(D(Ω) denotes the space of C∞-functions with compact support in Ω). It is well known that
W 1,r

0 (Ω) is a reflexive Banach space which can be equipped with the equivalent norm

∣∣|∇v|∣∣
r,Ω

=
(ˆ

Ω
|∇v(x)|rdx

) 1
r
. (1.4)
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(∇ denotes the usual gradient an | | the euclidean norm, i.e. |∇v(x)| = (
∑n

1 (∂xiv)2)
1
2 , | |r,Ω

denotes the Lr-norm on Ω). The dual of W 1,r
0 (Ω) is denoted by W−1,r′(Ω), r′ = r

r−1 and consists
in the distributions of the form

f = f0 −
n∑
i=1

∂xifi, fi ∈ Lr
′
(Ω). (1.5)

We use the notation

〈f, v〉 =

ˆ
Ω
f0v +

n∑
i=1

fi∂xivdx. (1.6)

The paper is organised as follows. In the next section we address the case of a simple problem
set on a rectangle with one side going to infinity. We consider all the possible values of (p, q),
p, q > 1 for the pseudo (p, q)-operator at hand allowing to present a variety of techniques. Some
of them are issued of previous works. We refer the reader to [11], [10], [4], [5], [15], for details.
The section 3 relies on the experience acquired on the simple model investigated in section 1 to
extend some results to more complex situations. The operators at hand are Euler equations of
some anisotropic functionals of calculus of variations introduced for other reasons in [17], see
also [18]. For basic notions on Sobolev spaces we refer to [2], [12], [13], [14], [16].

2 A model problem

We denote by Ω` the open subset of R2 defined as

Ω` = (−`, `)× (−1, 1). (2.1)

We will set ω = (−1, 1) and ∂Ω` will denote the boundary of Ω`, see the figure 2.1 below.

x1

x2

1

0

−1

ℓ

−ℓ

Figure 2.1: The domain Ω`

If p, q > 1 are two positive numbers we would like to consider u` solution to{
−∂x1

(
|∂x1u`|p−2∂x1u`

)
− ∂x2

(
|∂x2u`|q−2∂x2u`

)
= f in Ω`,

u` = 0 on ∂Ω`.
(2.2)
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More precisely we are interested to the asymptotic behaviour of u` when ` → +∞. f is a
function or distribution depending only on x2. A natural candidate for the limit of the problem
is u∞ solution to {

−∂x2
(
|∂x2u∞|q−2∂x2u∞

)
= f in ω,

u∞ = 0 on ∂ω,
(2.3)

where ∂ω = {−1, 1} is the boundary of ω. First let us recast these problems under their natural
weak form.

We can first introduce the weak formulation of (2.3). If f ∈W−1,q′(ω) is given by

f = f(x2) = f0(x2)− ∂x2f1(x2), (2.4)

where f0, f1 ∈ Lq′(ω) then, the weak formulation to (2.3) corresponding to f reads{
u∞ ∈W 1,q

0 (ω),´
ω |∂x2u∞|q−2∂x2u∞∂x2v dx2 = 〈f, v〉 =

´
ω f0v + f1∂x2vdx2 ∀v ∈W 1,q

0 (ω).
(2.5)

To arrive to a weak formulation for (2.2) one introduces

W 1,p,q(Ω`) = {v ∈ Lp(Ω`) ∩ Lq(Ω`) | ∂x1v ∈ Lp(Ω`), ∂x2v ∈ Lq(Ω`)}. (2.6)

It is a reflexive Banach space when equipped with the norm

||v||1,p,q,Ω` = |v|p,Ω` + |v|q,Ω` + |∂x1v|p,Ω` + |∂x2v|q,Ω` . (2.7)

Then we define

W 1,p,q
0 (Ω`) = D(Ω`) = the closure of D(Ω`) in W 1,p,q(Ω`). (2.8)

If f is defined by (2.4) if follows easily that there exists a unique u` weak solution to (2.2) i.e.
satisfying 

u` ∈W 1,p,q
0 (Ω`),´

Ω`
|∂x1u`|p−2∂x1u`∂x1v + |∂x2u`|q−2∂x2u`∂x2v dx1dx2

= 〈f, v〉 =
´

Ω`
f0v + f1∂x2v dx1dx2 ∀v ∈W 1,p,q

0 (Ω`).

(2.9)

We are interested in showing that u` → u∞ when `→∞, but also to investigate at what speed.
We will now denote dx1dx2 by dx.

The operators defined by (2.2), (2.3) are strictly monotone, hemicontinuous, coercive from
W 1,p,q

0 (Ω`), W
1,q
0 (ω) into their duals. Existence and uniqueness of a solution for (2.9), (2.5)

follows from classical arguments (see [3], [12], [16]).

Let us first prove the following lemma.
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Lemma 2.1. Suppose that f is given by (2.4). If u` is the solution to (2.9) there exists a
constant C independent of ` such that

ˆ
Ω`

|∂x1u`|p + |∂x2u`|q dx ≤ C`. (2.10)

Proof. Taking v = u` in (2.9) we get

ˆ
Ω`

|∂x1u`|p + |∂x2u`|q dx = 〈f, u`〉 =

ˆ
Ω`

f0u` + f1∂x2u` dx

≤ |f0|q′,Ω` |u`|q,Ω` + |f1|q′,Ω` |∂x2u`|q,Ω`
≤
(
C|f0|q′,Ω` + |f1|q′,Ω`

)
|∂x2u`|q,Ω`

(2.11)

this by the Hölder and the Poincaré inequality. Let us recall regarding this last point an argument
that we will use several times later on. If u ∈ W 1,p,q

0 (Ω`), let un ∈ D(Ω`) such that un → u in

W 1,p,q
0 (Ω`). By the Poincaré inequality on ω one has for some constant C independent of `

ˆ
ω
|un(x1, x2)|q dx2 ≤ Cq

ˆ
ω
|∂x2un(x1, x2)|q dx2, a.e. x1 ∈ (−`, `).

Integrating in x1 we deduce
|un|q,Ω` ≤ C|∂x2un|q,Ω`

and passing to the limit in n the same inequality holds for u or u`.

Then let us notice that for i = 0, 1 one has

|fi|q′,Ω` =
(ˆ `

−`

ˆ
ω
|fi(x2)|q′dx2dx1

) 1
q′

= (2`)
1
q′ |fi|q′,ω.

Thus from (2.11) we derive for some constant C = C(q, f)

|∂x2u`|qq,Ω` ≤ C`
1
q′ |∂x2u`|q,Ω`

Since q′ = q
q−1 this is equivalent for some new constant to

|∂x2u`|q,Ω` ≤ C`
1
q .

Going back to (2.11), the result follows.

Somehow one can ignore f thanks to the following remark.

Lemma 2.2. If u` is the solution to (2.9) and u∞ solution to (2.5) one has

ˆ
Ω`

|∂x1u`|p−2∂x1u`∂x1v +
{
|∂x2u`|q−2∂x2u`−|∂x2u∞|q−2∂x2u∞

}
∂x2v dx = 0

∀v ∈W 1,p,q
0 (Ω`).

(2.12)

4



Proof. First by (2.9) if v ∈W 1,p,q
0 (Ω`) one has

ˆ
Ω`

|∂x1u`|p−2∂x1u` ∂x1v + |∂x2u`|q−2∂x2u` ∂x2v =

ˆ
Ω`

f0v + f1∂x2v dx (2.13)

If v ∈W 1,p,q
0 (Ω`) one has for almost every x1

v(x1, ·) ∈W 1,q
0 (ω).

Thus by (2.5)

ˆ
ω
|∂x2u∞|q−2∂x2u∞ ∂x2v(x1, x2) dx2 =

ˆ
ω
f0v + f1∂x2vdx2.

Integrating in x1 it comes
ˆ

Ω`

|∂x2u∞|q−2∂x2u∞ ∂x2v dx =

ˆ
Ω`

f0v + f1∂x2vdx. (2.14)

Subtracting from (2.13), (2.12) follows.

Let us recall the following result (see [3], [6]) which garanties also the strict monotonicity of
the operators at hand.

Lemma 2.3. For any q > 1 there exist positive constants cq, Cq such that

||ξ|q−2ξ − |η|q−2η| ≤ Cq|ξ − η|(|ξ|+ |η|)q−2 ∀ξ, η ∈ Rn, (2.15)

(|ξ|q−2ξ − |η|q−2η) · (ξ − η) ≥ cq|ξ − η|2(|ξ|+ |η|)q−2 ∀ξ, η ∈ Rn. (2.16)

Then one has :

Lemma 2.4. Let u` = u`(f) be the solution to (2.9) and u∞ = u∞(f) be the solution to (2.5).
Suppose that f1 ≥ f2, f ≥ 0 then one has

u`(f2) ≤ u`(f1) , 0 ≤ u`(f) ≤ u∞(f). (2.17)

(If f is not a function, f ≥ 0 means 〈f, v〉 ≥ 0 ∀v ∈W 1,q
0 (ω), v ≥ 0).

Proof. We use the notation ui = u`(fi). From (2.9) by subtraction we get

ˆ
Ω`

{
|∂x1u2|p−2∂x1u2 − |∂x1u1|p−2∂x1u1

}
∂x1v

+
{
|∂x2u2|q−2∂x2u2 − |∂x2u1|q−2∂x1u1

}
∂x2v = 〈f2 − f1, v〉.

Taking v = (u2 − u1)+ one deduces easily using the lemma 2.3 that (u2 − u1)+ = 0 i.e. u1 ≥ u2

(see below (2.18) for a similar argument).

If f ≥ 0 taking f1 = f , f2 = 0 one gets 0 ≤ u`(f).

5



Regarding u∞, taking v = u−∞ in (2.5) one gets for f ≥ 0ˆ
Ω`

|∂x1u∞|p−2∂x1u∞ ∂x1u
−
∞ + |∂x2u∞|q−2∂x2u∞ ∂x2u

−
∞ =

ˆ
Ω`

f0u
−
∞ + f1∂x2u

−
∞ dx ≥ 0.

This reads also ˆ
Ω`

|∂x1u−∞|p−2∂x1u
−
∞ ∂x1u

−
∞ + |∂x2u−∞|q−2∂x2u

−
∞ ∂x2u

−
∞ ≤ 0.

Thus u−∞ = 0 and u∞(f) ≥ 0. Then taking v = (u` − u∞)+ in (2.12) one getsˆ
Ω`

|∂x1u`|p−2∂x1u` ∂x1(u` − u∞)+

+
{
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

}
∂x2(u` − u∞)+ dx = 0

(2.18)

i.e.ˆ
{u`−u∞>0}

|∂x1u`|p−2∂x1u` ∂x1u`

+
{
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

}
∂x2(u` − u∞) dx = 0.

This implies that the set {u` − u∞ > 0} is of measure 0 since ∇(u` − u∞) = 0 on this set i.e.
∇(u` − u∞)+ = 0 (see [14]). This completes the proof of the Lemma.

Let us now show :

Lemma 2.5. If u` is the solution to (2.9) and u∞ solution to (2.5) one has for every smooth
functin ϕ = ϕ(x1) vanishing at {−`.`}ˆ

Ω`

{
|∂x1u`|p +

(
|∂x2u`|q−2∂x2u`−|∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ϕ dx

≤
ˆ

Ω`

|∂x1u`|p−1|∂x1ϕ||u` − u∞| dx.
(2.19)

Proof. Taking v = (u` − u∞)ϕ in (2.12) one getsˆ
Ω`

{
|∂x1u`|p +

(
|∂x2u`|q−2∂x2u`−|∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ϕ dx

= −
ˆ

Ω`

|∂x1u`|p−2∂x1u` ∂x1ϕ (u` − u∞) dx.

(2.20)

(Recall that u∞ is independent of x1). Then (2.19) follows easily.

Denote by ρ = ρ(x1) a smooth function such that

0 ≤ ρ ≤ 1, ρ = 1 on (−1

2
,
1

2
), ρ = 0 near {−1, 1}, |∂x1ρ| ≤ C. (2.21)

and set
ϕ = ρα = ρα(

x1

`
),

where α > 0. We can now prove:
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Lemma 2.6. Let f = f0 ∈ Lq′(ω) and u`, u∞ be the solutions to (2.9), (2.5). Then it holds for
some constant C independent of `

I =

ˆ
Ω`

{
|∂x1u`|p +

(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα dx ≤ C

`p−1
. (2.22)

Proof. From (2.19) one derives

ˆ
Ω`

{
|∂x1u`|p +

(
|∂x2u`|q−2∂x2u`−|∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα dx

≤ αC

`

ˆ
Ω`

|∂x1u`|p−1|u` − u∞|ρα−1 dx.

(2.23)

Noting that ρα−1 = ρ
α
p′ ρ

α
p
−1

and using Hölder’s inequality it comes

I =

ˆ
Ω`

{
|∂x1u`|p+

(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα dx

≤ αC

`

(ˆ
Ω`

|∂x1u`|pρα dx
) 1
p′
(ˆ

Ω`

|u` − u∞|pρα−p dx
) 1
p
.

(2.24)

Thus it follows that

I ≤
(αC
`

)p ˆ
Ω`

|u` − u∞|pρα−p dx ≤
(αC
`

)p ˆ
Ω`

|u` − u∞|p dx, (2.25)

provided we chose α > p. From the lemma 2.4 one has

u`(f) ≤ u`(f+) ≤ u∞(f+) , u∞(−f−) ≤ u`(−f−) ≤ u`(f),

(notice that u`(−f) = −u`(f)). Then one derives

|u` − u∞| ≤ |u`|+ |u∞| ≤ max{u∞(f+), u∞(f−)}+ |u∞(f)|.

Since this last function is independent of x1 one derives from (2.25)

I =

ˆ
Ω`

{
|∂x1u`|p +

(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα dx ≤ C

`p−1

for some new constant C. This is (2.22). This completes the proof of the lemma.

We give now a very simple proof of the convergence of u` toward u∞ which is valid for every
p and q.

Theorem 2.1. Let f = f0 ∈ Lq′(ω) and u`, u∞ be the solutions to (2.9), (2.5). Then for any
`0 it holds when `→ +∞

∂x1u` → 0 in Lp(Ω`0) , ∂x2u` → ∂x2u∞ in Lq(Ω`0). (2.26)
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Proof. The first part of (2.26) follows immediately from (2.22) if one chooses `
2 > `0. For the

second part let us consider a smooth function ρ = ρ(x1) such that for `0 < `− 1 fixed

0 ≤ ρ ≤ 1, ρ = 1 on (−`0, `0), ρ has compact support in (−`0 − 1, `0 + 1), |∂x1ρ| ≤ C.

Since ραu` ∈W 1,p,q
0 (Ω`) one gets from (2.9)

ˆ
Ω`0+1

{
|∂x1u`|p + |∂x2u`|q

}
ρα dx = −

ˆ
Ω`0+1

|∂x1u`|p−2∂x1u`∂x1ρ
αu` +

ˆ
Ω`0+1

f0u`ρ
α dx

≤ αC
ˆ

Ω`0+1

|∂x1u`|p−1|u`|ρα−1 +

ˆ
Ω`0+1

|f0||u`| dx.

Noticing that ρα−1 = ρ
α
p′ ρ

α
p
−1

and using the Young inequality ab ≤ 1
p′a

p′ + 1
pb
p, a, b > 0 we get

for some new constant Cˆ
Ω`0+1

{
|∂x1u`|p + |∂x2u`|q

}
ρα dx

≤ 1

p′

ˆ
Ω`0+1

|∂x1u`|pρα dx+ C

ˆ
Ω`0+1

|u`|pρα−p dx+

ˆ
Ω`0+1

|f0||u`| dx.

Using the inequality
|u`| ≤ max {u∞(f+

0 ), u∞(f−0 )}
which is due to

u`(f0) ≤ u`(f+
0 ) ≤ u∞(f+

0 ) , u`(−f) = −u`(f),

we derive easily taking α > p that
ˆ

Ω`0

|∂x2u`|q dx ≤ C(`0)

where C(`0) is independent of `. Thus up to a subsequence there exists v∞ ∈ Lq(Ω`0), w∞ ∈
Lq
′
(Ω`0) such that

∂x2u` ⇀ v∞ ∈ Lq(Ω`0) , |∂x2u`|q−2∂x2u` ⇀ w∞ ∈ Lq
′
(Ω`0).

From (2.22) one derives that up to a subsequence{
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

}
∂x2(u` − u∞)→ 0 a.e in Ω`0 .

Thus, up to a subsequence, ∂x2u` → ∂x2u∞ a.e on Ω`0 . To see this point one notices that by
(2.16) one has

∂x2(u` − u∞) ∂x2(u` − u∞)
{
|∂x2u`|+ |∂x2u∞|

}q−2 → 0 a.e in Ω`0 .

If ∂x2(u` − u∞) 6→ 0 then

∂x2(u` − u∞)
{
|∂x2u`|+ |∂x2u∞|

}q−2 → 0 a.e in Ω`0
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and by (2.15) it follows that{
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

}
→ 0 a.e in Ω`0

and again due to the strict monotonicity of the function |x|q−2x one has ∂x2u` → ∂x2u∞ a.e on
Ω`0

From this it follows (see for instance [19] lemma 8.3) for a proof that

∂x2u` ⇀ ∂x2u∞ ∈ Lq(Ω`0) , |∂x2u`|q−2∂x2u` ⇀ |∂x2u∞|q−2∂x2u∞ ∈ Lq
′
(Ω`0).

Now from (2.22) one has

ˆ
Ω`0

{
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

}
∂x2(u` − u∞)→ 0,

that isˆ
Ω`0

|∂x2u`|q − |∂x2u`|q−2∂x2u`∂x2u∞ − |∂x2u∞|q−2∂x2u∞∂x2u` + |∂x2u∞|q dx→ 0.

It follows that ˆ
Ω`0

|∂x2u`|q dx→
ˆ

Ω`0

|∂x2u∞|q dx

and the result, i.e. the strong convergence, follows.

One can estimate the convergence rate in some situations. Indeed one has :

Theorem 2.2. Let f = f0 ∈ Lq′(ω) and u`, u∞ be the solutions to (2.9), (2.5). Then it holds
for some constant C independent of `

ˆ
Ω `

2

|∂x1(u`−u∞)|p+ |∂x2(u`−u∞)|q dx =

ˆ
Ω `

2

|∂x1u`|p+ |∂x2(u`−u∞)|q dx ≤ C

`
p
2
q∧2−1

(2.27)

where q ∧ 2 denotes the minimum of q and 2.

Proof. It follows from the lemmas 2.3 and 2.6 that

Ĩ =

ˆ
Ω`

{
|∂x1u`|p +

(
|∂x2u`|+ |∂x2u∞|

)q−2
∂x2(u` − u∞)2

}
ρα dx ≤ C

`p−1
.

If q ≥ 2, since |∂x2(u` − u∞)| ≤ |∂x2u`|+ |∂x2u∞|, one derives immediately (2.27), i.e.

ˆ
Ω `

2

|∂x1(u` − u∞)|p + |∂x2(u` − u∞)|q dx =

ˆ
Ω `

2

|∂x1u`|p + |∂x2(u` − u∞)|q dx ≤ C

`p−1
.
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If q < 2 one has thanks to Hölder’s inequality

ˆ
Ω`

|∂x2(u` − u∞)|qρα−q dx =

ˆ
Ω`

(
|∂x2u`|+ |∂x2u∞|

)(q−2) q
2 |∂x2(u` − u∞)|qρα−q

(
|∂x2u`|+ |∂x2u∞|

)(2−q) q
2 dx

≤
(ˆ

Ω`

(
|∂x2u`|+ |∂x2u∞|

)(q−2)|∂x2(u` − u∞)|2ρ(α−q) 2
q dx

) q
2

(ˆ
Ω`

(
|∂x2u`|+ |∂x2u∞|

)q
dx
)1− q

2
.

(2.28)

Chosing (α− q)2
q > α and taking into account the lemmas 2.1, 2.3 we get for different constants

independent of `

ˆ
Ω`

|∂x2(u` − u∞)|qρα−q dx

≤
( ˆ

Ω`

(
|∂x2u`|+ |∂x2u∞|

)(q−2)|∂x2(u` − u∞)|2ρα dx
) q

2

( ˆ
Ω`

(
|∂x2u`|+ |∂x2u∞|

)q
dx
)1− q

2

≤ CĨ q2
(ˆ

Ω`

(
|∂x2u`|+ |∂x2u∞|

)q
dx
)1− q

2

≤ CĨ q2
(ˆ

Ω`

|∂x2u`|q + |∂x2u∞|q dx
)1− q

2 ≤ CĨ q2 `1− q2 ≤ C

`(p−1) q
2

`1−
q
2 .

(2.29)

(Note that {|a|+ |b|}q ≤ 2q−1{|a|q + |b|q}). Choosing also α > q we are ending up with

ˆ
Ω `

2

|∂x2(u` − u∞)|q dx ≤ C

`
p
2
q−1

.

Combining this with (2.22) we arrive also to (2.27).

In the case where p < q one can consider a general f and not only assume that it is in
Lq
′
(ω2). Indeed one has first :

Lemma 2.7. Suppose that p < q. If ρα is defined by (2.21) and if α is chosen such that
α qp − q > α it holds for some constant C

I =

ˆ
Ω`

{
|∂x1u`|p +

(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα dx

≤ C

`p

(ˆ
Ω`

|∂x2(u` − u∞)|qρα dx
) p
q
`
1− p

q .

(2.30)
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Proof. Since (2.19) is valid for a general f one derives as in (2.23), (2.24)

I =

ˆ
Ω`

{
|∂x1u`|p +

(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα dx

≤ αC

`

( ˆ
Ω`

|∂x1u`|pρα dx
) 1
p′
( ˆ

Ω`

|u` − u∞|pρα−p dx
) 1
p

≤ αC

`
I

1
p′
(ˆ

Ω`

|u` − u∞|pρα−p dx
) 1
p
.

(2.31)

From this inequality it follows since α qp − q > α for various constant C

I ≤
(αC
`

)p ˆ
Ω`

|u` − u∞|pρα−p dx

≤
(αC
`

)p (ˆ
Ω`

|u` − u∞|p
q
p ρ

(α−p) q
p dx

) p
q
( ˆ

Ω`

1 dx
)1− p

q

≤ C

`p

(ˆ
Ω`

|u` − u∞|qρα dx
) p
q
(ˆ

Ω`

1 dx
)1− p

q

≤ C

`p

(ˆ
Ω`

|∂x2(u` − u∞)|qρα dx
) p
q
`
1− p

q .

(2.32)

(In the last inequality we used the Poincaré inequality on ω). This completes the proof of the
lemma.

Then we have :

Theorem 2.3. Suppose that p < q. One has

ˆ
Ω `

2

|∂x1u`|p + |∂x2(u` − u∞)|q dx ≤ C

`
pq
q−p−1

(2.33)

Proof. If q ≥ 2 one has by (2.16)

(|ξ|q−2ξ − |η|q−2η) · (ξ − η) ≥ cq|ξ − η|2(|ξ|+ |η|)q−2 ≥ cq|ξ − η|q ∀ξ, η ∈ Rn. (2.34)

Thus from (2.30) one deduces for some constant C

J =

ˆ
Ω`

{
|∂x1u`|p+|∂x2(u` − u∞)|q

}
ρα dx

≤ C

`p

(ˆ
Ω`

|∂x2(u` − u∞)|qρα dx
) p
q
`
1− p

q .

From this it follows that

J ≤ C

`p
J
p
q `

1− p
q ⇔ J ≤ C

`
pq
q−p−1

,

and (2.33) follows by definition of ρ.

11



In the case when p < q < 2, noting S = |∂x2(u`)|+ |∂x2(u∞)| one derives from (2.16), (2.30)
for some constant

Ĩ =

ˆ
Ω`

{
|∂x1u`|p+Sq−2∂x2(u` − u∞)2

}
ρα dx

≤ C

`p

(ˆ
Ω`

|∂x2(u` − u∞)|qρα dx
) p
q
`
1− p

q .

(2.35)

Thanks to Hölder’s inequality one has as in (2.28)

ˆ
Ω`

|∂x2(u` − u∞)|qρα dx =

ˆ
Ω`

S
q
2

(q−2)|∂x2(u` − u∞)|qρα q2S q
2

(2−q)ρα(1− q
2

) dx

≤
( ˆ

Ω`

Sq−2|∂x2(u` − u∞)|2ρα dx
) q

2
( ˆ

Ω`

Sq dx
)1− q

2

≤ Ĩ q2
(ˆ

Ω`

{|∂x2(u`)|+ |∂x2(u∞)|}q dx
)1− q

2
.

It follows from (2.10) that

ˆ
Ω`

|∂x2(u` − u∞)|qρα dx ≤ CĨ q2
( ˆ

Ω`

|∂x2(u`)|q + |∂x2(u∞)|q dx
)1− q

2 ≤ CĨ q2 `1− q2 .

Going back to (2.35) we obtain

Ĩ ≤ C

`p
(Ĩ

q
2 `1−

q
2 )

p
q `

1− p
q =

C

`p
Ĩ
p
2 `1−

p
2 .

Hence

Ĩ ≤ C

`
2p
2−p−1

,

and ˆ
Ω`

|∂x2(u` − u∞)|qρα dx ≤ C 1

`
pq
2−p−1

.

The inequality (2.32) follows from these two estimates.

In the case p ≥ q ≥ 2 one can show that u` → u∞ exponentially quickly (see [6], [15] and
also this issue in the next section). Indeed one has :

Theorem 2.4. Suppose that p ≥ q ≥ 2, f ∈ L1(ω). It holds for some positive constants C,α

ˆ
Ω `

2

|∂x1u`|p + |∂x2(u` − u∞)|q dx ≤ Ce−α`. (2.36)

Proof. Since f ∈ L1(ω) one has

−∂x2(|∂x2u∞|q−2∂x2u∞) = f ⇔ |∂x2u∞|q−2∂x2u∞ = −
ˆ x2

0
f(ξ) dξ + C.

12



This implies that u∞ is a C1-function which is bounded as u` is (see the lemmas 2.4 and 2.6).

Let us set A = |∂x1u`|p + |∂x2(u` − u∞)|q. For σ > 0 consider as in [1]

ϕ = (e−σ|x1| − e−σ`)

in (2.19). Taking into account the lemma 2.3 and the fact that ∂x1ϕ = ±σe−σ|x1| we get

ˆ
Ω`

|∂x1u`|p + |∂x2(u` − u∞)|qϕ dx

≤ C
ˆ

Ω`

{
|∂x1u`|p +

(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ϕ dx

≤ σC
ˆ

Ω`

e−σ|x1||∂x1u`|p−1|u` − u∞| dx.

(2.37)

Using the Young inequality in this last integral i.e. |a||b| ≤ 1
p′ |a|p

′
+ 1

p |b|p we get for some new
constantsˆ

Ω`

A (e−σ|x1| − e−σ`) dx

≤ σC
ˆ

Ω`

e−σ|x1|{|∂x1u`|p + |u` − u∞|p} dx.

≤ σC
ˆ

Ω`

e−σ|x1|{|∂x1u`|p + |u` − u∞|q} dx.

≤ σC
ˆ

Ω`

e−σ|x1|{|∂x1u`|p + |∂x2(u` − u∞)|q} dx = σC

ˆ
Ω`

Ae−σ|x1| dx.

(2.38)

(In the above, we used the fact that u` and u∞ are uniformly bounded independently of ` and
the Poincaré inequality on the section ω). Choosing σC = 1

2 it comes

1

2

ˆ
Ω`

Ae−σ|x1| dx ≤ e−σ`
ˆ

Ω`

A dx (2.39)

that is to say

e−σ
`
2

ˆ
Ω `

2

A dx ≤ 2e−σ`
ˆ

Ω`

A dx. (2.40)

It follows from the lemma 2.1 thatˆ
Ω `

2

A dx =

ˆ
Ω `

2

|∂x1u`|p + |∂x2(u` − u∞)|q dx ≤ 2e−σ
`
2

ˆ
Ω`

A dx ≤ C`e−σ `2 . (2.41)

The reslt follows by choosing α < σ
2 .

The last case to address is when p ≥ q, q < 2. In this case one can prove :
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Theorem 2.5. Suppose that p ≥ q, q < 2, f ∈ L1(ω). It holds for some positive constants C

ˆ
Ω `

2

|∂x1u`|p + |∂x2(u` − u∞)|q dx ≤ C

`
pq
2−q−1

. (2.42)

Proof. Choosing ρ as in (2.21) one has - see (2.16), (2.23)

Ĩ =

ˆ
Ω`

|∂x1u`|p + Sq−2|∂x2(u` − u∞)|2ρα dx

≤ C

`

ˆ
Ω`

|∂x1u`|p−1|u` − u∞|ρα−1 dx

≤ C

`

( ˆ
Ω`

|∂x1u`|pρα dx
) 1
p′
(ˆ

Ω`

|u` − u∞|pρα−p dx
) 1
p

≤ C

`
Ĩ

1
p′
(ˆ

Ω`

|u` − u∞|qρα−p dx
) 1
p ≤ C

`
Ĩ

1
p′
( ˆ

Ω`

|∂x2(u` − u∞)|qρα−p dx
) 1
p
.

(2.43)

Recall that S = |∂x2(u`)|+ |∂x2(u∞)|. In the two last inequalities we used the fact that u` and
u∞ are uniformly bounded and the Poincaré inequality. Arguing as before we have

ˆ
Ω`

|∂x2(u` − u∞)|qρα−p dx =

ˆ
Ω`

S(q−2) q
2 |∂x2(u` − u∞)|qρα q2S(2−q) q

2 ρα(1− q
2

)−p dx

≤
(ˆ

Ω`

S(q−2)|∂x2(u` − u∞)|2ρα
) q

2
(ˆ

Ω`

Sq dx
)1− q

2

≤ CĨ q2 `1− q2 .

(2.44)

provided α(1− q
2)− p > 0. Thus from (2.43) we derive

Ĩ ≤ C

`
Ĩ

1
p′ (Ĩ

q
2 `1−

q
2 )

1
p ⇔ Ĩ

1
p
− q

2p ≤ C

`
`
1
p
− q

2p ⇔ Ĩ ≤ C

`
2p
2−q−1

. (2.45)

Going back to (2.44) one has if α > p

ˆ
Ω `

2

|∂x2(u` − u∞)|q dx ≤
ˆ

Ω`

|∂x2(u` − u∞)|qρα−p dx ≤ C

(`
2p
2−q−1

)
q
2

`1−
q
2 =

C

`
pq
2−q−1

.

Combining this with (2.45) leads easily to (2.42) since pq < 2p. This completes the proof.

3 Some generalisations

Let us denote by ω1 a bounded convex domain of Rm containing 0 and by ω2 a bounded domain
in Rn−m,m ≥ 1. Let us set for ` > 0

Ω` = `ω1 × ω2.
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We will denote the points in Ω` by
x = (X1, X2)

where X1 = x1, . . . , xm, X2 = xm+1, . . . , xn. If pi, i = 1, . . . ,m, qj , j = m+ 1, . . . , n are numbers
larger than 1 set

~p = (p1, . . . , pm) , ~q = (qm+1, . . . , qn).

Then we define

W 1,~p,~q(Ω`) = {v ∈ Lpi(Ω`) ∩ Lqj (Ω`) | ∂xiv ∈ Lpi(Ω`), ∂xjv ∈ Lqj (Ω`), ∀i, j},
W 1,~q(ω2) = {v ∈ Lqj (ω2) | ∂xjv ∈ Lqj (ω2), ∀j}.

(3.1)

In the definition above the indices i are running from 1 to m and the indices j from m+ 1 to n.
Clearly W 1,~p,~q(Ω`), W

1,~q(ω2) are reflexive Banach spaces when equipped with the norms

||v||1,~p,~q =

m∑
i=1

(
|v|pi,Ω` + |∂xiv|pi,Ω`

)
+

n∑
j=m+1

(
|v|qj ,Ω` + |∂xjv|qj ,Ω`

)
||v||1,~q =

n∑
j=m+1

(
|v|qj ,Ω` + |∂xjv|qj ,Ω`

)
.

(3.2)

One denotes by W 1,~p,~q
0 (Ω`) (respectively W 1,~q

0 (ω2)) the closure of D(Ω`) (respectively D(ω2)) in
these spaces and by u` the solution to{

u` ∈W 1,~p,~q
0 (Ω`),´

Ω`
|∂xiu`|pi−2∂xiu` ∂xiv + |∂xju`|qj−2∂xju` ∂xjv dx = 〈f, v〉 ∀v ∈W 1,~p,~q

0 (Ω`).
(3.3)

In the formula above we make the summation convention, i.e. we are summing in i and j.
f = f(X2) is a continuous linear form on W 1,~q

0 (ω2) defined as

f = f0−
n∑

j=m+1

∂xjfj , f0 ∈ ∩jLq
′
j (ω2), fj ∈ Lq

′
j (ω2),

〈f, v〉 =
∑
ω2

f0v +
n∑

j=m+1

fj∂xjv dx.

(3.4)

We would like to sketch some behaviour of u` when `→∞, in particular to show that u` → u∞
where u∞ is the solution to{

u∞ ∈W 1,~q
0 (ω2),´

ω2
|∂xju∞|qj−2∂xju∞ ∂xjv dX2 = 〈f, v〉 ∀v ∈W 1,~q

0 (ω2).
(3.5)

Note that by the same arguments as in section 2 the problems (3.3), (3.5) admit a unique
solution.

The analogue of lemma 2.1 is the following.
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Lemma 3.1. Let u` be the solution of (3.3) for f given by (3.4). There exists a constant C
independent of ` such that

ˆ
Ω`

m∑
i=1

|∂xiu`|pi +

n∑
j=m+1

|∂xju`|qj dx ≤ C`m. (3.6)

Proof. Let q = max(qj) = qj0 for some j0. Taking v = u` in (3.3) we get with the summation
convention in i, jˆ

Ω`

|∂xiu`|pi + |∂xju`|qj dx =

ˆ
Ω`

{
f0u` + fj0∂xj0u` +

∑
j 6=j0

fj∂xju`
}
dx

≤
ˆ

Ω`

{
|f0||u`|+ |fj0 ||∂xj0u`|+

∑
j 6=j0

|fj ||∂xju`|
}
dx

≤ |f0|q′,Ω` |u`|q,Ω` + |fj0 |q′j0 ,Ω` |∂xj0u`|qj0 ,Ω` +
∑
j 6=j0

|fj |q′j ,Ω`|∂xju`|qj ,Ω`.

(3.7)

Using the Poincaré inequality

|u`|q,Ω` = |u`|qj0 ,Ω` ≤ C|∂xj0u`|qj0 ,Ω`
we deriveˆ

Ω`

|∂xiu`|pi + |∂xju`|qj dx ≤ {C|f0|q′j0 ,Ω` + |fj0 |q′j0 ,Ω`}|∂xj0u`|qj0 ,Ω` +
∑
j 6=j0

|fj |q′j ,Ω` |∂xju`|qj ,Ω` .

Note now that for f ∈ Lq′(ω2) one has for some constant C independent of `

|f |q′,Ω` =
(ˆ

`ω1

ˆ
ω2

|f(X2)|q′dX2dX1

) 1
q′ ≤ C`

m
q′ . (3.8)

Thus we get ˆ
Ω`

|∂xiu`|pi + |∂xju`|qj dx ≤ C
∑
j

`
m
q′
j |∂xju`|qj ,Ω`

≤ ε
∑
j

|∂xju`|
qj
qj ,Ω`

+ Cε`
m,

(3.9)

using the Young inequality |ab| ≤ ε|a|q + Cε|b|q′ . The result follows by choosing ε = 1
2 .

With the same proofs we have the analogues of Lemmas 2.2 and 2.4 namely with the sum-
mation conventionˆ

Ω`

|∂xiu`|pi−2∂xiu`∂xiv +
{
|∂xju`|qj−2∂xju`−|∂xju∞|qj−2∂xju∞

}
∂xjv dx = 0

∀v ∈W 1,~p,~q
0 (Ω`).

(3.10)

Similarly if u` = u`(f) is the solution to (3.3) and u∞ = u∞(f) the solution to (3.5) and if
f1 ≥ f2, f ≥ 0 then one has

u`(f2) ≤ u`(f1) , 0 ≤ u`(f) ≤ u∞(f). (3.11)
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Remark 1. Note that (3.10) allows a perhaps simpler proof of (3.6) where, however, the de-
pendence in f is lost. Indeed taking v = u` in (3.10) we get with the summation convention in
i and j ˆ

Ω`

|∂xiu`|pi + |∂xju`|qj dx =

ˆ
Ω`

|∂xju∞|qj−2∂xju∞∂xju` dx

≤
ˆ

Ω`

|∂xju∞|qj−1|∂xju`| dx.

Using the Young inequality |ab| ≤ 1
q′j
|a|q′j + 1

qj
|b|qj it comes

ˆ
Ω`

|∂xiu`|pi + |∂xju`|qj dx ≤
ˆ

Ω`

1

q′j
|∂xju∞|qj +

1

qj
|∂xju`|qj dx

≤
ˆ

Ω`

1

minj qj
|∂xju`|qj +

1

minj q′j
|∂xju∞|qj dx

and thus for some constant C since minj qj > 1

ˆ
Ω`

|∂xiu`|pi + |∂xju`|qj dx ≤ C
ˆ

Ω`

|∂xju∞|qj dx ≤ C`m.

Then we can turn to the generalisation of lemma 2.6. Denote by ρ = ρ(X1) a smooth function
such that

0 ≤ ρ ≤ 1, ρ = 1 on
1

2
ω1, ρ = 0 near ∂ω1, |∇X1ρ| ≤ C, (3.12)

where ∇X1ρ denotes the gradient of ρ in X1, i.e. ∇X1ρ = (∂x1ρ, . . . , ∂xmρ).

We can show :

Lemma 3.2. Let f = f0 ∈ Lq
′
(ω2), q = max qj and u`, u∞ be the solutions to (3.3), (3.5).

Then it holds for some constant C independent of `

I =

ˆ
Ω`

{
|∂xiu`|pi +

(
|∂xju`|qj−2∂xju` − |∂xju∞|qj−2∂xju∞

)
∂xj (u` − u∞)

}
ρα dx

≤ C

`p−m
.

(3.13)

(p = mini(pi) denotes the smallest pi)

Proof. From (3.10) taking v = ρα(X1
` )(u`−u∞) one derives easily with the summation convention

in i and j

ˆ
Ω`

{
|∂xiu`|pi +

(
|∂xju`|qj−2∂xju`−|∂xju∞|qj−2∂xju∞

)
∂xj (u` − u∞)

}
ρα dx

≤ αC

`

ˆ
Ω`

|∂xiu`|pi−1|u` − u∞|ρα−1 dx.

(3.14)
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Noting that ρα−1 = ρ
α
p′
i ρ

α
pi
−1

and using Young’s inequality it comes

I =

ˆ
Ω`

{
|∂xiu`|pi+

(
|∂xju`|qj−2∂xju` − |∂xju∞|qj−2∂xju∞

)
∂xj (u` − u∞)

}
ρα dx

≤ 1

p′i

ˆ
Ω`

|∂xiu`|piρα dx+
C

`pi

ˆ
Ω`

|u` − u∞|piρα−pi dx.
(3.15)

Recalling our summation in i and the fact that p′i > 1 it follows that for some constant C

I ≤ C
∑
i

1

`pi

ˆ
Ω`

|u` − u∞|piρα−pi dx ≤ C
∑
i

1

`pi

ˆ
Ω`

|u` − u∞|pi dx, (3.16)

provided we chose α large enough. Note that at this point we did not use the assumption
f = f0 ∈ Lq′(ω2), q = max qj .

Arguing now like in Lemma 2.6 one can bound |u` − u∞| by something depending only on
X2 to get

I ≤ C
∑
i

1

`pi−m
, (3.17)

This completes the proof of the lemma.

The convergence of u` toward u∞ is insured for general pi, qj by the following result.

Theorem 3.1. Let f = f0 ∈ Lq′(ω2), q = max qj. Let u`, u∞ be the solutions to (3.3), (3.5)
respectively. If pi > m ∀i one has for every `0 > 0 when `→ +∞

∂xiu` → 0 in Lpi(Ω`0) , ∂xju` → ∂xju∞ in Lqj (Ω`0). (3.18)

Proof. The first part of (3.18) follows directly from (3.13). For the second part let us consider
a smooth function ρ such that for `0 < `− 1

0 ≤ ρ ≤ 1 , ρ = 1 on `0ω1 , ρ has a support in (`0 + 1)ω1 , |∇X1ρ| ≤ C.

Then ραu` is a test function for (3.3) and one hasˆ
Ω`0+1

{
|∂xiu`|pi + |∂xju`|qj}ρα dx

= −α
ˆ

Ω`0+1

|∂xiu`|pi−2∂xiu`∂xiρ u`ρ
α−1 dx+

ˆ
Ω`0+1

f0u` dx

≤ αC
ˆ

Ω`0+1

|∂xiu`|pi−1|u`|ρα−1 dx+

ˆ
Ω`0+1

|f0||u`| dx.

Using the fact that ρα−1 = ρ
1
p′
i ρ

1
pi
−1

we get by Young’s inequality for some constant Cˆ
Ω`0+1

{
|∂xiu`|pi + |∂xju`|qj}ρα dx

≤ 1

p′i

ˆ
Ω`0+1

|∂xiu`|piρα dx+ C

ˆ
Ω`0+1

|u`|piρα−pi dx+

ˆ
Ω`0+1

|f0||u`| dx.
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We assume here that α > pi. We know that by (3.11)

|u`| ≤ max{u∞(f+
0 ), u∞(f−0 )}

and since this bound is independent of ` we get

|∂xju`|qj ,Ω`0 ≤ C(`0).

The rest of the proof follows as in Theorem 2.1 since by (3.13) we have for every j

ˆ
Ω`0

(
|∂xju`|qj−2∂xju` − |∂xju∞|qj−2∂xju∞

)
∂xj (u` − u∞) dx.→ 0.

This completes the proof of the theorem.

We have then an analogue to theorem 2.3 for a general f .

Theorem 3.2. Let u`, u∞ be the solutions to (3.3), (3.5). Suppose that

∀i = 1, · · · ,m, ∃ji ∈ {m+ 1, . . . , n} such that pi < qji . (3.19)

Then there exists a constant C such that

I =

ˆ
Ω`

{
|∂xiu`|pi +

(
|∂xju`|qj−2∂xju`−|∂xju∞|qj−2∂xju∞

)
∂xj (u` − u∞)

}
ρα dx

≤ C
∑
qji≥2

1

`

piqji
qji
−pi
−m

+ C
∑
qji<2

1

`
2pi
2−pi

−m
.

(3.20)

ρα = ρα(X1
` ) is as in Lemma 3.2.

Proof. Going back to (3.16) one has if (α− pi) qjipi > α ∀i

I ≤ C
∑
i

1

`pi

ˆ
Ω`

|u` − u∞|piρα−pi dx

≤ C
∑
i

1

`pi

(ˆ
Ω`

|u` − u∞|qjiρ(α−pi)
qji
pi dx

) pi
qji

( ˆ
Ω`

1 dx
)1− pi

qji

≤ C
∑
i

1

`pi

(ˆ
Ω`

|u` − u∞|qjiρα dx
) pi
qji `

m(1− pi
qji

)
.

Using the Poincaré inequality we get

I ≤ C
∑
i

1

`pi

( ˆ
Ω`

|∂xji (u` − u∞)|qjiρα dx
) pi
qji `

m(1− pi
qji

)
. (3.21)

If qji ≥ 2 one has

{|∂xjiu`|
qji−2∂xjiu` − |∂xjiu∞|

qji−2∂xjiu∞}∂xji (u` − u∞) ≥ Cqji |∂xji (u` − u∞|
qji (3.22)
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and thus for some constant ˆ
Ω`

|∂xji (u` − u∞)|qjiρα dx ≤ CI. (3.23)

If pi < qji < 2 one has (see the theorem 2.3)

ˆ
Ω`

|∂xji (u` − u∞)|qjiρα dx

≤ CI
qji
2

(ˆ
Ω`

|∂xjiu`|
qji + |∂xjiu∞)|qji dx

)1−
qji
2

≤ CI
qji
2 `m(1−

qji
2

).

(3.24)

Thus from (3.21) we derive replacing pi by p and qji by q

I ≤ C
∑
i

1

`p
I
p
q `
m(1− p

q
)

+ C
∑
i

1

`p
I
q
2
p
q `
m(1− q

2
) p
q `
m(1− p

q
)

≤ C
∑
i

1

`p
I
p
q `
m(1− p

q
)

+ C
∑
i

1

`p
I
p
2 `m(1− p

2
).

. (3.25)

The first sum is for i such that qji ≥ 2, the second one for the i’s such that qji < 2. Using the
Young inequality with ε we get

I ≤ εI + Cε
∑
i

(`m(1− p
q

)

`p

) 1
1− pq + εI + Cε

∑
i

(`m(1− p
2

)

`p

) 1
1− p2 . (3.26)

Choosing ε small enough we get

I ≤ Cε
∑
i

1

`
pq
q−p−m

+ Cε
∑
i

1

`
2p
2−p−m

. (3.27)

Coming back to our notation in pi, qji (3.19) follows. This completes the proof of he theorem.

Theorem 3.3. We suppose that pi ≥ 2, ∀i = 1, · · · ,m. In addition we assume that

∀i = 1, · · · ,m, ∃ji ∈ {m+ 1, . . . , n} such that pi = qji . (3.28)

Then there exists constants C,α independent of ` such that

ˆ
Ω `

2

m∑
i=1

|∂xi(u` − u∞)|pi + |∂xji (u` − u∞)|pi

+
∑
j 6=ji

{|∂xju`|qj−2∂xju` − |∂xju∞|qj−2∂xju∞}∂xj (u` − u∞) dx ≤ Ce−α`.
(3.29)

Note that when j 6= ji, qj is only assumed to be greater than 1 and that the qji are not necessarily
distinct as the pi.
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Proof. For `1 ≤ `− 1 we denote by ρ`1 = ρ`1(X1) a smooth function satisfying

0 ≤ ρ`1 ≤ 1 , ρ`1 = 1 on `1ω1 , ρ`1 = 0 outside (`1 + 1)ω1 , |∇X1ρ`1 | ≤ C (3.30)

where C is some positive constant. Taking v = ρ`1(u` − u∞) as test function in (3.10) we get

ˆ
Ω`1+1

{ m∑
i=1

|∂xiu`|pi

+

n∑
j=m+1

{|∂xju`|qj−2∂xju` − |∂xju∞|qj−2∂xju∞}∂xj (u` − u∞)
}
ρ`1 dx

= −
ˆ

Ω`1+1\Ω`1

m∑
i=1

|∂xiu`|pi−2∂xiu`∂xiρ`1(u` − u∞) dx

≤ C
m∑
i=1

(ˆ
D`1

|∂xiu`|pi dx
) 1
p′
i

(ˆ
D`1

|u` − u∞|pi dx
) 1
pi

(3.31)

where we have set D`1 = Ω`1+1\Ω`1 . Let us define A as

A =
m∑
i=1

|∂xi(u` − u∞)|pi + |∂xji (u` − u∞)|qji

+
∑
j 6=ji

{|∂xju`|qj−2∂xju` − |∂xju∞|qj−2∂xju∞}∂xj (u` − u∞).
(3.32)

Using the lemma 2.3, (3.32) and the Poincaré inequality on the section of the domain one deduces
from (3.31)

ˆ
Ω`1

A dx ≤
ˆ

Ω`1+1

Aρ`1 dx

≤ C
m∑
i=1

( ˆ
D`1

|∂xiu`|pi dx
) 1
p′
i

( ˆ
D`1

|∂xji (u` − u∞)|qji dx
) 1
pi

≤ C
m∑
i=1

(ˆ
D`1

A dx
) 1
p′
i

(ˆ
D`1

A dx
) 1
pi = C

ˆ
D`1

A dx.

(3.33)

It follows that ˆ
Ω`1

A dx ≤ C

C + 1

ˆ
Ω`1+1

A (3.34)

Denote by [ `2 ] the integer part of `
2 . Setting a = C

C+1 and iterating this formula [ `2 ] times starting

from `
2 we obtain easily taking into account the inequality `

2 − 1 < [ `2 ] ≤ `
2ˆ

Ω `
2

A dx ≤ a[ `
2

]

ˆ
Ω `

2+[ `2 ]

A dx ≤ a `2−1

ˆ
Ω`

A dx. (3.35)
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To evaluate this last integral one relies on the lemma 3.1. Indeed using the lemma 2.3 one has

A ≤
m∑
i=1

(|∂xiu|+ |∂xiu∞|)pi + (|∂xjiu`|+ |∂xjiu∞)|pi +
∑
j 6=ji

Cqj (|∂xju`|+ |∂xju∞)|qj

Using again the formula (|a|+ |b|)q ≤ 2q−1(|a|q + |b|q) one derives for some constant

A ≤ C
{ m∑
i=1

|∂xiu|pi + |∂xiu∞|pi +
n∑

j=m+1

|∂xju`|qj + |∂xju∞|qj
}

Since u∞ is independent of X1 it follows from (3.6) that

ˆ
Ω`

A dx ≤ C`m

and from (3.35) one derives ˆ
Ω `

2

A dx ≤ Ce−` 12 ln 1
a `m. (3.36)

This leads to (3.29) provided we chose α < 1
2 ln 1

a .

In the case where f ∈ L∞(ω2) one can show the following.

Theorem 3.4. We suppose that f ∈ L∞(ω2) and pi ≥ 2, ∀i = 1, · · · ,m. In addition we assume
that

∀i = 1, · · · ,m, ∃ji ∈ {m+ 1, . . . , n} such that pi ≥ qji ≥ 2. (3.37)

Then there exists constants C,α independent of ` such that

ˆ
Ω `

2

m∑
i=1

|∂xi(u` − u∞)|pi + |∂xji (u` − u∞)|pi

+
∑
j 6=ji

{|∂xju`|qj−2∂xju` − |∂xju∞|qj−2∂xju∞}∂xj (u` − u∞) dx ≤ Ce−α`.
(3.38)

Proof. As in Theorem 3.3 we derive (3.31) that is

ˆ
Ω`1+1

{ m∑
i=1

|∂xiu`|pi

+

n∑
j=m+1

{|∂xju`|qj−2∂xju` − |∂xju∞|qj−2∂xju∞}∂xj (u` − u∞)
}
ρ`1 dx

≤ C
m∑
i=1

(ˆ
D`1

|∂xiu`|pi dx
) 1
p′
i

(ˆ
D`1

|u` − u∞|pi dx
) 1
pi ,

(3.39)

where D`1 = Ω`1+1\Ω`1 .
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One claims that for some constant C independent of ` one has

|u` − u∞| ≤ C. (3.40)

Then, we derive that(ˆ
D`1

|u` − u∞|pi dx
) 1
pi ≤ C

(ˆ
D`1

|u` − u∞|qj1 dx
) 1
pi .

Recalling the notation (3.32), (3.33) follows easily and the rest of the proof as well.

To prove (3.40), suppose that ω2 is contained in the strip

{X2 | |xn| ≤ s}

for some positive s (recall that ω2 is supposed to be bounded in Rn−m). Then set

β = 1 +
1

qn − 1
, g = sβ − |xn|β.

One finds easily since (β − 1)(qn − 1) = 1 that

∂xng = −β|xn|β−2xn, |∂xng|qn−2∂xng = −βqn−1xn, − ∂xn
(
|∂xng|qn−2∂xng

)
= βqn−1.

If |f |∞ denotes the L∞-norm of f setting

h = (|f |∞)
1

qn−1
g

β

one has (see (3.3))

−
m∑
i=1

∂xi
(
|∂xiu`|pi−2∂xiu`

)
−

n∑
j=m+1

∂xj
(
|∂xju`|qj−2∂xju`

)
= f ≤ |f |∞

= −∂xn
(
|∂xnh|qn−2∂xnh

)
= −

m∑
i=1

∂xi
(
|∂xih|pi−2∂xih

)
−

n∑
j=m+1

∂xj
(
|∂xjh|qj−2∂xjh

)
.

Using in the weak formulation v = (u` − h)+ one deduces easily that

u`(f) ≤ h ≤ (|f |∞)
1

qn−1
sβ

β
.

Since −u`(f) = u`(−f), (3.40) follows easily. This completes the proof of the theorem.

Remark 2. One could try to mix assumptions of the type of Theorem 3.2 and 3.4 however it will
make the result regarding the speed of convergence messy, the convergence being insured by the
theorem 3.1 for the pi’s large enough. In the case of theorems 3.3, 3.4 one can take advantage of
the exponential speed of convergence to get existence results in unbounded domains in the spirit
of [9], [7].

23



Remark 3. The operators that we have considered here are the sum of p-Laplacians in one
dimension. One can consider also operators sums of p-Laplacians in larger dimensions. For
instance, with the notation of this section, if u` is the weak solution to{

−∇X1 ·
(
|∇X1u`|p−2∇X1u`

)
−∇X2 ·

(
|∇X2u`|q−2∇X2u`

)
= f in Ω`

u` = 0 on ∂Ω`,

one can show if p = q ≥ 2, using the technique of theorem 3.3, that u` converges exponentially
quickly toward the solution to.{

−∇X2 ·
(
|∇X2u∞|q−2∇X2u∞

)
= f in ω2

u∞ = 0 on ∂ω2.

(∇Xi · denotes the divergence in Rm or Rn−m). Similarly one can consider operators sums of
p-Laplacians of different dimensions i.e. problems of the type{

−∑i∇Yi ·
(
|∇Yiu`|pi−2∇Yiu`

)
= f in Ω`

u` = 0 on ∂Ω`,

where Yi denotes some subset of the coordinates, and develop results similar to the ones of this
note. The case of the sum of n-dimensional p-Laplacians was considered in [8].
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d’unicité pour les systèmes de Boussinesq,” PhD thesis, Université de Rouen, 2007.
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