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Abstract

In the early eighties, Hartle and Hawking put forth that signature-type
change may be conceptually interesting, paving the way to the so-called no-
boundary proposal for the initial conditions for the universe. Such singularity-
free universes have no beginning, but they do have an origin of time. This
leads to considerations of signature-type changing spacetimes, wherein the
“initially” Riemannian manifold, characterized by a positive definite metric,
undergoes a signature-type change, ultimately transitioning into a Lorentzian
universe without boundaries or singularities. A metric with such a signature-
type change is inherently degenerate or discontinuous at the locus of the
signature change.

We present a coherent framework for signature-type changing manifolds char-
acterized by a degenerate yet smooth metric. We adapt well-established
Lorentzian tools and results to the signature-type changing scenario. Sub-
sequently, we explore global issues, specifically those related to the causal
structure, in singular semi-Riemannian manifolds. We introduce new defini-
tions that carry unforeseen causal implications. A noteworthy consequence
is the presence of locally closed time-reversing loops through each point on
the hypersurface. By imposing the constraint of global hyperbolicity on the
Lorentzian region, we demonstrate that throughout every point in M , there
always exists a pseudo-timelike loop. Or put another way, there always ex-
ists a closed pseudo-timelike path in M around which the direction of time
reverses, and a consistent designation of future-directed and past-directed
vectors cannot be defined.

Moreover, we present a method for converting any arbitrary Lorentzian mani-
fold (M, g) into a transverse type-changing semi-Riemannian manifold (M, g̃).
Then we establish the Transformation Theorem, asserting that, conversely
under certain conditions, such a metric (M, g̃) can be obtained from a Lorentz
metric g through the aforementioned transformation procedure.
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1 Introduction

1.1 Historical background

According to popular ideas about quantum cosmology, classical cosmological mod-
els contain an initial Riemannian region of Euclidean signature joined to a final
semi-Riemannian region with the usual Lorentzian signature [25, 26]. In 1983 Har-
tle and Hawking [42] proposed that signature-type change may be conceptually
intriguing, leading to the so-called ’no boundary’ proposal for the initial conditions
for the universe. According to the Hartle–Hawking proposal the universe has no
beginning because there is no singularity or boundary to the spacetime.1 In such
singularity-free universes, there is no distinct beginning, but they do possess an
origin of time [25]. Put differently, the positive definite Riemannian space mani-
fests as a closed surface without end, seamlessly connected to a Lorentzian region
at the transitional surface where time commences [33, 41].

While the mechanism in its entirety behind the signature-type change in the early
universe remains mysterious, Wick rotation is commonly considered a useful com-
putational trick for joining two spaces of different signature.2 Every process that
can be analyzed by resorting to imaginary time, can be also studied by means of
signature-type change [42, 65]. This is based on the fact that the signature, which
represents the pattern of the signs of the eigenvalues of the matrix of metric coeffi-
cients, is a coordinate invariant. However, Hayward [45] stresses that one requires
real coordinate charts covering the junction of signature change in order to describe
the change of signature in a geometrically respectable way. Recent developments
suggest that signature change appears naturally in loop quantum cosmology for
the quantum tunneling approach [3, 9, 13].

While from a physical viewpoint, a signature-type change may be used to avoid
the singularities of general relativity (e.g. the big bang can be replaced by a Rie-
mannian domain prior to the birth of time), from a mathematical point of view,
the ’no boundary’ proposal can be taken as ’no boundary’ condition for manifolds.
This leads to considerations of signature-type changing spacetimes, wherein the

1Although singularities can be considered points where curves stop at finite parameter value,
a general definition is still deemed to be difficult [30].

2The metric signature change from Lorentzian to Euclidean is usually performed by the so-
called Wick rotation (t → −iτ), under which the line element for a Lorentzian spacetime trans-
forms to one for a Riemannian space. This yields an analytic continuation of the time coordinate
t to the complex plane.
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’initially’ Riemannian manifold, characterized by a positive definite metric, under-
goes a signature-type change, ultimately transitioning into a Lorentzian universe
(i.e. the matrix of metric coefficients, independent of coordinates, possesses pre-
cisely one negative eigenvalue) without boundaries or singularities. It is essential
to note that a signature-changing metric is inherently degenerate or discontinuous
at the boundary of the hypersurface [20]: If we require the eigenvalue switchover
to be continuous, then this means that an eigenvalue has to vanish on the surface
of signature change, and thus the metric is degenerate at that point (and con-
sequently the inverse metric is singular). Otherwise, if we allow a discontinuous
signature change, this necessitates a distributional metric so that the derivatives of
the metric are well defined. A trivial example [21] for a signature changing metric
is ds2 = tdt2 + dx2. The locus of signature change is at t = 0, while for t < 0 the
signature is Lorentzian and for t > 0 Riemannian.

The possibility of having different signatures in different regions of spacetime has
been discussed in the literature. Extensive mathematical investigations and numer-
ous papers [17, 18, 19, 21, 27, 44, 46, 52, 87] have emerged which elucidated the
mathematical implications of signature-type change, spanning differential geom-
etry, topology, mathematical relativity, and physics. For instance, the continuity
and behavior across the interface between the Riemannian and Lorentzian domains
were analyzed, or the general constraints posed by a possible signature flip some-
where in the manifold were put forward. Some work just focussed on conditions for
the co-existence of Euclidean and Lorentzian domains. Meanwhile also in modern
subfields of differential geometry, such as Finsler geometry, signature change gets
investigated [5].

But for all that, the topic remains underexplored, presenting an understudied sub-
ject at the intersection of differential geometry, (differential) topology, mathemat-
ical relativity, physics and even spectral geometry. The latter comes into play if
field theory in a background spacetime is considered: By crossing over from the
Lorentzian to the Riemannian domain the d’Alembert operator changes into the
Laplacian, and by that, the Klein-Gordon equation becomes an eigenvalue problem
of the Laplacian (with the eigenvalues corresponding to the possible values of the
rest mass). All in all, signature change offers not only interesting new territory in
differential geometry but also the chance to find results challenging conventional
wisdom about the origin and evolution of the universe and its matter content.
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1.2 Summary

In signature-type changing metrics, either some eigenvalue of the metric goes
through the value zero, resulting in metric degeneracy, or it undergoes a jump
from a positive to a negative value, causing metric discontinuity [25]. Singular
semi-Riemannian geometry is concerned with smooth manifolds endowed with a
singular metric tensor of arbitrary signature. In this work we dispense with study-
ing the discontinuous type of metrics. Instead, we focus exclusively on the contin-
uous approach, specifically with a transverse radical where the metric constitutes
a smooth (0, 2)-tensor field that becomes degenerate at the subset H ⊂ M , repre-
senting a smoothly embedded hypersurface in M .3 The bilinear type of the metric
changes upon crossing H.

The initial objective of this dissertation is to establish a coherent framework for
signature-type changing manifolds. This framework will serve as a foundation
for the subsequent analysis of global issues, with a specific focus on the causal
structure, in transverse singular semi-Riemannian manifolds.

Although the compatibility of Riemannian and Lorentzian domains is assumed to
be given, the behavior of curves across the interface between the Riemannian and
Lorentzian sectors is still left to further studies. Moreover, in a manifold where the
signature changes from (+,+, . . . ,+) to (−,+, . . . ,+), the conventional concept
of timelike (or spacelike) curves does not exist anymore. This gives rise to a new
notion of curves called pseudo-timelike and pseudo-spacelike curves. In order to
define these curves we make a detour to draw upon the concept of the generalized
affine parameter which we use as a tool to distinguish genuine pseudo-timelike
(and pseudo-spacelike, respectively) curves from curves that asymptotically become
lightlike as they approach the hypersurface of signature change.

Equipped with this information, we first make drastic simplifications by reduc-
ing the dimensionality of a manifold. We initially explore what happens in close
proximity to the hypersurface H within a 2-dimensional toy model setting. The
intricacies of the toy model prompt intriguing questions related to geodesics, partic-
ularly in the context of interpreting particle behavior when crossing the junction.
This raises fundamental queries about the compatibility of geodesics across the

3The radical at q ∈ H is defined as the subspace Radq := {w ∈ TqM | g(w, �) = 0}. This
means g(vq, �) = 0 for all vq ∈ Radq. Note that Radq can be either transverse or tangent to the
hypersurface H. Please refer to Definition 3.2 and Section 3 and 7 for details on the radical.
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transition surface. Furthermore, challenges emerge in defining the Levi-Civita con-
nection on the entire manifold, and as a consequence, in constructing the curvature
invariants. These issues arise due to the fact that the inverse components of the
metric blow up at the hypersurface of signature change.
Nevertheless, we can demonstrate the existence of an isometric embedding of the
2-dimensional toy model into 3-dimensional Minkowski space. Leveraging this em-
bedding, we utilize the Gaussian curvature to highlight that, despite the non-
smooth nature of the affine connection, there exist non-trivial singularity-free mod-
els within the considered class of signature-type changing manifolds.

In order to generalize the 2-dimensional signature-type changing manifold to the
n-dimensional scenario, we bring in radical-adapted Gauss-like coordinates. These
coordinates can be viewed as time-orthogonal coordinates for an n-dimensional
signature-type changing manifold. These coordinates not only greatly simplify
matters, but also imply the existence of a unique, coordinate independent, natural
absolute time function in the neighborhood of the hypersurface.

In the global context, we establish criteria to determine which geodesics, and more
generally, curves, along with their associated parallel vector fields, possess the
property of smoothly extending across the hypersurface, defining them on the en-
tire manifold M . This lays the foundation for the subsequent construction [84] of
objects such as the covariant derivative of differential forms, the lower Riemann
curvature operator, the Ricci curvature tensor and scalar curvature. As a conse-
quence we can single out the pairs of vector fields X, Y on M with the property
that the covariant derivative of Y in the direction of X extends smoothly to all of
M . The properties of the lower covariant derivative guarantee the definition [50] of
the so-called natural fundamental tensor IIq, serving as a suitable tool to charac-
terize the nature of the hypersurface of signature change. On the basis of IIq the
following two pieces of information can be extracted:

(i) we can determine which pairs of vector fieldsX, Y ∈ X(M) have the property
that the associated covariant derivative extends smoothly to all of M ,

(ii) given a curve γ, with γ(0) = q ∈ H, then IIq determines which parallel
vector fields along γ extend smoothly through the hypersurface at q.

In the second part of this dissertation, our main emphasis is on global consid-
erations. We endeavor to adapt well-established Lorentzian tools and results to
the signature-type changing case, as far as possible. This task proves to be less
straightforward than anticipated, necessitating the introduction of new definitions
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with unexpected causal implications, reaching a critical juncture in our exploration.
We draw upon the definition of pseudo-time orientability and the given absolute
time function to decide whether a pseudo-timelike curve is future-directed. This es-
tablishes the definition for the pseudo-chronological past (and pseudo-chronological
future) of an event. In addition, it becomes imperative to introduce a reasonable
definition for the causal classification of hypersurfaces in a signature-type changing
manifold.

In order to elucidate the global structure of non-orientable signature-type changing
manifolds we produce manifolds modeled on the topology of the Möbius strip: It is
a well-known fact that, given two manifolds with homeomorphic boundaries,4 one
can obtain a new manifold by "gluing”, achieved by identifying the two boundaries.
Similarly, two connected components of the boundary of a single manifold can be
glued together. This cutting-gluing surgery on semi-Riemannian manifolds yields
a new signature-type changing manifold where the gluing junction becomes the
locus of signature change. Some of these examples do not belong to the class under
consideration, as they inevitably result in a type-changing metric with a radical
that is both transverse and tangent.

Motivated by these counterexamples, we present a theorem to determine whether a
singular signature-type changing manifold under consideration belongs to the class
of transverse type-changing semi-Riemannian manifolds with a transverse radical:
Firstly, we present a procedure called the Transformation Prescription by means
of which an arbitrary Lorentzian manifold can be transformed into a singular
signature-type changing manifold. Subsequently, we employ the Transformation
Prescription to establish the so-called Transformation Theorem saying that locally
the metric g̃ associated with a signature-type changing manifold (M, g̃) with a
transverse radical is equivalent to the metric obtained from a Lorentzian metric g
via the Transformation Prescription g̃ = g + fV [ ⊗ V [,5 where f : M −→ R is a
C∞ function and V is one of the pair {V,—V } of a global non-vanishing timelike
line element field. By augmenting the assumption by certain constraints, mutatis
mutandis, the global version of the Transformation Theorem can be proven as well.
Furthermore, we argue that by adjusting some assumptions this theorem can be
also shown for type-changing manifolds with a tangent radical.

4Granted that both manifolds are smooth with nonempty boundary, having a collar neighbor-
hood. In addition, suppose there is a diffeomorphism between the collar neighborhoods.

5The index lowering morphism flat [ : TpM → T ∗pM for p ∈M corresponds to the Lorentzian
metric g, and is given by v 7→ [(v) = v[ = g(v, �).
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Ultimately, we utilize the Transformation Theorem to demonstrate that the in-
duced metric on the hypersurfaceH is either Riemannian or a positive semi-definite
pseudo metric.

In conclusion, we show that for signature-type change of the delineated type, all
these considerations lead to a surprising theorem revealing the non-well-behaved
nature of these manifolds: In a sufficiently small region near the junction of sig-
nature change H transverse signature-type changing manifolds with a transverse
radical exhibit local anomalies: Specifically, each point on the junction facilitates
a closed time-reversing loop, challenging conventional notions of temporal consis-
tency. Or put another way, there always exists a closed pseudo-timelike path in M
around which the direction of time reverses, and along which a consistent designa-
tion of future-directed and past-directed vectors cannot be defined. By imposing
the constraint of global hyperbolicity on the Lorentzian region, the global analog
can be proven by showing that through every point in M there always exists a
pseudo-timelike loop.6

Another approach to identify closed pseudo-timelike curves or loops is to consider
a certain class of non-smooth metrics which have an infinite discontinuity at t = 0
and apply a conformal transformation. Taking advantage of the fact that the
causal structures of conformally equivalent manifolds is the same, yields immedi-
ately pseudo-timelike geodesics with loops. This could be tantamount to a region
of particle-antiparticle origination incidents.

6In the global version a key notion is global hyperbolicity which is developed and which plays
a role in the spirit of completeness for Riemannian manifolds.
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1.3 Main results

Throughout this work, especially in Chapter 8, we adapt familiar Lorentzian tools
and results to the signature-type changing setting. We introduce the definition
of pseudo-time orientability to determine the future-directed nature of a pseudo-
timelike curve, laying the foundation for defining the pseudo-chronological past
(and pseudo-chronological future) of an event. Our rationale behind these new
definitions stems from the challenge posed by the locus of signature change, where
many concepts from Lorentzian geometry become problematic or nonsensical. For
instance, the interpretation of ’spacelike’ curves, even if they are geodesics, can
vary. Chapter 4 introduces a novel concept of curves called pseudo-timelike curves,
along with a tool to distinguish genuine pseudo-timelike (and pseudo-spacelike, re-
spectively) curves from those that asymptotically become lightlike as they approach
the locus of signature change.

In Chapter 5, we utilize the new definition introduced in Chapter 4 and examine
a toy model example. Chapter 6 extends this exploration by demonstrating how a
generalized form of the toy model is situated within 3-dimensional Minkowski space,
establishing the existence of an isometric embedding f = (ϑ, ξ, x) : R2 −→ R1,2. In
this particular context we illuminate that despite the affine connection not being
smooth, there exist non-trivial singularity free models within the class of signature-
type changing manifolds in consideration.

In Chapter 7 we elucidate the properties of the radical, and we provide exam-
ples when the radical is one-dimensional and transversal with respect to H. Fur-
thermore, we illustrate with counter examples under what conditions the radical
becomes tangent.

In Chapter 11 we elaborate on the fact that a transverse type-changing semi-
Riemannian manifold (M, g) with a transverse radical is conformally equivalent
to a particular type-changing semi-Riemannian manifold (M, ḡ). This manifold
is equipped with a non-smooth metric, featuring an infinite discontinuity at t =
0. The latter one has pseudo-timelike geodesics with loops. We take advantage
of the fact that the causal structures of (M, ḡ) and (M, g) are always the same.
Consequently, we utilize what we know about the causality of (M, ḡ) to identify
closed pseudo-causal curves or loops in (M, g). Summarized, we show that there
is an arbitrary conformal factor Ω ∈ F (M), defined by Ω(t) = f(t)sgn(f(t)), such
that (M, g) := (M,Ωḡ) is a causality-violating, transverse type-changing singular
semi-Riemannian manifold with a transverse radical, and the metric is given by

14



g = Ωḡ = −f(t)(dt)2 + (dx1)2 + · · ·+ (dxn−1)2.

In Chapter 12 we address the problem arising when dealing with degenerate met-
rics: the definition of the Levi-Civita connection (on the whole of M) is no longer
possible. The issues surrounding the extendability of geodesics across the hyper-
surface, the smooth extension of parallel transport to the entirety of M , and the
existence of the Levi-Civita connection on the hypersurface are intricately inter-
linked. We clarify that geodesics cannot traverse a point q ∈ H in any arbitrary
direction; rather, they can only follow a particular admissible direction.

Chapter 13 deals with the Transformation Prescription and the Transformation
Theorem: We present a procedure (called the Transformation Prescription) de-
signed to transform any arbitrary Lorentzian manifold into a singular signature-
type changing manifold. Notably, under certain conditions, the Transformation
Prescription yields a transverse, type-changing semi-Riemannian manifold (M, g̃)
with a transverse radical. Then we prove the Transformation Theorem, which
asserts that, conversely, such a metric (M, g̃) can be locally obtained from a
Lorentzian metric g through the aforementioned transformation procedure. By
augmenting the assumption by specific constraints, mutatis mutandis, the global
version of the Transformation Theorem is proven as well.

Moving on to Chapter 14, we employ the Transformation Theorem to demonstrate
that the induced metric on the hypersurface H is either Riemannian or a positive
semi-definite pseudo-metric.

In Chapter 15, our objective is to illuminate the global structure of non-orientable
signature-type changing manifolds. To achieve this, we construct manifolds mod-
eled on the topology of the Möbius strip. We generate one set of examples through
a process of "gluing", resulting in a new signature-type changing manifold with the
topology of the crosscap, where the gluing junction serves as the locus of signature
change. In another set of examples, we leverage the Transformation Theorem and
apply it to the Möbius strip. Then we test whether the obtained metrics are of the
type g̃ = g+ f(V [⊗V [), with an arbitrary smooth transformation function f that
interpolates between the Lorentzian and Riemannian regions, which are separated
by the hypersurface H = f−1(1). This exploration provides valuable insights into
the diverse possibilities and structures of non-orientable signature-type changing
manifolds.
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In Chapter 16, we elaborate on the observation that in a sufficiently small region
near H, transverse signature-type changing manifolds with a transverse radical
exhibit a non-well-behaved nature. At each point on the hypersurface H, a closed
time-reversing loop is locally present. Or put another way, there always exists a
closed pseudo-timelike path in M around which the direction of time reverses, and
along which a consistent designation of future-directed and past-directed vectors
cannot be defined. We then propose an interpretation of this result, suggesting that
it could be analogous to a region where incidents of particle-antiparticle origination
occur.

By augmenting the assumption by certain constraints, mutatis mutandis, a global
analog can be proven as well. In the global version a key notion is global hyper-
bolicity which is developed and which plays a role in the spirit of completeness for
Riemannian manifolds.
By imposing the constraint of global hyperbolicity on the Lorentzian region, we
demonstrate that through every point in M , there always exists a pseudo-timelike
loop. In simpler terms, a transverse, signature-type changing manifold with a
transverse radical has always pseudo-timelike loops.

The main original work in this dissertation is presented in Chapter 6, Chapter 8,
Chapter 13, Chapter 14, Chapter 15 and Chapter 16.
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2 Notation, conventions and preliminaries

Unless otherwise specified, the considered manifolds, denoted asM with dimension
dim(M) = n, are assumed to be locally homeomorphic to Rn. Furthermore, these
manifolds are expected to be connected, second countable, and Hausdorff. This
definition also implies that all manifolds have empty boundary. If not indicated
otherwise, all associated structures and geometric objects (curves, maps, fields,
differential forms etc.) are assumed to be smooth. Furthermore, we will usually
assume that the manifolds we consider are smooth as well.

Definition 2.1. (Smooth vector field) A smooth vector field overM is a section
of T (M). The space of all vector fields on M is denoted by X(M).

Definition 2.2. (Parametrized curve) A (parametrized) curve in a manifoldM
is a smooth map γ : [a, b] −→M with [a, b] ⊂ R, −∞ < a < b <∞. We also allow
for curves to be defined on non-compact subsets of the real numbers or on all of R.
In situations where we are interested in the image imγ([a, b]) ⊂M of a curve only,
we will refer to that image as an unparametrized curve.

Given a smooth parametrized curve γ : [a, b] −→ M and t0 ∈ [a, b], we define the
velocity of γ at t0, denoted by γ̇(t0), to be the vector γ̇(t0) = dγ

(
d
dt
|t0
)

= dγµ

dt0
∂µ ∈

Tγ(t0)M , where d
dt
|t0 is the standard coordinate basis vector in Tt0R. This tangent

vector acts on functions by γ̇(t0)f = dγ
(
d
dt
|t0
)
f = d

dt
|t0 (f ◦ γ) = (f ◦ γ)′(t0).

For smooth curves defined on an arbitrary differentiable manifold M we want to
point out the following

Definition 2.3. (Closed curve) A curve γ : [a, b] −→M is called closed, if there
is a curve γ̃ : R −→M with γ̃ |[a,b]= γ and γ̃(s+ b− a) = γ̃(s) for all s ∈ R, where
in particular γ(a) = γ(b) and all derivatives match, i.e. γ′(a) = γ′(b), γ′′(a) = γ′′(b)
et cetera. The lifted curve γ̃ is also called periodic [61, 86].

A closed curve γ is said to be simply closed, if γ |[a,b) is injective, i.e. if there are
no double points for which γ(s1) = γ(s2) for some a ≤ s1 < s2 < b. Intuitively, a
simply closed curve never intersects itself between its endpoints (except of course
for the closing up at s = a, b). Alternatively, we could define a closed curve (or
simply closed curve) as an immersion (or embedding, respectively) of the circle S1

in M .
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Definition 2.4. (Closed geodesic) A geodesic γ : [a, b] −→ M is closed if there
is a c ∈ R+ such that γ̃(s + c) = γ̃(s) for every s ∈ [a, b] and if γ satisfies the
assumption that γ(a) = γ(b) and all derivatives match: γ′(a) = γ′(b), γ′′(a) = γ′′(b)
et cetera, a, b ∈ I. If the latter condition is dropped, the curve γ is called a geodesic
loop [71].

In semi-Riemannian geometry, the geometrical structure of a smooth manifold is
determined by the metric: A metric tensor g is a smooth symmetric tensor field
of type (0, 2) on M whose components gµν = g(∂µ, ∂ν) in any coordinate system
are C∞ functions.7 That is, the metric acts on elements of TpM as a bilinear
function; the metric tensor g smoothly assigns to each point p of M an inner
product gp : TpM × TpM → R.

Definition 2.5. Ametric tensor g is non-degenerate if for any p ∈M , g(u, v) |p=
0 for all v ∈ TpM , then u = 0. In local coordinates this is equivalent to g being
non-degenerate if and only if det([gµν ]) 6= 0 [4].

The index associated to a metric tensor g on a smooth manifoldM is a nonnegative
integer I for which index(g, p) = I for all p ∈ M : The index of the inner product
space is the number of minus signs in the signature. This provides an alternative
tool by which one can define a number of various notions typically associated to
the signature of g. The signature of the metric g at p is the number of positive
eigenvalues of the symmetric matrix [gµν ] at p, minus the number of negative ones,
i.e. (dim(M) − I) − I = dim(M) − 2I.8 The number of nonzero eigenvalues is
the rank of the metric. If the metric is nondegenerate the rank is equal to the
dimension dim(M) and if the metric is continuous, the signature and the rank of
the metric tensor are the same at every point. Then (M, g) is said to have constant
signature.
The signature is a well-defined invariant and classifies the metric up to a choice of
basis. Thus, for any point p of the Lorentzian manifold (M, g) the tangent space
TpM admits a basis, called the orthonormal basis, such that the metric components

7More precisely, the manifold (M, g) is called semi-Riemannian if g is non-degenerate. If g is
also positive definite, then (M, g) is called Riemannian manifold.

8Equivalently, the signature of a symmetric matrix [gµν ] at p expresses the number of positive
and negative eigenvalues, counting multiplicities. Hence, it can be also defined in terms of positive
and negative entries of the diagonalized matrix.

18



at any point p can be brought to the canonical form

gµν = diag(−1,+1, . . . ,+1︸ ︷︷ ︸)
(dim(M)−1)

.

In other words, for the integer index(g, p) = I at each point p ∈M , there is a basis
e0, . . . , eI , . . . , en−1 ∈ TpM such that g(eµ, eµ) = −1 for 0 ≤ µ ≤ I, g(eµ, eµ) = 1
for I + 1 ≤ µ ≤ n− 1 and g(eµ, eν) = 0 for µ 6= ν.

A Riemannian manifold is an ordered pair (M, g), consisting of a smooth man-
ifold M furnished with a metric tensor g with I = 0; i.e. g(eµ, eµ) = 1 for
all µ = 0, 1, . . . , n − 1. Each gp is then a positive definite inner product on
TpM . If I 6= 0, then is M a semi-Riemannian manifold. A Lorentzian
manifold is a special type of a semi-Riemannian manifold, defined as a pair
(M, g) for which dim(M) ≥ 2 and for which I = 1, i.e. g(e0, e0) = −1 and
g(ei, ei) = 1 for i = 1, . . . , n − 1. Alternatively it can be defined as a mani-
fold M of dimension dim(M) ≥ 2, equipped with a tensor g of metric signature
(dim(M) − 1) − 1 = dim(M) − 2. Henceforth, our convention for the Lorentzian
signature is (−,+, . . . ,+).

If we allow (M, g) to be of variable signature, or if notably the metric tensor field
has singular points (i.e. points where g degenerates), then the pair (M, g) is called
singular semi-Riemannian manifold and for any point p ∈ M there exists a
basis α1, . . . , αn ∈ TpM such that

• g(αi, αj) = 0 for i 6= j,

• g(αi, αi) = 0 for 1 ≤ i ≤ µ,

• g(αi, αi) = −1 for µ+ 1 ≤ i ≤ µ+ ν,

• g(αi, αi) = 1 for µ+ ν + 1 ≤ i ≤ µ+ ν + η = n,

where µ, ν, η are certain integers, and µ = dim(Radp) (jump to Section 3 for more
details). Then the triple (µ, ν, η) is called the type of g at p, and α1, . . . , αn ∈ TpM
is an orthonormal basis. If µ = 0 then g is called a non-degenerate inner product
of type (ν, η) [59]. The relations dimM = µ+ ν + η and rank(g) = ν + η = n− µ
hold. In this context also recall the following three definitions:
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Definition 2.6. (Singular semi-Riemannian manifold). A singular semi-
Riemannian manifold is a generalization of a semi-Riemannian manifold. It is
a differentiable manifold having on its tangent bundle a symmetric bilinear form
which is allowed to become degenerate.

Definition 2.7. Let (M, g) be a singular semi-Riemannian manifold and let be
p ∈ M . We say that the metric changes its signature at a point p ∈ M if any
neighborhood of p contains at least one point q where the metric’s signature differs
from that at p.

The geometric significance of the index of a semi-Riemannian manifold derives from
the following trichotomy.

Definition 2.8. A tangent vector v ∈ TpM is

• spacelike if g(v, v) > 0 or v = 0,

• null if g(v, v) = 0 and v 6= 0,

• timelike if g(v, v) < 0.

In Lorentzian geometry, a nonzero vector is causal if it is either timelike or null.
Moreover, a (suitable parametrized) curve is said to be chronological when its
tangent vector at any point is timelike, and causal when its tangent vector is
anywhere timelike or null. Let Jg be the set of all causal vectors and Ig the set of
all timelike vectors. Then clearly, both Ig∩TpM and Jg∩TpM have two connected
components in any tangent space TpM , p ∈ M . A time orientation of a manifold
(M, g) is the specific choice at each p ∈ M of one such component I+

g , which
is then named timelike future. The timelike past is consequently defined as its
Ig−complement I−g := −I+

g . The causal future J+
g is defined analogously.

Consequently, Jp is disconnected and consists of two connected components and
timelike tangent vectors at each point p ∈M can be divided in two distinct classes,
allowing the distinction between past- or future-pointing. A semi-Riemannian
manifold is time-orientable if a continuous designation of future-pointing and
past-pointing for non-spacelike vectors can be made over the entire manifold. The
choice for past or future is arbitrary, as long as it is consistent within all points
in spacetime. The value of the metric applied to two timelike vectors of the same
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class is strictly negative, while it can assume any non-zero value if one vector is
past-pointing and the other is future-pointing.

Let γ : [a, b] −→M be a smooth curve. If the tangent vectors have a positive time
component γ′(s) ∈ I+

g ∀s ∈ [a, b] (respectively, negative) at all points, then the
curve is future-directed (respectively past-directed).

Let there be given a semi-Riemannian manifold (M, g) with a connection ∇ that is
compatible with the metric g. Recall that a vector field X ∈ X(M) is autoparallel
in an open set U ⊆ M if and only if ∇XX |U≡ 0. Let ∇ denote the Levi-
Civita connection for a non-degenerate g, then a geodesic is an integral curve of an
autoparallel vector field.

21



3 Singular semi-Riemannian manifolds

Spacetimes within Einstein’s General Theory of Relativity are conventionally con-
sidered to be 4-dimensional, connected, time-orientable Lorentzian manifolds of
index one which are furnished with a non-degenerate metric tensor. However, in
this work we relax the non-degeneracy assumption. Since a signature-type chang-
ing metric is necessarily either degenerate or discontinuous at the locus of signature
change [20], this means we allow for the metric to become degenerate. Also, we
expand our considerations to n-dimensional manifolds, and permit a manifold to
be non-orientable as well as non-time-orientable.

Let (M, g) be a singular semi-Riemannian manifold of dimM = n ≥ 2 and let g
be a smooth, symmetric, degenerate (0, 2)-tensor field on M . Furthermore, let H
be the signature-change subset of M so as for every point p ∈ M there exists a
neighborhood U of p in M and a continuously differentiable function ρ : U −→ R,
such that H ∩ U = {q ∈ U | ρ(q) = 0}. Then ρ(q) = 0 is an equation for H and ρ
is the function producing the surface of signature change.

We follow [2, 52] by defining transverse type-changing singular semi-Riemannian
manifolds:

Definition 3.1. We call g a codimension-1 transverse type-changing metric if
d(det([gµν ])q) 6= 0 for any q ∈ H and any local coordinate system ξ = (x0, . . . , xn−1)
centered at q. Then we call the pair (M, g) a transverse type-changing singular
semi-Riemannian manifold.

This implies that the subset H ⊂ M is a smoothly embedded hypersurface in M ,
and the bilinear type of g changes upon crossingH. Moreover, at every point q ∈ H
there exists a one-dimensional subspace Radq ⊂ TqM that is orthogonal to all of
TqM .

Definition 3.2. (Radical) The radical at q ∈ H is a totally degenerate space,
defined as the subspace Radq := {w ∈ TqM | g(w, �) = 0}.9

All this is valid without any assumption on the radical. On account of this, we
require that the radical is transverse qua the ususal

9This means g(vq, �) = 0 for all vq ∈ Radq. Note that Radq can be either transverse or tangent
to the hypersurface H.
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Definition 3.3. We call the radical Radq transverse [55] if Radq and TqH span
TqM for any q ∈ H, i.e. Radq + TqH = TqM .10

Henceforward, we assume throughout that (M, g) is a transverse type-changing
singular semi-Riemannian manifold, unless explicitly stated otherwise. Moreover,
with this convention we only consider − unless otherwise stated − transverse
type-changing singular semi-Riemannian manifolds with a transverse radical. In
this work we dispense with studying discontinuous type-changing semi-Riemannian
manifolds as well as with transverse type-changing singular semi-Riemannian mani-
folds with a tangent radical. In addition, we assume that one connected component
ofM \H is Riemannian and all other connected components (MLα)α∈I ⊆ML ⊂M
are Lorentzian.
What is more, we assume throughout that the point set H where g becomes de-
generate is not empty. This means H is the locus where the rank of g fails to be
maximal. These delimitations narrow down our study of signature change to a
geometrical analysis of embedded submanifolds.

Proposition 3.4. Let (M, g) be a singular semi-Riemannian manifold whose met-
ric is degenerate at the hypersurface H := {q ∈M : g |q is degenerate}, and divides
M into two open connected regionsML andMR with a common connected boundary
H. Then the following properties hold:

M = ML ∪H ∪MR,
ML ∩MR = ∅,
ML ∩MR = H,
ML ∪MR = M ,

where ML denotes the Lorentzian component and MR denotes the Riemannian
one. These two components are separated by the hypersurface of signature change
H = M \ (ML ∪MR).

Note that in the degenerate case the metric is smooth and both, the Lorentzian
metric as well as the Riemannian metric, exist as continuous limits and agree on
H: gL |H= gR |H. In other words, the continuous metric

g =

{
gL on ML

gR on MR

10This means that Radq is not a subset of TqH, and Radq is obviously not tangent to H for
any q.
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exists on M . Note that if we allow for metrics that are discontinuous on some
hypersurface, then the signature of the metric may still change at that surface, but
the considerations in Proposition 3.4 are not valid anymore.

Definition 3.5. Let (M, g) be a singular semi-Riemannian manifold. Then a vector
field X ∈ X(M) on M is called pseudo-timelike if for each p ∈ ML the tangent
vector Xp at p is timelike.11

11Thus the associated integral curves are also pseudo-timelike.
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4 Pseudo-timelike curves

Let (M, g) be an n-dimensional Lorentzian manifold. Then a curve α : I −→
M such that g(α′(t), α′(t)) < 0 for every α′(t) is called timelike, a curve with
g(α′(t), α′(t)) > 0 for every α′(t) is called a spacelike, while one with g(α′(t), α′(t)) =
0 for every α′(t) is called a null curve. The latter one represents a path through
spacetime of a light signal or a particle moving at the speed of light. A timelike
curve that loops back on itself is a closed timelike curve (CTC).

In an n-dimensional manifold (M, g) where the signature-type changes from
(+,+, · · · ,+) to (−,+, · · · ,+), the conventional concept of a timelike curves does
not make sense anymore. From a suitable given point in the Lorentzian region,
the junction might be reached in finite proper time, but there is no time concept
in the Riemannian region.12 Hence, curves in the Riemannian domain are devoid
of causal meaning and cannot be distinguished as timelike, spacelike or null. In
signature-type changing manifolds this gives rise to a novel notion of curves. In
order to define those curves we have to make a detour to draw upon the concept
of the generalized affine parameter.

4.1 Properties of the generalized affine parameter

In this section we want introduce the notion of pseudo-timelike curves and pseudo-
spacelike curves. However, we need a method to discern genuine pseudo-timelike
(and pseudo-spacelike, respectively) curves and such curves that asymptotically
become lightlike as they approach the hypersurface of signature change. The gen-
eralized affine parameter will prove useful to draw this distinction. We will utilize
the definition of b-completeness in Lorentzian manifolds as ansatz and then use
the general affine parameter in a signature-type changing setting in order to define
pseudo-timelike and pseudo-spacelike curves.

In common parlance, singularities are boundary sets of a manifold where the man-
ifold structure breaks down. Usually this is visualized as a flaw in the fabric of
spacetime.13 Geroch [30] gave the first elaborated disquisition on the difficulty of
framing a reasonable definition of a singular spacetime. As maintained by the Pen-
rose–Hawking singularity theorems, singularities arise in a broad variety of space-

12Kossowski and Kriele [52] show that the assumption of signature-type change in general
relativity implies the existence of a uniquely determined natural time function which yields a
reasonable time concept in the Riemannian region. This result will be addressed later.

13Note that the singularity itself does not belong to the manifold.
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times. Strongly related to the idea of extensions, curve incompleteness is a crucial
notion in order to characterize singularities in a spacetime. Moreover, curve incom-
pleteness is the feature that is widely recognized as the most consensual account
of spacetime singularities (see, for instance, Wald [90], Section 9.1).

Definition 4.1. (Complete and incomplete curves) A complete curve is a
curve which can be extended in both directions for arbitrarily large values of a
specified parameter. A curve which is not complete is incomplete.

It appears that we should look at physically significant curves, such as geodesics
and curves with a bounded acceleration, so that we can identify singularities in a
spacetime. Notably, inextensible curves of finite length could point to the existence
of a spacetime singularity as we might think of these inextensible curves being
finite because they “hit” the singularity. That is to say, freely moving observers or
particles moving along such an incomplete curve would simply disappear after a
finite amount of proper time.

To investigate a broader class of curves beyond geodesics (i.e., non-geodesic curves),
we require a method to characterize their completeness [4, 43]. This is in view
of the fact that we face the following problem whenever we choose the proper
time as a parameter: Every spacetime contains inextensible timelike curves of
finite proper length that asymptotically become lightlike (i.e. curves of unbounded
acceleration that go to infinity).14 Considering this reality we would have to classify
Minkowski space as singular which clearly is unreasonable. What we need is some
generalization of the concept of an affine parameter to all C1 curves, geodesic or
non-geodesic, to tell apart suitable finite and inextensible curves from unsuitable
ones. Hence, we require a notion of completeness so that every C1 curve of finite
length as measured by such a parameter has an endpoint. Ehresmann [23] and
later Schmidt [78] appear to have been the first ones to propose using so-called
generalized affine parameters to define the completeness of general curves [78]. The
generalized affine parameter turns out to be a useful quantity to probe singularities
because it can be defined for an arbitrary curve which is not necessarily a geodesic.

Definition 4.2. (Generalized affine parameter) Let M be a manifold of
dim(M) = n, with an affine connection and γ : J → M a C1 curve on M . Re-
call that a smooth vector field V along γ is a smooth map V : J → TM such that

14This also applies to our signature-type changing models; but in this case the timelike curves
that asymptotically become lightlike actually are lightlike at the hypersurface of signature change.
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V (t) ∈ Tγ(t)M for all t ∈ J . Such a smooth vector field V along γ is said to be
a parallel field along γ if V satisfies the differential equation ∇γ′V (t) = 0 for all
t ∈ J , see [4] for further details.

Choose any t0 ∈ J and a C1 curve γ : J −→ M through p0 = γ(t0). Let
{e1, e2, . . . , en} be any basis for Tγ(t0)M . Let Ei be the unique parallel field along
γ with Ei(t0) = ei for 1 ≤ i ≤ n. Then {E1(t), E2(t), . . . , En(t)} forms a basis
for Tγ(t)M for each t ∈ J . We can now write γ̇(t), the vector tangent to γ at p0,
as a linear combination of the elements of the chosen basis with coefficients V i(t):
γ̇(t) =

∑n
i=1 V

i(t)Eγ(t)i︸ ︷︷ ︸
V i(t)Ei(t)

with V i : J −→ R for 1 ≤ i ≤ n. Then the generalized

affine parameter µ = µ(γ,E1, . . . , En) of γ(t) associated with this basis is given by

µ(t) =

ˆ t

t0

√√√√ n∑
i=1

[V i(t)]2dt =

ˆ t

t0

√
δijV i(t)V j(t)dt, t ∈ J. (4.1)

The assumption that γ is C1 is necessary in order to obtain the vector fields
{E1, E2, . . . , En} by parallel translation. Furthermore, we have

Proposition 4.3. [43] The curve γ has a finite arc-length in the generalized affine
parameter µ = µ(γ,E1, . . . , En) if and only if γ has finite arc-length in any other
generalized affine parameter µ = µ(γ, Ē1, . . . , Ēn).

The generalized affine parameter of a curve does depend on the chosen basis. In
effect, one treats the parallel-transported basis of vectors as though they were the
orthonormal basis of a Riemannian metric and then defines the “length” of γ(t)
accordingly. Consequently, we have the following

Proposition 4.4. If γ is a geodesic curve then µ is an affine parameter on γ.

Proof. Let the (reparametrized) curve γ̂ be defined by γ̂(µ(t)) = γ(t), then accord-
ing to the chain rule its tangent vectors are given by

γ̂′(µ) = γ̂′(µ(t)) · 1
dµ(t)
dt

= γ̇(t) · 1
dµ(t)
dt

.

We have to prove that D
dµ
γ̂′(µ) = 0 along the curve γ̂. Let γ be a geodesic, then

D
dt
γ̇(t) = f(t) · γ̇(t) along the curve γ, where f is an arbitrary function of t. Hence,

from the Definition in 4.2 it follows that
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D

dt
γ̇(t) =

D

dt

(
n∑
i=1

V i(t)Ei(t)

)
=

n∑
i=1

 d

dt
V i(t)Ei(t) + V i(t)

D

dt
Ei(t)︸ ︷︷ ︸
0



=
n∑
i=1

(
d

dt
V i(t)Ei(t)

)
= f(t) ·

(
n∑
i=1

V i(t)Ei(t)

)
= f(t) · γ̇(t).

Comparison of coefficients yields d
dt
V i(t) = f(t) · V i(t). By applying the chain rule

in Leibniz notation to D
dµ
γ̂′(µ) we get

D

dµ
γ̂′(µ) =

1
dµ(t)
dt

· D
dt
γ̂′(µ(t)) =

1
dµ(t)
dt

· D
dt

(
γ̇(t) · 1

dµ(t)
dt

)

=
1

dµ(t)
dt

· D
dt

(
n∑
i=1

V i(t)Ei(t)) ·
1√∑n

i=1[V i(t)]
2



=
1

dµ(t)
dt

·
n∑
i=1

D
dt

V i(t)Ei(t)√∑n
i=1[V i(t)]

2



=
1

dµ(t)
dt

·
n∑
i=1

 d

dt

V i(t)√∑n
i=1[V i(t)]

2
· Ei(t) +

V i(t)√∑n
i=1[V i(t)]

2
· D
dt
Ei(t)︸ ︷︷ ︸
0



=
1

dµ(t)
dt

·
n∑
i=1

(
d

dt

V i(t)√∑n
i=1[V i(t)]

2︸ ︷︷ ︸
0

· Ei(t)) = 0. (4.2)

Note that in the last line 4.2, because of d
dt
V i(t) = f(t) · V i(t), we get a vanishing

derivative
d

dt

V i(t)√∑n
i=1[V i(t)]

2
= 0.
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Therefore is µ an affine parameter if γ is a null geodesic. Furthermore, we have

d

dt
g(γ̂′(µ), γ̂′(µ)) =

d

dt

g(γ̇(t), γ̇(t))(
dµ
dt

)2

=
d

dt

g(
∑n

i=1 V
i(t)Ei(t),

∑n
i=1 V

i(t)Ei(t))∑n
i=1[V i(t)]

2 = 0,

which shows that µ is also an affine parameter if γ is a timelike or spacelike geodesic.

Note that if the metric g is positive definite, the generalized affine parameter de-
fined by an orthonormal basis is arc-length. This characterization of completeness
manages to discern exactly what we wanted to get winnowed. The elegance of this
definition lies in its applicability of µ to any C1 curve; it is equally effective for null
curves as well as for timelike or spacelike curves. Moreover, any curve of unbounded
proper length automatically has an unbounded generalized affine parameter which
gives rise to the following Definition [4].

Definition 4.5. (b-completeness) A Lorentzian manifold (M, g) is said to be
b-complete if every C1 curve of finite arc length as measured by a generalized affine
parameter has an endpoint in M .15

Hence, b-completeness identifies all C1 curves which are incomplete with respect to
their path length as measured by g. This path length is named generalized affine
parameter because it agrees with a choice of affine parameter when restricted to
geodesics. These days b-incompleteness is still considered to provide a reasonable
definition of spacetime singularities in Lorentzian manifolds.16

Since the Hopf-Rinow theorem does not hold for Lorentzian manifolds, it certainly
does not hold for signature-type changing manifolds. Hence, we need to resort to
other concepts if we want to talk about metric completeness of Lorentzian mani-
folds − and with it, signature-type changing manifolds. To make matters worse,

15Put another way, a Lorentzian manifold is said to be b-complete if all inextensible C1 curves
have infinite length as measured by the generalized affine parameter. And if the metric g is
positive definite, then b-completion coincides with the Cauchy completeness.

16It became manifest that the b-boundary behaves pathologically in some spacetime situations.
As a consequence, some relativists turned to the causal boundary instead [36].
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in a signature-type changing manifold we do not have an everywhere smooth Levi-
Civita connection (see Section 12) and that is why the notion of b-completeness
does not make sense.17 However, the notion of a generalized affine parameter still
proves useful to discern genuine pseudo-timelike (and pseudo-spacelike, respec-
tively) curves and curves that asymptotically become lightlike as they approach
the hypersurface of signature change (as we are going to discuss in Section 4.2).

The fact that the parallel-transported basis of vectors is treated though it were the
orthonormal basis of a Riemannian metric is of major significance. Moreover, the
generalized affine parameter only depends on the n-bein basis chosen and the initial
point p. And even if the value of the generalized affine parameter is different, b-
completeness is still well defined: Note that if only one generalized affine parameter
reaches finite value all of them do − and that’s the only information we need with
respect to completeness. This reasoning is based on the following estimate, see also
Appendix A:

Proof. For any two basis of Tγ(t)M which are parallel transported along γ, then
in the case of a change of basis, the components V i(t) with respect to another
basis are given by Ṽ j(t) =

∑n
i=1 A

j
iV

i(t). We then have γ̇(t) =
∑n

i=1 V
i(t)Ei(t) =∑n

i=1 Ṽ
i(t)Ẽi(t). The constant items Aji are entries in a constant, non-degenerate

n × n matrix A. Hence, there exists its inverse matrix A−1 such that V j(t) =∑n
i=1 a

j
i Ṽ

i(t). Accordingly, the generalized affine parameters with respect to these

basis are µ(t) =
´ t
t0

√∑n
i=1[V i(t)]

2
dt and µ̃(t) =

´ t
t0

√∑n
i=1[Ṽ i(t)]2dt. From this it

follows that

∣∣∣Ṽ (t)
∣∣∣ =

∣∣∣∣∣
n∑
i=1

AjiV
i(t)

∣∣∣∣∣ ≤
n∑
i=1

| Aji || V i(t) |≤ max
ij
| Aji |

∑n

i=1
| V i(t) | .

Then, by virtue of the Cauchy-Schwarz inequality:

| Ṽ j(t) |2≤ max
ij
| Aji |2

(
n∑
i=1

| V i(t) |

)2

︸ ︷︷ ︸
(
∑n
i=1|V i(t)|·1)

2

17In fact, the process of b-completion is applicable to any manifold with a Levi-Civita connec-
tion.
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≤ max
ij
| Aji |2

(
n∑
i=1

| V i(t) |2
)
·

(
n∑
i=1

1

)
= n ·max

ij
| Aji |2

(
n∑
i=1

| V i(t) |2
)
.

Thus we have

n∑
j=1

| Ṽ j(t) |2≤
n∑
j=1

(
n ·max

ij
| Aji |2

(
n∑
i=1

| V i(t) |2
))

= n2 ·max
ij
| Aji |2

(
n∑
i=1

| V i(t) |2
)
.

On the other hand, we get
∑n

j=1 | V j(t) |2≤ n2 · max
ij
| aji |2

(∑n
i=1 | Ṽ i(t) |2

)
.

Combining both estimates yields

n∑
j=1

| Ṽ j(t) |2≤ n2 ·max
ij
| Aji |2

(
n∑
j=1

| V i(t) |2
)

≤ n2 ·max
ij
| Aji |2

(
n2 ·max

ij
| aji |2

(
n∑
i=1

| Ṽ i(t) |2
))

⇐⇒ 1

n2 ·max
ij
| Aji |2

∑n

j=1
| Ṽ j(t) |2

≤
n∑
i=1

| V i(t) |2≤ n2 ·max
ij
| aji |2

(
n∑
i=1

| Ṽ i(t) |2
)
,

=⇒ 1√
n2 ·max

ij
| Aji |2︸ ︷︷ ︸

c1

√√√√ n∑
j=1

| Ṽ j(t) |2

≤

√√√√ n∑
i=1

| V i(t) |2 ≤
√
n2 ·max

ij
| aji |2︸ ︷︷ ︸

c2

√√√√ n∑
i=1

| Ṽ i(t) |2
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=⇒ c1 · µ̃(t) ≤ µ(t) ≤ c2 · µ̃(t). (4.3)

4.2 Application of the generalized affine parameter in a type-
changing manifold

LetM = ML∪H∪MR be an n-dimensional transverse type-changing singular semi-
Riemannian manifold with a symmetric type-changing metric g, and
H := {q ∈ M : g |q is degenerate} the locus of signature change. We further
assume that one component, ML, of M \ H is Lorentzian and the other one, MR,
is Riemannian.

Definition 4.6. (Pseudo-lightlike curve) Given a continuous and differentiable
curve γ : [a, b] −→ M , with [a, b] ⊂ R, where −∞ < a < b < ∞. Then the curve
γ = γµ(u) = xµ(u) is a pseudo-lightlike curve if

• its tangent vector field in the Lorentzian component ML is null,

• its tangent vector field in the Riemannian component MR is arbitrary.

Similarly for a pseudo-causal curve. Note that an analogous definiton for pseudo-
timelike and pseudo-spacelike curves turns out to be problematic as the definition
would also include curves that asymptotically become lightlike as they approach
H.

For example we may refer to the metric g = t(dt)2 + (dx)2 defined on R2, and the
non-parametrized, non-geodesic curve γ given by tanx = 2

3

√
| t |3 · sgn(t), with

−π
2
< x < π

2
. We rearrange this equation so that the variable x is by itself on one

side:

3

2
tanx = sgn(x)· | 3

2
tanx |= sgn(t)· | t |

3
2

⇐⇒ sgn(t)· | t |︸ ︷︷ ︸
t

= sgn(x) ·
(
| 3

2
tanx |

) 2
3

⇐⇒ t = sgn(x) ·
(
| 3

2
tanx |

) 2
3

.
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Reintroducing the coordinate transformation as suggested by Dray [21]

T =

ˆ t

0

√
| t̃ |dt̃ =

2

3

√
| t |

3
· sgn(t).

This gives us the metric expression g = sgn(T )(dT )2 + (dx)2, and for the curve
γ we get T = tanx. Hence, the curve in the (T, x)−coordinate system is just
the tan−function and its derivative is 1

cos2(x)
. As a result is γ in ML timelike,

approaching from timelike infinity the lightcone, and tangentially touches the light
cone at T = 0 (where the derivative assumes 1

cos2(0)
= 1). These are the sort of

curves we want to avoid in our definition.

Figure 4.1: The curve defined by t = sgn(x) ·
(
| 32 tanx |

) 2
3 .

Moreover, if the curve γ = (T (s), x(s)) is parametrized by arc length s, then in the
(t, x)-coordinate system both dx

ds
and dt

ds
diverge in ML:
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−1 = −(dT
ds

)2 + (dx
ds

)2 = −(dT
dx

dx
ds

)2 + (dx
ds

)2

=
(
−(d tanx

dx
)2 + 1

)
(dx
ds

)2 = (− 1
cos4 x

+ 1)(dx
ds

)2

⇐⇒ (dx
ds

)2 = −1
(− 1

cos4 x
+1)

=⇒ lim
x→0

dx
ds

= lim
x→0
±
√

−1
(− 1

cos4 x
+1)

= ±∞.

−1 = −(dT
ds

)2 + (dx
ds

)2 =
(
−1 + 1

( dT
dx

)2

)
(dT
ds

)2 = (−1 + cos4 x︸ ︷︷ ︸
1

( d tan x
dx

)2

)(dT
dt

)2( dt
ds

)2

= (−1 + 1
(1+tan2 x)2 )· | t | ( dt

ds
)2 = (−1 + 1

(1+T 2)2 )· | t | ( dt
ds

)2

= (−1 + 1
(1+ 4

9
|t|3)2 )· | t | ( dt

ds
)2

⇐⇒ ( dt
ds

)2 = −1
(−1+ 1

(1+ 4
9 |t|

3)2
)·|t|

=⇒ lim
t→0

dt
ds

= lim
t→0
±
√

−1
(−1+ 1

(1+ 4
9 |t|

3)2
)·|t| = ±∞.

While the components of γ′ do not diverge in the (T, x)-coordinate system, both dx
ds

and dt
ds

diverge in ML in the (t, x)-coordinate system. Because of this dependency
of coordinates the criterion of divergence is not useful for defining pseudo-timelike
and pseudo-spacelike curves. That is where the coordinate-independent generalized
affine parameter comes into play.

Definition 4.7. (Pseudo-timelike curve) Let M = ML ∪ H ∪MR be an n-
dimensional transverse type-changing singular semi-Riemannian manifold, g be a
symmetric type-changing metric, and H := {q ∈M : g |q is degenerate} the locus
of signature change. We further assume that one component, ML, of M \ H is
Lorentzian and the other one, MR, is Riemannian.
Given a continuous and differentiable curve γ : [a, b] → M , with [a, b] ⊂ R, where
−∞ < a < b < ∞. Then the curve γ = γµ(u) = xµ(u) in M is called pseudo-
timelike (respectively, pseudo-spacelike) if for every generalized affine parametriza-
tion of γ in ML ∃ ε > 0 such that g(γ′, γ′) < −ε (respectively, g(γ′, γ′) > ε).18

18Since Definition 4.2 is already independent of a choice of coordinates and instead refers to a
(generally anholonomic) basis, the above Definition 4.7 is also coordinate independent. The inde-
pendence of Definition 4.7 from the choice of this basis is a direct consequence of Proposition 4.3.
In particular, in the case of a basis change we just relegate to the Estimate 4.3.
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Figure 4.2: The curve γ is not a pseudo-timelike since it approaches a null vector at the locus
of signature change. This curve is asymptotically lightlike.

Example 4.8. Revisiting the example from Section 4.2, we find that both coor-
dinate vector fields, ∂

∂T
and ∂

∂x
, are covariantly constant in ML and MR (this is

because the Christoffel symbols all vanish in the (T, x)-coordinate system). Hence,
we can parallel transport ∂

∂T
and ∂

∂x
along any curve in ML and MR.

Since we aim at parametrizing the curve γ by the generalized affine parameter µ
with respect to the coordinate vector fields ∂

∂T
= 1√

|t|
∂
∂t

and ∂
∂x

we are able to start

with an arbitrary parametrization. Hence, let γ(t) = (T (t), x(t)) be parametrized
by t, and then γ̇(t) = dT

dt
∂
∂T

+ dx
dt

∂
∂x
.

By means of Definition 4.2 we immediately get

V 0(t) =
dT

dt
=
√
| t |

and

V 1(t) =
dx

dt
=

d

dt
arctan

(
2

3

√
| t |

3
sgn(t)

)
.
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And in ML this yields

V 1(t) =

√
| t |

1 + 4
9
| t |3

.

Consider now γ̃(t(s)) = γ(s), in which γ̃ is related to the curve γ by reparametriza-
tion of γ̃ by t. With this notation we have the basis fields Eγ̃(t),0 = 1√

|t|
∂
∂t

and

Eγ̃(t),1 = ∂
∂x

along γ̃. The reparametrized curve γ̃(t(s)) also gives

˙̃γ(t) = V i(t)Eγ̃(t),i =
∂

∂t
+
dx

dt

∂

∂x
.

The Definition 4.2 for the generalized affine parameter gives

dµ

dt
=
√

(V 0(t))2 + (V 1(t))2 =

√
| t | + | t |

(1 + 4
9
| t |3)2

.

It now follows easily that for the reparametrization of γ̂(t) by the generalized affine
parameter µ (i.e. γ̂(µ(t)) = γ̃(t)) we have in ML:

g( ˙̂γ(µ(t)), ˙̂γ(µ(t))) = g(
dγ̂(µ(t))

dµ
,
dγ̂(µ(t))

dµ
) = g(

1
dµ
dt

˙̂γ(t),
1
dµ
dt

˙̂γ(t))

=
g( ∂

∂t
+ dx

dt
∂
∂x
, ∂
∂t

+ dx
dt

∂
∂x

)

(dµ
dt

)2
=

t+ (dx
dt

)2

| t | + |t|
(1+ 4

9
|t|3)2

=
t+ |t|

(1+ 4
9
|t|3)2

| t | + |t|
(1+ 4

9
|t|3)2

.

Taking the limit

lim
t→0−

t+ |t|
(1+ 4

9
|t|3)2

| t | + |t|
(1+ 4

9
|t|3)2

= 0

reveals that the curve γ is not pseudo-timelike as it does not meet the ε−requirement
of Definition 4.7.

In Section 4.1 we repeatedly vaguely referred to the concept of a timelike (or space-
like curve, respectively) curve that asymptotically becomes lightlike. The above
example highlights how the notion of “asymptotically lightlike” should be under-
stood. A timelike (or spacelike curve, respectively) curve inML that is not pseudo-
timelike (or pseudo-spacelike, respectively) can be thus specified as asymptotically
lightlike.
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Example 4.9. Finally, if we slightly modify the previously discussed curve γ by
keeping the t-coordinate but stating x = 0, we get the curve α. With the same
notation as above, we then get V 0(t) =

√
| t |, V 1(t) = 0 and dµ

dt
=
√
| t |. Hence,

this results in g( ˙̂α(µ(t)), ˙̂α(µ(t))) = 1
|t|g( ∂

∂t
, ∂
∂t

) = t
|t| = −1 in the Lorentzian region

ML. The curve α is pseudo-timelike as it obviously does meet the ε-requirement
of Definition 4.7.

This disquisition makes it clear why the notion of the generalized affine parameter is
necessary and useful in order to define pseudo-timelike and pseudo-spacelike curves:
If we were to loosen the requirement for Definition 4.7 and replaced “for every
generalized affine parametrization of γ in ML” with “for any affine parametrization
of γ in ML”, there wouldn’t exist any timelike curve in ML that would qualify to
be pseudo-timelike in all ofM . Similarly, any timelike curve inML would meet the
requirements of a pseudo-timelike curve if we modified the definition by requesting
“for a suitable parametrization of γ in ML” instead of “for every generalized affine
parametrization of γ in ML”. In this regard, the concept of the generalized affine
parameter is the right tool to tell apart suitable from unsuitable curves for the
definition of pseudo-timelike and pseudo-spacelike curves.

Interestingly, our rationale for the new definition of a pseudo-timelike curve is
reminiscent of the analysis undertaken in [63]. In Section 2 of [63] the distinction
between causal curves, timelike almost everywhere curves and timelike curves is
introduced in which the latter one is defined as follows: A timelike curve is a
causal curve γ : I −→ M such that g(γ′, γ′) < −ε almost everywhere for some
ε > 0.
The authors illustrate the situation in Figure 1 which contrasts a timelike curve
with a timelike almost everywhere curve. The latter one can not be viewed as a
timelike curve because it approaches a null vector at its break point. Compared to
our setting, however, the culprit here is that the curve is not differentiable at the
breaking point. But even if we smoothed out the breaking point, the curve would
still remain timelike almost everywhere.

Let us now conceive of the breaking point being located at a hypersurface of sig-
nature change and the Minkowski space replaced by a signature-type changing
manifold. Similar to our toy model in (T, x)-coordinates (see Section 5) the “lower”
part would be Lorentzian and the “upper” part Riemannian. Then the depicted
“timelike almost everywhere” curve would be in fact just timelike in most of the
Lorentzian sector, but it would approach a null vector at the locus of signature
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change. Therefore it could not be classified as a pseudo-timelike curve according to
our Definition 4.7. This again reconfirms and justifies our reasoning to introduce
such a definition for pseudo-timelike curves.

Now we can slightly modify the definition of a (simply) closed curve in order for it
to correctly apply to signature-type changing singular semi-Riemannian manifolds
M with a metric g:

Definition 4.10. (Chronology-violating curve) A smooth, pseudo-timelike
curve γ : I −→ M is said to be chronology-violating when there is a subset of
γ[I] homeomorphic to S1 such that there are at least two parameters s1, s2 ∈ I
that satisfy γ(s1) = γ(s2), and γ belongs to one of the following two classes:19

1. The pseudo-timelike curve γ is periodic, i.e the image γ[I] is homeomorphic
to S1. Moreover, for s1, s2 ∈ I the associated tangent vectors, γ′(s1) and
γ′(s2), are timelike and positively proportional. We denote this type of curve
as closed pseudo-timelike curve.

2. The curve γ intersects itself for s1, s2 ∈ I and the associated tangent vectors,
γ′(s1) and γ′(s2), are timelike whereas the tangent directions are not neces-
sarily the same (i.e. they do not need to be positively proportional). This
type of curve is said to contain a loop.

The following Definition leans on [71]:

Definition 4.11. A geodesic γ : I −→ M for the metric g with γ(s1) = γ(s2),
for some s1, s2 ∈ I, is closed if the associated tangent vectors, γ′(s1) and γ′(s2),
are timelike, the curve γ is periodic and all derivatives match: γ′(s1) = γ′(s2),
γ′′(s1) = γ′′(s2) et cetera, s1, s2 ∈ I.
If the latter condition is dropped, the curve γ is called a geodesic loop.

19Note that this means that there must be at least one such subset to fulfill this definition.
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5 Signature-type changing toy model

Equipped with the information from the preceding section, we want to explore
what happens sufficiently close to the boundary hypersurface in a 2-dimensional
toy model setting.

Consider on R2 the signature-type changing metric ds2 = t(dt)2 + (dx)2, which
becomes degenerate at t = 0, where it makes a transition from being Lorentzian
to Riemannian [21]. Then the pair (R2, g) is a flat type-changing singular semi-
Riemannian manifold with the locus of signature change at t = 0.20 Considering
the canonical embedding f : R −→ R2 given by f(x) := (0, x), the metric induced
on the hypersurface of signature change has the form f ∗(t(dt)2 + (dx)2) = (dx)2.
Since the induced metric is positive-definite the hypersurface is spacelike, hence
Riemannian. Moreover, by Sylvester’s law of inertia, the normal to the hypersuface
H at each point (0, x) is span({ ∂

∂t
}), and therefore null.

5.1 General affinely parameterized geodesics

We want to take special care in understanding the behavior of the geodesics as they
traverse the threshold between the domains of different signature. The geodesics
in a signature-type changing universe bring up interesting questions. It is usually
clear how geodesics evolve in the Riemannian region as well as in the Lorentzian
region, but there are problems of interpretation concerning particles crossing the
junction. This points to questions regarding the compatibility of geodesics across
the transition surface: A careful analysis into whether geodesics on the Lorentzian
domain can be matched to those of the Riemannian domain has to be carried out.

We are going to solve the general geodesic equations in both domains and then
match them at the boundary. It is desired to introduce an affine parameter s which
then gives the usual definitions of the Lagrange function L and the Euler-Lagrange
equations as follows:

L = 1
2
tṫ2 + 1

2
ẋ2,

0 = ∂L
∂t
− d

ds
(∂L
∂ṫ

) = 1
2
ṫ2 − d

ds
(tṫ) = 1

2
ṫ2 − (ṫ2 + tẗ) = −1

2
ṫ2 − tẗ,

20Flat in the sense that the regions with t < 0 and t > 0 are flat.
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0 = ∂L
∂x
− d

ds
(∂L
∂ẋ

) = −ẍ,

where the dots denote differentiation with respect to the affine parameter s. We
take into account that the Lagrangian L is composed of two indepented compo-
nents, 1

2
tṫ2 and 1

2
ẋ2. This enables us to examine each of the components separately

which makes our calculations simpler. Furthermore, it is a well known fact that
an affine parameterization along a geodesic yields that the Lagrangian itself is a
constant of motion, which gives us

d

ds
(
1

2
tṫ2) =

1

2
ṫ3 + tṫẗ = ṫ(

1

2
ṫ2 + tẗ) = 0.

For the sake of simplicity we denote the constants 1
2
tṫ2 by L0 and 1

2
ẋ2 by L1,

respectively, with d
ds
L0 = d

ds
L1 = 0. In addition, the coefficients of the Levi-

Civita connection ∇ for the metric ds2 = t(dt)2 + (dx)2 are obviously given by
Γ 1

11 = Γ t
tt = 1

2t
, while the rest of the Christoffel symbols are zero.

• Case L0 > 0:

For L0 > 0⇐⇒ t > 0 we are looking at the Riemannian region. In order to avoid
confusion, let L0 for t > 0 be denoted as L0+. From L0 = 1

2
tṫ2 = 1

2
t
(
dt
ds

)2 follows
that (

dt

ds

)2

=
2L0+

t

⇔
√
t
dt

ds
= ±

√
2L0+. (5.1)

This equation 5.1 can be integrated immediately to obtain

2

3

√
t
3

= ±
√

2L0+(s− s0), (5.2)

where s0 is an arbitrary constant of integration. Then we square 5.2 which gives

4

9
t3 = 2L0+(s− s0)2.

From this we obtain as part of the geodesic equation

t(s) =
3

√
9

2
L0+(s− s0)2.
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As expected, for t < 0 this equation cannot be satisfied. The transition surface at
t = 0 is crossed when s = s0. However, as t approaches 0 from above,

∣∣ṫ∣∣ =
√

2L0+

t

for t → 0 tends to infinity, and the geodesics appear to be almost veritical close
to the junction at t = 0. Therefore the unit spheres become more narrow as they
approach the junction and eventually degenerate at t = 0. These geodesics cannot
be extended to t < 0 as we will show below.

Figure 5.1: General geodesics in the Riemannian region for the case L0 > 0 with L0 fixed and
arbitrary s0. The coordinate t serves as a function of the affine parameter s. It is easy to see

that
∣∣ṫ∣∣ =

√
2L0+

t →∞ for t→ 0.

• Case L0 = 0:

For the case L0 = 1
2
tṫ2 = 0 the only relevant equation for general, affinely parame-

terized geodesics results from the condition ṫ = 0 ∧ t 6= 0:
This again means that ṫ(s) = 0 for all the parameter values s with t(s) 6= 0. If s1 is
such a parameter value, then because of t being continuous, on a sufficiently small
interval I 3 s1 we have t(s) 6= 0 for all s ∈ I. This in turn implies that ṫ(s) = 0
for s ∈ I, which means that t(s) is constant on the interval I. Because t is locally
Lipschitz continuous we can then conclude through analytic continuation that this
solution is valid for all s ∈ R.
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Having said that, we assume that for the case L0 = 1
2
tṫ2 = 0 we have an arbitrary

ṫ(s) if t(s) = 0. Let s2 be such a parameter value for which t(s2) = 0 and ṫ(s2) 6= 0.
Then similarly to the reasoning above, on a sufficiently small interval J 3 s2 we
have ṫ(s) 6= 0 for all s ∈ J . This means that t is not constant, i.e. t(s2) = 0 and
t(s) 6= 0 for all other s ∈ J . According to the above argument, however, t(s) 6= 0
for all other s ∈ J would imply that t(s) is constant on the interval J , which is a
contradiction. Obviously, if t(s) = 0 then ṫ(s) = 0.
Moreover, this line of argument leads to the geodesic equation t(s) = ct for the
initial condition given by t(s1) and s1.

Figure 5.2: Geodesics for L0 = 0 resulting from the condition ṫ = 0 ∧ t 6= 0, where the
coordinate t is a function of the affine parameter s.

• Case L0 < 0:

For L0 < 0⇐⇒ t < 0 we are looking at the Lorenzian region. Let L0 for t < 0 be
denoted as L0−. From L0 = 1

2
tṫ2 = 1

2
t
(
dt
ds

)2 follows that

−t
(
dt

ds

)2

= −2L0−

⇔
√
−t dt
ds

= ±
√
−2L0−. (5.3)
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Once again, this equation 5.3 can be integrated and yields

− 2

3

√
−t3 = ±

√
−2L0−(s− s0), (5.4)

where s0 is an arbitrary constant of integration. Then we square 5.4 which gives

4

9
(−t)3 = −2L0−(s− s0)2.

This leads to the solution

t(s) = − 3

√
−9

2
L0−(s− s0)2.

Analogously to the case L0 > 0, this part of the geodesic equation cannot be
satisfied for t > 0. The transition surface at t = 0 is crossed when s = s0.
However, as t approaches 0 from below,

∣∣ṫ∣∣ =
√

2L0−
t

for t → 0 tends to infinity
and the geodesics appear to be almost vertical close to the junction at t = 0.
Therefore, the light cones become more narrow as they approach the junction and
eventually squeeze shut at t = 0. Also, these geodesics cannot be extended to
t > 0.

Figure 5.3: Geodesics in the Riemannian region for the case L0 < 0, with L0 fixed and arbitrary
s0. The coordinate t serves as as a function of the affine parameter s. It is easy to see that∣∣ṫ∣∣ =

√
2L0−
t →∞ for t→ 0.
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• Case L1:

Continuing in the same fashion as above for L1 leads to the x-part of the geodesic
equation. However, the expression L1 = 1

2
ẋ2 is obviously non-negative for all x ∈ R,

so while still following the previous approach we can drop the case distinction.

From L1 = 1
2
ẋ2 = 1

2

(
dx
ds

)2 follows that(
dx

ds

)2

= 2L1

⇔ dx

ds
= ±

√
2L1. (5.5)

The equation 5.5 can be easily integrated to obtain the general solution

x(s) = ±
√

2L1 · s+ c = c+ ẋ · s,

where c is an arbitrary (possibly zero) constant on integration. Denoting the con-
stant ẋ by w and substituting c with x(s0)− w · s0 leads to

x(s) = (x(s0)− w · s0) + w · s = x(s0) + w(s− s0),

where s0 is an arbitrary constant of integration. From this we obtain the x-part of
the geodesic equation in terms of the parameter s:

x(s) = x(s0) + w(s− s0). (5.6)

5.2 Matching geodesics

At this point we want to examine how to match geodesics at the junction at t = 0.
Each geodesic on the Riemannian domain has to be matched to a geodesic on the
Lorentzian domain. Obviously there are infinitely many geodesics at each param-
eter s0. More precisely, from any fixed parameter s0− infinitely many geodesics
emanate into the Lorentzian domain, each associated to a particular choice of
(L0i−). Similarly on the Riemannian domain, from any fixed parameter s0+ in-
finitely many geodesics emanate into the Riemannian domain, each associated to
a particular choice of (L0i+). And it is not clear which geodesic on the Lorentzian
domain can be matched to which one on the Riemannian domain (see Figure 5.4).
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Also, questions regarding the compatibility of geodesics across the transition sur-
face must be addressed.

This means that for any pair of parameters (L0i+, s0+) on the Riemannian region
(t > 0) we want to find a matching pair of parameters (L0i−, s0−) on the Lorentzian
region (t < 0). It is assumed that t(s0−) = t(s0+) = 0, and we clearly have
s0+ = s0− because t is continuous in s0. Hence, we have the corresponding limit:

s0+ = lim t
t→0
t<0

= lim t
t→0
t>0

= s0−.

Figure 5.4: Geodesics with fixed s0 and arbitrary L0i+, L0i−.

It remains to show that we can properly assign a L0i+ to a L0i−. However, because
of

lim
s→s0

ṫ(s) = ±∞

the first derivative of t is discontinuous (and has a vertical inflection point in s0),
hence the parameter value s0 is associated with a cusp. So there is no (unique)
continuous continuation from the Lorentzian region with t < 0 to the Riemannian
region with t > 0. In a sense the geodesics all break down at the signature-type
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changing junction. From the analysis in the previous section, this issue is rooted
in the choice of the coordinate t. To get around this, we introduce a suitable
coordinate transformation as suggested by Dray [21]

T =

t̂

0

√∣∣t̃∣∣dt̃, (5.7)

from which we get the expression

(dT )2 = |t| (dt)2 = t · sgn(t)︸ ︷︷ ︸
|t|

(dt)2 = t · sgn(T )(dt)2 =
t

sgn(T )
(dt)2 (5.8)

for t 6= 0. And 5.8 can be rewritten as

t(dt)2 = sgn(T )dT 2.

This yields t(dt)2 + (dx)2 = sgn(T )(dT )2 + (dx)2 for T 6= 0. The metric

ds2 = sgn(T )(dT )2 + (dx)2 (5.9)

is very different from

ds2 = t(dt)2 + (dx)2 (5.10)

as it is no longer degenerate at t = 0, but it is discontinuous and not well defined at
t = 0. Note that the difference between the metric (5.9) and (5.10) is to some ex-

tend only a coordinate transformation. Hence, sgn(T ) = sgn(t) and |T | = 2
3

√
|t|3.

Therefrom it suffices to focus on either approach because a straightforward coor-
dinate transformation will translate any statement made in one setting into the
other setting.
This stems from the fact that only the limits of quantities as computed within the
embedding from either side are relevant for the Lagrangian point of view, but we
never need to specify a particular value at the hypersurface of signature change
(i.e., at t = 0), even if the metric is discontinuous. However, the two coordinates
T and t are related to two different notions of differentiability: for any function f ,
the existence of ∂tf is not equivalent to the existence of ∂Tf at T = t = 0 [27].
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Considering again the standard embedding f : R −→ R2 given by f(x) := (0, x),
the metric induced on the hypersurface of signature change by the metric ds2 =
sgn(T )(dT )2 + (dx)2 has the form f ∗(sgn(T )(dT )2 + (dx)2) = (dx)2.

We consider the geodesics using the discontinuous metric

ds2 = sgn(T )(dT )2 + (ds)2

for which we get the following Lagrange function L and the associated Euler-
Lagrange equations as follows:21

L =
1

2
sgn(T )Ṫ 2 +

1

2
ẋ2,

0 =
∂L
∂T
− d

ds
(
∂L
∂Ṫ

)

=
1

2
Ṫ 2∂sgn(T )

∂T︸ ︷︷ ︸
0

− d

ds
sgn(T )Ṫ = − d

ds
sgn(T )︸ ︷︷ ︸
0

· Ṫ − sgn(T ) · d
ds
Ṫ = −sgn(T )T̈ ,

0 =
∂L
∂x
− d

ds
(
∂L
∂ẋ

) = ẍ,

where sgn(T ) is a constant on each component away from the surface of signature
change at T = 0, and the dots denote differentiation with respect to the affine
parameter s. Keep in mind that L is actually not defined at T = t = 0. What
is more, the coefficients of the Levi-Civita connection ∇ for the metric ds2 =
sgn(T )(dT )2 + (dx)2 are all zero.

The Lagrangian L is again composed of two independent components, 1
2
sgn(T )Ṫ 2

and 1
2
ẋ2. So we examine each of the components separately:

d

ds
(
1

2
sgn(T )Ṫ 2) = Ṫ sgn(T )T̈︸ ︷︷ ︸

0

= 0,

21Note that the Euler-Lagrangian equations are only well-defined in the regions away from
T = 0.
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and we denote the constant 1
2
sgn(T )Ṫ 2 by L0, with d

ds
L0 = 0. Now the geodesics

can be immediately computed. From

L0 =
1

2
sgn(T )Ṫ 2 =

1

2
sgn(T )

(
dT

ds

)2

follows (
dT

ds

)2

=
2L0

sgn(T )

⇔ dT

ds
= ±

√
2L0

sgn(T )

´
⇒ T (s) = ±

√
2L0(s− s0)2

sgn(T )
= ±

√
2L0

sgn(T )
(s− s0).

• Case L0 > 0:

For L0 > 0 ⇐⇒ T > 0 ⇐⇒ t > 0 ⇐⇒ sgn(T ) = 1 we are looking at the
Riemannian region with

T (s) = ±
√

2L0+(s− s0),

where L0 for t > 0 is denoted as L0+.

• Case L0 < 0:

For L0 < 0 ⇐⇒ T < 0 ⇐⇒ t < 0 ⇐⇒ sgn(T ) = −1 we are looking at the
Lorentzian region with

T (s) = ±
√
−2L0(s− s0),

where L0 for t < 0 is denoted as L0−.

Due to
lim
s→s0
±
√
−2L0−(s− s0) = lim

s→s0
±
√

2L0+(s− s0)

there obviously exists a continuous continuation from the Lorentzian region with
T < 0 to the Riemannian region with T > 0. We can easily assign a L0i+ to a
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L0i−, given L0i+ = −L0i−, which result in geodesics that are well behaved at the
transition surface.

To further analyze the geodesics we want the coordinate x to be a function of
t. We start with the case t > 0 and the geodesic equation 5.6 from case L1 in
Subsection 5.1

x(s) = x(s0) + w(s− s0).

Plugging in the term 5.2 ±2
3

√
t
3

√
2L0+

from Subsection 5.1 (case L0 > 0) for (s − s0)

results in

x(s) = x(s0)± 2

3

w
√
t
3

√
2L0+

.

In an analogous manner we get for the case t < 0 the equation

x(s) = x(s0)∓ 2

3

w
√
−t3√

−2L0−
.

By taking the limit as t tends to zero,

lim
t→0
t>0

x(s) = lim
t→0
t>0

(
x(s0)± 2

3

w
√
t
3

√
2L0+

)
= lim

t→0
t<0

(
x(s0)∓ 2

3

w
√
−t3√

−2L0−

)
= lim

t→0
t<0

x(s) = x(s0),

makes it obvious that we can merge both equation into one by setting L0 := −L0− =
L0+. The new equation then becomes

x(s) = x(s0)± 2

3
· sgn(t)

w
√
|t|3√

2L0

.

5.2.1 Null geodesics

Now we are jumping straight into calculating the null geodesics by imposing the
null-like condition. For the toy model this condition is 2L = sgn(T )Ṫ 2 + ẋ2 = 0.

For t < 0 this equation then, using that L0− = 1
2
sgn(T )Ṫ 2 and w = ẋ, takes the

form

0 = L = L0− +
1

2
w2 = −L0 +

1

2
w2.
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Rewriting the equation and taking the square root produces

±1 =
w√
2L0

.

Plugging this null condition into the geodesic equation

x(s) = x(s0)± 2

3
· sgn(t)

w
√
|t|3√

2L0

gives the null geodesics

x(s) = x(s0)± 2

3
· sgn(t) ·

√
|t|

3
.

This geodesic equation is obviously valid for all t ∈ R.
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6 Generalization of the toy model

Let (M, g) be a transverse type-changing singular semi-Riemannian manifold with
dim(M) = 2. We will consider the toy model (Section 5) as an example of this
family, and analyze two classical problems in differential geometry. We show that
the toy model possesses a smooth isometric embedding into Minkowski space. We
also provide conditions on the Gaussian curvatureK, which guarantee the existence
of non-trivial singularity free models within the class of signature-type changing
manifolds in consideration.

6.1 Isometric embedding into Minkowski space

In this section, we set forth that an isometric embedding of the 2-dimensional
toy model (Section 5) into the 3-dimensional Minkowski space exist. Then we
shed light on what such an embedding looks like. We recall that our toy model
universe is modeled on R2 and is a 2-dimensional signature-type changing manifold.
Furthermore, g is a symmetric type-changing metric with the metric tensor having
the form ds2 = t(dt)2 + (dx)2.

To make the question more precise, we can ask whether there exists an embedding
f = (ϑ, ξ, x) : R2 −→ R1,2, such that the Minkowski metric in R1,2 induces on
the submanifold f(R2) the given metric g? In other words, f is a smooth map,
such that df · df = g. The isometric embedding in question is given locally by
functions ϑ(t, x), ξ(t, x), x(t, x), such that −(dϑ)2 + (dξ)2 + (dx)2 = t(dt)2 + (dx)2.
This implies

t = −(
∂ϑ(t, x)

dt
)2 + (

∂ξ(t, x)

dt
)2 + (

∂x(t, x)

dt
)2,

1 = −(
dϑ(t, x)

dx
)2 + (

dξ(t, x)

dx
)2 + (

dx(t, x)

dx
)2.

For the time being we can restrict our attention to the relevant embedding functions
and ignore the x-coordinate which both manifolds have in common. Thus, without
loss of generality, we only have to deal with

t = −(
dϑ(t, x)

dt
)2 + (

dξ(t, x)

dt
)2.
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It is reasonable to choose the initial values of ϑ = ξ = 0 for t = 0, such that we
have (0 ≤ dϑ

dt
) ∧ (0 ≤ dξ

dt
) ∀t. The first requirement ensures, nota bene, that the

hypersurface of signature change goes through the origin.

A promising ansatz to solve this underdetermined equation lies in the fact that
we are dealing with Minkowski space. We already know that for t = 0 we have
ϑ = ξ = 0. Furthermore, the embedded curve segment for t < 0 should lie within
the light cone (i.e. the curve for t < 0 should be timelike). And the curve segment
for t > 0 should lie outside of the light cone (i.e. the curve for t > 0 should be
spacelike). So it suggests itself to consider the hyperbola ϑ2 − ξ2 = −1 which lies
inside the light cone and then rotate it by 45 degrees in clockwise direction and
shift it such a way that it goes through the origin.

Figure 6.1: The hyperbola 1
2 (2ξ +

√
2)(
√

2− 2ϑ) = 1 obtained from ϑ2 − ξ2 = 1 by rotating it
by 45 degrees in clockwise direction and shift it such that it goes through the origin.

This procedure yields
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((ξ + (1/√2)) cos(π/4) − (ϑ − (1/√2)) sin(π/4))2 − ((ϑ − (1/√2)) sin(π/4) + (ξ +
(1/√2)) cos(π/4))2 = 1

⇐⇒ 1
2
(2ξ +

√
2)(
√

2− 2ϑ) = 1

⇐⇒ ξ =
√

2ϑ√
2−2ϑ

⇐⇒ ϑ =
√

2ξ

2ξ+
√

2
.

Plugging dξ
dϑ

= 2
(
√

2−2ϑ)2 into

t = −(
dϑ(t, x)

dt
)2 + (

dξ(t, x)

dt
)2 =

(
−1 + (

dξ(t, x)

dϑ(t, x)
)2

)(
dϑ(t, x)

dt

)2

gives

(
4

(
√

2− 2ϑ)4
− 1

)
(
dϑ

dt
)2 = t⇔

(
4

(
√

2− 2ϑ)4
− 1

)
(dϑ)2 = t(dt)2.

Note that we have

(
4

(
√

2−2ϑ)4 − 1
)
≥ 0 if t ≥ 0, hence 4 ≥ (

√
2− 2ϑ)4,(

4
(
√

2−2ϑ)4 − 1
)
≤ 0 if t ≤ 0, hence 4 ≥ (

√
2− 2ϑ)4,

4 = (
√

2− 2ϑ)4 if t = 0, hence (ϑ = 0) ∨ (ϑ =
√

2).

If we take into account the above symmetry with respect to ϑ = 1√
2
of the graph

4
(
√

2−2ϑ)4 − 1, we can consider the absolute value of the equation:∣∣∣∣ 4

(
√

2− 2ϑ)4
− 1

∣∣∣∣ (dϑ)2 = |t| (dt)2.

Taking the square root of both sides of the equation gives us

√∣∣∣∣ 4

(
√

2− 2ϑ)4
− 1

∣∣∣∣dϑ =
√
|t|dt
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⇐⇒
ϑˆ

0

√∣∣∣∣ 4

(
√

2− 2ϑ)4
− 1

∣∣∣∣dϑ̃ =

tˆ

0

√
|t|dt̃ =

2

3

√
|t|

3
sgn(t),

which is an exact, but implicit solution for the isometric embedding. To illuminate
how the function behaves, we first note that

lim
ϑ→ 1√

2

ϑˆ

0

√∣∣∣∣ 4

(
√

2− 2ϑ)4
− 1

∣∣∣∣dϑ̃ =∞.

Then based on the series expansion at ϑ = 0, we have the following approximations:

For −1� θ � 1√
2
:

ϑˆ

0

√∣∣∣∣ 4

(
√

2− 2ϑ)4
− 1

∣∣∣∣dϑ̃ ≈
ϑˆ

0

√∣∣∣4√2ϑ
∣∣∣dϑ̃ = 2

4
√

2

 ϑˆ

0

√
|ϑ|dϑ̃


= 2

4
√

2

(
2

3

√
|ϑ|

3
sgn(ϑ)

)
=

4 4
√

2

3

√
|ϑ|

3
sgn(ϑ)

=⇒ 4 4
√

2

3

√
|ϑ|

3
sgn(ϑ) ≈ 2

3

√
|t|

3
sgn(t)

⇐⇒ 2
4
√

2
√
|ϑ|

3
sgn(ϑ) ≈

√
|t|

3
sgn(t)

=⇒ ϑ ≈ t

2
5
6

.

For ϑ� −1:

ϑˆ

0

√∣∣∣∣ 4

(
√

2− 2ϑ)4
− 1

∣∣∣∣︸ ︷︷ ︸
≈1

dϑ̃ ≈ ϑ.
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6.2 Gaussian curvature

We have figured out how the 2-dimensional toy model is situated within the 3-
dimensional Minkowski space, and that an isometric embedding actually exists.
Now we can turn to the Gaussian curvature K which completely characterizes
the curvature of a surface. We restrict our considerations to the 2-dimensional
transverse type-changing singular semi-Riemannian manifold.

Gaussian curvature is an intrinsic property of a manifold independent of the co-
ordinate system used to describe it, and is usually defined in terms of the metric
ds2 = Edu2 + 2Fdudv +Gdv2 as

K = − 1

2
√
EG

(
∂

∂u

∂G
∂u√
EG

+
∂

∂v

∂E
∂v√
EG

)
, (6.1)

where u, v denote an orthogonal coordinate system (i.e. F = g(∂u, ∂v) = 0).

Applying this to a generalized toy model metric

g = sgn(T )(dT )2 +G(T, x)(dx)2

in the (T, x)-coordinate system, makes it clear that K can only be calculated for
the Riemannian region MR. Plugging in E = 1 yields immediately

K = − 1

2
√
G

(
∂

∂T

∂G
∂T√
G

)
= − 1

2G

∂2G

∂T 2
+

1

G2
(
∂G

∂T
)2.

For the Lorentzian region ML we resort to the formula that is based on the Rie-
mannian curvature tensor, then the Gaussian curvature is given by

K =
1

EG

(
1

2

∂2G

∂u2
− 1

4

(∂E
∂v

)2

E
− 1

4

(∂G
∂u

)2

G

)
.

Plugging in E = −1 yields immediately K = − 1
2G

(
∂2G
∂T 2 − 1

2G
(∂G
∂T

)2
)
.

Hence, the Gaussian curvature satisfies K = 0 if and only if we have the following,
respectively:
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• In the Riemannian region, for T > 0:

K = − 1

2
√
G

(
∂

∂T

∂G
∂T√
G

)
= 0

⇐⇒ ∂

∂T

∂G
∂T√
G

= 0

⇐⇒
∂G
∂T√
G

= κ(x), (6.2)

where κ(x) is an arbitrary function that depends on x. The term (6.2) is equivalent
to

1√
G
dG︸ ︷︷ ︸´

1√
G
dG

= κ(x)dT︸ ︷︷ ︸´
κ(x)dT

⇐⇒ 2
√
G+ c1(x) = κ(x)T + c2(x), (6.3)

where c1(x), c2(x) are arbitrary functions that depend upon x. The term (6.3) is
equivalent to

2
√
G = κ(x)T + φ(x)︸︷︷︸

(c2(x)−c1(x))

,

from which G = 1
4

(κ(x)T + φ(x))2 follows.

• In the Lorentzian region, for T < 0:

K = − 1

2G

(
∂2G

∂T 2
− 1

2G
(
∂G

∂T
)2

)
= 0

⇐⇒
(
∂2G

∂T 2
− 1

2G
(
∂G

∂T
)2

)
= 0, (6.4)

and from (6.4) follows G = 1
4
(κ̃(x)T + φ̃(x))2.

All things considered, the Gaussian curvature vanishes in the (T, x)-coordinate
system in both− the Lorentzian and Riemannian− regions, if and only ifG(T, x) =
1
4

(κ(x)T + φ(x))2.
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In the next step we want to investigate what occurs at the hypersurface of signature
change H, where the manifold goes from Lorentzian to Riemannian. The behavior
of the Gaussian curvature at H becomes apparent when we switch to the (t, x)-
coordinate system with the metric g = t(dt)2 +G(t, x)(dx)2.

With E = t and t > 0 the Formula 6.1 yields

K = − 1

2
√
tG

(
∂

∂t

∂G
∂t√
tG

)

= − 1

2
√
tG

3

(
∂2G

∂t2

√
tG− ∂G

∂t

∂
√
tG

∂t

)

= −1

2

∂2G
∂t2

tG
+

1

4

∂G
∂t

∂(tG)
∂t

t2G2

= −1

2

∂2G
∂t2

tG
+

1

4

(
∂G
∂t

t2G
+

(∂G
∂t

)2

tG2

)

= −
2Gt · ∂2G

∂t2
− ∂G

∂t
(∂G
∂t
· t+G)

4G2t2
. (6.5)

In these coordinates the Gauss curvature K diverges for t→ 0, and in two dimen-
sions this is obviously associated with the divergence of the Ricci scalar R = 2K.
A similar behavior can be expected in the Lorentzian region. The divergence of
the Ricci scalar implies that a spacetime itself is singular [24], with classic exam-
ples being scalar singularities that might exist at the beginning of the universe in
general spacetimes.22

This begs the question how the function G(t, x) should look like in order to avoid
a curvature singularity at H, i.e. at t = 0. This quest may seem related to
the discussion in Hayward [44] where it is stated that “the spatial metric and the
Klein-Gordon field must be instantaneously stationary at the junction”. Since in a
2-dimensional signature-type changing manifold only the two metric signs (−,+)
and (+,+) occur, we only need to consider the case G(t, x) > 0. We can get such

22This obviously only applies to spacetimes without a removable singularity in K.
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a G(t, x) by picking a strictly positive real function or choosing any real function
that is bounded from below and shifting it to the Riemannian area MR (t > 0).

In order to figure out how to get a removable singularity in K, we have to find out
how to cancel the singularity at t = 0 in the denominator with the numerator. For
this purpose we replace the expression 6.5 for K with the respective Taylor series
at t = 0:

K = −1
2

∂2G
∂t2

tG
+ 1

4

(
∂G
∂t

t2G
+

( ∂G
∂t

)2

tG2

)
=
− ∂

2G(0,x)

∂t2

2G(0,x)
1
t

+

(
∂G(0,x)
∂t

∂2G(0,x)

∂t2
−G(0,x)

∂3G(0,x)

∂t3

)
2G(0,x)2

+ 1
4G(0,x)3 (G(0, x)((∂

2G(0,x)
∂t2

)2 −G(0, x)∂
4G(0,x)
∂t4

) + 2G(0, x)∂
3G(0,x)
∂t3

∂G(0,x)
∂t

−2(∂G(0,x)
∂t

)2 ∂
2G(0,x)
∂t2

)t+ 1
12G(0,x)4 (−6G(0, x)∂

3G(0,x)
∂t3

(∂G(0,x)
∂t

)2 + 6(∂G(0,x)
∂t

)3 ∂
2G(0,x)
∂t2

+G(0, x)2(4∂
3G(0,x)
∂t3

∂2G(0,x)
∂t2

−G(0, x)∂
5G(0,x)
∂t5

) + 3G(0, x)∂G(0,x)
∂t

(G(0, x)∂
4G(0,x)
∂t4

−2(∂
2G(0,x)
∂t2

)2))t2+O(t3)+
∂G(0,x)
∂t

4G(0,x)
1
t2

+
∂2G(0,x)

∂t2

4G(0,x)
1
t
+
G(0,x)2 ∂

3G(0,x)

∂t3
−2(

∂G(0,x)
∂t

)3+G(0,x)
∂G(0,x)
∂t

∂2G(0,x)

∂t2

8G(0,x)3

+ 1
24G(0,x)4 (G(0, x)3 ∂

4G(0,x)
∂t4

+ 3G(0, x)2(∂
2G(0,x)
∂t2

)2 + 12(∂G(0,x)
∂t

)4

+2G(0, x)2 ∂
3G(0,x)
∂t3

∂G(0,x)
∂t
− 18G(0, x)(∂G(0,x)

∂t
)2 ∂

2G(0,x)
∂t2

)t

+ 1
96G(0,x)5 (−72(∂G(0,x)

∂t
)5 − 36G(0, x)2 ∂

3G(0,x)
∂t3

(∂G(0,x)
∂t

)2 + 156G(0, x)(∂G(0,x)
∂t

)3 ∂
2G(0,x)
∂t2

+G(0, x)3(G(0, x)∂
5G(0,x)
∂t5

+ 14∂
3G(0,x)
∂t3

∂2G(0,x)
∂t2

)

+3G(0, x)2 ∂G(0,x)
∂t

(G(0, x)∂
4G(0,x)
∂t4

− 22(∂
2G(0,x)
∂t2

)2))t2 +O(t3).

Henceforth we shall write G(0, x) just as G0 in order to simplify the notation. Fur-
thermore, we shall write G(i) for ∂iG(0,x)

∂ti
. Collecting and rearranging the coefficients

of all the low powers of t of the above Taylor series expression for K yields

K = −G
(2)
0

4G0

1
t

+
G

(1)
0

4G0

1
t2

+ 1
24G4

0
(9G2

0(G
(2)
0 )2 − 5G3

0G
(4)
0 + 14G2

0G
(3)
0 G

(1)
0

−30G0(G
(1)
0 )2G

(2)
0 + 12(G

(1)
0 )4)t

+ 1
96G5

0
(−84G2

0G
(3)
0 (G

(1)
0 )2 + 204G0(G

(1)
0 )3G

(2)
0 + 46G3

0G
(3)
0 G

(2)
0
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−7G4
0G

(5)
0 + 27G3

0G
(1)
0 G

(4)
0 − 114G2

0G
(1)
0 (G

(2)
0 )2 − 72(G

(1)
0 )5)t2+

1
8G3

0
(5G0G

(1)
0 G

(2)
0 − 3G2

0G
(3)
0 − 2(G

(1)
0 )3).

If G(0, x) = 0, then all the derivatives, ∂iG(0,x)
∂ti

= G(i) = 0, would also vanish,
which in turn means that the Gaussian curvature must be zero. Hence, we have
to assume that G(0, x) = G0 > 0. Then the condition ∂1G(0,x)

∂t1
= ∂2G(0,x)

∂t2
= 0 is

necessary and sufficient for avoiding a curvature singularity at H. By satisfying
the requirements ∂1G(0,x)

∂t1
= ∂2G(0,x)

∂t2
= 0 and G0 = G(0, x) > 0 for t = 0, we are left

with K = −3
8

G
(3)
0

G0
.

This illuminates that despite the affine connection not being smooth, there exist
non-trivial singularity free models (bearing in mind that G is actually also de-
pendent on x in a not specified way) within the class of signature-type changing
manifolds in consideration.
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7 Radical of a singular semi-Riemannian manifold

Definition 7.1. Let V be a finite dimensional vector space, g be a symmetric
bilinear form. The totally degenerate space Rad := V ⊥ = {u ∈ V : g(u, v) =
0 ∀v ∈ V } is called the radical (also called nullspace) of V .

The symmetric bilinear form g is non-degenerate if and only if Rad = {0} [71].

Let (V, g) be a vector space endowed with a bilinear form g (which does not need to
be symmetric nor non-degenerate). Then we can define a natural map [ : V −→ V ∗,
which associates to any u ∈ V a 1-form [(u), called index lowering morphism. The
linear morphism [ is defined by [(u)v := g(u, v) ∀v ∈ V .23

If g is non-degenerate, the index lowering map is invertible and we get an iso-
morphism of V where V ∗ is called the musical isomorphism. In this case, we
will denote its inverse map by #: V ∗ −→ V . From this it becomes obvious
that Rad := V ⊥ = ker([), moreover [ is an isomorphism if and only if g is non-
degenerate.

Definition 7.2. [84] The vector space V [ := im([) ⊆ V ∗ is called radical-
annihilator. It is the vector space of 1-forms ω that can be expressed as ω =
u[ = [(u) for some u ∈ V .24

Definition 7.3. [84] On V [ ⊆ V ∗ we define a canonical non-degenerate inner
product by g[(ω, θ) := g(u, v), with ω = u[ and θ = v[.

Proposition 7.4. The inner product g[ on V [ in well-defined.

Proof. Consider u, v ∈ V with ω = u[ and θ = v[, and also u′, v′ ∈ V with
ω = (u′)[ and θ = (v′)[. Then we have (u′ − u) ∈ V ⊥ and (v′ − v) ∈ V ⊥. This
yields g(u′, v′) = g(u, v) + g(u′−u, v) + g(u, v′− v) + g(u′−u, v′− v) = g(u, v).

Proposition 7.5. [59, 84] The inner product g[ on V [ is non-degenerate. And if
g has the signature (r, s, t), then g[ has the signature (0, s, t).

Definition 7.6. Let (M, g) be a singular semi-Riemannian manifold. The subset
TM⊥ of the tangent bundle TM is called the radical of TM and is defined by
TM⊥ :=

⋃
p∈M(TpM)⊥.

23Alternatively we will also use the notation u[ for [(u).
24In the non-degenerate case we have V [ = im([) = V ∗. Moreover, with this definition it

follows n = dim(V ⊥) + dim(V [).
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Note that TM⊥ is a vector bundle if and only if the signature of g is constant on
M . We denote the set of vector fields on M valued in TM⊥, i.e. Vp ∈ (TpM)⊥, by
X⊥(M) ⊆ X(M). Then X⊥(M) is a vector space over R.

Definition 7.7. [84] Let (M, g) be a singular semi-Riemannian manifold. The
subset TM [ of the cotangent bundle T ∗M , defined by TM [ =

⋃
p∈M(TpM)[, is

called the annihilator of TM , where (TpM)[ ⊆ (TpM)∗ is the annihilator space of
the radical space.25

The sections of TM [ are defined by A[(M) := {ω ∈ Ω1(M) | ωp ∈ (TpM)[ for p ∈
M}, where Ω1(M) denotes the set of 1-forms on T ∗M . Note that (TpM)[ is the
annihilator space of the radical space (TpM)⊥, which yields for any ωp ∈ (TpM)[,
Vp ∈ (TpM)⊥: ωp(Vp) = 0.

7.1 Radical and radical-annihilator tensors

This subsection is closedly based on [84], and deals with tensors which are radical
in a contravariant slot and radical-annihilator in a covariant slot. A more detailed
and rigorous exposition can be found in [59, 84, 85], so proofs will be omitted.
Note that we can contract tensors in two covariant slots provided they are radical-
annihilator.

Definition 7.8. Let T be a (r, s)-tensor. Then the tensor T is said to be radical
in the k-th contravariant slot if T ∈ Tk−1

0 (M) × TM⊥ × Tr−ks (M). T is called
radical-annihilator in the l-th covariant slot if T ∈ Trl−1(M)× TM [ × T0

s−l(M).

Proposition 7.9. A tensor T ∈ Trs(M) is radical in the k-th contravariant slot
if and only if the contraction Ck

s+1(T ⊗ ω) with a radical-annihilator one-form
ω ∈ Ω1(M) is zero.
A tensor T ∈ Trs(M) is radical-annihilator in the l-th covariant slot if and only if
the l-th contraction with a radical vector field X ∈ X⊥(M) is zero.

Hence, based on the above, the metric tensor is radical-annihilator in both of its
slots, i.e. g ∈ Ω1(M)⊗ Ω1(M).

25TM [ is a vector bundle if and only if the signature of the metric is constant.
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Proposition 7.10. The contraction of a tensor between a radical slot and a radical-
annihilator slot is zero.

Since a contraction is not always well defined for two covariant indices, Stoica [84]
proposes to use g[ in those cases (provided the tensors are radical-annihilator in
the covariant slot).

Definition 7.11. The canonical covariant contraction is defined as follows: For
a tensor T ∈ V [ ⊗ V [ the covariant contraction is given by C12T = gab[ Tab, with
g[ ∈ (V [)∗ ⊗ (V [)∗.

Let T ∈ Trs(V ) be a (r, s)-tensor with r ≥ 0 and s ≥ 2, such that T ∈
V ⊗ . . .⊗ V︸ ︷︷ ︸

r

⊗ V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s−2

⊗ V [ ⊗ V [.

This means that T (ω1, . . . , ωr, v1, . . . , vs) = 0 for ωi ∈ V ∗, i = 1, . . . , r, vj ∈ V ,
j = 1, . . . , s whenever vs−1 ∈ V ⊥ or vs ∈ V ⊥. The covariant contraction be-
tween the last two covariant slots is then defined as Cs−1,s := IdTrs−2(V ) ⊗ C1,2 :

Trs−2(V ) ⊗ V [ ⊗ V [ −→ Trs−2(V ), with IdTrs−2(V ) : Trs−2(V ) −→ Trs−2(V ) the iden-
tity.
Let T ∈ Trs(V ) be a (r, s)-tensor with r ≥ 0 and s ≥ 2, such that T ∈ V ⊗ . . .⊗ V︸ ︷︷ ︸

r

⊗

V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
k−1

⊗ V [ ⊗ V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
l−k−1

⊗ V [ ⊗ V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s−l

, 1 ≤ k < l ≤ s.

This means that T (ω1, . . . , ωr, v1, . . . , vk, . . . , vl, . . . , vs) = 0 for ωi ∈ V ∗, i =
1, . . . , r, vj ∈ V , j = 1, . . . , s whenever vk ∈ V ⊥ or vl ∈ V ⊥. The contraction
Ck,l : V ⊗ . . .⊗ V︸ ︷︷ ︸

r

⊗ V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
k−1

⊗ V [⊗ V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
l−k−1

⊗ V [⊗ V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s−l

−→

V ⊗ . . .⊗ V︸ ︷︷ ︸
r

⊗ V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s−2

is defined by Ck,l := Cs−1,s ◦ Pk,s−1;l,s, where Cs−1,s

is defined as above, and Pk,s−1;l,s : Trs(V ) −→ Trs(V ), T 7→ T is the permutation
isomorphism that shifts the k-th and l-th slots to the last to slots.26

Based on Definition 7.8 we can extend the definition for the covariant contraction
in radical-annihilator slots to singular semi-Riemannian manifolds:

Definition 7.12. Let T ∈ Trs(V ) be a (r, s)-tensor field on M , with s ≥ 2, that is
radical-annihilator in the k-th and l-th covariant slot, 1 ≤ k < l ≤ s. The linear
operator Ck,l defined by

26Stoica also presents how the components of the covariant contraction relative to a basis look
like. Please refer to [84] for more details.
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Ck,l : T
r
k−1(M)×A[(M)× T0

l−k−1(M)×A[(M)× T0
s−l(M) −→ Trs−2(M)

(Ck,lT )(p) = Ck,l(T (p)) = C(T (ω1, . . . , ωr, X1, . . . , �, . . . , �, . . . , Xs))

is called the covariant contraction.

Lemma 7.13. Let T ∈ Trs(M) be a (r, s)-tensor field on M , with r ≥ 0 and
s ≥ 1, that is radical-annihilator in the k-th covariant slot, 1 ≤ k < s. Then the
contraction of T with the metric tensor g yields again T :

T (ω1, . . . , ωr,X1, . . . , �, . . . , Xs)g(Xk, �) = T (ω1, . . . , ωr,X1, . . . , Xk, . . . , Xs).

In particular, g(X, �)g(Y, �) = g(X, Y ).

Theorem 7.14. Let (M, g) be a singular semi-Riemannian manifold with con-
stant signature and T ∈ Trs(M) a (r, s)-tensor field on M , s ≥ 2, that is radical-
annihilator in the k-th and l-th covariant slot, 1 ≤ k < l ≤ n. If E1, . . . , En is a
frame field on M , such that E1, . . . , En−rank(g) ∈ X⊥(M), then

T (ω1, . . . , ωr,X1, . . . , �, . . . , �, . . . , Xs)
=
∑n

i=n−rank(g+1)
1

g(Ei,Ei)
T (ω1, . . . , ωr,X1, . . . , Ei, . . . , Ei, . . . , Xs),

for X1, . . . , Xs ∈ X(M) and ω1, . . . , ωr ∈ 1(M).

7.2 The radical on the hypersurface of signature change

Let (M, g) be a transverse type-changing singular semi-Riemannian manifold with
dim(M) = n ≥ 2, endowed with a smooth, symmetric transverse signature-type
changing metric g, which changes bilinear type at the hypersurface H. The hy-
persurface of signature change is defined as H := {q ∈ M : g |q is degenerate}.
Furthermore, we assume that one connected component of M \ H is Riemannian
and the other one Lorentzian, i.e. M = ML ∪H ∪MR.

Then, for each point p ∈ M and any local coordinate system, and for each open
neighborhood of p we have
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4(p)


> 0 for p ∈MR

= 0 for p ∈ H
< 0 for p ∈ML

,

where 4 := det([gµν ]). Recall that because (M, g) is a transverse type-changing
singular manifold, the function 4 := det([gµν ]) has a non-zero differential, d4 6= 0,
at any q ∈ H and for any local coordinate system. As is known, this condition
implies that H ⊂ M is a smoothly embedded hypersurface in M . Also recall the
following

Definition 7.15. The radical for q ∈ H with respect to g is a subspace Radq of
TqM , defined as Radq := {w ∈ TqM | g(w, �) = 0,∀v ∈ TqM}.

Definition 7.16. [58] The manifold (M, g) has a transverse radical if Radq inter-
sects TqH transversally for all q ∈ H. We say that (M, g) is radical transverse on
H if Radq ∩ TqH = {0}, and radical tangent on H if Radq ⊂ TqH, for all q ∈ H.

The dimension of Radq is called the nullity degree of g, denoted by null TqM .
Clearly, a smooth, symmetric (0, 2)-tensor field g is degenerate on TqM if and only
if null TqM > 0 [22]. Hence, if the the metric g is degenerate it fails to have
maximal rank on the subset H ⊂M . Then at each q ∈ H there exists a nontrivial
subspace Radq ⊂ TqM which is orthogonal to the whole TqM .

The above premises support the following assertions:

Proposition 7.17. Let (M, g) be transverse type-changing on a hypersurface H,
in other words d4 6= 0 on H. Then the subspace Radq is one-dimensional for all
q ∈ H.

Proof. We examine the eigenvalue equation gijvj = λδijv
j for the metric g restricted

to the hypsersurface H. Due to the requirement 4(q) = det([gij]) = 0 for q ∈ H,
and since any symmetric matrix has an eigenvector, the eigenvalue equation has a
non-zero solution v for λ = 0:

det([gij − λδij]) = det([gij]) = 0⇐⇒ λ = 0.

From this follows that span({vq}) ⊂ Radq =⇒ dim(Radq) ≥ 1 for all q ∈ H.
To finish the proof by reductio ad absurdum we make the assumption that
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dim(Radq) ≥ 2 for q ∈ H. As [gij] is a real symmetric matrix, it is diagonal-
izable and there exists an orthonormal basis {b1, . . . , bn} for TqM consisting of
eigenvectors of [gij]. Hence, gijbj(σ) = λ(σ)δijv

j
(σ), with smooth λ(σ) : M −→ R.

The eigenspace Eig(gij, 0) of [gij] associated with λ = 0 is exactly the kernel (or
nullspace) of the matrix [gij − λδij] = [gij]. Therefore, if dim(Radq) ≥ 2 applies,
then the dimension of the eigenspace Eig(gij, 0) has to be at least two. Accord-
ing to that, there exist linearly independent vectors vq, wq ∈ TqM that satisfy
g(vq, �) = g(wq, �) = 0. Without loss of generality we set b(1)q = vq and b(2)q = wq.
Assuming that gij is in diagonal form and the determinant is the product of the
diagonal entries 4 = λ(1) · · · · · λ(n), it follows

d4 = λ(2) · · · · · λ(n)dλ(1) + λ(1) · λ(3) · · · · · λ(n)dλ(2) + · · ·+ λ(1) · · · · · λ(n−1)dλ(n).

We have λ(1)(q) = λ(2)(q) = 0 because these two are eigenvalues associated with
vq, wq, and this immediately yields (d4) |q= 0 which in turn contradicts the premise
d4 6= 0 for q ∈ H.

Proposition 7.18. For each q ∈ H and a suitable ε > 0 there exists a curve
γ : (−ε, ε) −→ M such that γ(0) = q, and γ̇(0) is transverse with respect to H.
Furthermore, for ε < 0 the curve is Lorentzian, γ(ε) ∈ML, and for ε < 0 the curve
is Riemannian, γ(ε) ∈MR. Simply put, the hypersurface of signature change H is
located between ML and MR.

Proof. We are assuming again that [gij] is in diagonal form and the determinant is
the product of the diagonal entries 4 = λ(1) · · · · ·λ(n) with smooth λ(σ) : M −→ R.
On the junction surface H we set, without loss of generality, λ(1) = 0 and λ(σ) > 0
for σ ≥ 2 (the latter choice is arbitrary because 4(q) = λ(1)︸︷︷︸

0

· · · · ·λ(n) = 0, q ∈ H).

Then on the hypersurface H this yields

0 6= d4 = λ(2) · · · · ·λ(n)dλ(1) +λ(1) · λ(3) · · · · · λ(n)dλ(2)︸ ︷︷ ︸
0

+ · · ·+λ(1) · · · · · λ(n−1)dλ(n)︸ ︷︷ ︸
0

= λ(2) · · · · · λ(n)dλ(1).

Since dλ(1) is a dual basis vector, we have dλ(1) 6= 0 on H.

By reason that λ(σ) is smooth, we conclude that the conditions dλ(1) 6= 0 and
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λ(σ) 6= 0 for σ ≥ 2 are also valid in a neighborhood U(q) of q. For this it follows
that we have 4(p) 6= 0 ⇐⇒ λ(1)(p) 6= 0 for p ∈ U(q), and H ∩ U(q) is defined by
λ(1)(p) = 0.
Let γ̃ : I −→ U(q) ⊂ M be a transvere curve in U(q) with γ̃(0) = q. Since
we have (dλ(1)) |q 6= 0 and λ(1) = 0 on the hypersurface H, we get (dλ(1)) |q
( ˙̃γ(0)) = ( ˙̃γ(0))(λ(1)) |q 6= 0, which means that γ̃ is regular in 0. Then there exists a
neighborhood Ī of 0 ∈ I such that 0 ∈ Ī ⊂ I, and a reparametrization γ̂ = γ̃(φ(s))
of γ̃ by φ : (−ε, ε) −→ Ī such that λ(1) is locally bijective and λ(1)(γ̂(s)) = s for
s ∈ (−ε, ε). Next, by restricting γ̂ to (−ε, ε) we obtain γ := γ̂ |(−ε,ε), which proves
the claim because of sgn(s) = sgn(λ(1)(γ(s))).

Remark 7.19. The proposition 7.18 is where the term ’transverse type-changing’
originates from.

Example 7.20. Consider on R2 the metric ds2 = t(dt)2 + (dx)2. This is a
signature-type changing metric with

4 := det([gij]) = t,
d4 = ∂t

∂t
dt+ ∂t

∂x
dx = dt 6= 0,

H = {q ∈M | 4(q) = t(q) = 0}.

Only for the eigenvalue λ = t(q) |H= 0 we have that the eigenspace

Eig((gij), 0) = {w ∈ TqM | g(w, �) = λ︸︷︷︸
0

δijw
j = 0} = Radq

equals the radical. Then we get for the associated eigenvector: g( ∂
∂t
, �) = 0 =⇒

∂
∂t
∈ Radq.

Hence, Radq = span({ ∂
∂t
}) =⇒ dim(Radq) = 1 and Radq is transverse with respect

to H.

Example 7.21. Consider on R2 the metric ds2 = tx(dt)2 + (dx)2. This is a
signature-type changing metric with H = {q ∈ M | 4(q) = t(q)x(q) = 0}, and
4 := det([gij]) = tx. Then

d4 = d(tx) =
∂(tx)

∂t
dt+

∂(tx)

∂x
dx = xdt+ tdx

{
= 0 for t = x = 0

6= 0 other
.
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The locus of signature change H consists of the two intersecting coordinate axes
and is therefore not a smoothly embedded hypersurface.
The eigenvalue problem g(w, �) = λδijw

j = 0 is only valid for λ = t(q)x(q), with
q ∈ H. For the associated eigenvector we have g( ∂

∂t
, �) = 0 =⇒ ∂

∂t
∈ Radq, which

in turn means that Radq = span({ ∂
∂t
}) =⇒ dim(Radq) = 1, for q ∈ H.

However, Radq is only transverse with respect to H for x(q) 6= 0, otherwise (for
x(q) = 0) is Radq tangent with respect to H. This kind of metric does not fulfill
our above proposed conditions and requirements as the hypersurface of signature
change H is not located between ML and MR.

Example 7.22. Consider on R2 the metric ds2 = t2(dt)2 + (dx)2, which is clearly
not a signature-type changing metric because ML = ∅. We have

4 := det([gij]) = t2,
d4 = dt2 = ∂t2

∂t
dt+ ∂t2

∂x
dx = 2tdt,

H = {q ∈M | 4(q) = t2(q) = 0} ⇐⇒ {q ∈M | 4(q) = t(q) = 0}.

The differential d4 = 2tdt = 0 on H, with H being a smoothly embedded hyper-
surface. The equation g(w, �) = λδijw

j = 0 is valid for λ = t2(q) = 0, and yields
for the associated eigenvector ∂

∂t
again Radq = span({ ∂

∂t
}). The radical Radq is

one-dimensional and transverse with respect to H. But again, this metric does
not fulfill our above proposed conditions and requirements as the hypersurface of
signature change H is not located between ML and MR, simply because there is
no Lorentzian region ML.

Example 7.23. Consider on R2 the metric ds2 = t(dt)2 + t2(dx)2. This is a
signature-type changing metric with

4 := det([gij]) = t3,
d4 = ∂t3

∂t
dt+ ∂t3

∂x
dx = 3t2dt,

H = {q ∈M | 4(q) = t3(q) = 0} ⇐⇒ {q ∈M | 4(q) = t(q) = 0}.

The differential is d4 = 3t3dt = 0 onH, withH being a smoothly embedded hyper-
surface. The eigenvalue problem g(w, �) = λδijw

j = 0 is valid for both eigenvalues,
λ(1) = t(q) and λ(2) = t2(q) respectively, with q ∈ H. Hence, the geometric multi-
plicity is two and the associated eigenvectors, ∂

∂t
and ∂

∂x
, yield g( ∂

∂t
, �) = g( ∂

∂x
, �) = 0

=⇒ ∂
∂t
, ∂
∂x
∈ Radq. Therefore, Radq = TqM =⇒ dim(Radq) = 2, for q ∈ H. This
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metric does not fulfill our above proposed conditions and requirements as the rad-
ical is not one-dimensional.

Proposition 7.24. If the hypersurface of signature change H is smoothly immersed
and located between ML and MR (such as postulated in Proposition 7.18), then H
is a smoothly embedded submanifold.

Proof. We know that for each q ∈ H and a suitable ε > 0 there exists a curve
γ : (−ε, ε) −→ M such that γ(0) = q and γ̇(0) is transvere with respect to H.
By reason that γ is smooth, we can locally extend the vector γ̇ to a transverse
vector field Γ defined on a neighborhood of q ∈ H ⊂ M . We now want to show
that any p ∈ H has a neighborhood U(q) ⊂M such that U(q)∩H is an embedded
(n−1)-submanifold of U(q). ThenH is an embedded (n−1)-submanifold ofM [61].

For this, we consider the local flow φf(p) : U(q) −→M of Γ on a suitable neighbor-
hood U(q) of q. This local flow produces a C∞ function f : U(q) −→ R by defining
φf(p)(q̃) = p, for a fixed q̃ ∈ H. This specifically yields φf(0)(q̃) = 0 and for f(p) = 0
we have φ0(q̃) = φ(0, q̃) = q̃ [16]. Consequently, we get p ∈ ML if f(p) < 0 and
p ∈MR if f(p) > 0. Thus we know that U(q)∩H is given by f(p) = 0. The latter
defines a regular surface of dimension n− 1, which in turn is a submanifold of M .
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8 Global structure of signature-type changing semi-
Riemannian manifolds

First, let us revisit the definitions for the following two concepts of manifold ori-
entability:

Definition 8.1. [10] A smooth n-dimensional manifold M is orientable if and
only if it has a smooth global nowhere vanishing n-form (also called a top-ranked
form).27

For a differentiable manifold to be orientable all that counts is that it admits
a global top-ranked form; it is not important which specific top-ranked form is
selected.

It is well-known that a manifold M of dimension n is defined to be parallelizable if
there are n vector fields that are linearly independent at each point. The definition
of parallelizability involves no metric and is therefore also valid for signature-type
changing manifolds; we define similarly as in [11]:

Definition 8.2. A smooth n-dimensional manifold M is parallelizable if there
exists a set of smooth vector fields {V,E1, . . . , En−1} on M , such that at every
point p ∈M the tangent vectors {V (p), E1(p), . . . , En−1(p)} provide a basis of the
tangent space TpM . A specific choice of such a basis of vector fields on M is called
an absolute parallelism of M .

Equivalently, a manifold M of dimension n is parallelizable if its tangent bundle
TM is a trivial bundle, so that the associated principal bundle of linear frames
has a global section on M , i.e. the tangent bundle is then globally of the form
TM 'M × Rn.

It is worth pointing out that orientability and also parallelizability are differential
topological properties which do not depend on the metric structure, only on the
topological manifold with a globally defined differential structure.28 The next three

27An orientation ofM is the choice of a continuous pointwise orientation, i.e. the specific choice
of a global nowhere vanishing n-form.

28It is worth mentioning that given an absolute parallelism of M , one can use these n vector
fields to define a basis of the tangent space at each point of M and thus one can always get
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definitions, however, depend not only on the underlying manifold but also on its
specific type-changing metric g. For our purpose, let (M, g) be a smooth, signature-
type changing manifold (possibly with boundary).

Definition 8.3. (Pseudo-timelike) A vector field V in a signature-type changing
manifold (M, g) is pseudo-timelike if and only if V is timelike in ML.

Definition 8.4. (Pseudo-time orientable) A signature-type changing manifold
(M, g) is pseudo-time orientable if and only if the Lorentzian region ML is time
orientable.29

Lemma 8.5. A singular semi-Riemannian manifold (M, g) is pseudo-time ori-
entable if and only if there exists a vector field X ∈ X(M) that is pseudo-timelike.

Proof.
” =⇒ ” A singular semi-Riemannian manifold (M, g) is pseudo-time orientable.

This means the Lorentzian region ML is time orientable. A Lorentzian manifold is
time-orientable if there exists a continuous timelike vector field. Accordingly there
must exist a continuous timelike vector field X ∈ X(ML) in the Lorentzian region.
As per Definition 8.3, a vector field X in a signature-type changing manifold is
pseudo-timelike if and only if X is timelike in ML; this means that X is allowed
to vanish on MR. Hence, we can extend the vector field X arbitrarily to all of M ,
and per definition X ∈ X(M) is pseudo-timelike.

” ⇐= ” Let X ∈ X(M) be a pseudo-timelike vector field in a singular semi-
Riemannian manifold (M, g). Hence, as per Definition 8.3, X is timelike in ML. A
Lorentzian manifold is time-orientable if and only if there exists a timelike vector
field. Since X is a timelike vector field on ML, the Lorentzian region ML is time-
orientable. Then, according to Definition 8.4, the signature-type changing manifold
(M, g) is pseudo-time orientable.

According to that, such a definition of a pseudo-time orientation is possible if ML

admits a globally consistent sense of time, i.e. if in ML we can continuously define
a division of non-spacelike vectors into two classes. For a transverse, signature-type

a frame-dependent metric g by defining the frame to be orthonormal. Moreover, the special
orthogonal group, denoted SO(n,R), acts naturally on each tangent space via a change of basis,
it is then possible to obtain the set of all orthonormal frames forM at each point qua the oriented
orthonormal frame bundle of M , denoted FSO(M), associated to the tangent bundle of M .

29A pseudo-time orientation of such a manifold (M, g) corresponds to the specific choice of a
continuous non-vanishing pseudo-timelike vector field V on M .
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changing manifold (with a transverse radical) this definition arises naturally due
to the fact that in MR all vectors can be considered spacelike. And because of
Radq ∩ TqH = {0} ∀q ∈ H, on H all non-spacelike vectors are lightlike, which are
naturally divided into two classes: vectors that are pointing towards ML and the
ones pointing towards MR.

Example 8.6. Consider the classic type of a spacetime M with signature-type
change which is obtained by cutting an S4 along its equator and joining it to the
corresponding half of a de Sitter space, Figure 8.1. The de Sitter spacetime is
time-orientable [43], so M is pseudo-time orientable.

Figure 8.1: Riemannian and Lorentzian region in the Hartle-Hawking no-boundary model.

Definition 8.7. (Pseudo-space orientable) A signature-type changing man-
ifold (M, g) of dimension n is pseudo-space orientable if and only if it admits a
continuous non-vanishing (n − 1)-frame field, that is a set of n − 1 pointwise or-
thonormal spacelike vector fields on M .30

Example 8.8. Consider the 2-dimensional signature-type changing crosscap man-
ifold D2 ∪h (M ∪ ∂M), which is obtained by sewing a Möbius strip to the edge of

30A pseudo-space orientation of a manifold (M, g) corresponds to the specific choice of a con-
tinuous non-vanishing field of orthonormal spacelike (n− 1)−beins on M .
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a disk (the Riemannian sector), equipped with the metric g = (1 − t2)(dt)2 +
2txdtdx + (1 − x2)(dx)2, see Subsection 15.3.3. According to Definition 8.7 we
would need a set of 2 − 1 = 1 pointwise orthonormal spacelike vector fields on
all of D2 ∪h (M ∪ ∂M) for the crosscap to be pseudo-space orientable. However,
the crosscap is closed and has the Euler characteristic χ = 1.31 Since a closed,
connected manifold admits a non-vanishing vector field if and only if the Euler
characteristic of the manifold is zero, there is no global non-vanishing vector field
on the crosscap. Hence, the manifold ( 15.3.3) is not pseudo-space orientable, but
it is indeed pseudo-time orientable.

Proposition 8.9. [61] Every parallelizable manifold M is orientable.

In Lorentzian geometry the fact of M being time-orientable and space-orientable
implies that M is orientable [40]. The proposition below illustrates that this result
from Lorentzian geometry cannot be applied to signature-type changing manifolds.

Proposition 8.10. Even if a transverse, signature-type changing manifold (M, g)
with a transverse radical is pseudo-time orientable and pseudo-space orientable, it
is not necessarily orientable.

Proof. Consider the 2-dimensional Möbius strip M∞ := (M/ ∼, g) equipped with
the standard topology and the smooth metric g = − cos(2ϕ)(dt)2 +2 sin(2ϕ)dtdx+
cos(2ϕ)(dx)2, ϕ = πx, see Section 15.2.2. As a time-orientable Lorentzian manifold,
the Möbius strip M∞ admits a global, non-vanishing, timelike vector field V =
(cosϕ) ∂

∂t
− (sinϕ) ∂

∂x
, satisfying g(V, V ) = −1. Hence we can extend V to an

"orthonormal" basis {V,E1} of TpM , for all p ∈ M , such that g(E1, E1) = 1 and
g(V,E1) = 0, with E1 being a frame field.

Then by applying the Transformation Prescription (Section 15.2.1) we transform
M∞ into the signature-type changing Möbius strip M̃∞ = (M/ ∼, g̃), with g̃ =
(f · cos2(ϕ)− cos(2ϕ))dt2 + (2− f) sin(2ϕ)dtdx+ (f · sin2(ϕ) + cos(2ϕ))dx2, where
the quotient map identifies (t, x) with (t̃, x̃) = ((−1)kt, x + k), k ∈ Z, and f is an
arbitrary C∞ function that also accounts for the hypersurface of signature-change
H =f−1(1).
The signature-type changing manifold M̃∞ is then pseudo-time orientable with
V = (cosϕ) ∂

∂t
− (sinϕ) ∂

∂x
being a continuous, non-vanishing, timelike vector field

31Here “closed” is meant in a manifold sense of “a manifold without boundary that is compact”
not in the topology sense of "the complement of an open subset of Rn”.
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V on ML. Also with {E1} spacelike, M̃∞ is pseudo-space orientable. But the
Möbius strip M̃∞ is not orientable.

In place of the above specific example, one can consider an arbitrary manifold of
dim(M) = 2 with a change of signature, for which the conditions of proposition 8.10
are given (in higher dimensions, the same idea can be carried out through a trivial
augmentation of dimensions). In case this manifold is non-orientable, there is
nothing to show. However, if it is orientable, cut out a disk from the Riemannian
sector and replace it with a crosscap, equipped with any Riemannian metric. In
a tubular neighborhood of the cutting line, construct a Riemannian metric that
mediates between the metrics of the crosscap and the rest (this is possible due
to the convexity of the space formed by all Riemannian metrics). This surgical
intervention results in the transition to a non-orientable manifold with a change of
signature. Since the intervention is limited to the Riemannian sector, the conditions
of the proposition remain unaffected. Thus, the proposition 8.10 is proven.

Remark 8.11. One can always "switch" between non-orientability and orientability
using the crosscap. Starting with an orientable manifold, one transitions to non-
orientable by replacing a cross cap (if already present) with a disk. If no cross cap
is present, such a transition occurs by replacing a disk with a cross cap

Example 8.12. The Möbius strip M has a non-trivial vector bundle over S1 with
two co-cycles.32 Hence, M is not parallelizable, and not orientable.
To see this, consider the Möbius strip M = R×R/ ∼ with the identification (t, x) ∼
(t̃, x̃)⇐⇒ (t̃, x̃) = ((−1)kt, x+k), k ∈ Z, as introduced in Subsection 15.2.2. Notice
first that the identification has no bearing on proper subsets of ((−1)kt, x+k), k ∈ Z
and the fibre R is a vector space.
As M is a fiber bundle over the base space S1, then a section of that fiber bundle
must be a continuous map σ : S1 −→ M such that σ(x) = (h(x), x) ∈ M. But
for σ to be continuous we must require that h satisfies −h(0) = h(k). Then the
intermediate value theorem guarantees that there is a some x̃ ∈ [0, k] such h(x̃) = 0.
This means that every section of M intersects the zero section and the sections that
form a basis for the fibre are not non-zero everywhere.

Definition 8.13. A pseudo-spacetime is a 4-dimensional, pseudo-time oriented,
semi-Riemannian manifold with a type-changing metric.

32The Möbius strip is insofar interesting that we always can find a Möbius strip M on any
arbitrary non-orientable surface. And any Lorentzian manifold M × Rn based on the Möbius
strip crossed with Rn either fails to be time-orientable or space-orientable [32].
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In contrast to the definition of a spacetime for the Lorentzian case, the manifold
can be either connected or disconnected. The latter one arises in a signature-type
changing manifold where the metric diverges at the surface of signature change. In
such a situation the surface does not belong to the manifold.

Proposition 8.14. Let (Rn, g) be a transverse, signature-type changing
n-manifold with a transverse radical, and let H ⊂ Rn be a codimension one closed
hypersurface of signature change without boundary.33 Then is H always orientable.

Proof. This can be shown by a purely topological argument, as in [74].

Proposition 8.15. Let (M, g) be a transverse, signature-type changing, oriented,
n-dimensional manifold with a transverse radical, and let H ⊂M be the hypersur-
face of signature change. Then H is also oriented.

Proof. The hypersurface of signature change as a closed submanifold H ⊂ M of
codimension one is the inverse image of a regular value of a smooth transformation
map f : M −→ R, hence it has a trivial normal bundle TH. Then, per definition
H is parallelizable. Based on Proposition 8.9 H is orientable.
Moreover, recall that H :=f−1(1) = {p ∈ M : f(p) = 1} is a submanifold of M of
dimension n − 1. And for every q ∈ H the tangent space TqH = Tq(f

−1(1)) to H
at q is the kernel ker(dfq) of the map dfq : TqM −→ T1R. Then TqH = 〈gradfq〉⊥,
and therefore the gradient gradf yields an orientation of H.

Provided a transverse, signature-type changing manifold (M, g) with a transverse
radical is pseudo-time orientable, then we can choose one of the two possible time
orientations at any point in each connected component ML, and thus designat-
ing the future direction of time in the Lorentzian regime. On H all non-spacelike
vectors are lightlike, and smoothly divided into two classes in a natural way: the
vectors located at an initial base point on H are either pointing towards ML or
towards MR. This together with the existent absolute time function (that estab-
lishes a time concept [52] in the Riemannian region) can be considered as arrow of
time on M .

Definition 8.16. (Natural time direction) Let (M, g) be a pseudo-time ori-
entable, transverse, signature-type changing n-dimensional manifold with a trans-
verse radical. Then in the neighborhood ofH the absolute time function h(t, x̂) := t

33Here “closed” is meant in the topology sense of "the complement of an open subset of Rn”
and not in a manifold sense of “a manifold without boundary that is compact”.
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imposes a natural time direction by postulating that the future corresponds to the
increase of the absolute time function. In this way, the time orientation is deter-
mined in ML.

Remark 8.17. Note that ∂t with an initial point on H points in the direction in
which t = h(t, x̂) increases and xi is constant. Away from the hypersurface the
future direction is defined relative to H by the accordant time orientation of ML.
Recall that functions of the type like the absolute time function lead to metric
splitings by default.

Definition 8.18. (Future-Directed) A pseudo-timelike curve (see Definition 4.7)
in (M, g) is future-directed (in the sense of Definiton 8.16 and Remark 8.17) if for
every point in the curve

(i) within ML the tangent vector is future-pointing, and
(ii) on H the associated tangent vector with an initial base point on H is future-

pointing, if applicable.

Figure 8.2: In the left example the curves α and γ are both future-directed. The curve β runs
within the edge that is twisted and identified with the left edge; therefore β is neither future-
directed nor past-directed. In the right example the curves α, β and γ are future-directed. In
both examples the loops around H are neither future-directed nor past-directed.

Respective past-directed curves are defined analogously. Notice that per assump-
tion one connected component of M \ H is Riemannian and all other connected
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components (MLα)α∈I ⊆ ML ⊂ M are Lorentzian. This could allow (at least lo-
cally) for a ML −MR −ML−sandwich-like structure of M , where H consists of
two connected components (Hα)α∈{1,2}, and to that effect we would also have two
absolute time functions.

Definition 8.19. (Pseudo-chronological past and future) Let (M, g) be a
pseudo-time orientable, transverse, signature-type changing n-dimensional mani-
fold with a transverse radical.
I−(p) = {q ∈ M : q � p} is the pseudo-chronological past of the event p ∈ M .

In other words, there is a future-directed pseudo-timelike curve from q to p in M .
I+(p) = {q ∈M : p� q} is the pseudo-chronological future of the event p ∈M .

In other words, there is a future-directed pseudo-timelike curve from p to q in M .

Figure 8.3: For an event p ∈ H there exists a future-directed pseudo-timelike curve (as depicted)
that connects the points p and q inM . Similarly any point inM can be reached by such a future-
directed pseudo-timelike curve from p. That is why for the pseudo-chronological future we have
I+(p) = {q ∈M : p� q} = M .

Remark 8.20. Interestingly, this definition leads to the following peculiar situation:
Recall that any curve is denoted pseudo-timelike if its ML-segment is timelike. To
that effect, all curves that steer clear of ML (and do not have a ML-segment) are
also considered pseudo-timelike. When p ∈ H∪MR then the pseudo-chronological
past of p is I−(p) = M \ML and the pseudo-chronological future of p is I+(p) = M ,
see Figure 8.3.
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9 Radical-adapted Gauss-like coordinates

Kriele and Martin [58] expound that signature-type change can not be used to avoid
singularities of solutions of Einstein’s equations. Thus they look into imposing a
continuous change of signature at the event horizon of a black hole. Given that
the event horizon is a null surface, they propose that signature change at a null
hypersurface H implicates the existence of curvature singularities [53].

Example 9.1. Consider the 2-dimensional toy model g = x(dt)2 + (dx)2 as pre-
sented in [58]. This is a transverse, type-changing metric with a smoothly embed-
ded hypersurface of signature-type change located at H = {q ∈ M | x(q) = 0}.
However, the radical Radq is tangent and not transverse with respect to H. Hence,
according to Definition 14.1, the hypersurface H is a null surface. The calculation
of the Gauss curvature yields K = 1

x(q)2 which obviously diverges at H.

From a cosmological point of view it is justified to exclusively focus on spacelike
surfaces of signature-type change. On this account recall that a manifold (M, g) has
a spacelike hypersurface if and only if the radical Radq = {w ∈ TqM | g(w, �) = 0}
intersects TqH transversally for all q ∈ H.

Theorem 9.2. [2, 58] Let M be a singular semi-Riemannian manifold endowed
with a (0, 2)-tensor field g and the surface of signature change defined as H :=
{q ∈M : g |g is degenerate}. Then is (M, g) a transverse, signature-type changing
manifold with a transverse radical if and only if for every q ∈ H there exist a
neighborhood U(q) and smooth coordinates (t, x1, . . . , xn−1) such that g = −t(dt)2 +
gij(t, x

1, . . . , xn−1)dxidxj.

In [52, 54] Kossowski and Kriele supplement this by

Theorem 9.3. There exists a unique family {γq}, q ∈ H, of smoothly immersed
pre-geodesics such that γq(0) = q and g(γ̇q(s), γ̇q(s)) = −s.34

Moreover, for a transverse, signature-type changing manifold (M, g) with a trans-
verse radical, there exist smooth coordinates (t, x1, . . . , xn−1) such that the metric
takes the form g = −t(dt)2 + gijdx

idxj, for i, j ∈ {1, . . . , n− 1}, and γ̇q = ∂t holds
(see also Section 12 for details).

34Recall that a pregeodesic in M is a smooth curve γ : I −→M , which can be reparametrized
to a geodesic.

77



Interestingly Hayward [45] refers to this kind of coordinates as normal coordinates.
But this choice of name holds a likelihood of confusion with Riemannian normal
coordinates. Hence, in the style of time-orthonormal coordinates in Lorentzian
geometry we rather denote the coordinates in Theorem 9.2 as radical-adapted
Gauss-like coordinates. It is now possible to simplify matters by using radical-
adapted Gauss-like coordinates whenever dealing with a transverse, signature-type
changing manifold with a transverse radical.35

Notably, signature-type change and the radical-adapted Gauss-like coordinates
(such that the metric can be expressed in the form g = −t(dt)2 + gijdx

idxj) imply
the existence of an uniquely determined, coordinate independent, natural absolute
time function h(t, x̂) := t (see Definition 8.16) in the neighborhood of the hyper-
surface [52]. This allows us to introduce a time concept locally around H, even in
the Riemannian region. We will study the properties of the absolute time function
in Section 13.

Remark 9.4. Note that in general, a time function is defined as follows: A continu-
ous function f : M −→ R which satisfies p < p̃ =⇒ f(p) < f(p̃) is a time function.
In general relativity a function f is called time function, if ∇f is timelike past-
pointing. Observe that unlike the absolute time function in our case, the generic
time function f is not unique.

With the above we have established how the topological structure of the unit
sphere bundles (for a transverse, signature-type changing manifold with a trans-
verse radical) evolve when they approach and pass through the hypersurface. A
unit sphere bundle T 1M is the submanifold of TM defined a the regular level
set of the smooth function f : TM −→ R, w 7→ g(w,w). For the 2-dimensional
case we have therefore the following visualization:

35If we were to deflect our focus from the case with a transverse radical and considered a
tangent radical instead, then the associated radical-adapted coordinates would have a much more
complicated form. Please refer to [1], equation (10) in Remark 3 for more details.
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Figure 9.1: The evolution of the unit spheres {v ∈ TqM : g(v, v) = 1} across H: The unit
spheres change their topological structure when the bilinear type of g changes upon crossing H.
With respect to the light cone structure we can also visualize all timelike vectors with the squared
length −1 (hyperbola that belongs to the timelike coordinate) and all spacelike vectors with the
squared length +1. On H we have the vectors with squared length 1, and the vectors that yield
zero (radical).

Since (M, g) is a singular semi-Riemannian manifold with a smooth metric, we can
always choose a non-holonomic basis field (independently of the choice of a coordi-
nate chart) in each tangent space. While each tangent space of a Lorentzian man-
ifold is isometric to Minkowski space, we can consider a transverse type-changing
singular semi-Riemannian manifold to be infinitesimally modeled on a local C∞
frame e0, . . . , en−1, such that e0(q) ∈ Radq for q ∈ H. Therefore g is infinitesimally
represented by

(gij)(p) =


g00(p) 0 · · · 0

0 1 · · · 0
... 0

. . . ...
0 0 · · · 1

 ,
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where g00(p) = g(e0, e0)(p) is smooth and g00(q) = 0, g00(p) |MR
= −1, g00(p) |ML

=
1. We refer to such a frame as a radical-adapted orthonormal frame [51].

If the 1-dimensional subspace Radq (which is orthogonal to all of TqM) and TqH
split TqM then the metric singularity is called radical transverse at q:

Proposition 9.5. [50] Let (M, g) be a singular semi-Riemannian manifold, dimM =
n ≥ 2, with a smooth, symmetric, degenerate metric g, and H a metric singularity
of co-dimension one. Then (M, g) has a transverse metric singularity at q ∈ H if
and only if d(det([gµν ])q) 6= 0 for some local C∞ frame e0, . . . , en−1 centered at q.
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10 Generalization

Recall that here and in the sequel of this work, we side with [52] in demanding that
the metric should be a smooth, symmetric transverse type-changing (0, 2)-tensor
field with a transverse radical (see Section 9).

10.1 Generalization in 2D

In Section 6.2 we examined a 2-dimensional signature-type changing manifold in
the (t, x)-coordinate system where we introduced the metric coefficient G(t, x) in
order to obtain the generalized metric g = t(dt)2 +G(t, x)(dx)2.

We can obviously choose an arbitrary strictly positive real function for G(t, x)
(or any real function that is bounded from below and shift it to the Riemannian
area MR). According to Section 9 there always exist radical-adapted Gauss-like
coordinates (Theorem 9.2) such that the metric has actually the above form g =
t(dt)2 +G(t, x)(dx)2 with the coefficient function E(t, x) = t.

Since we restrict our discussion in this work to the class of transverse, signature-
type changing manifolds with a transverse radical, the metric g = t(dt)2+G(t, x)(dx)2

is the (only possible) generalized form of the 2-dimensional toy model metric. Any
other metric in this class can be thus obtained by a coordinate transformation from
this general metric represented in radical-adapted Gauss-like coordinates.

Suppose however, we consider a new metric ḡ which is related to g by a conformal
transformation with conformal factor Ω = 1

t
. This Ω seems to be a natural choice

and uniquely determined by the absolute time function t.36 In this way we obtain
a metric representative of a different class: ḡ = Ωg = 1(dt)2 + 1

t
G(t, x)(dx)2. As

the conformal factor Ω = 1
t
constitutes an infinite discontinuity and blows up at

the events with t = 0, the metric there is neither differentiable nor continuous.

With E = 1 and t > 0 the formula for the Gauss curvature 6.1 yields

K = − 1

2
√

G
t

 ∂

∂t

∂G
t

∂t√
G
t


36Recall that signature-type change implies the existence of an uniquely determined absolute

time function in a neighborhood of the hypersurface [52].
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= − t
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√

G
t

∂2G
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∂
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.

The Gauss curvature K diverges for t→ 0+, and in two dimensions this is associ-
ated with the divergence of the Ricci scalar R = 2K. Hence, t = 0 is not simply
a coordinate singularity, but a curvature singularity and the metric ḡ = Ωg is not
defined at t = 0.37

In the generic case, the determinant 4 := det([gij]) = 1
t
G(t, x) obviously also

diverges at t = 0 which prevents us from defining the hypersurface of signature
change as proposed in the Definition 7.2. As a result we are also not able to define
the radical on the hypersurface. Metrics of the latter type (i.e. metrics that are
not differentiable on the hypersurface of signature change) are explored in [29].

Example 10.1. We apply the conformal transformation to our toy model metric
ds2 = t(dt)2 + (dx)2 which immediately yields ds2 = 1(dt)2 + 1

t
(dx)2. This gives

us apparently the metric A as described in [29], but with reversed Riemannian
and Lorentzian sectors (the upper half plane of the spacetime, t > 0, has here
Riemannian structure and the lower part, t < 0, is Minkowski).

The corresponding Lagrangean LĀ = 1
2
(ṫ2 + 1

t
ẋ2) determines the geodesics

t̄(λ) = −t(λ) = − c2

4
λ2 + 1

c2
2LĀ

x̄(λ) = −x(λ) = − c3

12
λ3 + 2LĀ

c
λ− x(0),

which are also just the geodesic equations (16.6) in [29], but multiplied by (−1).

37In exceptional cases, a curvature singularity can be possibly avoided by picking a suitable
G(t, x).
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10.2 Generalization to the n-dimensional case

We can refer again to radical-adapted Gauss-like coordinates in order to generalize
the 2-dimensional signature-type changing manifold to the n-dimensional situation.
Hence, the canonical metric for an n-dimensional signature-type changing manifold
has the form g = −t(dt)2 + Gijdx

idxj, i, j ∈ {1, . . . , n − 1}. This result is insofar
intriguing as the metric components in radical-adapted Gauss-like coordinates are
smooth, even across the hypersurface of signature change. Moreover, these radical-
adapted Gauss-like coordinates can be considered as time-orthogonal coordinates
for an n-dimensional signature-type changing manifold.38

The difference between the two established notions of classical signature-type change,
denominated as the "continuous" and the "discontinuous" approaches, is to some
extend only a coordinate transformation [27]: By means of a rather simple coor-
dinate transformation we can translate any statement about the "discontinuous"
approach into one in the "continuous" approach.39 Furthermore, by means of a
conformal transformation, we can translate the above findings to the signature-
type changing class of metrics with an infinite discontinuity at t = 0 as described
in [29].

Considering all this, we shall henceforth restrict ourselves to the continuous ap-
proach where the metric g constitutes a smooth, symmetric (0, 2)-tensor field that
is degenerate at H. Furthermore, we stick with transverse, signature-type changing
manifolds with a transverse radical. And we assume that one connected component
of M \ H is Riemannian and the other ones are Lorentzian. However, in the next
chapter we relax that restriction in order to explore a signature-type changing class
of metrics with an infinite discontinuity at t = 0. From this class of metrics we
can again extract information about transverse, signature-type changing manifolds
qua a conformal transformation.

38In general, for dimensions n ≥ 4 an orthogonal coordinate frame does not exist, so a time-
orthogonal coordinate frame seems to be the best choice.

39If, however, we are pedantic, then the relationship between the two "approaches" does not
exist by means of a coordinate transformation, but rather by means of a switch to another maximal
atlas, with which the topological manifold is turned into a differentiable manifold. It should
be added that the two different maximal atlases are not considered as different differentiable
structures as there is a diffeoemorphism from one atlas to the other. Hence, in the category of
differentiable manifolds, they are the same object.
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11 Conformal transformation

A transverse type-changing singular semi-Riemannian manifold (M, g) with a trans-
verse radical, as specified in Section 3, will be shown to be conformally equivalent
to a signature-type changing semi-Riemannian manifold (M, ḡ) which has pseudo-
timelike geodesics with loops. The latter one, the class of signature-type changing
semi-Riemannian manifolds endowed with a non-smooth metric which has an in-
finite discontinuity at t = 0, is analyzed extensively in the work of Faustmann
et al. [29]. Note that the Faustmann models are neither smooth nor have they
a radical defined on their hypersurface. Here we want to show the relationship
between the Faustmann models and the class of transverse type-changing singu-
lar semi-Riemannian manifolds with a transverse radical and, in so doing, how to
easily identify its closed pseudo-timelike curves.

We take advantage of the fact that the causal structures of (M, ḡ) and (M,Ωḡ) are
always the same, with Ω being a conformal factor. Admittedly, the geodesics of
ḡ and g = Ωḡ are usually quite different, but we can utilize what we know about
the causality of (M, ḡ) to identify closed pseudo-causal curves or loops in (M,Ωḡ),
and vice versa. This insight elucidates the relationship between two significantly
different signature-type changing manifolds and their (geodesic) curves.

Closed pseudo-timelike and closed pseudo-null curves in a transverse type-changing
singular semi-Riemannian manifold (M, g), with a metric of the form

ds2 = −g00(dt)2+
n−1∑
i=1

(dxi)2,

can be obtained by a conformal transformation from a specific class of causality
violating type-changing semi-Riemannian manifolds:

Consider the signature-type changing semi-Riemannian manifold (M, ḡ) with a
metric of the form

ḡ = sgn(f(t))[−(dt)2 +
1

f(t)
(dx1)2 + · · ·+ 1

f(t)
(dxn−1)2], (11.1)

where f(t) ∈ R, f : R −→ R, and f ′(0) > 0. Moreover, without loss of generality,
we assume that f(0) = 0.40 The locus of signature change is given by the set

40Note that this means that there is an infinite discontinuity at t = 0 and thus some of the
metric coefficients diverge there. According to this, the metric ḡ is not defined for t = 0.

84



H = {(t, x1, . . . , xn−1) ∈ Rn | f(t) = 0} = {(0, x1, . . . , xn−1) ∈ Rn} ⊂ M , although
ḡ is not defined on H. Hence, in order for the signature of the metric ḡ to change,
we force f(t) to go through the value zero; and at those events where f(t) = 0
the metric is “singular”. This type of signature-type changing semi-Riemannian
manifold and the behavior of the corresponding geodesics was extensively studied
in the 2-dimensional setting by [29].
Also, there is a continuous, non-negative function Ω ∈ F (M), defined by Ω(t) =
f(t) · sgn(f(t)), such that g(X, Y ) = Ωḡ(X, Y ), which yields the metric g = Ωḡ =
−f(t)(dt)2 + (dx1)2 + · · · + (dxn−1)2. Note that there is a unique bilinear and
continuous continuation to all of H and therefore g is continuous for all t ∈ R.

Considering the above requirements, it is again possible by means of a transforma-
tion of the t-coordinate to get local coordinates such that f(t) = t for all t ∈ R.
Then the metric g is in radical-adapted Gauss-like coordinates, i.e. with g00 = −t,
and thus the coordinate independent absolute time function allows us to construct
a characteristic conformal factor Ω = t · sgn(t).

Revisiting the signature-type changing semi-Riemannian manifold (M, ḡ) with the
metric ḡ defined by Equation (11.1),

ds2 = sgn(f(t))[−(dt)2 +
1

f(t)
(dx1)2 + · · ·+ 1

f(t)
(dxn−1)2].

Without loss of generality, the surface of signature-change is determined by f(0) =
0 and located at H = {(t, x1, . . . , xn−1) ∈ Rn | f(t) = 0}. The lower half space
(t < 0) of the manifold is Riemannian and the upper part of the manifold (t > 0)
is Lorentzian.

The corresponding Lagrangian and Euler-Lagrange equations are given by

L =
1

2

(
−sgn(f(t))ṫ2 +

sgn(f(t))

f(t)

n−1∑
i=1

(ẋi)2

)
,

0 =
∂L
∂t
− d

ds
(
∂L
∂ṫ

) = −1

2
sgn(f(t)) · f

′(t)

f(t)2

n−1∑
i=1

(ẋi)2 + sgn(f(t))ẗ,

0 =
∂L
∂xi
− d

ds
(
∂L
∂ẋi

) = − d

ds

sgn(f(t))

f(t)
ẋi, (11.2)
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and 11.2 implies that sgn(f(t))
f(t)

ẋi = cxi is a constant.

Note that in the strict sense the Lagrangian is not defined at the hypersurface H.
Thence, it ought to be calculated for each region separately, and the resultant two
constants should then be matched accordingly. However, in this particular case it
is feasible to simplify matters and consider the above unified Lagrangian.41

Then the geodesics are determined by(ˆ
df(t)

dt
ds

)2

=
4f(t)

n−1∑
i=1

(cxi)2

− 8L

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2 ,

xi(s) =
2Lcxi

n−1∑
j=1

(cxj)2

s+
sgn(f(t))cxi

4

(
n−1∑
j=1

(cxj)
2

)ˆ (ˆ
df(t)

dt
ds

)2

ds.

For 2L = −1, a pseudo-timelike geodesic starts in the Lorentzian region. It enters
the Riemannian sector at t = 0, where accordingly 2L =1 applies. The pseudo-
timelike geodesic then reaches its turning point within the Riemannian region, at
ṫ(s) = 0. This means

ṫ(s) =
1

2

n−1∑
i=1

(cxi)
2

ˆ
df(t)

dt
ds = 0

⇐⇒
ˆ
df(t)

dt
ds = 0

⇐⇒ 4f(t)
n−1∑
i=1

(cxi)2

− 8L

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2 = 0

⇐⇒ f(t) =
2L

sgn(f(t))
n−1∑
i=1

(cxi)2

=
1

sgn(f(t))
n−1∑
i=1

(cxi)2

,

41The full calculations can be found in Appendix B.
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after which the geodesic turns back to the Lorentzian region. This pseudo-timelike
geodesic intersects itself (in the Lorentzian region) at

−2f(t) =
−4L

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2 ·
n−1∑
i=1

(cxi)
2 =

2

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2 ·
n−1∑
i=1

(cxi)
2.

Lightlike geodesics (ˆ
df(t)

dt
ds

)2

=
4f(t)

n−1∑
i=1

(cxi)2

,

xi(s) =

sgn(f(t))

(
n−1∑
i=1

(cxi)
2

)
cxi

4

ˆ (ˆ
df(t)

dt
ds

)2

ds

have their turning point at f(t) = 0 and are therefore confined to the Lorentzian
sector. In other words, lightlike geodesics do not cross the surface of signature
change and do not have a point of intersection. The above reasoning can be sum-
marized as

Proposition 11.1. Let (M, ḡ) be a signature-type changing semi-Riemannian man-
ifold such as introduced above in Equation 11.1. Then there is an arbitrary con-
formal factor Ω ∈ F (M), defined by Ω(t) = f(t) · sgn(f(t)), such that (M, g) :=
(M,Ωḡ) is a causality-violating, transverse type-changing singular semi-Riemannian
manifold with a transverse radical, and the metric is given by g = Ωḡ = −f(t)(dt)2+
(dx1)2 + · · ·+ (dxn−1)2.

The manifold (M, ḡ) will be called the causality-violating germ.

Denote the matrix representation of g as [gµν ], and beH = {q ∈M | f(t(q)) = 0} =
{q ∈ M | t(q) = 0} the locus of signature change. Then we have 4 = det([gµν ]) =
−f(t), and the differential d4 = −f ′(t)dt. Because of the precondition f ′(0) 6= 0
we have d4 6= 0 for all q ∈ H. Thus it appears that Radq = span({ ∂

∂t
}) is

transverse with respect to H, and dim(Radq) = 1.
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Corollary 11.2. Let (M,Ωḡ) be a transverse type-changing singular
semi-Riemannian manifold that is conformally equivalent to the causality-violating
germ (M, ḡ), and γ an affinely parametrized pseudo-timelike geodesic on M with
respect to a metric ḡ. Then γ is a closed pseudo-timelike curve on M with respect
to the metric g = Ωḡ.

Example 11.3. Let M be a 2-dimensional manifold, f(t) = t, and
ḡ = sgn(t)[−(dt)2 + 1

t
(dx)2], which is similar to metric A in [29]. Note that

the Lagrangian for the metric ḡ is given by Lg̃ = −sgn(t)
2

(
ṫ2 − 1

t
ẋ2
)
; and the in-

terrelation between the Lagrangian LA for metric A and the Lagrangian L for
ḡ is L = −sgn(t)LA. By picking the conformal factor Ω = t · sgn(t) and then,
by applying the conformal transformation we get the familiar toy model metric
g = Ωḡ = Ω · sgn(t)[−(dt)2 + 1

t
(dx)2] = −t(dt)2 + (dx)2, see Section 5. The metric

g = Ωḡ is here represented in radical-adapted Gauss-like coordinates. Therefore
we have the coordinate independent absolute time function which yields the above
characteristic conformal factor.

As the causal structure of the spacetime (M, ḡ) is preserved, we can infer that
(M, g) is causality violating and the closed pseudo-timelike curves coming from
geodesics in (M, ḡ) are of the form (see also (16.6.) in [29])

t(s) =
c2

4
s2 +

2L
sgn(t(s))c2

=
c2

4
s2 − 1

c2
,

with 2L = −1 for t > 0 and 2L = 1 for t < 0, and

x(s) =
c3

12
s3 +

sgn(t)2L
c

s+ x(0),

with 2L = −1 for t > 0 and 2L = 1 for t < 0.

Example 11.4. Let M be a 2-dimensional manifold, f(t) = tanh(t), and ḡ =
sgn(tanh(t))[−(dt)2+ 1

tanh(t)
(dx)2]. This metric is obviously closely related tometric

C in [29]. Unlike the manifold in the previous Example 11.3, this manifold (M, ḡ) is
asymptotically flat insofar as for t −→ ±∞ the geometry in the Lorentzian region
becomes indistinguishable from that of Minkowski spacetime.
The Lagrangian is given by

Lg̃ =
1

2

(
−sgn(tanh(t))ṫ2 +

sgn(tanh(t))

tanh(t)
ẋ2

)
.
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By applying the conformal transformation with the conformal factor

Ω = tanh(t)sgn(tanh(t)),

we get
g = Ωḡ = − tanh(t)(dt)2 + (dx)2.

Note that due to radical-adapted Gauss-like coordinates, the metric g = Ωḡ can
locally be expressed in the form ds2 = −t(dt)2 + (dx)2.

The above delineated procedure shows how to get closed pseudo-timelike curves in
a signature-type changing singular semi-Riemannian manifold (with has a smooth
metric) when geodesic loops in a signature-type changing manifold with a non-
smooth metric which has an infinite discontinuity, are placed at our disposal. On
the other hand, we could refer to the same procedure to transform some non-
geodesic curves into geodesics by means of a tailor-made conformal transformation.
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12 Pseudo-Levi-Civita connection

When the metric is non-degenerate (which means the radical consists only of {0})
there exists a canonical invariant, called the Levi-Civita connection, which is char-
acterized by the Koszul formula [71]. Furthermore, we can construct the Rieman-
nian, Ricci and scalar curvatures.
But in our setting, when the metric is allowed to be degenerate and fails to
have maximal rank on H (id est, M is a singular semi-Riemannian manifold with
dim(Radq) ≥ 1 for q ∈ H), the definition of the Levi-Civita connection (on the
whole of M) and, as a consequence, the construction of the curvature invariants
are no longer possible. This stems from the fact that the inverse components of
the metric blow up at the hypersurface of signature change. In particular,

Proposition 12.1. In signature-type changing singular semi-Riemannian manifold
with a transverse radical, the canonical construction of the Levi-Civita connection
fails to be compatible with the metric.

Proof. Assuming again that the degenerate signature-type changing metric is a
smooth, symmetric and transverse (0, 2)-tensor field, we can refer to radical-adapted
Gauss-like coordinates as introduced in 9. The canonical metric on this n-dimensional
signature-type changing manifold (M, g) takes then the form g = −t(dt)2+Gijdx

idxj,
with G00 = −t, i, j ∈ {1, . . . , n− 1}, in the neighborhood of H.

The condition for a connection to be compatible with g is

∂kgij = gjmΓmki + gimΓmkj.

Taking 0 = k = i = j, applied to g in radical-adapted Gauss-like coordinates
coordinates, we get

−1 ≡ ∂0g00 = ∂tgtt = −∂tt = g0mΓ
m
00 + g0mΓ

m
00 = 2(g0mΓ

m
00)

= 2( g00︸︷︷︸
−t

Γ
0
00 + g01︸︷︷︸

0

Γ
1
00 + g02︸︷︷︸

0

Γ
2
00 + · · ·+ g0n︸︷︷︸

0

Γ
n
00) = −2tΓ0

00.

Since the right-hand side vanishes when t = 0, this is impossible no matter what
connection we choose. Hence, in general a connection that is compatible with a
degenerate signature-type changing metric does not exist.42

42In order to deal with a connection that blows up at the hypersurface, we could only consider
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In face of this result, one course of action would be to find a way to construct a
surrogate for the covariant derivative (and other invariants) for the case when the
metric is degenerate. Another way to deal with the above result would be to restrict
our considerations to metric tensors for which the appropriate (i.e. problematic)
components vanish at the signature-type changing locus H.

However, in the following discussion we establish criteria that determine which
geodesics and curves with the associated parallel vector fields have the property to
extend across the hypersurface smoothly − and are such defined on all ofM . It is a
well-known fact that in semi-Riemannian geometry we can transform a vector field
into a one-form via the linear morphism [ which is defined by [(u)v := g(u, v) ∀v ∈
V , see Section 7. If g is non-degenerate, this map is invertible and we get an
isomorphism of V where V ∗ is called the musical isomorphism. Corresponding pairs
[(u)←→ u contain exactly the same information and are metrically equivalent [71].
This duality between one-forms and vector fields indicates where we have to look
for a solution.

12.1 The dual connection

In order to cover the degenerate case in singular semi-Riemannian geometry a gen-
eralization of some standard constructions in semi-Riemannian geometry is stud-
ied by Stoica [84], where the assumption of a constant signature of the metric is
dropped. For the class of so-called semi-regular singular semi-Riemannian mani-
folds Stoica (Definition 6.20, [84]) presents a way to construct objects such as the
covariant derivative of differential forms, the lower Riemannian curvature operator,
the Ricci curvature tensor and the scalar curvature − even if the metric is degen-
erate. In order to avoid the problem of inverse components of the metric to blow
up at the hypersurface, Stoica suggests to use the Koszul form, which is the right
side of the Koszul formula (in [71], p.61), as baseline:43

Definition 12.2. The Koszul form is defined [84] as
K : X(M)× X(M)× X(M) −→ F(M),
K(X, Y, Z) :=
1
2
{Xg(Y, Z) +Y g(Z,X)−Zg(X, Y )− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]}.

metric tensors with certain appropriate components that vanish at the signature-changing locus.
However, as delineated below, we will choose a different approach.

43In other literature, e.g. in [2], the Koszul form is called the Koszul-like formula.
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When the metric is non-degenerate, we get the usual Levi-Civita connection∇XY =
K(X, Y, �)# by raising the 1-form K(X, Y, �).44 In this case, the Koszul form co-
incides with the Koszul formula, i.e. K(X, Y, Z) = g(∇XY, Z).45 In this way the
Riemannian curvature can be defined and it coincides with the usual Riemannian
curvature tensor if the metric tensor is non-degenerate.

The properties derived from the Koszul form correspond to the key properties of
the Levi-Civita connection for the non-singular semi-Riemannian case, and are
axiomatized as follows:

(1) K(X, Y, Z) is additive and R-linear in each argument.

(2) K(X, Y, Z) is F(M)-linear in X:
K(fX, Y, Z) = fK(X, Y, Z) for f ∈ F(M).

(3) K(X, fY, Z) = fK(X, Y, Z) +X(f)g(Y, Z) for f ∈ F(M).

(4) K(X, Y, Z) is F(M)-linear in Z:
K(X, Y, fZ) = fK(X, Y, Z) for f ∈ F(M).

(5) K(X, Y, Z) is compatible with the metric g:
K(X, Y, Z) +K(X,Z, Y ) = Xg(Y, Z).

(6) K(X, Y, Z) is torsion-free: g([X, Y ], Z) = K(X, Y, Z)−K(Y,X,Z).

Note that if { ∂
∂x1
, . . . , ∂

∂xn
} are the coordinate vector fields, then

K(
∂

∂xa
,
∂

∂xb
,
∂

∂xc
) =

1

2
(
∂

∂xa
gbc +

∂

∂xb
gca −

∂

∂xc
gab),

with a, b, c ∈ {1, . . . , n}, yields the Christoffel symbols of the first kind.
44This differential one-form is defined as K(X,Y, �) : X(M) −→ F(M), K(X,Y, �)(Z) :=
K(X,Y, Z).

45Note that away from the singular locus we have Ω1(M) 3 0 = K(ẋ, ẋ, �) = g(∇ẋẋ, �), which
is obviously equivalent to the geodesic equation ∇ẋẋ = 0 because of
X(M) 3 0 = K(ẋ, ẋ, �)# = ∇ẋẋ. Hence, K(ẋ, ẋ, �) = 0 can be considered as a different way to

express the Euler-Lagrange equations.
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Corollary 12.3. [84] Let X, Y ∈ X(M) and W ∈ X⊥(M) (see Section 7), then
K(X, Y,W ) = K(Y,X,W ) = −K(X,W, Y ) = −K(Y,W,X).

There exists another well-defined map, called a C∞ dual connection [50] on M .
Given (M, g), a dual connection �XY ∈ Ω1(M) on M is the differential 1-form
defined by

Definition 12.4. � : X(M)× X(M) −→ Ω1(M),
X, Y −→ �XY ,

which satisfies the following properties for f ∈ F(M), X, Y ∈ X(M)

(1) � is additive and R-linear in each argument,
(2) �XfY = X(f)g(Y, �) + f �X Y ,
(3) �fXY = f �X Y ,

the torsion of� is the (0, 3)-tensor T (X, Y, Z) = �XY (Z)−�YX(Z)−g([X, Y ], Z),
and � is metric compatible if Xg(Y, Z) = �XY (Z) + �XZ(Y ).46

Lemma 12.5. Let (M, g) be a transverse type-changing singular semi-Riemannian
manifold. Given (M, g), there exists a unique torsion-free dual connection that is
compatible with the metric.

If X, Y, Z ∈ X(M) are vector fields on M , then we denote this unique metric-
compatible and torsion-free dual connection by ∇[

XY and call it the lower covari-
ant derivative of Y in the direction of X. Based on the aforesaid Koszul form
K, the lower covariant derivative is just defined [84] as

(∇[
XY )(Z) := K(X, Y, Z)

=
1

2
{Xg(Y, Z) + Y g(Z,X)−Zg(X, Y )− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]}.

The lower covariant derivative operator is the map

∇[ : X(M)× X(M) −→ Ω1(M)

46We may describe � in arbitrary local coordinates as �XY (Z) = (gµνY
µ
,α + ΓναβY

β)XαZν .
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that spits out the differential one-form ∇[
XY .

Since the lower covariant derivative is equivalent to the Koszul form, the key prop-
erties (1) − (6) in 12.1 for the former one correspond directly to the latter one.
Moreover, for the non-singular semi-Riemannian case the concepts derived from the
lower covariant derivative coincide to the ones derived from the Levi-Civita con-
nection. When the metric is non-degenerate we get the natural covariant derivative
∇XY = (∇[

XY )# ∈ X(M) simply by raising the one-form ∇[
XY .47 The beauty of

the lower covariant derivative lies in the fact that it is also defined for singular
semi-Riemannian manifolds and is not restricted to a non-degenerate metric.

Based on the above reasoning, one might be tempted to speculate that the lower
covariant derivative consistently results in parallel transport, as suggested by the
following

Claim 12.6. ∇[
UV := K(U, V, �) = 0 if and only if the vector field V is parallel

transported along the vector U .

Proof. The presumption can be easily rebutted by testing it for∇[
UU := K(U,U, �) =

0 and by trying to define geodesics using the stated formula:

Away from the singular locus (i.e. the hypersurface which is a codimension-
one submanifold), we have the Levi-Civita connection which corresponds to the
Koszul form. We want to know whether we can define geodesics by the equation
K(γ̇, γ̇, �) = 0 ∈ Ω1(M) for a parametrized curve γ : I −→M .

Away from the hypersurface we indeed have Ω1(M) 3 0 = K(γ̇, γ̇, �) = g(∇γ̇ γ̇, �),
which is obviously equivalent to the geodesic equation ∇γ̇ γ̇ = 0 because of X(M) 3
0 = K(γ̇, γ̇, �)# = ∇γ̇ γ̇.

Hence, our considerations pertain to the region around the singular locus and
should address whether geodesics can be matched on both sides of the hypersurface.
There are two possible ways to answer the question.

i) The zero in the equation Ω1(M) 3 0 = K(γ̇, γ̇, �) is a zero 1-form field that is
defined everywhere onM . Then the vector fields γ̇ also must be defined everywhere
on M . Moreover, away from the singular locus the integral curves γ : I −→M are

47In that case we also have ∇[XY (Z) = g(∇XY, Z) where ∇ denotes the Levi-Civita connec-
tion [16].
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affinely parametrized geodesics.
However, such vector fields can only be obtained as a special case. In the toy model
example 5 the geodesics for L0 are of the form γ(s) = (t(s), x(s)) = (ct, x(s)), with
t(s) = ct being a constant. The corresponding vector fields then have the form
γ̇(s) = (ṫ(s), ẋ(s)) = (0, ẋ(s)).
In the toy model these special vector fields are indeed defined everywhere on M .
However, if the vector fields were of the form γ̇(s) = (ṫ(s), ẋ(s)) with ṫ 6= 0, then
we already know (based on the discussion about the toy model in Subsection 5.2)
that ṫ is discontinuous at the singular locus and there is no continuous continuation
across the hypersurface. So in general we won’t be able to find vector fields that
meet our requested conditions.

ii) If we do not require that the zero in the equation Ω1(M) 3 0 = K(γ̇, γ̇, �)
is a 1-form field that is defined everywhere on M , then we can consider vector
fields γ̇ along their own integral curves. In that case, the zero in the equation
Ω1(M) 3 0 = K(γ̇, γ̇, �) is a 1-form field along these integral curves. Away from the
singular locus the integral curves γ are again affinely parametrized geodesics. The
zero 1-form field may be smooth, even across the hypersurface. But as we have
pointed out before, at the singular locus there are no general matching conditions
available for vector fields and geodesics. Based on our calculations for the toy
model (see Section 5) the tangent vectors of the integral curves diverge at the
hypersurface of signature change.

Considering all of this, we are not able to define geodesics by the equationK(γ̇, γ̇, �) =
0 ∈ Ω1(M) for a parametrized curve γ : I −→M .

While the lower covariant derivative is a sensible and beneficial modification of the
natural covariant derivative, it does not inherently establish a default definition
of parallel transport. Furthermore, it does not serve as a surrogate for an affine
connection in the degenerate case.

As a consequence we have to single out the pairs of vector fields X, Y on M that
have the property that the covariant derivative ∇XY of Y in the direction of X
extends smoothly to all of M . Then we are able to determine which curves allow
for parallel transport, and we can also apply those findings to classify all geodesics
that smoothly cross the hypersurface.
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12.2 The natural fundamental tensor

The properties of ∇[
XY guarantee that we have a natural tensor defined [50] by

IIq : TqM × TqM ×Radq −→ R,

IIq(X, Y,R) = ∇[
XqY (R),

with Rq ∈ Radq and Xq, Yq ∈ TqM for all q ∈ H.

Proof. Note that for f ∈ F(M) we have ∇[
Xq
fY (R) = X(f)g(q)(Y,R)+f∇[

Xq
Y (R)

and g(q)(Y,R) = 0.

Lemma 12.7. [50] IIq(X, Y,R) = IIq(Y,X,R).

Proof. Because ∇[
XY is compatible with the metric, we get

0 = g(q)(R, [X, Y ]) = ∇[
Xq
Y (R)−∇[

Yq
X(R).

Observe that, since IIq is a tensor, we may write IIq relative to arbitrary coordi-
nates as IIq(X, Y,R) = ΓναβX

αY βRν . The term Γναβ represents the Christoffel
symbols of the first kind, which can be also expressed by means of the Koszul form
as K( ∂

∂xa
, ∂
∂xb
, ∂
∂xc

) = 1
2
( ∂
∂xa

gbc + ∂
∂xb
gca − ∂

∂xc
gab), when { ∂

∂x1
, . . . , ∂

∂xn
} are the coor-

dinate vector fields.

Example 12.8. Consider on R2 our toy model spacetime 5 with the signature-
type changing metric ds2 = t(dt)2 + (ds)2. The hypersurface of signature-change
is located at H ={(t, x) ∈ R2 | t = 0}, and the transverse radical at H is given
by span({ ∂

∂t
}), see Example 7.20 in Subsection 7.2. The only non-zero tensor

component with respect to this basis is IIq( ∂∂t ,
∂
∂t
, ∂
∂t

) = K( ∂
∂t
, ∂
∂t
, ∂
∂t

) = 1
2
( ∂
∂t
gtt) = 1

2
,

hence the tensor is given by IIq = 1
2
dt⊗ dt⊗ dt.

We have now a suitable tool, namely the tensor IIq, at our disposal to analyze
the geometry of the hypersurface. It can be used to characterize the nature of the
hypersurface of signature change:

Theorem 12.9. [50] Let (M, g) be a singular semi-Riemannian manifold of
dimM = n ≥ 2, with a smooth, symmetric, degenerate metric g, and H a metric
singularity of co-dimension one. Then (M, g) has a transverse metric singularity
at any q ∈ H if and only if there exists a Xq ∈ TqM with IIq(X,R,R) 6= 0, with
Rq ∈ Radq\{0}. Moreover, the radical is transverse if and only if IIq(R,R,R) 6= 0.
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Proof. We pick a radical adapted orthonormal frame e0, . . . , en−1 (see Section 9),
assuming that e0(q) = Rq ∈ Radq. Thus the metric has the following matrix
representation

[gij] =


g00 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 .

From this obviously follows det([gij]) = g(e0, e0) = g00. Because of Proposition 9.5
we have that (M, g) has a transverse metric singularity at q ∈ H if and only if
d(det([gij])q) = d(g(e0, e0)q) 6= 0 for some local frame (e0, . . . , en−1) centered at q.
Hence, this equivalence is fulfilled when there exists a Xq ∈ TqM such that

0 6= 2IIq(X,R,R) = 2(∇[
XqR)(R) := 2K(X,R,R) = Xg(e0, e0) |q .

Therefore, based on Sections 3 and 7.2, TqH = ker(dg(e0, e0)q) is the kernel of
the one-form d(g(e0, e0)q) ∈ TqM

∗. And the radical is transverse if and only if
= Rg(e0, e0) |q= IIq(R,R,R) 6= 0.

Proposition 12.10. [51] Given a singular semi-Riemannian manifold (M, g) with
a smooth co-dimension-1, degenerate signature-type changing metric g, then the
orthogonal complement of Radq relative to IIq(�, �, R) is TqH.

Proof. Choose at q ∈ H a radical adapted orthonormal frame e0, . . . , en−1 (see Sub-
section 9) and wq ∈ TqH. Furthermore, we assume that e0(q) = Rq ∈ Radq. Be-
cause of IIq(X, Y,R) = IIq(Y,X,R) it is sufficient to only consider IIq(w,R,R) =
∇[
wqe0(e0) = 1

2
wqg(e0, e0) = 0, because g(e0, e0) = g00 = 0 on H.

12.3 Parallel transport

On the basis of the tensor IIq the following two pieces of information can be
extracted:

(i) We can determine which pairs of vector fields X, Y ∈ X(M) have the prop-
erty that the associated covariant derivative ∇XY = (∇[

XY )# extends smoothly
to all of M ,

(ii) Given a curve γ : (−ε, ε) −→ M , with γ(0) = q ∈ H, then IIq determines
which parallel vector fields along γ extend smoothly through the hypersurface at
the point q.
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We want to bring to mind that (M, g) is again a transverse type-changing singular
semi-Riemannian manifold with a transverse radical. This means that (M, g) has
a transverse metric singularity at any q ∈ H, so the hypersurface H is an (n− 1)-
dimensional submanifold.

Theorem 12.11. [51] Let (M, g) be a transverse type-changing singular semi-
Riemannian manifold with a transverse radical. Given two vector fields X, Y ∈
X(M), then the associated covariant derivative ∇XY = (∇[

XY )# extends smoothly
to all of M if and only if IIq(X, Y,R) = 0 for all q ∈ H.

Proof. Choose at q ∈ H a radical adapted orthonormal frame e0, . . . , en−1 (see
Subsection 9), assuming that e0(q) = Rq ∈ Radq spans the one-dimensional radical.

” =⇒ ” In the case that ∇XY extends smoothly to all of M we already estab-
lished that ∇[

XY (ei) = g(∇XY, ei), i ∈ {0, . . . , n− 1} with ∇[
XY (ei) being smooth.

The vector ∇XY can be described relative to the radical adapted orthonormal
frame as

∇XY =
g(∇XY, e0)

g(e0, e0)
e0+

n−1∑
i=1

g(∇XY, ei).

At q ∈ H we have g(e0, e0)q = g00(q) = 0, hence the term g(∇XY,e0)
g(e0,e0)

blows up at the
hypersurface. Since the term g(∇XY,e0)

g(e0,e0)
extends smoothly to all ofM , the numerator

g(∇XY, e0) = ∇[
XY (e0) must vanish on H. And because e0 ∈ Radq, this just means

g(∇XY, e0) = ∇[
Xq
Y (e0) = IIq(X, Y,R) = 0.

”⇐= ” If we are given that IIq(X, Y,R) = 0 for all q ∈ H, then IIq(X, Y,R) =
∇[
Xq
Y (R) = 0, with Rq ∈ Radq and Xq, Yq ∈ TqM for all q ∈ H. Since 0 =

(∇[
XY )(R) =⇒ g((∇[

XY )#, Rq) = g((∇[
XY )#, e0) = 0 for all Rq ∈ Radq.

This theorem implies that the covariant derivative ∇XY = (∇[
XY )# extends

smoothly across H if and only if either X or Y is tangent to H at every point
q ∈ H. This gives rise to a new name for singular semi-Riemannian manifolds for
which any set of vector fields X, Y ∈ X(M) have the property that the associated
covariant derivative ∇XY = (∇[

XY )# extends smoothly to all of M .

Definition 12.12. [59, 84] A singular semi-Riemannian manifold (M, g) is called
radical-stationary if for any two vector fields X, Y ∈ X(M) the following condi-
tion is satisfied:
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∇[
XY := K(X, Y, �) ∈ A[(M),

where (TqM)[ is the radical-annihilator space of the radical space (TqM)⊥ = Radq,
and A[(M) := {ω ∈ Ω1(M) | ωp ∈ (TpM)[ for p ∈M}.

Proposition 12.13. Let (M, g) be a radical-stationary singular semi-Riemannian
manifold. Then the covariant derivative ∇XY extends smoothly to all of M for
any X, Y ∈ X(M).

Proof. Since (M, g) is radical-stationary we have ∇[
XY := K(X, Y, �) ∈ A[(M) for

any X, Y ∈ X(M). Since A[(M) is the radical-annihilator this yields ∇[
Xq
Y (R) :=

K(X, Y,R) = IIq(X, Y,R) = 0 for all q ∈ H. And Theorem 12.11 implies that the
covariant derivative ∇XY extends smoothly across H.

The opposite is in general not true.

Keep in mind that the unit tangent bundle [77]

UM =
⋃
p∈M

UpM,

also denoted as T 1M , is a (2m−1)-dimensional submanifold of the tangent bundle
TM . Also, T 1M is the sphere bundle of the canonical projection πM : TM −→M
of the tangent bundle [76]. If there exists the Levi-Civita connection, then we may
naturally assign a complementary horizontal subspace Hu to the vertical space Vu
in TuTM , and Hu ⊂ TuUM must apply for u ∈ UM .

Theorem 12.14. [51] Let (M, g) be a transverse type-changing singular semi-
Riemannian manifolds with a transverse radical. Given c : (−ε, ε) −→M a smooth
curve transverse to the hypersurface H at q = c(0). Let II⊥(ċ) := {v ∈ TqM |
IIq(ċ, v, R) = 0}. Then for each v ∈ II⊥ there exists a unique smooth vector field
P (t) along c such that DP

dt
= 0 for t 6= 0 and P (0) = v.
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Figure 12.1: A smooth curve c transverse to the hypersurface H at q = c(0).

This theorem follows from Theorem 12.11 and is proven in [51]. The proof is very
technical, but relies on the idea that for ċ(0) ∈ TqM the horizontal lift ċv ∈ Hv ⊂
TvTM of ċ(0) at v = P (0) ∈ TM is defined as the tangent vector at t = 0 to
the curve P (t) in TM obtained by parallel transporting v = P (0) ∈ UM , which
remains in UM .

In other words, for the specified set of tangent vectors II⊥(ċ), ċ(0) ∈ TqM = Tc(0)M
and a given smooth curve c(t) (transverse to H) which is trivially tangent to ċ(t)
at t = 0 the following has to be shown:
The vector field P (t) along c(t) obtained by parallel translating v = P (0) along c(t)
gets regarded as a curve in the tangent bundle TM through P (0) = v, then we get
ċv ∈ TvTM the tangent vector to P (t) at t = 0. This tangent vector ċv ∈ TvTM
is the horizontal lift of ċ(0) at v ∈ TM and part of the space Hv of all horizontal
lifts of tangent vectors in TqM at v = P (0) (which is an n-dimensional horizontal
space of TvTM at v).48

48Note that for v ∈ TM and ċ(t) ∈ X(M) we have then K(Dċ(v)) = ∇v ċ, where D is the
derivation of a vector field ċ as a map and K the connection map.
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Figure 12.2: For ċ(0) ∈ TqM the horizontal lift ċv ∈ Hv ⊂ TvTM of ċ(0) at v = P (0) ∈ TM is
defined as the tangent vector at t = 0 to the curve P (t) in TM obtained by parallel transporting
v = P (0) ∈ UM , which remains in UM . Note that the curve P (t) ⊂ TM is a section in TM .

Moreover, the proof in [51] takes advantage of Proposition 12.10 that yields a
decomposition of the tangent space TqM = II⊥(ċ)⊕Radq. Thus a radical adapted
orthonormal frame along the curve c can be constructed such that it spans II⊥(ċ)
and Radq, respectively.

Recall that Theorem 12.11 implies that∇ċv for v ∈ II⊥(ċ) extends smoothly across
H if and only if either ċ or v is tangent to H at every point q ∈ H. Since we require
the curve c to be transverse to the hypersurface H at q = c(0), the tangent vector
v = P (0) ∈ TM must be tangent to H. This gives us enough information to set
up the Schild’s ladder for the singular semi-Riemannian case.

12.3.1 Schild’s ladder

The Schild’s ladder is a well-known first-order method in Lorentzian geometry
for approximating parallel transport of a vector along a curve. Here we want
to use the Schild’s ladder construction in the singular semi-Riemannian case for
parallel transport along the curve c in order to provide some geometric intuition
for the preceding Theorem. The tangent vector v = P (0) ∈ II⊥(ċ) gets propagated
parallel to itself along the curve c which crosses H transversally at c(0) = q.
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Figure 12.3: The Schild’s ladder shows how a tangent vector v = P (0) ∈ II⊥(ċ) gets propagated
parallel to itself along the curve c which crosses H transversally at c(0) = q.

12.4 Geodesics

In 1992 Larsen [60] addressed already the question whether one can suitably extend
geodesics through noncritical singular points, which are defined as the hypersurface
of signature change (this is because of the requirement d(det([gµν ])q) 6= 0). Based
on [60] Kossowski and Kriele [54] developed this question further and could prove
existence and uniqueness conditions for geodesics and pre-geodesics to cross the
hypersurface. The result shows that geodesics cannot pass through a point q ∈ H
in an arbitrary direction, but only in a particular admissible direction.

The questions about the extendability of geodesics across the hypersurface, the
parallel transport that extends smoothly to all of M and the existence of the
covariant derivative on the hypersurface are very closely related:

In the full geodesic equation

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0

the Christoffel symbols Γµαβ are only present in the term Γµαβ
dxα

ds
dxβ

ds
, where the

dxi

ds
= X i are the components of the tangent vector γ′(s) = (X1(s), . . . , Xn(s)) of
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the geodesic γ. Hence, for each µ the term

Γµαβ
dxα

ds

dxβ

ds
= ΓµαβX

αXβ

constitutes a quadratic form

Qµ(X) := ΓµαβX
αXβ.

On the other hand, given

X =
∑
α

xα
∂

∂xα
,

Y =
∑
β

yβ
∂

∂xβ
,

the Christoffel symbols in the equation

∇XY =
∑
µ

(xαyβΓµαβ +X(yµ))
∂

∂xµ

for the covariant derivative are only present in the term Γµαβx
αyβ.49 Here the xα

are the components of a vector that indicates the directions in which the covariant
derivative is taken, and yβ are the components of the vector along a curve γ with
the tangent vector X. Hence, for each µ the term Γµαβx

αyβ constitutes a bilinear
form Bµ(X, Y ) = Γµαβx

αyβ. The bilinear form Bµ(X, Y ) is symmetric because we
assume the connection to be torsion free. For every quadratic form Qµ(x), there
exists a unique symmetric bilinear form Bµ such that Qµ(x) = Bµ(x, x). This im-
plies that all the information we need about parallel transport and the covariant
derivative (and in particular the Levi-Civita connection) can be extracted from the
information we have about geodesics, and vice versa. Therefore, it is sufficient to
focus on either approach. According to this, we just summarize (without proof)
the results about the extendability of geodesics across H below.

Example 12.15. In a signature-type changing setting not all of the quadratic
forms and bilinear forms are well-defined on H. Consider on R2 our toy model
spacetime (Section 5) with the signature-type changing metric ds2 = t(dt)2 +(ds)2.

49Recall that parallel transport is defined as the special case ∇XY =
∑
µ

(xαyβΓµαβ +

X(yµ)) ∂
∂xµ

= 0.
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Then the quadratic forms for µ = 0, 1 are Q0(X) = Γ0
αβX

αXβ = Γ0
00(X0)2 =

1
2t

(X0)2 and Q1(X) = Γ1
αβX

αXβ = 0. The associated bilinear forms are thus
B0(x, y) = Γ0

αβx
αyβ = 1

2t
x0y0 and B1(x, y) = Γ1

αβx
αyβ = 0.

Theorem 12.16. [54] Let (M, g) be a transverse type-changing singular semi-
Riemannian manifold, q ∈ H and vq ∈ TqM not tangent to H.50 There exists a
geodesic γ with γ̇(0) = vq if and only if IIq(V, V,R) = ∇[

vqV (R) = 0, for some
non-vanishing rq ∈ Radq. Furthermore, γ is smoothly immersed and unique. Note
that V,R are smooth vector fields such that V (q) = vq and R(q) = rq.

Theorem 12.17. [54] Let (M, g) be a transverse type-changing singular semi-
Riemannian manifold, with a transverse radical at q ∈ H. When vq ∈ Radq, then
there exists a smoothly immersed pre-geodesic γ with γ̇(0) = vq.

Proposition 12.18. [54] Given any immersed C1 pre-geodesic γ with γ(0) =
q ∈ H such that γ̇(0) is not tangent to H. Then we have either γ̇(0) ∈ Radq or
IIq(γ̇(0), γ̇(0), rq) = 0, and γ can be parametrized as smoothly immersed geodesic.

Example 12.19. Consider on R2 our toy model spacetime (Section 5) with the
signature-type changing metric ds2 = t(dt)2 +(ds)2. The hypersurface of signature-
change is at H ={(t, x) ∈ R2 | t = 0}, and the transverse radical at H is defined by
span({ ∂

∂t
}). Revisiting Example 12.8 we know that the natural tensor is given by

IIq = 1
2
dt⊗ dt⊗ dt and IIq( ∂∂t ,

∂
∂t
, ∂
∂t

) = 1
2
6= 0, with vq ∈ span({ ∂

∂t
}). According to

Theorem 12.16 there does not exist a geodesic that crosses H transversally with the
initial condition γ̇(0) = vq. This result confirms our discussion in Subsection 5.2.

50Observe that the radical is not required to be transverse.
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13 The transformation equivalence theorem

We present a procedure, called the Transformation Prescription, to transform an
arbitrary Lorentzian manifold into a signature-type changing manifold.51 Then
we prove the so-called Transformation theorem saying that locally the metric g̃
associated with a signature-type changing manifold (M, g̃) is equivalent to the
metric obtained from a Lorentzian metric g via the aforementioned transformation
prescription. By augmenting the assumptions by an additional constraint, mutatis
mutandis, the global version of the Transformation theorem is proven as well.

13.1 Transformation Prescription

Let M be an n-dimensional (not necessarily time-orientable) Lorentzian manifold
(M, g) with a smooth Lorentzian metric g. Since any Lorentzian manifold is locally
time-orientable, there exists a locally defined, smooth, non-vanishing timelike C∞
vector field.52 While, in general, the existence of a global non-vanishing, timelike
C∞ vector field is not guaranteed, it does exist under ideal circumstances. However,
we can alternatively depend on the following fact [64, 83]:

A line element field {V,—V } over M is like a vector field with undetermined
sign (i.e. determined up to a factor of ±1) at each point p of M ; this is a smooth
assignment to each p ∈M of a zero-dimensional sub-bundle of the tangent bundle.53

For any smooth manifold M the existence of a Lorentzian metric is equivalent to
the existence of a global, smooth non-vanishing line element field [64, 83] on M .
The set of all non-vanishing line element fields {V,−V } onM is denoted by L(M).
And henceforth, let F(M) be the set of all smooth real-valued functions on M .
Remark 13.1. The existence of a global non-vanishing line element field is equivalent
to the existence of a one-dimensional distribution. Also, the latter condition is
equivalent to the manifold M admitting a C∞ Lorentzian metric [40].

Proposition 13.2. (Transformation Prescription) Let (M, g) be an
n-dimensional (not necessarily time-orientable) Lorentzian manifold. Then we
obtain a signature-type changing metric g̃ via the Transformation Prescription

51A special case of this transformation can be found in [56, 57].
52One may say that Lorentzian manifolds are infinitesimally modeled on Minkowski space.

Since Minkowski space is time-orientable, locally there always exists a Lorentz frame, i. e. a field
of Lorentz bases. And a Lorentz basis contains a non-vanishing timelike vector field.

53Analogously, we can obtain a one-form field (q,−q) up to sign, if we use g to lower indices.
Then w = q ⊗ q is a well-defined 2-covariant symmetric tensor [62].
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g̃ = g+fV [⊗V [, where f : M −→ R is a smooth transformation function and V is
one of the unordered pair {V,—V } of a global smooth non-vanishing line element
field.

Proof. Since a smooth non-vanishing line element field exists for any Lorentzian
manifold and is defined as an assignment of a non-ordered pair of equal and opposite
vectors {V,−V } at each point p ∈ M , the existence of a smooth global non-
vanishing line element field is always ensured (even in the case of a non time-
orientable Lorentzian manifold). Hawking and Ellis [43], p.40, elucidate how to
construct a smooth global non-vanishing timelike line element field from a smooth
global non-vanishing line element field. And since V is a line element field that is
non-zero at every point in M , it can be normalized by gµνV µV ν = −1.54

Now consider an arbitrary C∞ function f : M → R, and define tensor fields on
M of the form g̃ := g + f(V [ ⊗ V [), where [ denotes the musical isomorphism.55

Locally there exist vector fields Ei that form an orthonormal frame, such that we
can express the metric in terms of coordinates:

g̃µν = gµν + f(VµVν) = gµν + f(gµαV
αEµ ⊗ gνβV βEν)

= gµν + f(gµαV
αgνβV

β(Eµ ⊗ Eν)) = gµν + f(gµαV
αgνβV

β).

Moreover, locally there exist vector fieldsEj such that {V,E2, . . . , En} is a Lorentzian
frame field relative to g. Then

g̃(Ei, Ej) = g(Ei, Ej) + f(V [ ⊗ V [)(Ei, Ej) = δij + f(g(V,Ei)︸ ︷︷ ︸
0

· g(V,Ej)︸ ︷︷ ︸
0

) = δij,

54Here “timelike” refers to the Lorentzian metric g.
55Here the metric g induces the musical isomorphisms between the tangent bundle TM and

the cotangent bundle T ∗M : Recall that flat [ is the vector bundle isomorphism [ : TM → T ∗M
induced by the isomorphism of the fibers
[ : TpM → T ∗pM , given by v 7→ v[, where [(v)︸︷︷︸

v[

(w) = v[(w) = g(v, w) ∀ v, w ∈ TpM .

We thus obtain for the vector v = vjej and the associated 1-form v[ = vke
k the expression for

the musical isomorphism in local coordinates:
v[(w) = vke

k(wiei) = vkw
iδki = viw

i = g(vjej , w
iei) = gijv

jwi, where w = wiei is an arbitrary
vector. This calculation yields vi = gijv

j =⇒ v[ = vie
i = gijv

jei.
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g̃(V,Ej) = g(V,Ej) + f(g(V, V )︸ ︷︷ ︸
−1

· g(V,Ej)︸ ︷︷ ︸
0

) = 0,

g̃(V, V ) = g(V, V ) + f(g(V, V )︸ ︷︷ ︸
−1

· g(V, V )︸ ︷︷ ︸
−1

) = f − 1.

Consequently, because of 0 > g̃(V, V ) = f−1⇔ 1 > f , g̃ is a Lorentzian metric on
M in the region with 1 > f(p). Analogously, in the region with 1 < f(p), we have
that g̃ is a Riemannian metric, and for f(p) = 1 the metric g̃ is degenerate.

If 1 is a regular value of f : M → R, then H :=f−1(1) = {p ∈ M : f(p) = 1}
is a hypersurface in M .56 Moreover, for every q ∈ H, the tangent space TqH is
the kernel of the map dfq : TqM −→ T1R. According to this, (M, g̃) represents a
signature-type changing manifold with the locus of signature change at H.

13.1.1 Representation of g̃

The representation of g̃ as g̃ = g + fV [ ⊗ V [, as introduced in the Transformation
prescription 13.2 above, is ambiguous. More precisely, different triples (g, V, f)
can yield the same metric g̃. To see this, notice that for (M, g̃) with dim(M) = n,
the signature-type changing metric g̃ and the Lorentzian metric g are determined
pointwise by n(n+1)

2
metric coefficients. Aside from that, for the former we have

the n components of V and the value of f (besides 1, because of g(V, V ) = −1) at
each point in M .

In the following, we demonstrate that one can choose either V or f arbitrarily,
with the fixed condition that f(q) = 1 ∀q ∈ H on the hypersurface, but not both
independently of each other.

Proposition 13.3. Given a signature-type changing metric g̃, then in particular,
the line element field V can be chosen arbitrarily (subject to temporal causality
constraints in ML with respect to g̃). This choice subsequently allows for the deter-
mination of the Lorentzian metric g and a C∞ function f , with the fixed condition
f(q) = 1 ∀q ∈ H. Then the triple (g, V, f) constitutes the representation of g̃
through g̃ = g + fV [ ⊗ V [, as introduced in the Transformation Prescription 13.2

56This is to say, H is a submanifold of dimension n− 1 in M , constituting the locus where the
signature change occurs.
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Proof. Let ψ : MR ∪ML −→ R be chosen such that Ṽ := ψV is normalized with
respect to g̃: that is, g̃(Ṽ , Ṽ ) = 1 and g̃(Ṽ , Ṽ ) = −1 in MR and ML, respectively.
In the following, only the relationships in ML will be examined, the argumenta-
tion in the Riemannian sector MR is carried out analogously with corresponding
changes in sign. Consider the normalized line element field Ṽ , with

−1 = g̃(Ṽ , Ṽ ) = g(Ṽ , Ṽ ) + f [g(V, Ṽ )]2

= ψ2g(V, V ) + fψ2[g(V, V )]2 = ψ2 · (−1 + f)

=⇒ f − 1 = − 1

ψ2
. (13.1)

Then, we extend Ṽ to a Lorentzian basis {Ṽ , Ẽ1, . . . , Ẽn−1} relative to g̃, and we
get

0 = g̃(Ṽ , Ẽi) = g(Ṽ , Ẽi) + fg(V, Ṽ )g(V, Ẽi)

= ψ[g(V, Ẽi) + fg(V, V )g(V, Ẽi)] = ψ · (1− f)g(V, Ẽi)

=⇒ g(V, Ẽi) = 0, (13.2)

because of ψ · (1− f) 6= 0 on MR ∪ML. Furthermore,

δij = g̃(Ẽi, Ẽj) = g(Ẽi, Ẽj) + fg(V, Ẽi)︸ ︷︷ ︸
0

g(V, Ẽj)︸ ︷︷ ︸
0

=⇒ g(Ẽi, Ẽj) = δij. (13.3)

Since {V, Ẽ1, . . . , Ẽn−1} is also a basis, and in addition g(V, V ) = −1 holds, the
metric g is uniquely determined. Moreover, for the function ψ : MR ∪ML −→ R
we have established the relation g̃(V, V ) = 1

ψ2 g̃(Ṽ , Ṽ ) = − 1
ψ2 , and therefore is the

C∞ function f , based on Equation 13.1, also uniquely determined by f = 1− 1
ψ2 .

Note that a change in length defined by φ : MR ∪ML −→ R, V 7→ φV , entails the
change f 7→ 1 + φ2 · (f − 1).

According to the above proposition, these triples (g, V, f) form equivalence classes,
where all triples within an equivalence class yield the same metric g̃. If one perturbs
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a triple, especially at V but not at g and f , the new triple belongs to a different
equivalence class and thus yields a different g̃. However, within the new equivalence
class, there is also a triple with the original V that similarly yields the ’new’ g̃. On
the other hand, one can ’simultaneously’ perturb V , g, and f in such a way that
the original equivalence class is maintained, and hence, the original g̃ is preserved.
This insight suggests the following proposition.

Proposition 13.4. Let X be the set of all triples (g, V, f) with g ∈ Lor(M),
f ∈ F(M), V ∈ L(M), where Lor(M) denotes the set of all Lorentzian metrics on
M , F(M) the set of all smooth real-valued functions on M , and L(M) the set of all
non-vanishing line element fields {V,−V } on M . The equivalence relation ∼ on X
is defined by: (g, V, f) ∼ (ḡ, V̄ , f̄) if and only if g̃ = g + fV [⊗ V [ = ḡ + f̄ V̄ [ ⊗ V̄ [.
Then the partition X of the set of all triples (g, V, f) is given by X/ ∼= {[g̃]∼ =
[(g, V, f)]g̃ : (g, V, f) ∈ X}, where g̃ is to be interpreted in such a way that it can be
regarded as a representative of the equivalence class of triples corresponding to g̃.

Proof. First recall that a relation ∼ on X is called an equivalence relation if it is
reflexive, symmetric, and transitive. Moreover, a partition of the set X is then
defined as a collection of all disjoint non-empty subsets Xi of X, where i ∈ I (I is
the index set), such that

Xi 6= 0 ∀i ∈ I,
Xi ∩Xj = Ø, when i 6= j,⋃
i∈I Xi = X.

It is straightforward to demonstrate that the relation ∼ satisfies all three con-
ditions for an equivalence relation. Specifically, two triples (g, V, f) ∼ (ḡ, V̄ , f̄)
are equivalent if and only if g̃ = g + fV [ ⊗ V [ = ḡ + f̄ V̄ [ ⊗ V̄ [. Given the re-
lation ∼, we can define the equivalence class [g̃]∼ = [(g, V, f)]g̃ = {(g, V, f) ∈
Lor(M) × L(M) × F(M) : g̃ = g + fV [ ⊗ V [}, where g̃ can be viewed as a class
representative of the equivalence class of triples corresponding to g̃. And we can
establish X/ ∼= {[g̃]∼ = [(g, V, f)]g̃ : (g, V, f) ∈ X}, which is a pairwise disjoint
partition of X. Note that the set of class representatives g̃ is a subset of X which
contains exactly one element from each equivalence class [g̃]∼ = [(g, V, f)]g̃, this is
the set of all signature-type changing metrics g̃ on M .

Corollary 13.5. There is a bijection between the partition of the set of all triples
(g, V, f) and the set of all signature-type changing metrics g̃ on M .
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13.2 Local transformation theorem

Note that in the Transformation Prescription 13.2 the locus of signature-change is
not necessarily an embedded hypersurface in M . Recall that this is only the case
if 1 is a regular value of f : M −→ R, and then H :=f−1(1) is a smoothly embed-
ded hypersurface in M . Also, the signature-type changing manifold (M, g̃) has a
spacelike hypersurface if and only if the radical Radq intersects TqH transversally
for all q ∈ H, see Section 9.

Remark 13.6. Indeed, if (M, g̃) is a transverse type-changing and the radical is
transverse,57 then for each q ∈ H there exists a neighborhood U(q) allowing for
smooth radical-adapted Gauss-like coordinates (see Theorem 9.2), such that the
metric takes the form g̃ = −t(dt)2 + g̃ijdx

idxj, for i, j ∈ {1, . . . , n− 1}. The subset
H ∩ U(q) ⊂ U(q) is closed in U(q) and has the representation (0, x1, . . . , xn−1).
So on each H ∩ U(q) the transformation function is smooth and on U(q) it takes
the special form fq(t, x̂) = 1 − t,58 such that fq |H= 1. Consequently there is a
smooth function f : U(q) −→ R such that f |H∩U(q)= fq |H∩U(q). Due to that we
can use t =: h(t, x̂) as the absolute time function (see 8.16) by means of which we
can define f(t, x̂) := 1− h(t, x̂) on U :=

⋃
q∈H U(q).

Lemma 13.7. Let (M, g̃) be an n-dimensional transverse, signature-type changing
manifold with an transvere radical. Furthermore is f : M −→ R a C∞ function,
such that 1 is a regular value of f , and H :=f−1(1) = {p ∈ M : f(p) = 1} an
embedded hypersurface in M . For any q ∈ H and any local coordinate system
ξ = (t, x̂) = (t, x1, . . . , xn−1) centered at q the following holds: d(det([g̃µν ])) 6=
0 =⇒ df 6= 0.

Proof. In a neighborhood of the hypersurface of signature change H there exist
radical-adapted Gauss-like coordinates, and the matrix represenation of g̃ takes
the form

[g̃µν ] =


−t 0 · · · 0
0 g̃11 · · · g̃1n−1
...

...
...

0 g̃n−11 · · · g̃n−1n−1

 =


−t 0 · · · 0
0
... G̃
0

 ,

57Recall that this definition implies that H is a smoothly embedded hypersurface in M .
58Note that the t-coordinate of the argument in fq(t, x̂) = 1 − t can be different for different

coordinate patches Uq, but the function values fq(t, x̂) for each q ∈ H are identical.
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and the determinant of this block diagonal matrix yields

det([g̃µν ]) = det(−t) det(G̃) = −t ·
n−1∏
i−1

λi,

where λi are the positive eigenvalues of G̃ corresponding to the signature of the
metric.59 Then locally, for any q ∈ H and f = 1− t, we have

det([g̃µν ]) = (f − 1) ·
n−1∏
i−1

λi,

so as to the metric g̃ is exactly degenerate for f(q) = 1. Since 1 is supposed to be
a regular value, we impose the restriction that

d(det([g̃µν ])) = d

(
(f − 1) ·

n−1∏
i−1

λi

)
=

n−1∏
i−1

λi · d(f − 1) 6= 0

for any q ∈ H and any local coordinate system ξ = (t, x̂) = (t, x1, . . . , xn−1)
centered at q. Since

n−1∏
i−1

λi > 0

always holds, this implies d(f − 1) 6= 0 for any q ∈ H. Hence, we obtain for f that

d(f − 1) =
∂f(t, x̂)

∂t
dt+

∂f(t, x̂)

∂x1

dx1 + · · ·+ ∂f(t, x̂)

∂xn−1

dxn−1 = df 6= 0

for any q ∈ H.

Corollary 13.8. LetM be an n-dimensional manifold with a signature-type chang-
ing metric g̃, obtained via the Transformation Prescription g̃ = g+fV [⊗V [, where
f : M −→ R is a C∞ function such that 1 is a regular value, and H :=f−1(1) =
{p ∈ M : f(p) = 1}. Then in the case that the radical is transverse, and due to

59The signature of a symmetric matrix expresses the number of positive and negative eigenval-
ues, counting multiplicities.
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d(det([g̃µν ])) 6= 0, there exists in a neighborhood U :=
⋃
q∈H U(q) of H the absolute

time function h(t, x̂) = t. This time function establishes a foliation [33, 41] in
U , such that H is a level surface of that decomposition. And the transformation
function f(t, x̂) |U := 1− h(t, x̂) = 1− t interpolates between the Lorentzian region
and the Riemannian region. These two regions are separated by H at f(0, x̂) = 1.

Figure 13.1: A typical smoothstep function that ensures a smooth transition from 2 to 1− t to
0 over a set interval.

Remark 13.9. In light of Proposition 13.3, we understand that, due to arbitrary
rescaling, there are no distinguished values for f .60However, when considering com-
pelling examples, especially in a physical context, where a Lorentzian manifold
transforms into a signature-changing manifold, it is reasonable to assume that the
transformation is imperceptible far away from the hypersurface. Therefore, certain
specific choices of f hold more physical significance than others. To achieve this,
we can, without loss of generality, choose a transformation function as follows:
The transformation function f(t, x̂) |U := 1 − h(t, x̂) = 1 − t interpolates between
the Lorentzian region U ∩ML at f(t, x̂) = 0 for certain t > 0 and the Riemannian
region U ∩MR at f(t, x̂) = 2 for certain t < 0. These two regions are separated
by H at f(0, x̂) = 1. And in order to achieve a smooth transition with a contin-
uous and differentiable transformation function f(t, x̂), we can use a smoothstep

60Although the Lorentzian metric can be significantly deformed by arbitrary transformation
functions f without a ’smoothstep’ as introduced below, this deformation does not affect the
metric’s signature.
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function (cubic Hermite interpolation) that smoothly interpolates between the dif-
ferent segments. Thus the smoothstep function ensures a smooth transition from
2 to 1− t to 0 over a set interval, and it smoothly interpolates between the values,
see Figure 13.1. We can adjust the transition points as needed, dependent on the
manifold.

Remark 13.10. Also by the same token: For the reverse direction of the equivalence
proof for the Transformation Theorem (see below) a transverse, signature-type
changing manifold with a transverse radical is given. In that case we need to find a
suitable triple (V, g, f) with certain properties in U :=

⋃
q∈H U(q). Also in this case

we understand that different triples (g, V, f) can yield the same metric g̃, and due
to arbitrary rescaling, there are no distinguished values for f (Subsection 13.1.1).
Because we know that the transformation function must take the value 1 = f(0, x̂)
for t = 0, so without loss of generality we can choose f(t, x̂) := 1 − h(t, x̂) in the
neighborhood of H, and start from there to find an appropriate extension.
Obviously the manifold is built from more coordinate patches besides U . This
means that the transformation function f in g̃ = g + fV [ ⊗ V [ is defined by
f(t, x̂) := 1−h(t, x̂) locally (i.e. in a neighborhood of the hypersurface of signature
change H). However, since the manifold M is assumed to be paracompact, we
can construct the extension of the transformation function f(t, x̂) by using the
properties of a partition of unity subordinate to the collection of chart domains in
order to patch the local functions fi on different open subsets Ui together (such
that the global function agrees on overlaps):
The sum of the form

∑
i

fiψi =: f then reduces to a global smooth function on the

manifold M . With this convention, which we assume throughout, we just require
that the extended transformation function f(t, x̂) is well-defined.61

To sum up, for every q ∈ H the tangent space TqH to H at p is the kernel
Tq(f

−1(1)) = ker dfq of the map dfq : TqM −→ T1R. And although locally near H,
the transformation function can take the form f(t, x̂) := f(t, x1, . . . , xn−1) = (1−t),
globally (dependent on the large scale causal structure of the manifold) it can look

61A a partition of unity is a collection of nonnegative functions ψi, such that the support of the
partition function ψi is contained in just one open subset Ui each, and

∑
i

ψi = 1. Hence, at any

one point in M , only one of the partition functions has nonzero value, so the sum
∑
i

fiψi =: f

reduces to a global smooth function on the manifold M . In other words, the approach would be
to construct fi locally and use a partition of unity to glue the local functions together.
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a lot different. Take for instance an asymptotically flat spacetime, then one could
choose f(t, x̂) = − arctan(t − 1) as transformation function for which the first-
order Taylor polynomial at t = 1 is given by p1(t, x̂) = −(t − 1) = 1 − t. So
the function f(t, x̂) = − arctan(t − 1) looks in a neighborhood of H like 1 − t
but away from the hypersurface it certainly looks a lot different. We obtain
g̃ = g−arctan(t−1)V [⊗V [, which is a signature-changing manifold (M, g̃) with a
transverse, type-changing metric. The locus of signature change is again at t = 0,
with the Lorentzian sector determined by t > 0 and the Riemannian sector set by
t < 0.

Lemma 13.11. Let (M, g̃) be a transverse, signature-type changing manifold with
a transverse radical. Then in the Lorentzian sectorML there always exists a smooth
non-vanishing timelike line element field {V,−V } on ML with ∂

∂t
= V in ML ∩ U ,

where U :=
⋃
q∈H U(q) is the neighborhood of H (see Remark 13.6) with respect to

smooth radical-adapted Gauss-like coordinates.

Proof. Since a smooth non-vanishing timelike line element field exists for any
Lorentzian manifold, the existence of such a line element field {V,−V } in ML

is always ensured.

In U :=
⋃
q∈H U(q) there is a unique absolute time function defined by h(t, x̂) := t,

and in the Lorentzian sector we have −h |ML∩U (t, x̂) = g̃ |ML∩U ( ∂
∂t
, ∂
∂t

) = −t < 0.
Consider now a neighborhood U(q) for any q ∈ H, where the vector field ∂

∂t
is given

and is timelike in ML ∩ U(q).

So locally ∂
∂t

can be chosen as timelike line element field W = { ∂
∂t
,− ∂

∂t
} with

determined sign. In the case that W /∈ {V,−V } within ML ∩ U(q), we choose
another, suitable slightly larger neighborhood U+(q) such that U(q) ⊂ U+(q).62

Note that W should also be a line element field on the extended neighborhood
U+(q) and can by arbitrary (besides the requirement of being smooth everywhere)
outside of U+(q).

62In order for the transition zone (U+(q) \ (U(q)) ∩ML) not to become "too narrow," every
point on the boundary of U(q) must have an open neighborhood that is a subset of U+(q).
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Figure 13.2: Locally ∂
∂t can be chosen as timelike line element field W = { ∂∂t ,−

∂
∂t} with

determined sign. In the case that W /∈ {V,−V } within ML ∩ U(q), we choose another, suitable
slightly larger neighborhood U+(q) such that U(q) ⊂ U+(q).

Then, due to the convexity of both components, C+(p) and C−(p), of the light
cone in each point p ∈ ML, we construct for V,W ∈ C+(p), ∀p ∈ ML the timelike
vectors (1 − a)V + aW =: Ṽ ∈ C+(p),63 where a is a continuous function with
a = 0 in ML \U+(q), a = 1 in U(q)∩ML, and 0 < a < 1 in (U+(q) \ (U(q))∩ML).
This yields a smooth non-vanishing timelike line element field {Ṽ ,−Ṽ } in ML

corresponding to ∂
∂t

=: Ṽ in ML ∩ U .

Theorem 13.12. Local Transformation theorem (transverse radical) For
every q ∈M there exists a neighborhood U(q), such that the metric g̃ associated with
a signature-type changing manifold (M, g̃) is a transverse, type-changing metric
with a transverse radical if and only if g̃ is locally obtained from a Lorentzian metric
g via the Transformation Prescription 13.2 g̃ = g + fV [ ⊗ V [, where df 6= 0 and
(V (f))(q) = ((df)(V ))(q) 6= 0 for every q ∈ H :=f−1(1) = {p ∈M : f(p) = 1}.64

63As the affine combination of two timelike vectors V,W belonging to the same component of
the light cone, the vector Ṽ is also timelike. and also belongs to that component.

64Recall that for every q ∈ H, TqH is the kernel of the map dfq : TqM −→ T1R. Therefore the
condition V (f) = (df)(V ) 6= 0, ∀q ∈ H ensures that V /∈ TqH and thus V is not tangent to H.
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Proof. In the subsequent proof, we only consider the scenario where q ∈ H. If q is
within the Lorentzian sector ML, then U(q) can be chosen to be sufficiently small,
ensuring that U(q) is entirely contained withinML. Consequently, in this scenario,
the theorem’s assertion becomes trivial, as g̃ already represents a Lorentzian metric
there, and thus, f = 0 satisfies all the stated conditions. Similarly, we can select a
neighborhood in the Riemannian sector MR where, for instance, f = 2 is trivially
applicable.

To begin, consider that, according to Proposition 13.3 and Proposition 13.4 any
triple (g, V, f), where g ∈ Lor(M), V ∈ L(M) with g(V, V ) = −1 and f ∈ F(M),
yields a signature-type changing metric g̃ = g + fV [ ⊗ V [ = g + fg(V, �)g(V, �),
which is defined over the entire manifoldM (see Transformation Prescription 13.2).
Conversely, if we have a signature-type changing metric g̃ we can always single out
the associated triple (g, V, f) belonging to the equivalence class of [g̃], such that
g̃ locally takes the form g̃ = g + fV [ ⊗ V [. In either case, we can initiate the
proof by assuming that locally g̃ = g + f · V [ ⊗ V [ is given, and normalized with
g(V, V ) = −1.

In order to simplify the problem as much as possible we adopt co-moving coordi-
nates (refer to [28, 48, 79, 73] for more details), that is g00(V 0)2 = g(V, V ) = −1
and V i = 0 for i 6= 0. Then the metric g̃ relative to these coordinates is given by

g̃µν = gµν + fgµαV
αgνβV

β = gµν + fgµ0gν0(V 0)2 = gµν − f
gµ0gν0

g00

. (13.4)

The last equality follows from the aforementioned condition

g00(V 0)2 = g(V, V ) = −1⇐⇒ (V 0)2 = − 1

g00

.

According to Equation 13.4 the components of the metric in co-moving coordinates
are determined by

g̃00 = g00 − f (g00)2

g00
= (1− f)g00,

g̃ij = gij − f gi0gj0g00
,

g̃0i = g0i − fgi0 = (1− f)g0i.

And the associated matrix representation of g̃ is given by
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[g̃µν ] =


(1− f)g00 (1− f)g01 · · · (1− f)g0n−1

(1− f)g10 g̃11 · · · g̃1n−1
...

...
...

(1− f)gn−10 g̃n−11 · · · g̃n−1n−1



=


(1− f)g00 (1− f)g01 · · · (1− f)g0n−1

(1− f)g10
... G̃

(1− f)gn−10

 .

Then take the determinant det([g̃µν ]) = (1− f) det(Gµν), where

Gµν =


g00 g01 · · · g0n−1

(1− f)g10
... G̃

(1− f)gn−10

.

Now consider d(det([g̃µν ])) = d[(1−f) det(Gµν)] = (1−f)d(det(Gµν))−df det(Gµν).
Since q ∈ H :=f−1(1) = {p ∈ M : f(p) = 1} is a regular point for f , the term 1−
f = 0 is zero on the hypersurface H. Hence, on H we are left with d(det([g̃µν ])q) =
−df · det(Gµν). On H we have f ≡ 1, and therefore it remains to show that on H
the following is true

0 6= det(Gµν) = det


g00 g01 · · · g0n−1

0 g11 − g01g01

g00
· · · g1n−1 − g01g0n−1

g00

...
... . . . ...

0 gn−11 − g0n−1g01

g00
· · · gn−1n−1 − g0n−1g0n−1

g00

.

Notice that det(Gµν) is the determinant of a block matrix with the block [g00] 6= 0
being invertible on H, hence

det(Gµν) = det([g00]) · det([gij −
gi0gj0
g00

]) = g00 · det(G̃).
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Because of the condition g00(V 0)2 = −1 we have

gij −
gi0gj0
g00

= gij + g0ig0j(V
0)2 =: hij,

which are the metric coefficients of the degenerate metric h = g + fV [ ⊗ V [,
i.e. the coefficients of [g̃µν ] for f = 1. More precisely, hµν = gµν + gµαV

αgνβV
β =

gµν+gµ0gν0(V 0)2. Since in co-moving coordinates, the vector V is orthogonal to the
spatial coordinates [48], the metric h, restricted to the g-orthogonal complement
V ⊥ of V in each tangent space, results in the non-degenerate "spatial metric" with
metric coefficients hij. Finally, we may show that from det(Gµν) = g00 · det(G̃) =
g00 · det([hij]) on H, and the fact that the “spatial metric” h is non-degenerate,
follows that det(Gµν) 6= 0 on H. Consequently, from d(det([g̃µν ])) = −df ·det(Gµν)
on H we get the biconditional statement

d(det([g̃µν ])) 6= 0 ∀q ∈ H ⇐⇒ df 6= 0 ∀q ∈ H.

By additionally requiring that (V (f))(q) = ((df)(V ))(q) 6= 0, the radical is guar-
anteed to be transverse.

Remark 13.13. Remember that the triples (g, V, f) form equivalence classes (see
Proposition 13.4), where all triples within an equivalence class yield the same met-
ric g̃. Hence, by picking an arbitrary triple (g, V, f) in co-moving coordinates, we
have shown that the relation d(det([g̃µν ])) 6= 0 ∀q ∈ H ⇐⇒ df 6= 0 ∀q ∈ H holds
independently of a choice of coordinates. This result is coordinate-independent
due to the nature of f as a scalar, even though the determinant depends on coor-
dinates. However, whether the differential of the determinant on the hypersurface
is zero or not is not contingent on the choice of coordinates.65 The equivalence
d(det([g̃µν ])) 6= 0⇐⇒ df 6= 0 is, in this sense, a local statement, as it only holds on
the hypersurface. On the other hand, the statement’s coordinate independence on
the hypersurface H implies that it remains unaffected by the choice of coordinates,
ensuring its validity across the entire hypersurface. Thus, it possesses a global
character in this regard - this aspect could be called H-global.

65This follows from the nonsingularity of the Jacobian matrix associated with a coordinate
transformation, in conjunction with the multiplicativity of the determinant in matrix multiplica-
tion, and the vanishing of the determinant on the hypersurface.

118



An alternative proof for the ” =⇒ ” direction of the local Transformation theorem,
using radical-adapted Gauss-like coordinates, is provided in Appendix C.

Recall that for every q ∈ H, the tangent space TqH is the kernel of the map
dfq : TqM −→ T1R. Therefore the condition V (fq) = dfq(V ) 6= 0, ∀q ∈ H ensures
that V /∈ TqH and thus V is not tangent to H. This guarantees that the radical
in (M, g̃) is transverse. If we are ready to relax our constraints and do not impose
this restriction on V , then we get a slightly modified version of the Transformation
theorem, such that the following corollary holds.

Corollary 13.14. For every q ∈M there exists a neighborhood U(q), such that the
metric g̃ associated with a signature-type changing manifold (M, g̃) is a transverse,
type-changing metric with a transverse radical only if g̃ is locally obtained from a
Lorentzian metric g via the Transformation Prescription g̃ = g + fV [ ⊗ V [, as
introduced in Proposition 13.2, where df 6= 0 for every q ∈ H :=f−1(1) = {p ∈
M : f(p) = 1}.

Contrariwise, if the additional constraints, (V (f))(q) = ((df)(V ))(q) = 0 and
df = 0 for every q ∈ H :=f−1(1) = {p ∈ M : f(p) = 1}, are imposed on the
Transformation Prescription 13.2, then we get an alternative version of the Trans-
formation Theorem:

Conjecture 13.15. Local Transformation theorem (tangent radical) For
every q ∈ M there exists a neighborhood U(q), such that the metric g̃ associated
with a signature-type changing manifold (M, g̃) is a type-changing metric with a
tangent radical if and only if g̃ is locally obtained from a Lorentzian metric g via
the Transformation Prescription 13.2 g̃ = g + f · V [ ⊗ V [, where df = 0 and
(V (f))(q) = ((df)(V ))(q) = 0 for every q ∈ H :=f−1(1) = {p ∈M : f(p) = 1}.66

Proof. If we want to deflect our focus from the case with a transverse radical and
consider a tangent radical instead, then the associated radical-adapted coordinates
will have a more complicated form. Please refer to [1], equation (10) in Remark 3
for more details. Referring to those coordinates, we presume the conjecture can be
proven.

66Recall that for every q ∈ H, TqH is the kernel of the map dfq : TqM −→ T1R. Therefore the
condition V (f) = (df)(V ) = 0, ∀q ∈ H ensures that V ∈ TqH and thus V is tangent to H.
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Example 13.16. Consider on R2 the metric ds2 = x(dt)2 + (dx)2 ([58], page 9).
This is a signature-type changing metric with

4 := det([gij]) = x,
d4 = ∂x

∂t
dt+ ∂x

∂x
dx = dx,

H = {q ∈M | x(q) = 0}.

The differential is d4 = dx 6= 0 on H, with H being a smoothly embedded hyper-
surface. The 1-dimensional radical is given by Radq = span({ ∂

∂t
}) for q ∈ H, and

it is tangent with respect to H.

Figure 13.3: The radical is tangent with respect to the hypersurface.

Here the transverse, signature-type changing metric ds2 = x(dt)2 + (dx)2 is given.
So we need to find a suitable Lorentzian metric g as well as a global smooth function
f : M −→ R and a non-vanishing line element field V , both with the properties
mentioned in 13.14.

By an educated guess with start with g = −(dt)2 + (dx)2, from which follows
x(dt)2 = −(dt)2 + fV [ ⊗ V [. As non-vanishing line element field we pick V = ∂

∂t
,

with V [ = g(V, �) = g( ∂
∂t
, �) = −(dt ⊗ dt)( ∂

∂t
, �) = −dt. Hence, x(dt)2 = −(dt)2 +

f · (dt)2 =⇒ f(t, x) = 1 + x.
Consequently this yields g̃ = g + (1 + x)(dt)2 = −(dt)2 + (dx)2 + (1 + x)(dt)2
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with f(t, x) = 1 + x. Then on H for x = 0 ⇐⇒ f(t, 0) = 1 we have g̃(V,X) =
(dx)2(V,X) = 0 ∀X, and this means V ∈ Radp(t,0) ∀t. And since Radq(t,0) =
span{V } = span({ ∂

∂t
}) the radical is tangent with respect to H.

Example 13.17. Let g be an arbitrary Lorentzian metric. By continuity, through-
out any sufficiently small neighborhood U(p) of any arbitrary point p ∈ M , it is
always possible to choose Gaussian coordinates (synchronous coordinates) with
g00 = −1, hence we can express g with respect to these coordinates as g =
−(dt)2 + gijdx

idxj, for i, j ∈ {1, . . . , n − 1}. Since (M, g) is Lorentzian there
exists, particularly within the aforementioned chart U(p), a timelike line element
field. In this case we can pick in U(p) one of the pair V = { ∂

∂t
,− ∂

∂t
}, such that

V can be considered a timelike line element field with a determined sign, i.e. V is
thus locally a timelike vector field satisfying g(V, V ) = −1 and V [ = −dt.

Then, without loss of generality, we choose the C∞ function f : U −→ R, f(t, x̂) =
1− t, such that df 6= 0 ∀ q = (t, x̂) = (t, x1, . . . , xn−1) ∈ H :=f−1(1). Applying the
Transformation Prescription 13.2 we obtain the signature-type changing metric

g̃ = g + (1− t)V [ ⊗ V [ = g + (1− t)
(
g(
∂

∂t
, �)⊗ g(

∂

∂t
, �)

)
,

with the associated matrix representation

g̃µν =


−t 0 · · · 0
0 g̃11 · · · g̃1n−1
...

...
...

0 g̃n−11 · · · g̃n−1n−1

 =


−t 0 · · · 0
0
... G̃
0

 .

Ultimately, because of Theorem 9.2 (M, g̃) is a transverse, signature-type changing
manifold with a transverse radical.

13.3 Global transformation theorem

By imposing an extra constraint on the local variant of the Transformation Theo-
rem 13.12, we can establish the validity of the global version of the Transformation
Theorem: The Riemannian sector with boundary MR ∪H is required to possess a
smoothly defined non-vanishing line element field that is transverse to the boundary
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H.67 In the subsequent discussion, we explore the means by which this supplemen-
tary constraint can be guaranteed.

13.3.1 Non-vanishing vector field in MR ∪H transverse to H

There are certain results and theorems in differential topology that provide condi-
tions under which a non-vanishing vector field exists on a manifold [47, 61, 81, 82].
For more general manifolds, the existence of a non-vanishing vector field is related
to the topology of the manifold:

(i) IfMR∪H is a noncompact connected manifold with boundary, then it admits
a nowhere vanishing vector field.

(ii) If MR∪H is compact and connected with boundary, then MR∪H admits a
nowhere vanishing vector field if χ(MR∪H) = 0, where χ is the Euler characteristic.

For a manifold with boundary, a non-vanishing vector field transverse to the bound-
ary may or may not exist, depending on the specific characteristics of the manifold
and its boundary. The condition for the existence of a non-vanishing vector field on
a differentiable manifold with boundary such that the vector field is transverse to
the boundary involves the notion of a vector field being "outward-pointing" along
the boundary [89] (in particular, for each q ∈ H, V (q) /∈ TqH for such a vector
field V ).

First, let us recall some general definitions [49, 61, 89].

Definition 13.18. LetMR∪H be a manifold with boundary ∂MR = H and q ∈ H.
A tangent vector Vq ∈ Tq(MR ∪ H) is said to be inward-pointing if Vq /∈ Tq(H)
and there is an ε > 0 and an associated curve γ : [0, ε) −→ MR ∪ H such that
γ(0) = q, γ((0, ε)) ⊂ M◦, with γ′(0) = Vq. Correspondingly, we say a vector field
Vq ∈ Tq(MR ∪H) is outward-pointing if −Vq is inward-pointing.

Definition 13.19. A collar of a manifold MR with boundary ∂M = H is a dif-
feomorphism φ = (φ1, φ2) from an open neighborhood U(H) of H to the product
R+ ×H such that φ2 |H= idH. In particular, φ(H) = {0} ×H.68

67The hypersurface H can be viewed as common connected boundary of the Riemannian region
MR and the Lorentzian region ML. Recall that a manifold with boundary is a topological space
in which, near each point, the space looks like the half-space {(x1, x2, . . . , xn)} ∈ Rn : xn ≥ 0}
for some n.

68Lee [61] refers to a different but equivalent definition: A neighborhood of H is called a collar
neighborhood if it is the image of a smooth embedding [0, ε)×H −→MR ∪H with ε > 0.

122



According to the Brown’s collaring theorem [12, 61], the boundary H has a collar
neighborhood U(H).

Given a vector field V on MR ∪H with a collar φ we define on the open neighbor-
hood U(H) the tangent and transverse components of V with respect to φ:

V‖ := Tφ2 ◦ V : U(H) −→ T (H)

Vt := Tφ1 ◦ V : U(H) −→ R.

Moreover, a vector field is termed 0-transverse if it is transverse to the zero section
of the tangent bundle.

If MR ∪H is a noncompact and connected manifold with boundary:
In the case where MR ∪ H is connected and noncompact with a boundary, a non-
vanishing vector field can always be constructed using the following procedure:
If MR ∪ H is noncompact, we can establish a compact exhaustion, denoted as
∅ = K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊆ M =

⋃
iKi. Zeros of a vector field existing in

Ki \Ki−1 are systematically pushed to Ki+1 \Ki. Notably, this process leaves the
vector fields defined on Ki−1 unchanged. By continuously pushing all zeros of a
vector field towards infinity, we obtain a well-defined nonvanishing vector field on
T (MR ∪H), where T (MR ∪H) represents a tangent bundle on MR ∪H.
This vector field can always be made transverse to the boundary by perturbing it
within a collar neighborhood U(H) with a small vector field that is transverse to
the boundary [37, 88].

Then again, assuming H possesses a transverse vector field without zeros, then
it suffices if there exists a vector field on MR ∪ H that is transverse to H and
has isolated zeros outside of H. In such a case, we can apply the same procedure
as described above. This essentially boils down to determining the existence of a
non-trivial section of the normal bundle of H.

If MR ∪H is a compact and connected manifold with boundary:
In the case whereMR∪H is connected and compact with a boundary, the situation
is a bit more complicated. The existence of a non-vanishing vector field transverse
to the boundary of a compact manifoldMR∪H depends on the topology and geom-
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etry of the manifold. One key result that addresses this question is the generalized
Poincaré-Hopf theorem [49, 61, 66, 81, 83]:69

Let M be a compact oriented manifold with boundary, and let V be a
smooth vector field on M such that:

V is transverse to the boundary ∂M .
The vector field V has isolated zeros in the interior of M , and the zeros
on the boundary are assumed to be pointing outward.

Then, the sum of the indices of the isolated zeros of V (counted with
signs) is equal to the Euler characteristic χ(M) of M . The index of a
zero is defined using the orientation of the manifold and measures how
many times the vector field winds around the zero.70

However, having zero Euler characteristic does not provide a direct guarantee of the
existence of a non-vanishing vector field transverse to the boundary. The Poincaré-
Hopf theorem provides a necessary condition for the existence of a nowhere vanish-
ing vector field. It states that if MR∪H is a compact manifold with boundary and
admits a nowhere vanishing vector field, then the Euler characteristic χ(MR ∪ H)
must be zero. So, while χ(MR ∪ H) = 0 is a necessary condition, it is not a suffi-
cient condition for the existence of a nowhere vanishing vector field on a compact
manifold with boundary.

Moreover, compact manifolds with boundary and Euler characteristic zero do not
naturally exist.71 The construction of such manifolds involves combining closed
manifolds in a specific manner - primarily by attaching handles to well−known
manifolds, such as a torus with handles, real projective space with handles, and
handlebodies with boundaries.

69This version of the Poincaré-Hopf theorem accounts for the presence of the boundary and
ensures that the vector field is transverse to it, taking into consideration the orientation of the
manifold. The orientation of the zeros on the boundary is also specified to maintain consistency.

70In the context of a vector field X on a manifold M , a zero of X refers to a point p in the
manifold where the vector field vanishes, meaning X(p) = 0. So if the sum of the indices of the
zeros of a vector field X on a compact manifold M is 0, then the Poincaré-Hopf Index Theorem
implies that the Euler characteristic χ(M) = 0.

71The term "naturally" suggests that such manifolds are not commonly encountered without
intentional construction or modification.

124



Example 13.20. Consider a torus with handles, which can be thought of as a
higher-genus surface obtained by attaching handles to a torus. If the handles
are attached in a way that preserves the orientation of the torus, it’s possible
to construct a non-vanishing vector field transverse to the boundary. However,
if the handles are attached in a way that reverses the orientation of the torus,
then constructing such a vector field becomes impossible due to the Poincaré-Hopf
theorem. Since the Euler characteristic of the torus with handles is not zero, there
must be points where a non-vanishing vector field is tangent to the boundary.
Therefore, a non-vanishing vector field transverse to the boundary is not guaranteed
in the general case. And in summary, the existence of a non-vanishing vector field
transverse to the boundary for a torus with handles depends on the specific way
the handles are attached and whether the resulting orientation is consistent with
the Poincaré-Hopf theorem.

Example 13.21. Consider the unit disk B2. To be transverse at the boundary, a
non-vanishing vector field should consistently point outward. But we know [68, 69]
that given a non-vanishing vector field V on B2, there exists a point of S1 where
the vector field V points directly inward and a point of S1where it points directly
outward. Thus we arrive at a contradiction with the condition for transversality.
The reason is as follows:
If the vector field (x, V (x)) on B2 (written as an ordered pair) changes direction
between pointing "outward" and "inward" along the boundary of a differentiable
manifold, it means that the field is not consistently transverse to the boundary, but
becomes tangent at some boundary points. In mathematical terms this means that
for some x ∈ S1 we have V (x) = ax for some a < 0, where V (x) = ax for some
a > 0 means pointing directly outward [89]. Hence, the vector field V vanishes
if V (x) = 0. Hence, a vector field on B2 that is nowhere-vanishing cannot point
inward everywhere or outward everywhere, so it has to be tangent to the boundary
somewhere by continuity.
In other words, if the vector field fails to be transverse to the boundary this includes
inconsistency in direction across the boundary, violating the desired conditions for a
well-defined transverse vector field. Analogously this also applies to the associated
line element field {V,−V }.
This example reflects the situation for the 2-dimensional case of the “no-boundary
proposal” spacetime.

In conclusion, when MR∪H is compact with a boundary, the relationship between
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the Euler characteristic χ(MR∪H) and the existence of a nowhere vanishing vector
field on a compact manifold with boundary becomes more subtle. There are no
clear conditions that we can impose on MR ∪ H for the existence of a nowhere
vanishing vector field that is also transverse to the boundary. As a consequence,
we will either explicitly require the existence of a non-vanishing vector field trans-
verse to the boundary, or limit our analysis exclusively to the non-compact case
where constructing such a vector field transverse to the boundary is always feasible.
Analogously, this also applies to the associated line element field {V,−V }.

13.3.2 Transformation theorem

In the context of the global Transformation theorem, as opposed to the local ver-
sion, the emphasis is also placed on the region in the Riemannian sector that is
“distant” from the hypersurface. The relationship between the Riemannian sector
and the hypersurface is crucial in determining whether the equivalence statement
in the local Transformation theorem 13.12 is applicable in the desired manner.

Theorem 13.22. Global Transformation theorem (transverse radical) Let
M be an transverse, signature-type changing manifold of dim(M) = n ≥ 2, which
admits in MR∪H a smoothly defined non-vanishing line element field that is trans-
verse to the boundary H. Then the metric g̃ associated with a signature-type chang-
ing manifold (M, g̃) is a transverse, type-changing metric with a transverse radical
if and only if g̃ is obtained from a Lorentzian metric g via the Transformation
Prescription g̃ = g + fV [ ⊗ V [, where df 6= 0 and (V (f))(q) = ((df)(V ))(q) 6= 0
for every q ∈ H :=f−1(1) = {p ∈M : f(p) = 1}.

Proof.
” ⇐= ” Since (M, g) is Lorentzian, there always exist a well-defined smooth

timelike line element field {V,−V } on all of M . Consequently, any triple (g, V, f),
where g is a Lorentzian metric, V ∈ {V,—V } a non-vanishing line element field on
M with g(V, V ) = −1 and f : M −→ R a smooth function, yields a signature-type
changing metric g̃ = g+fV [⊗V [, which is defined over the entire manifoldM (see
Transformation Prescription 13.2). Hence, the local version of the Transformation
theorem 13.12 entails trivially also the global version.

” =⇒ ” Let (M, g̃) be a signature-type changing manifold with a transverse
radical, and g̃ the associated transverse, type-changing metric. Following the pre-
condition, we select (independently of choosing specific coordinates) a smooth,
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non-vanishing line element field V = (1, 0, 0, . . . , 0)defined across the entire man-
ifold M , such that g(V, V ) < 0 in ML. Such a globally defined vector field exists
per assumption. Moreover, V can be specified as an arbitrary, time-like vector field
with respect to g, and normalized with g(V, V ) = −1.72

According to Proposition 13.3, this yields already a triple (g, V, f), with a uniquely
determined Lorentzian metric g and a smooth function f : M −→ R obeying the
fixed condition f(q) = 1 ∀q ∈ H, constituting the representation of g̃ through
g̃ = g+ fV [⊗ V [ = g+ fg(V, �)g(V, �). The insertion of V into the transformation
prescription yields

g̃(V, V ) = g(V, V )︸ ︷︷ ︸
−1

+ f [g(V, �)]2︸ ︷︷ ︸
1

= −1 + f,

which is negative in ML for 1 > f(p) and positive in MR for 1 < f(p).

In order to write down the representation matrix of g̃, a coordinate chart on the
manifold needs to be chosen. Then, every vector field X onM can be written down
as a linear combination of the coordinate basis vector fields, i.e. X = Xµ∂xµ . In
particular we have V = 1∂t+0∂x1 + · · ·+0∂xn−1 = ∂t. This means, that in a change
of coordinates, the vector field V changes because the components (1, 0, 0, . . . , 0)
are fixed while the Gaussian basis vector fields are changed.73

In these coordinates,74 the matrix representation of g̃ is given by

[g̃µν ] =


f − 1 g01 − fg01 · · · g0n−1 − fg0n−1

g10 − fg10 g11 + fg01g01 · · · g1n−1 + fg01g0n−1
...

...
...

gn−10 − fgn−10 gn−11 + fg0n−1g01 · · · gn−1n−1 + fg0n−1g0n−1


72In the procedure 13.1.1 the metric g is not determined before V is chosen. Moreover g is de-

termined not only by g̃ but also by the normalization condition imposed on V . This normalization
condition is to be used in the determinant calculation below.

73Keep in mind that the coordinates are associated with the corresponding Gaussian basis
vector fields, with which the metric coefficients are defined by substituting them into the metric.

74This is to say, for instance, g̃01 = g(∂t, ∂x1)+fg(V, ∂t)︸ ︷︷ ︸
(V,V )

g(V, ∂x1) = g01+f g00︸︷︷︸
−1

g01 = g01−fg01.
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=


−(1− f) g01(1− f) · · · g0n−1(1− f)
g10(1− f) g̃11 · · · g̃1n−1

...
...

...
gn−10(1− f) g̃n−11 · · · g̃n−1n−1

.

Now take the determinant det([g̃µν ]) = det(1 − f) det(G̃µν) = (1 − f) det(G̃µν),
where

G̃µν =


−1 g01 · · · g0n−1

(1− f)g10
... G̃

(1− f)gn−10

 .

Then take the differential d(det([g̃µν ])) = d((1−f) det(G̃µν)) = (1−f)·d(det(G̃µν))+
d(1− f) · det(G̃µν) = (1− f) · d(det(G̃µν))− df · det(G̃µν).

Because of the condition f(q) = 1 ∀q ∈ H :=f−1(1) = {p ∈ M : f(p) = 1}, we get
(1− f) · d(det(G̃µν)) = 0, hence d(det([g̃µν ])) = −df · det(G̃µν) on H. Accordingly
it remains to show that we indeed have −df · det(G̃µν) 6= 0 on H.

First notice that det(G̃µν) is the determinant of a block matrix with the block [−1]
being invertible, hence

det(G̃µν) = det(−1) · det(G̃− [(g10(1− f), . . . , gn−10(1− f))T (−1)(g01 . . . g0n−1)]

= − det


 g̃11 · · · g̃1n−1

... . . . ...
g̃n−11 · · · g̃n−1n−1

−
 −g10g01(1− f) · · · −g10g0n−1(1− f)

... . . . ...
−gn−10g01(1− f) · · · −gn−10g0n−1(1− f)




= − det


 g̃11 + g10g01(1− f) · · · g̃1n−1 + g10g0n−1(1− f)

... . . . ...
g̃n−11 + gn−10g01(1− f) · · · g̃n−1n−1 + gn−10g0n−1(1− f)


.

On the hypersurface H this yields
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det(G̃µν) = − det


 g̃11 · · · g̃1n−1

... . . . ...
g̃n−11 · · · g̃n−1n−1


 = − det G̃.

The sub-determinant det G̃, however, is precisely the determinant of the coefficients
of the metric g̃ reduced to the surfaces t = const (this is a "purely spatial" met-
ric, induced by projection). This "spatial metric" G̃ is non-degenerate, and thus,
− det G̃ 6= 0 on the hypersurface.75 Consequently, we get that −df · det(G̃µν) 6=
0⇐⇒ df 6= 0 on H.

And on H we have imposed the condition

0 6= d(det([g̃µν ])) = (1− f) · d(det(G̃µν))︸ ︷︷ ︸
0

− df · det(G̃µν)︸ ︷︷ ︸
6=0

,

so it follows from the above calculation that 0 6= d(det([g̃µν ])) =⇒ df 6= 0 ∀q ∈
H.

Remember that the triples (g, V, f) form equivalence classes (see Proposition 13.4),
where all triples within an equivalence class yield the same metric g̃. If an ele-
ment’s properties change in a way that aligns with a different equivalence class,
it may move accordingly to a different equivalence class, as elucidated in Subsec-
tion13.1.1.76 Hence, by picking V = (1, 0, . . . , 0) in a coordinate independent man-
ner, we have shown that the Transformation Prescription also holds for arbitrary
triples (g, V, f) with df 6= 0 on the hypersurface, indicating that the differential of
the determinant of g̃ is nonzero, independet of the choice of coordinates.

75Recall that he signature of a symmetric matrix expresses the number of positive and negative
eigenvalues, counting multiplicities. Accordingly, the matrix G has only positive eigenvalues.
Since the determinant of the representation matrix of a Riemannian metric G is the product of
the eigenvalues of G (counted with multiplicity), the determinant is positive.

76Furthermore, it is ruled out that, amid all these (described) perturbations within an equiva-
lence class, a transformation from an f with df 6= 0 to an f with df = 0 can occur. This is evident
from the fact that g00 = −1 (this is due to the specific choice of V = (1, 0, 0, . . . , 0)), resulting
in g̃00 = −1 + f because of the transformation prescription. Since g̃ remains unchanged within
an equivalence class, and thus (with initially arbitrary coordinates, but perturbed in such a way
as to preserve the (1, 0, 0, . . . , 0)-shape of V ); especially g̃00 remains unchanged as a function of
the respective coordinates, and f also does not change as a function of the respective coordi-
nates (although g̃00 and f do change as functions on M , but not as functions of the respective
coordinates).
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Remark 13.23. An alternative proof for the ” =⇒ ” direction of the global Trans-
formation theorem can be obtained by revisiting the local Transformation theorem.
This involves assuming that the Riemannian region with “boundary” MR ∪ H ad-
mits a smoothly defined non-vanishing line element field that is transverse to the
boundary H. This approach ensures the local version can get extended a global
manner to the entire manifold M .

Instead of requiring the existence of a non-vanishing vector field transverse to the
boundary, we can limit our analysis exclusively to the non-compact case where
constructing such a vector field transverse to the boundary is always feasible. This
yields the following

Corollary 13.24. Let M be an n-dimensional transverse, signature-type chang-
ing manifold with MR ∪ H non-compact. Then the metric g̃ associated with a
signature-type changing manifold (M, g̃) is a transverse, type-changing metric with
a transverse radical if and only if g̃ is obtained from a Lorentzian metric g via the
Transformation Prescription g̃ = g + fV [ ⊗ V [, where df 6= 0 and (V (f))(q) =
((df)(V ))(q) 6= 0 for every q ∈ H :=f−1(1) = {p ∈M : f(p) = 1}.

Example 13.25. Consider again the classic type of a spacetimeM with signature-
type change which is obtained by cutting an S4 along its equator and joining it
to the corresponding half of a de Sitter space, see Figure 8.1. This is the uni-
verse model obeying the ’no-boundary’ condition. The 4-dimensional half sphere
is homeomorphic to a disk (of corresponding dimension) and there exists a non-
vanishing line element field. However, any such non-vanishing line element field V
will be tangent to the equator H (which is the surface of signature-type change)
at some point q ∈ H, see Example 13.21. Hence, we cannot extend V smoothly
across the equator to the Lorentzian sector because V ∈ TqH and thus ∃ q ∈ H
such that V (fq) = dfq(V ) = 0. Therefore, the radical is tangent at some q ∈ H,
and the global version of the Transformation Theorem cannot apply.
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14 The hypersurface of signature change

14.1 Causal character of the hypersurface

In Lorentzian geometry there are three categories of hypersurfaces due to the causal
character (spacelike, timelike and lightlike) of the occurring vector fields in an n-
dimensional manifold M :

• A hypersurface H is called spacelike, if the normal Nq at each point q ∈ H
is timelike. In this case, g |TqH is positive-definite (i.e. H is a Riemannian
manifold).

• A hypersurface H is called null, if the normal Nq at each point q ∈ H is null.
In this case, g |TqH is degenerate.

• A hypersurface H is called timelike, if the normal Nq at each point q ∈ H is
spacelike. In this case, g |TqH has signature (−,+, . . . ,+).

In contrast, for our setting the signature-type changing metric g̃ fails to produce
timelike normal vectors with a base point onH.77 Aside from that, the classification
is not unambiguous for manifolds with a radical that have a transverse as well
as a tangential component with respect to the hypersurface. See, for instance,
Example 7.21 in Section 7. On this account it seems reasonable to introduce a new
definition for the causal classification of hypersurfaces in signature-type changing
manifolds.

Definition 14.1. There are two categories of hypersurfaces H in a signature-type
changing manifold M with a smooth, symmetric type changing metric g̃:

• A hypersurface H is called spacelike, if all tangent vectors to H are spacelike.
In this case is H spacelike if and only if the radical is transverse with respect
to H (i.e. H is a Riemannian manifold).

• A hypersurface H is called null, if there exist a tangent null vector to H. In
this case is H null if and only if the radical is tangent with respect to H.

77Note that here H always refers to the hypersurface of signature change.
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14.2 The induced metric on H
In the following we demonstrate that in general the induced metric on the hyper-
surface H is either Riemannian or a positive semi-definite pseudo metric.

Let (M, g̃) be an n-dimensional signature-type changing manifold as introduced in
Section 13 and H := {q ∈ M : g̃ |q is degenerate} the hypersurface of signature
change. Furthermore, we assume again that one component ofM\H is Riemannian
and the other one Lorentzian. Hence, M \ H is a union of two semi-Riemannian
manifolds with constant signature. As suggested by [52] we consider the one-
dimensional subspace of TqM defined as Radq := {w ∈ TqM : g̃(w, .) = 0}, for all
q ∈ H.78 If v ∈ Radq, then g̃(v, �) = 0 must apply. Indeed, we have

g̃(v, �) = g(v, �) + f(q)︸︷︷︸
1

(v[(v)︸ ︷︷ ︸
g(v,v)

· v[(�)︸︷︷︸
g(v,�)

) = g(v, �)− g(v, �) = 0.

And because Radq is a one-dimensional subspace of TqM , we have Radq = span{v}.

Corollary 14.2. Let (M, g) be an n-dimensional signature-type changing manifold
and H ⊂ M the hypersurface of signature change. Then the set H is closed.
Furthermore, the set M \ H is dense in M and open.

Proof. The set H is closed follows directly from Definition 2.7.

Theorem 14.3. If q ∈ H and x /∈ Radq, then g̃(x, x) > 0 holds for all x ∈ TqM .

Proof. We start by decomposing the vector x into the sum of two vector components
with respect to a non-degenerate metric g,79 where one component is parallel to
v and the other one is perpendicular to v : x = v‖(x) + v⊥(x) with v

f
(x) =

g(x,v)
g(v,v)

v = −g(x, v)v [71, p.50]. Substituting for v
f
(x) and rearranging the vector

decomposition, produces v⊥(x) = x + g(v, x)v. Plugging v⊥(x) into the metric
gives

g(v⊥(x), v⊥(x)) = g(x+ g(x, v)v, x+ g(v, x)v)

= g(x, x) + 2g(x, g(x, v)v) + g(x, v)2g(v, v)

78Alternatively we can take the radical as the kernel of the linear map TqM −→ T ∗qM : w 7−→
(v 7→ g(w, v)).

79For f(q) = 1 we have g̃(�, �) = g(�, �) + g(v, �)g(v, �) on TqM .
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= g(x, x) + 2g(x, v)2 + g(x, v)2g(v, v)︸ ︷︷ ︸
−1

= g(x, x) + g(x, v)2 = g̃(x, x).

Note that because of g(v, v) = −1, the vector v is timelike and g is a Lorentzian
metric. Hence, v⊥(x) is spacelike.80 Moreover, as x /∈ Radq = span{v} we know
that v⊥(x) 6= 0, and therefore g(v⊥(x), v⊥(x))︸ ︷︷ ︸

g̃(x,x)

> 0.

As mentioned in Section 13, for every q ∈ H, the tangent space TqH is the kernel
of the map dfq. Hence, ker(dfq) = TqH is a vector subspace of TqM . Provided that
the radical is not a vector subspace of TqH, that is Radq * TqH, then the induced
metric on H is Riemannian. This follows directly from the proof of Theorem 14.3
because for all x ∈ TqH\ {0} the restriction of the metric on TqM to the subspace
TqH is positive definite. In the event of the radical being a vector subspace of TqH,
that is Radq ⊆ TqH ⊆ TqM , then according to the definition of Radq the induced
metric on H is degenerate. But then based on Proof 14.3 we also have g̃(x, x) ≥ 0
for all x ∈ TqH. Ultimately this leads to the conclusion that the induced metric
on H is a positive semi-definite pseudo metric with the signature (0,+, . . . ,+︸ ︷︷ ︸

(n−2) times

).

Dependent on whether Radq ⊂ TqH, or alternatively whether Radq ⊂ ker(dfq) =
TqH, the induced metric on the hypersurface of signature change H can be either
Riemannian (and non-degenerate) or a positive semi-definite pseudo-metric with
signature (0,+, . . . ,+︸ ︷︷ ︸

(n−2) times

). The latter one is degenerate if ker(dfq) = TqH = Radq.81

Proof. In our example, we have Radq = span{v}. And therefore,
Radq = span{v} ⊂ TqH
⇐⇒ span{v} ⊂ ker(dfq)
⇐⇒ span{v} ⊂ {w ∈ TqM : dfq(w) = 0}
⇐⇒ dfq(v) = 0
⇐⇒ v(f) = 0.

80If a nonzero vector in M is orthogonal to a timelike vector, then it must be spacelike [70].
81A pseudo metric is considered to be a field of symmetric bilinear forms which don’t need to

be everywhere non-degenerate. The main point of pseudo-metric spaces is that we cannot use our
concept of distance to distinguish between different points, forcing us to think of things in terms
of equivalence classes where points declared to have zero distance are considered equivalent.
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15 Classes of signature-type changing metrics
Due to our method introduced in Section 13 we can transform any Lorentzian man-
ifold (M, g) into a signature-type changing manifold with a metric g̃ by virtue of a
non-vanishing timelike line element field {V,−V } and a smooth function f : M −→
R. In ideal circumstances there even exists a smooth, non-vanishing timelike vec-
tor field V . Motivated by this, we want to analyze some classes of signature-type
changing metrics, and test whether they are of the type g̃ = g + f(V [ ⊗ V [), with
some smooth transformation function f that interpolates between the Lorentzian
and Riemannian regions, which are separated by the hypersurface H = f−1(1).

15.1 Rotating Minkowski metric

ConsiderM = R2 equipped with the standard topology and the canonical Minkowski
metric η = −(dt)2 + (dx)2, where (t, x) are Cartesian coordinates and E0, E1 are
the Gaussian basis vector fields.82 In order to rotate E0 and E1 clockwise by an
angle ϕ we define a new, nonholonomic basis

F0 = −(sinϕ)E1 + (cosϕ)E0,
F1 = (cosϕ)E1 + (sinϕ)E0,

with ϕ denoting an arbitrary smooth function depending on the arguments t and x.
We furthermore require that the metric g = g00(dt)2 + 2g01dtdx+ g11(dx)2 satisfies
g(F1, F1) = −g(F0, F0) = 1, and g(F0, F1) = 0.

The above requirements yield an nonhomogeneous linear equation system with the
unique solution

g11 = −g00 = cos2 ϕ− sin2 ϕ = cos(2ϕ),
g01 = 2 cosϕ sinϕ = sin(2ϕ).

This yields the smooth metric g = − cos(2ϕ)(dt)2 + 2 sin(2ϕ)dtdx + cos(2ϕ)(dx)2

on R2 that rotates clockwise.83

82We consider here only two-dimensional toy models. But we could alternatively add two
dimensions that correspond to a flat plane with a vanishing Riemannian curvature tensor.

83A similar result can be achieved by starting with a non-symmetric tensor g = −[(cosϕ)dx+
(sinϕ)dt]⊗ [−(sinϕ)dx+ (cosϕ)dt] = (sinϕ)(cosϕ)dx⊗ dx− (cos2 ϕ)dx⊗ dt+ (sin2 ϕ)dt⊗ dx−
(sinϕ)(cosϕ)dt⊗dt, and then by producing a new symmetric tensor g(ab) from the old one based
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Note that we use the term "rotating Minkowski" metric quite loosely. Unlike the
Minkowski manifold, the manifold (M, g) introduced above is not flat.

The associated determinant 4 = det([gµν ]) = − cos2(2ϕ) − sin2(2ϕ) = −1 is
non-vanishing and negative, and therefore the metric g is Lorentzian. By setting
ϕ = πx we get a rather natural choice where the light cones rotate clockwise
through an angle ϕ in the tx-plane when moving in x−direction; the metric reaches
the canonical form g = −1(dt)2 + 1(dx)2 for x = k, k ∈ Z.
However, compared to a choice of time-orientation that has been specified at the
initial value of x, the past and future of the light cones are swapped at x ∈ {2k −
1; k ∈ Z}. Only after a further displacement of the absolute value 1 along the
x−direction, a full rotation of the light cone takes place (with respect to the basis
vectors E0 and E1). Hence, only at x ∈ {2k; k ∈ Z} a full rotation takes place such
that the past and future of the light cones conform with their orientation at x = 0,
i.e. along the t−axis. As we shall see, (M, g) is an orientable and time-orientable
2-dimensional Lorentzian manifold (also see Subsection 15.2.1 for the definition of
the global non-vanishing, timelike vector field V ).

The causal structure can be elucidated by means of

g = − cos(2ϕ)(dt)2 + 2 sin(2ϕ)dtdx+ cos(2ϕ)(dx)2 !
= 0

· 1
(dx)2⇐⇒ g = − cos(2ϕ)

(dt)2

(dx)2
+ 2 sin(2ϕ)

dt

dx
+ cos(2ϕ)

!
= 0,

note that this is a quadratic equation of the form ax2 + bx+ c = 0 with solutions

x =
−b±

√
b2 − 4ac

2a
.

Therefore,

dt

dx
=
−(2 sin(2ϕ))±

√
(2 sin(2ϕ))2 + 4 cos2(2ϕ)

−2 cos(2ϕ)
=
− sin(2ϕ)± 1

− cos(2ϕ)
,

=⇒ dt

dx
=

{
−1+sin(2ϕ)

cos(2ϕ)
= sin(ϕ)−cos(ϕ)

sin(ϕ)+cos(ϕ)
1+sin(2ϕ)

cos(2ϕ)
= sin(ϕ)+cos(ϕ)

cos(ϕ)−sin(ϕ)

,

on gab︸︷︷︸
g

= g(ab)︸︷︷︸
symmetric

+ g[ab]︸︷︷︸
skew−symmetric

= 1
2 (gab + gba) + 1

2 (gab − gba).
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⇐⇒ dt =

{
sin(ϕ)−cos(ϕ)
sin(ϕ)+cos(ϕ)

dx
sin(ϕ)+cos(ϕ)
cos(ϕ)−sin(ϕ)

dx
.

For ϕ = πx we get

dt =

{
sin(πx)−cos(πx)
sin(πx)+cos(πx)

dx
sin(πx)+cos(πx)
cos(πx)−sin(πx)

dx

⇐⇒ t(x) = − 1
π

log |sin(πx) + cos(πx)|+ const
t(x) = − 1

π
log |cos(πx)− sin(πx)|+ const

.

Figure 15.1: The rotating “Minkowski” metric g = − cos(2ϕ)(dt)2+2 sin(2ϕ)dtdx+cos(2ϕ)(dx)2

on R2 that rotates clockwise.

At first glance the above Lorentzian manifold (M, g) looks deceivingly innocent.
As the underlying 2-manifold is M = R2 with the standard topology, we are able
to choose an atlas that consists of a single chart equipped with the identity map.
The metric is smooth, and the non-vanishing Christoffel symbols are given by

Γttt = −1
2
gtx d

dx
gtt = −π sin2(2ϕ),

Γxxx = −Γttx = −Γxtt = π sin(2ϕ) cos(2ϕ) = π
2

sin(4ϕ),
Γxtx = −Γttt = π sin2(2ϕ) = π

2
(1− cos(4ϕ))

Γtxx = −π(1 + cos2(2ϕ)) = −π
2
(3 + cos(4ϕ)).
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The curvature scalar R (which in two dimensions completely characterizes the
curvature) is bounded. A short calculation gives R = 2K = 2(ϕ′′ sin(2ϕ) +
2ϕ′2 cos3(2ϕ)), where K denotes the Gaussian curvature.

However, the peculiar causal structure is revealed by the Killing vector fields. The
metric is independent of the coordinate t, hence W = ∂t is a Killing field of g
(note that Figure 15.1 gives a hint at how the Killing vector fields must look like).
However, the Killing vector field ∂t periodically changes its causal character along
the x-axis: it is timelike for 1

4
(4πk − π) < ϕ < 1

4
(4πk + π) ⇐⇒ 1

4
(4k − 1) < x <

1
4
(4k+1), k ∈ Z, becomes null at x = k

2
− 1

4
, k ∈ Z and spacelike for 1

4
(4k+1) < x <

1
4
(4k + 3), k ∈ Z. Accordingly, the manifold (M, g) is stationary when the Killing

vector field is timelike, that is in the regions M(k) := {(t, x) ∈M ; 1
4
(4k− 1) < x <

1
4
(4k + 1)}, k ∈ Z. The stationary regions M(k) are separated by non-stationary

regions, which are given by {(t, x) ∈M ; 1
4
(4k + 1) < x < 1

4
(4k + 3)} for k ∈ Z. So

the manifold (M, g) has a “stripe-like pattern” consisting of alternating stationary
and non-stationary stripes (regions), such that adjoint stripes are separated by
lightlike curves. Furthermore, the curvature scalar R is positive in the stationary
regions and negative in the non-stationary ones.

Figure 15.2: The stationary regions are separated by non-stationary regions. So the manifold
has a “stripe-like pattern” consisting of alternating stationary and non-stationary stripes (regions),
such that adjoint stripes are separated by lightlike curves.
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In the Figure 15.2, we can see how (M, g) has a alternating pattern structure,
where the yellow stripes indicate stationary areas and the dashed lines stand for
the lightlike curves.

Assuming ∂t to be future-pointing, causal curves in (M, g) that enter the stationary
regions M(2k), k ∈ Z, get trapped in these regions, whereas no causal curve can
enter the stationary regions M(2k − 1), k ∈ Z.

15.2 Signature-type change in non-compact manifold

15.2.1 Transformation prescription applied to orientable and time-orientable
manifold

As we have established in the preceding Section 15.1, our example (M, g) is a
non-compact, orientable and time-orientable Lorentzian manifold. As such, this
manifold admits a global, non-vanishing, timelike vector field. By means of making
an educated guess we can indeed pick V = (cosϕ) ∂

∂t
−(sinϕ) ∂

∂x
as a global timelike

vector field with respect to g = − cos(2ϕ)(dt)2 + 2 sin(2ϕ)dtdx + cos(2ϕ)(dx)2,
ϕ = πx. A short calculation confirms that g(V, V ) = −1.

Given this vector field we can now consider the following class of signature-type
changing metrics:
g̃ = g + f(V [ ⊗ V [), where f is an arbitrary smooth function and V [ = g(V, �) the
index lowering morphism for V ∈ X(M). Note that by picking a particular vector
field V the resulting signature-type changing metric does depend on this choice.
However, here the vector field V can be considered a canonical choice for the (M, g)
in question.

g̃ = g + f ·
(
g((cosϕ)

∂

∂t
− (sinϕ)

∂

∂x
, �)⊗ g((cosϕ)

∂

∂t
− (sinϕ)

∂

∂x
, �)

)

⇐⇒ g̃ = (− cos(2ϕ)(dt)2 + 2 sin(2ϕ)dtdx+ cos(2ϕ)(dx)2)

+f ·
(
cos2(ϕ)dt2 − 2 sin(ϕ) cos(ϕ)dtdx+ sin2(ϕ)dx2

)
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⇐⇒ g̃ = (f ·cos2(ϕ)−cos(2ϕ))dt2 +(2−f) sin(2ϕ)dtdx+(f · sin2(ϕ)+cos(2ϕ))dx2

⇐⇒ [g̃µν ] =

(
f · cos2(ϕ)− cos(2ϕ) (1− f

2
) sin(2ϕ)

(1− f
2
) sin(2ϕ) f · sin2(ϕ) + cos(2ϕ)

)
.

It is not surprising that the determinant yields 4 = det([g̃µν ]) = f − 1, so as to
the metric g̃ is degenerate for f(p) = 1. Thus the hypersurface of signature change
is the (n− 1)-dimensional submanifold H =f−1(1) = {p ∈M : f(p) = 1}.

Recall that we only want to consider transverse type-changing singular semi-Riemannian
manifolds with a transverse radical (Section 3). Hence we need to impose the
restrictions that d(det([g̃µν ])) = d(f − 1) 6= 0 for any q ∈ H and any local co-
ordinate system ξ = (x0, . . . , xn−1) centered at q, furthermore Radq is not tan-
gent to H for any q. Based on the above calculations we require for f that
d(f − 1) = ∂f(t,x)

∂t
dt+ ∂f(t,x)

∂x
dx = df 6= 0 for any q := (t, x) ∈ H.

15.2.2 Open infinite time-orientable Möbius strip

Start again with M = R2 equipped with the standard topology and the smooth
metric g = − cos(2ϕ)(dt)2 +2 sin(2ϕ)dtdx+cos(2ϕ)(dx)2, ϕ = πx, see Section 15.1.

The Möbius strip does not need to be time-orientable, because it depends on how
the two opposite edges get identified. To achieve a time-orientable model, let
M = R×R be the infinite “strip” with width (−∞,∞), equipped with the standard
topology and the metric g. Then we fold the manifold by defining the quotient
map q : R × R → (R × R)/ ∼ as the identification (t, x) ∼ (t̃, x̃) ⇐⇒ (t̃, x̃) =
((−1)kt, x + k), k ∈ Z. The resulting Lorentzian manifold M∞ := (M/ ∼, g) is
non-compact, non-orientable and time-orientable, it has the topology of the open
infinite Möbius strip, which is for sure different from Minkowski space in a global
sense.

As a time-orientable Lorentzian manifold, the Möbius strip M∞ = (M/ ∼, g)
admits a global, non-vanishing, timelike vector field V = (cosϕ) ∂

∂t
− (sinϕ) ∂

∂x
.

Therefore, we can refer to the Transformation Trescription from Section 15.2.1
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in order to transform M∞ into the signature-type changing Möbius strip M̃∞ =
(M/ ∼, g̃), with the metric given by

g̃ = (f · cos2(ϕ)− cos(2ϕ))dt2 + (2− f) sin(2ϕ)dtdx+ (f · sin2(ϕ) + cos(2ϕ))dx2,

where the quotient map identifies (t, x) with (t̃, x̃) = ((−1)kt, x+ k), k ∈ Z, and f
is an arbitrary C∞ function that also accounts for the hypersurface of signature-
change H =f−1(1).

Remark 15.1. Since only the x-dimension ofM got compactified (and the t-dimension
remains untouched), the hypersurface of signature change H can be either compact
or non-compact. Dependent on the alignment of H, it will be either compact or
non-compact (see Figure 15.3).

Figure 15.3: The hypersurface of signature change can be either compact or non-compact: The
very left example depicts a hypersurface that is not compact. The two right examples show a
hypersurface that is compact. For the latter two, it should be noted that the inclinations of the
tangents at H must also align with the identification.
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15.3 Signature-type change in compact manifold

It is a well known fact that all non-compact smooth manifolds admit a Lorentzian
metric. However, this is in general no longer the case for compact manifolds.84

We want to examine two compact 2-manifolds, namely the compact Möbius strip
(which indeed admits a Lorentzian metric) and the real projective plane which does
not.
In this subsection, all considered manifolds are smooth with nonempty boundary.
In line with Brown’s collaring theorem [12, 61], the boundary H has a collar neigh-
borhood U(H) := [0, ε) × H, with ε > 0. In addition, suppose there exists a
diffeomorphism between the collar neighborhoods.

15.3.1 Time-orientable Möbius strip with boundary (non-simply con-
nected ML)

We can now consider the quotient manifold with boundary M = ([0, 1]× [0, 1])/ ∼
which is obtained by the identification (t, 0) ∼ (1− t, 1) of the two opposite sides of
the unit square. This quotient manifold is homeomorphic to the upper half space
H2 = {(t, x) : t ≤ 0} with the inherited subspace topology of R2, and is equipped
with the rotating metric g = − cos(2ϕ)(dt)2 +2 sin(2ϕ)dtdx+cos(2ϕ)(dx)2, ϕ = πx
(see Section 15.1) induced from the metric ofM∞, where the quotient map identifies
(t, 0) with (1− t, 1).

The resulting manifold Mc = (([0, 1] × [0, 1])/ ∼, g) is compact, not simply con-
nected, non-orientable and time-orientable; and it has again the topology of the
Möbius strip.

As a time-orientable Lorentzian manifold, the compact Möbius strip Mc admits a
global non-vanishing vector field V = (cosϕ) ∂

∂t
− (sinϕ) ∂

∂x
. Therefore, we can

refer to the transformation prescription from Section 15.2.1 in order to trans-
form Mc = (([0, 1] × [0, 1])/ ∼, g) into the signature-type changing Möbius strip
M̃c = (([0, 1] × [0, 1])/ ∼, g̃), where again g̃ = (f · cos2(ϕ) − cos(2ϕ))dt2 + (2 −
f) sin(2ϕ)dtdx+ (f · sin2(ϕ) + cos(2ϕ))dx2 and f is an arbitrary C∞ function that
again accounts for the hypersurface of signature-change H =f−1(1).

84Also, compact time-oriented manifolds have a non-empty chronology violating set. This
means that such manifolds contain closed timelike curves, which is considered pathological.
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Figure 15.4: The yellow marked area represents the quotient manifold with boundary M =

([0, 1] × [0, 1])/ ∼ which is obtained by the identification (t, 0) ∼ (1 − t, 1) of the two opposite
sides of the unit square.

15.3.2 The Cross-Cap

Consider again the compact Möbius strip M = ([0, 1] × [0, 1])/((t, 0) ∼ (1 − t, 1))
with nonempty boundary ∂M . Note thatM 1

2
= ({1

2
}×[0, 1])/((1

2
, 0) ∼ (1

2
, 1)) ⊂M

is the center line of the Möbius strip and the boundary (a 1-dimensional manifold)
is given by ∂M = {(0, x) : x ∈ [0, 1]}∪{(1, x) : x ∈ [0, 1]}, where (0, 1) ∼ (1, 0) and
(0, 0) ∼ (1, 1).

Then ∂M can be identified with S1 which enables us to define the map φ : [0, 1
2
]×

S1 −→M , such that φ(0, x̃) ∈ ∂M and φ(1
2
, x̃) ∈M 1

2
. Given a point (t, x̃) ∈ [0, 1

2
]×

S1, the point φ(t, x̃) ∈M is obtained after an orthogonal displacement of length t
into the Möbius strip starting from x̃ ∈ ∂M . In the case at hand, it is clear that the
map φ is continuous and defined over the entire Möbius strip and thus surjective.
But because x̃ and −x̃ ∈ S1 are antipodal points we have φ(1

2
, x̃) = φ(1

2
,−x̃) for

all x̃ ∈ S1. This yields the quotient manifold C := ([0, 1
2
]× S1)/ ∼ called crosscap

where points are identified by (1
2
, x̃) ∼ (1

2
,−x̃). Note that we can now define the

boundary as ∂M := φ({0} × S1). Hence, M and C are homeomorphic due to the
fact that after the identification of antipodal points we get a map φ̃ : C −→ M
which is continuous and bijective, and the inverse map φ̃−1 is also continuous.
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The crosscap is closed, but compact manifolds carry a Lorentzian metric only
if their Euler characteristic is zero.85 It is a well-known fact that, unlike the
closed Möbius strip, the crosscap does not admit a globally defined Lorentzian
metric. This means we cannot resort to our prescription from Section 13 to create
a signature-type changing metric starting with the crosscap metric. However, since
the crosscap is obtained by sewing a Möbius strip to the edge of a disk, we could
refer to the compact Möbius strip manifold Mc ( 15.3.1) and utilize its Lorentzian
metric g for the Lorentzian portion of the crosscap. Then the locus of signature
change should be at ∂M and the closed unit disk D2 constitutes the Riemannian
sector. The boundaries of the disk and the Möbius strip are both nonempty, there-
fore (according to Brown’s collaring theorem [12, 61]) both boundaries have a collar
neighborhood.

In order to elucidate the partition of the crosscap into those three areas we define
the crosscap C as the adjunction space [61]

C := D2 ∪ψ M,

where D2
= {(θ, r) ∈ R2 : r ≤ 1}with ∂D2

= {(θ, 1) : 0 ≤ θ ≤ 2π} and

ψ(θ, 1) :=

{
(1, θ

π
)

(0, θ
π
− 1)

0 ≤ θ ≤ π

π ≤ θ ≤ 2π
.

The map ψ : ∂D2 −→ ∂M goes from the boundary circle of the disk to the boundary
of the Möbius strip. Then the locus of signature change is defined by the set
H := ∂M = {(0, x) : x ∈ [0, 1]} ∪ {(1, x) : x ∈ [0, 1]} where (0, 1) ∼ (1, 0) and
(0, 0) ∼ (1, 1).

If we require the signature-change to take place at ∂M ≈ S1 we have to pick
f(t, x) in the expression g̃ = (f · cos2(ϕ)− cos(2ϕ))dt2 + (2− f) sin(2ϕ)dtdx+ (f ·
sin2(ϕ) + cos(2ϕ))dx2 such that H = ∂M = f−1(1) = {(t, x) : t2 + x2 = 1}. This
simply means that H = S1, hence without loss of generality, f(t, x) = t2 + x2 is
the natural choice of a smooth function f that yields a signature-type change at
the boundary ∂M of M̃c = (([0, 1]× [0, 1])/ ∼, g̃), see 15.3.1.

85In this context, a closed manifold is a manifold without boundary that is compact.
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Figure 15.5: The light cone structure in the Möbius strip.

Given f(t, x) = t2 + x2, this yields

g̃ = (f · cos2(ϕ)− cos(2ϕ))dt2 + (2− f) sin(2ϕ)dtdx+ (f · sin2(ϕ) + cos(2ϕ))dx2

= ((t2 + x2) · cos2(πx) − cos(2πx))dt2 + (2 − t2 − x2)) sin(2πx)dtdx + ((t2 + x2) ·
sin2(πx) + cos(2πx))dx2
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= ((t2 + x2) · cos2(πx)− cos(2πx))dt2 − 2(t2 + x2 − 2) sin(πx) cos(πx)dtdx+ ((t2 +
x2) · sin2(πx) + cos(2πx))dx2,

with the associated matrix representation

[g̃] =

(
(t2 + x2) · cos2(πx)− cos(2πx) −(t2 + x2 − 2) sin(πx) cos(πx)
−(t2 + x2 − 2) sin(πx) cos(πx) (t2 + x2) · sin2(πx) + cos(2πx)

)
.

This metric reaches its canonical form g = −1(dt)2 + 1(dx)2 only for x = t = 0.
The determinant 4 = det([g̃]) = t2 +x2− 1 reveals that the metric g̃ is Lorentzian
for t2 + x2 = f(t, x) < 1 and Riemannian for t2 + x2 = f(t, x) > 1. Moreover,
d(det([g̃])) = 2tdt+ 2xdx = df 6= 0 for any (t, x) ∈ H.

The causal structure can be elucidated by means of

0 = ((t2 +x2) · cos2(πx)− cos(2πx))( dt
dx

)2− 2(t2 +x2− 2) sin(πx) cos(πx) dt
dx

+ ((t2 +
x2) · sin2(πx) + cos(2πx))

⇐⇒ dt
dx

= (t2+x2−2) sin(πx) cos(πx)±
√
−t2−x2+1

((t2+x2)·cos2(πx)−cos(2πx))
.

The causal structure as well as the fact that the determinant 4 = det([g̃]) =
t2 + x2 − 1 < 0⇐⇒ t2 + x2 < 1 reveal that the Lorentzian portion of the metric g̃
is located on the disk D2.86 This is a contradiction!

Even if we instead consider the signature transformation

g̃ = (−t(dt)2 + (dx)2) + f ·
(
g(
∂

∂t
, �)⊗ g(

∂

∂t
, �)

)
= (f − 1)dt2 + dx2,

with the global, non-vanishing, timelike vector field V = ∂
∂t

with respect to g =
−t(dt)2 + (dx)2, then with f(t, x) = t2 + x2, this yields

g̃ = (f − 1)dt2 + dx2 = (t2 + x2 − 1)dt2 + dx2.

The causal structure as well as the fact that the determinant yields 4 = det([g̃]) =
t2 + x2 − 1 < 0⇐⇒ t2 + x2 < 1 reveal that the Lorentzian portion of the metric g̃
is located on the disk D2. This is again a contradiction!

86If A is an n× n square matrix and n is odd, then det(−A) = −det(A). However, since g̃ is
a 2 × 2 matrix which is not odd, a slight modification of the metric in oder to get −det([g̃]) =
−(t2 + x2 − 1) < 0⇐⇒ 1 < t2 + x2 is also not possible.
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These counter examples illustrate that g̃ is not of the class “transverse, type-
changing metric with a transverse radical” because the radical is both, transverse
and tangent. Hence, there is no transformation function f that would produce a
signature-type change at ∂M with only a transverse and orthogonal radical. More-
over, we cannot even locally apply the transformation prescription from Section 13
in a reasonably way as the obtained g̃ is not a transverse, type-changing metric
with a transverse radical.

15.3.3 Non-time orientable Cross-Cap

Here we are going to construct a signature-type changing metric defined on the real
projective plane RP 2. Let M = ([−

√
2,
√

2] × [−
√

2,
√

2])/((t,−
√

2) ∼ (−t,
√

2))
be again the Möbius strip with boundary ∂M = {(−

√
2, x) : x ∈ [−

√
2,
√

2]} ∪
{(
√

2, x) : x ∈ [−
√

2,
√

2]} where (
√

2,−
√

2) ∼ (−
√

2,
√

2) and (−
√

2,−
√

2) ∼
(
√

2,
√

2), and M0 = ({0}× [−
√

2,
√

2])/((0,−
√

2) ∼ (0,
√

2)) ⊂M the center line.
This quotient manifold is equipped with the subspace topology of R2 and Carte-
sian coordinates (t, x). Note that the punctured projective plane is topologically
equivalent to the open Möbius strip M ∼= RP 2 \ {(t, x) : t2 + x2 ≤ 1} = RP 2 \ D2.
On RP 2 \ D2,87 with respect to the canonical coordinates (t, x) ∈ ((−

√
2,
√

2) ×
[−
√

2,
√

2]) \ D2, the Lorentzian 2-manifold is then defined by the smooth metric

g = (1− t2)(dt)2 + 2txdtdx+ (1− x2)(dx)2,

where the quotient map identifies (t,−
√

2) ∼ (−t,
√

2) and (−
√

2, x) ∼ (
√

2,−x).

The associated determinant4 = det([gµν ]) = (1−x2)(1−t2)−(tx)2 = 1−t2−x2 <

87Recall that the real projective plane RP 2 is given as the unit sphere S2 in the 3-dimensional
Euclidean space with identification of antipodes − in other words it is the quotient space obtained
from S2. The antipodal map A : S2 → S2 is an isometry of S2 given by A(p) = −p. Furthermore,
one can make use of the natural projection π : S2 → RP 2 as quotient map that identifies all pairs
of antipodal points. Observe that TpS2 and TA(p)S

2 = T−pS
2 are then identified as well.

As the sphere cannot carry a globally defined Lorentzian metric, there is no Lorentzian metric
on the projective space either. However, we can utilize the quotient map π to introduce a
Riemannian metric on RP 2 in the following way: < (dπ)p(v), (dπ)p(w) >π(p)=< v,w >p, where
p ∈ S2, π(p) ∈ RP 2. This also means that π is a local isometry.
Alternatively, we can assume further that the general metric is given by ds2 = g(p)dρ2, and

dρ2 being the line element of the unit sphere taken from the embedding in the Euclidean space;
g(p) > 0 for any point p on the manifold.
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0⇐⇒ t2 + x2 > 1 is non-vanishing for (t, x) ∈ ((−
√

2,
√

2)× [−
√

2,
√

2]) \D2, and
therefore is (RP 2 \D2

, g) Lorentzian. Notice that the metric g reaches its canonical
form g = −(dt)2 + (dx)2 when x = 0 and t = ±

√
2.88

Taking into consideration that the real projective plane is topologically equivalent
to the crosscap (which is obtained by sewing a Möbius strip to the edge of a
disk) we are going to construct a signature-type changing manifold defined on the
crosscap C := D2 ∪h M = D2 ∪h (M ∪ ∂M), where h is a diffeomorphism between
the collar neighborhoods, and then extend the metric across the boundary ∂M =
{(−
√

2, x) : x ∈ [−
√

2,
√

2]} ∪ {(
√

2, x) : x ∈ [−
√

2,
√

2]}. Hence, after introducing
a metric tensor, the adjunction space D2∪hM becomes a semi-Riemannian manifold
whose underlying topological structure is the projective plane.

Let us start with the square-shaped topological state [−
√

2,
√

2]×[−
√

2,
√

2]. Then
glue the top edge to the bottom edge in antiparallel sense and also glue the right
edge to the left edge in antiparallel sense similarly:

(t,−
√

2) ∼ (−t,
√

2) for −
√

2 ≤ t ≤
√

2,
(−
√

2, x) ∼ (
√

2,−x) for −
√

2 ≤ x ≤
√

2.

This yields the non-orientable, compact real projective plane RP 2 that has no
boundary. By a continuous deformation we can turn RP 2 into the crosscap C :=

D2 ∪h M = D2 ∪h (M ∪ ∂M), with ∂M = {(t, x) : t2 + x2 = 1}.

We denote by (C, g) the resulting 2-dimensional signature-type changing manifold
defined as C = D2 ∪h (M ∪ ∂M) in the t− x-plane with the following metric:

g = (1− t2)(dt)2 + 2txdtdx+ (1− x2)(dx)2.

88Choosing x = ±
√

2 and t = 0 has the effect of interchanging the role of space and of time,
and we get g = (dt)2 − (dx)2.
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Figure 15.6: Light cone structure for the metric g = (1− t2)(dt)2 + 2txdtdx+ (1− x2)(dx)2.

The determinant becomes degenerate for (t, x) ∈ ∂M ∼= S1 ⊂ C because of 4 =
det([gµν ]) = (1 − x2)(1 − t2) − (tx)2 = 0 ⇐⇒ t2 + x2 = 1. This implies that
H := {(t, x) ∈ C : t2 + x2 = 1} ⊂ C is the compact locus of signature change.
Hence, C \H =D2∪M, where D2 has Riemannian signature and M has Lorentzian
signature.

The differential

d4 = d(det([gµν ])) = −2tdt− 2xdx

{
= 0

6= 0

if x = t = 0

otherwise

only vanishes in the origin and is otherwise non-zero on H.

Furthermore, the calculation of the radical Radq, for q ∈ H reveals that Radq is
transverse as well as tangent, and has dim(Radq) = 1:

We are looking for all vectors w = (w1, w2)T ∈ TqM such that g(w, �) = 0. Hence,
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(
1− t2 tx
tx 1− x2

)
·
(
w1

w2

)
= 0

⇐⇒

{
(1− t2)w1 + (tx)w2

(tx)w1 + (1− x2)w2

= 0

= 0

⇐⇒ (1− t2 + tx)w1 + (1− x2 + tx)w2 = 0

⇐⇒ (1 + t(x− t))w1 + (1 + x(t− x))w2 = 0, and since we have H := {(t, x) ∈
C : t2 + x2 = 1} we get

((t2 + x2) + t(x− t))w1 + ((t2 + x2) + x(t− x))w2 = 0
⇐⇒ (x(t+ x))w1 + (t(t+ x))w2 = 0
⇐⇒ (x+ t)(xw1 + tw2) = 0
⇐⇒ (x = −t) ∨ (xw1 + tw2 = 0), where

t = ±
√

1− x2,

x = ±
√

1− t2,
and this yields(

w ∈
{
α

(
1

±
√

1−t2
t

)
: α ∈ R ∧ (t 6= 0)

})
∨
(
w ∈

{
β

(
±
√

1−x2

x

1

)
: β ∈ R∧(x 6= 0)

})
⇐⇒ w ∈

{
α

(
1

±
√

1−t2
t

)
: α ∈ R ∧ (t 6= 0)

}
∪
{
β

(
±
√

1−x2

x

1

)
: β ∈ R∧(x 6= 0)

}
.

Note that these two eigenvectors are linearly dependent, so we need just one of
these to form a basis

[b] = span
{(

1√
1−t2
t

)}
= span

{( √
1−x2

x

1

)}
of Radq.

The radical Radq is obviously transverse for (t = 1) ∨ (x = 1).

The manifold (C, g) is compact, and neither pseudo-time orientable nor orientable.
Time begins at the surface of transition H, given by t2 + x2 = 1, but obviously the
spacetime does not begin there.
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For example (see Figure 15.7) a pseudo-timelike curve γ (blue) passes through r
on H, then goes through the disk which is the Riemannian regime, and finally
re-emerges in the Lorentzian regime through s on H. This curve is future-directed.
Whereas the curve γ̃ (red) enters the Riemannian regime at p ∈ H and experiences
a time reversal upon re-entering the Lorentzian regime at q ∈ H. The latter curve
is not future-directed.

Figure 15.7: Pseudo-timelike curves pass through H, then go through the disk which is the
Riemannian regime, and finally re-emerge in the Lorentzian regime through H again.

The metric g = (1 − t2)(dt)2 + 2txdtdx + (1 − x2)(dx)2 is not a transverse, type-
changing metric with a transverse radical because the radical is both, transverse
and tangent. According to this, we did not introduce a transformation function
f to obtain the said metric from a given Lorentzian metric. The transformation
prescription 13 cannot get applied here.
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Remark 15.2. The 2-dimensional versions of the “no-boundary proposal” space-
times (which are obtained by cutting a sphere along its equator and joining it to
the corresponding half of a de Sitter space) have the property that the radical is
always transverse at the locus of signature change. Nevertheless we also cannot get
these types of manifolds via the Transformation Prescription 13 from a Lorentzian
manifold (M, g).

Figure 15.8: The causal structure of the 2-dimensional “no boundary” proposal spacetime.
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16 Chronology violating pseudo-timelike loops

In Section 4 we introduced the notion of closed pseudo-timelike curves on a signature-
type changing background, and we have shown how they have to be defined to
ensure that the concept of causality still makes sense.

16.1 Local pseudo-timelike loops

In this subsection we are going to reveal the non-well-behaved nature of trans-
verse, signature-type changing, n-dimensional manifolds with a transverse radical.
In a sufficiently small region near the junction of signature change, these manifolds
exhibit local anomalies. Specifically, each point on the junction gives rise to the ex-
istence of closed time-reversing loops, challenging conventional notions of temporal
consistency.

Theorem 16.1. Let (M, g̃) be a transverse, signature-type changing,
n-dimensional (n ≥ 2) manifold with a transverse radical. Then in each neigh-
borhood of each point q ∈ H there always exists a pseudo-timelike loop.

Proof. Let g̃ = −t(dt)2 + g̃jk(t, x
1, . . . , xn−1)dxidxk, j, k ∈ {1, . . . , n − 1}, be a

transverse, signature-type changing metric with respect to a radical-adapted Gauss-
like coordinate patch (Uϕ, ϕ) with Uϕ ∩ H 6= ∅.89 Choose smooth coordinates
(t0, x

1
0, . . . , x

n−1
0 ) with t0 > 0 and ξ0 > 0, such that

C0 := [0, t0]×Bn−1
ξ0

= [0, t0]× {x ∈ Rn−1 |
n−1∑
k=1

(xk)2 ≤ ξ2
0} ⊂Rn

is contained in the domain of the coordinate chart (open neighborhood) Uϕ. Then

C0 × Sn−2 = C0 × {v ∈ Rn−1 |
n−1∑
k=1

(vk)2 = 1}

as a product of two compact sets is again compact.

Next, consider the function
89This is, Uϕ is sufficiently small to be expressed in the adapted radical-adapted Gauss-like

coordinate system ξ(Uϕ).
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G̃ : C0 × Sn−2 −→ R,

(t, x1, . . . , xn−1, v1, . . . , vn−1) 7→ g̃jk(t, x
1, . . . , xn−1)vjvk.

As G̃ is a smooth function defined on the compact domain C0 × Sn−2, by the
Extreme Value Theorem it has an absolute minimum G0. Hence, on (Uϕ, ϕ) we
can uniquely define g̃0 = −t(dt)2 +G0δjkdx

jdxk, j, k ∈ {1, . . . , n− 1}.

By this definition, for all nonzero lightlike vectors X ∈ TpM, p ∈ C0 with respect
to g̃0 we have g̃0 = −t(X0)2 +G0δjkX

jXk = 0⇐⇒ −t(X0)2 = −G0δjkX
jXk, then

g̃(X,X) = −t(X0)2 + g̃jk(t, x
1, . . . , xn−1)XjXk

= −G0δjkX
jXk + g̃jk(t, x

1, . . . , xn−1)XjXk

= δjkX
jXk · (−G0 + g̃rs(t, x

1, . . . , xn−1)
Xr

√
δabXaXb

Xs

√
δcdXcXd

) ≥ 0.

Clearly, g̃(X,X) ≥ 0 because G0 > 0 per definition and δjkX
jXk = t(X0)2

G0
≥ 0.

Therefore, the vector X ∈ TpM, p ∈ C0 is not timelike with respect to g̃. This
means, within C0 the g̃-light cones always reside inside of the g̃0-light cones, i.e.
g̃ ≤ g̃0 in C0. The cull cones of g̃0 are more opened out than those of the metric g̃.
Denote p0 ∈ C0 by (t(p0), x1(p0), . . . , xn−1(p0)) = (t0, x

1
0, . . . , x

n−1
0 ).

As (M, g̃) is an n-dimensional manifold for which in the neighborhood of H radical-
adapted Gauss-like coordinates exist, we can single out the time coordinate that
defines the real-valued and smooth absolute time function t whose gradient in ML

is everywhere non-zero and timelike. Hence, (M, g̃) |Uϕ can be decomposed into
spacelike hypersurfaces {(Uϕ)ti} of dimension (n−1) which are specified as the level
sets (Uϕ)ti = t−1(ti) of the time function.90 The restriction (g̃0)ti of the metric g̃0

to each spacelike slice makes the pair ((Uϕ)ti , (g̃0)ti) a Riemannian manifold.

90This collection of space-like slices {(Uϕ)t} should be thought of as a foliation of Uϕ into
disjoint (n− 1)-dimensional Riemannian manifolds.
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Figure 16.1: The chronological past I−(p1) of a point p1 ∈ Uϕ.

For a lightlike curve α(t) : I −→ Uϕ with starting point p0, we have δjk dx
j

dt
dxk

dt
> 0

for each slice (Uϕ)ti with t 6= 0. Therefore we may choose σ as arc length parameter
in Bn−1

ξ0
. In other words, lightlike curves with starting point p0 can be parametrized

in Bn−1
ξ0

by arc length σ,91 that is (g̃0)t(α̇(σ), α̇(σ)) = δjk
dxj

dσ
dxk

dσ
= 1, ∀σ ∈ I, where

I is some interval in R. Consequently we get

0 = g̃0(α̇(σ), α̇(σ)) = −t(α̇0)2 +G0δikα̇
jα̇k

= −t( dt
dσ

)2 +G0 δik
dxj

dσ

dxk

dσ︸ ︷︷ ︸ =

1

−t( dt
dσ

)2 +G0,

and this implies

dσ

dt
= ±

√
t

G0

=⇒ σ(t) = ±
ˆ √

t

G0

dt = ±2

3
t

√
t

G0

+ const.

91More precisely, σ can be considered as arc length in terms of some auxiliary Riemannian
metrics, each defined on a hypersurface with t = const.
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Since σ is given as a function of t, it represents the arc length from the starting point
at t(p0) = t0 to t(0) = 0. Then past-directed g̃0-lightlike curves emanating from p0

reach the hypersurface at t = 0 after passing through the arc length distance

4σ = ±
ˆ t0

0

√
t

G0

dt = ±2

3
t0

√
t0
G0

+ const. = ±2

3

√
t30
G0

+ const

along the said section of the curve from the fixed starting point p0.

Provided this arc length distance satisfies 4σ ≤ ξ0, then the past-directed lightlike
curves α(t) (emanating from p0) reach the hypersurface at t = 0 while remaining
within C0. Accordingly this is also the case for g̃−lightlike curves emanating from
p0. Conversely, if 4σ > ξ0 then there exist past-directed g̃0-lightlike curves ema-
nating from p0 that reach the hypersurface outside of C0.

In this case, we have 4σ = 2
3

√
t30
G0

> ξ0 ⇐⇒ t0 >
3

√
9
4
ξ2

0 ·G0 and we must adjust

the new starting point p1 = (t1, x0) accordingly by setting t1 ≤ 3

√
9
4
ξ2

0 ·G0 < t0.
Thereby we make sure that all past-directed g̃-lightlike curves emanating from p1

hit the hypersurface H without leaving C0. That is I−g̃ (p1) ⊂ C0 ⊂ Uϕ ⊂M , where
I−g̃ (p1) is the g̃-chronological past of the event p1 ∈ML, restricted to ML ∪H.

It now suffices to connect two of such points x̂1, x̂2 ∈ I−g̃ (p0) ∩ H (or, if need be
I−g̃ (p1) ∩H) in an arbitrary fashion within the Riemannian sector MR. By what a
pseudo-timelike loop gets generated, if Uϕ was chosen small enough.

Summarized, for each neighborhood U(q) that admits radical-adapted Gauss-like
coordinates ξ = (t, x̂) = (t, x1, . . . , xn−1) centered at some q ∈ H, and U(q)∩H 6= ∅,
we are able to pick a point p0 ∈ U(q) and an associated compact set C0 ⊂ U(q). For
the metric g̃ there exists a corresponding uniquely defined metric g̃0 with g̃ ≤ g̃0

within C0. Then we must distinguish between two cases, that is

i) with respect to the metric g̃0 we have I−0 (p0) ⊂ C0, then also I−(p0) ⊂ C0

with respect to g̃,
ii) with respect to the metric g̃0 we have the situation I−0 (p0) * C0, then there

exists a point p1 = (t1, x0) ∈ C0 \ H with t1 < t0, such that I−0 (p1) ⊂ C0, hence
also I−(p1) ⊂ C0 with respect to g̃.
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Thus, for any point q ∈ H we can find a sufficiently small neighborhood Ũ ⊂ U(q)
containing a point p ∈ ML, such that all past-directed, causal curves emanating
from that point, reach the hypersurface within a sufficiently small set C0.

Corollary 16.2. Let (M, g̃) be a transverse, signature-type changing, n-dimensional
manifold with a transverse radical. Then in each neighborhood of each point q ∈ H
there always exists a pseudo-lightlike curve.

Corollary 16.3. A transverse, signature-type changing manifold (M, g̃) with a
transverse radical has always time-reversing pseudo-timelike loops.

As a matter of course, in the Lorentizan region the tangent space at each point
is isometric to Minkowski space which is time orientable. Hence, a Lorentzian
manifold is always infinitesimally time- and space-orientable, and a continuous
designation of future-directed and past-directed for non-spacelike vectors can be
made.92

Having said that, the infinitesimal properties of a manifold with a signature change
exhibit similarities to those of a Lorentzian manifold within the Lorentzian sector.
However, when examining the Riemannian sector and the hypersurface, specific
distinctions arise. The Riemannian sector and the hypersurface are not infinites-
imally modelable by a Minkowski space. While the Riemannian sector reveals an
absence of a meaningful differentiation between past- and future-directed vectors.
Conversely, on the hypersurface, one has the flexibility to make arbitrary assign-
ments of such distinctions at the infinitesimal level. If one now determines on the
hypersurface whether the direction towards the Lorentzian sector is the future or
past direction, it is not only a reference to the tangent space at a point. Rather, it
is a local consideration.

In the context of local considerations, in a Lorentzian manifold the existence of
a timelike loop that flips its time orientation (i.e. the timelike tangent vector
switches between the two designated components of the light cone) is a sufficient
condition for the absence of time orientability. Based on the previous Theorem 16.1,
this is also true for a transverse, signature-type changing manifold (M, g̃) with a
transverse radical:

92In case the Lorentzian manifold is time-orientable, a continuous designation of future-directed
and past-directed for non-spacelike vectors can be made allover.
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As we have proved above, through each point on the hypersurfaceH we have locally
a closed time-reversing loop. That is, there always exists a closed pseudo-timelike
path inM around which the direction of time reverses, and along which a consistent
designation of future-directed and past-directed vectors cannot be defined.

Figure 16.2: A closed time-reversing loop.

An observer in the region ML near H perceives these locally closed time-reversing
loops as the creation of a particle and an antiparticle at two different points
q̂, q ∈ H.93 This could be taken as an object entering the Riemannian region,
then resurfacing in the Lorentzian region and proceeding to move backwards in
time.

So in a transverse, signature-type changing manifold (M, g̃), the hypersurface with
its time-reversing loops could be tantamount to a region of particle-antiparticle

93Such locally closed time-reversing loops aroundH obviously do not satisfy the causal relations
� as introduced above.
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origination incidents. Moreover, Hadley [39] shows for Lorentzian spacetimes that
a failure of time-orientability of a spacetime region is indistinguishable from a
particle-antiparticle annihilation event. These are then considered equivalent de-
scriptions of the same phenomena. It would be interesting to explore how this
interpretation can be carried over to signature-type changing manifolds.
For fields take the conjugate ψAt = e−iĤtψ∗ of ψt = eiĤtψ: The unitary temporal
evolution of the field operator for antiparticles arises from the temporal evolution
of the field operator for particles by applying the same Hamiltonian operator to
the adjoint field operator under time reversal.

Some literature [38] points to the idea that concepts in quantum field theory are
predicated on acausal properties derived from general relativity. In this context,
Blum et al. [8] stress the importance of the CPT theorem (quoting verbatim):

"CPT theorem is the statement that nothing would change -nobody
would notice and the predictions of physics would not be altered − if
we simultaneously replace particles by antiparticles and vice versa. Re-
place everything by its mirror image or more exactly: exchange left and
right, up and down, and front and back, and reverse the flow of time. We
call this simultaneous transformation CPT, where C stands for Charge
Conjugation (exchanging particles and antiparticles), P stands for par-
ity (mirroring), and T stands for time reversal."

16.2 Global pseudo-timelike loops

The existence of such pseudo-timelike curves locally near the hypersurface that
loop back to themselves, gives rise to the question whether this type of curves also
occur globally. We want to elucidate this question in the following.94

Definition 16.4. (Stably causal) [67] A connected time-orientable
Lorentzian manifold (M, g) is said to be stably causal if there exists a nowhere-
vanishing timelike vector field Va such that the Lorentzian metric on M given by
g′ := gab−VaVb admits no closed timelike curves. In other words, if (M, g) is stably

94A spacetime is a Lorentzian manifold that models space and time in general relativity and
physics. This is conventionally formalized by saying that a spacetime is a smooth connected
time-orientable Lorentzian manifold (M, g) with dimM = 4. But in what follows we want to
study the n-dimensional (n ≥ 2) case.
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causal then, for some timelike Va, the metric g′ := gab − VaVb on M is causal.95

Lemma 16.5. [75] Stable causality is the necessary and sufficient condition for
the existence of a smooth global time function, i.e. a differentiable map T : M → R
such that whenever p << q =⇒ T (p) < T (q).

Definition 16.6. (Globally hyperbolic) [7, 43] A connected time-orientable
Lorentzian manifold (M, g) is called globally hyperbolic if and only if it is diamond-
compact and causal, i.e., p /∈ J+(p) ∀p ∈M .96

An equivalent condition for global hyperbolicity is as follows [31].

Definition 16.7. A connected time-orientable Lorentzian manifold (M, g) is called
globally hyperbolic if and only if M contains a Cauchy surface. A Cauchy hyper-
surface in M is a subset S that is intersected exactly once by every inextendible
timelike curve in M .97

In 2003, Bernal and Sánchez [6] showed that any globally hyperbolic Lorentzian
manifold M admits a smooth spacelike Cauchy hypersurface S, and thus is diffeo-
morphic to the product of this Cauchy surface with R, i.e. M splits topologically
as the product R × S. Specifically, a globally hyperbolic manifold is foliated by
Cauchy surfaces.

Remark 16.8. If M is a smooth, connected time-orientable Lorentzian manifold
with boundary, then we say it is globally hyperbolic if its interior is globally hy-
perbolic.

95A partial ordering < is defined in the set of all Lorentzian metrics Lor(M) on M in the
following way: g < g′ iff all causal vectors for g are timelike for g′. Then the metric gλ =
g + λ(g′ − g), ∀ λ ∈ [0, 1] is a Lorentzian metric on M , as well. Also, recall that g < g′ means
that the causal cones of g are contained in the timelike cones of g′. A connected time-orientable
Lorentzian manifold (M, g) is stably causal if there exists g′ ∈ Lor(M), such that g′ > g, with g′
causal.

96Diamond-compact means J(p, q) := J+(p) ∩ J−(q) is compact for all p, q ∈ M . Note that
J(p, q) is possibly empty.

97An inextensible curve is a curve with no ends; it either extends infinitely, remaining timelike
or null, or it closes in on itself to form a circle - a closed, non-spacelike curve. In mathematical
terms, a map α : (a, b)→M is an inextensible timelike curve in (M, g) if α(t) does not approach
a limit as t increases to b or as t decreases to a.
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Theorem 16.9. Let (M, g̃) be a pseudo-time orientable, transverse, signature-type
changing, n-dimensional (n ≥ 2) manifold with a transverse radical, where ML =
M \ (MR ∪ H) is globally hyperbolic. Assume that a Cauchy surface S is a subset
of the neighborhood U =

⋃
q∈H U(q) of H, i.e. S ⊆ (U ∩ML) =

⋃
q∈H(U(q)∩ML),

with U(q) being constructed as in Theorem 16.1. Then for every point p ∈ M ,
there exists a pseudo-timelike loop such that the intersection point is p.

Proof. Let (M, g̃) be a pseudo-time orientable transverse, signature-type changing,
n-dimensional (n ≥ 2) manifold with a transverse radical, where ML is globally
hyperbolic with g̃ |ML

= g. Moreover, there is a neighborhood U =
⋃
q∈H U(q) of H

sufficiently small to satisfy the conditions for Theorem 16.1, and per assumption
there exists a Cauchy surface Sε ⊆ (U ∩ML), ε > 0.

Due to [6] we know thatML admits a splittingML = (R>0)t×St =
⋃
t∈R>0

St, such
that the Lorentzian sector ML is decomposed into hypersurfaces (of dimension
n − 1), specified as the level surfaces St = T −1(t) = {p ∈ ML : T (p) = t}, t ∈
R>0, of the real-valued smooth temporal function T : ML −→ R>0 whose gradient
gradT is everywhere non-zero and dT is an exact 1-form. Within the neighborhood
U =

⋃
q∈H U(q) this foliation

⋃
t∈R>0

St can be chosen in such a way that it agrees
with the natural foliation given by the absolute time function h(t, x̂) := t, see
Remark 8.17 and Corollary 13.8. For the calculation of the coordinates adapted to
this foliation, see Appendix D.98

Moreover, the level surfaces (St)t∈R are Cauchy surfaces and, accordingly, each
inextendible pseudo-timelike curve in ML can intersect each level set St exactly
once as T is strictly increasing along any future-pointing pseudo-timelike curve.99

Then, these level-sets St are all space-like hypersurfaces which are orthogonal to a
timelike and future-directed unit normal vector field n.100

98Recall that a smooth function T : M −→ R on a connected time-orientable Lorentzian man-
ifold (M, g) is a global time function if T is strictly increasing along each future-pointing non-
spacelike curve. Moreover, a temporal function is a time function T with a timelike gradient
gradT everywhere.
Since ML is globally hyperbolic it admits a smooth global time function T and consequently

it admits [4, 43] a temporal function T . Hence, in the Lorentzian sector ML there exists a
global temporal function T : ML −→ R>0, and gradT is orthogonal to each of the level surfaces
St = T −1(t) = {p ∈ ML : T (p) = t}, t ∈ R>0, of T . Note that T = t is a scalar field on ML,
hence gradT = gradt = dt.

99Since T is regular the hypersurfaces St never intersect, i.e. St ∩ St′ = ∅ for t 6= t′.
100In other words, the unit vector n is normal to each slice St, and g restricted to St is Rieman-

nian.
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For ε sufficiently small, the level Cauchy surface

Sε = T −1(ε) = {p ∈ML : T (p) = ε}, ε ∈ R>0

is contained in the neighborhood U ∩ML =
⋃
q∈H(U(q) ∩ML) of H.101

Therefore, based on Theorem 16.1, for any p = (ε, x̂) ∈ Sε ⊆(U ∩ML) all past-
directed and causal curves emanating from that point reach the hypersurface H.

The global hyperbolicity ofML implies that every non-spacelike curve inML meets
each St once and exactly once if St is a Cauchy surface. In particular is the spacelike
hypersurface Sε a Cauchy surface in the sense that for any p̄ ∈ ML in the future
of Sε, all past pseudo-timelike curves from p̄ intersect Sε. The same holds for all
future directed pseudo-timelike curves from any point ¯̄p ∈ML in the past of Sε.

Figure 16.3: For any p̄ ∈ML in the future of Sε, all past pseudo-timelike curves from p̄ intersect
the Cauchy surface Sε. Similarly, for any point (t, x̂) = p̄ ∈ML with t > ε there exists a suitable
point q ∈ H, such that Sε can be reached by a future-directed pseudo-timelike curve starting at
q ∈ H.

Consequently, by virtue of Theorem 16.1 and the above argument, all past-directed
101This is true because all neighborhoods U(q) with q ∈ H can be chosen in such a way that

the sets U(q) have a compact closure. Thus, the U(q) are not "infinitely wide”, and there exists
a strictly positive value εmax, such that for all ε < εmax the level Cauchy surface Sε is contained
in the neighborhood U ∩ML of H.
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pseudo-timelike curves emanating from any p̄ ∈ ML reach the hypersurface H.
Analogously we can conclude that any point p̄ ∈ ML can be reached by a future-
directed pseudo-timelike curve starting at some suitable point in H. Recall that
based on Remark 8.20 we also know that I+(q) = {p ∈ M : q � p} = M , that
is, any point in M = MR ∪H ∪ML can be reached by a future-directed pseudo-
timelike curve from q ∈ H.

We now obtain a loop with intersection point p inML if, for sufficiently small ε, we
first prescribe the intersection point p = (ε, x̂) ∈ Sε. And then we connect the two
points lying in H of the intersecting curve sections Sε through an arbitrary curve
segment in the Riemannian sector MR (through a suitable choice of the two curve
segments, we can ensure that different points on H are obtained).

Remark 16.10. The Theorem 16.9 explicitly states that through every point in M ,
there always exists a pseudo-timelike loop. Therefore, this assertion holds also true
for points located both on the hypersurface and within the Riemannian region. In
this case, the situation is as follows:

(i) If the given point lies on the hypersurface p ∈ H, choose a timelike curve
segment that connects it to Sε (with ε sufficiently small), then proceed from there
along another timelike curve segment to another point on the hypersurface, and
connect both points in the Riemannian sector.

(ii) If the given point lies in the Riemann sector p ∈ MR, choose an arbitrary
loop of the form similar to those loops constructed in the proof of Theorem 16.1,
and modify this loop within the Riemannian sector such that it passes through the
specified point there.

Example 16.11. The prototype of a spacetime M with signature-type change is
obtained by cutting an S4 along its equator and joining it to the corresponding half
of a de Sitter space. The Lorentzian sector is half de Sitter space which is globally
hyperbolic [14], and therefore there are chronology-violating pseudo-timelike loops
through each point in M.

Corollary 16.12. Let (M, g̃) be a pseudo-time orientable, transverse, signature-
type changing, n-dimensional (n ≥ 2) manifold with a transverse radical, whereML

is globally hyperbolic, and S ⊆ (U ∩ML) =
⋃
q∈H(U(q) ∩ML) for a Cauchy surface

S. Then through every point there exists a path on which a pseudo-time orientation
cannot be defined.

The intriguing facet of the potential existence of closed timelike curves within
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the framework of Einstein’s theory lies in the physical interpretation that CTCs,
serving as the worldlines of observers, fundamentally permit an influence on the
causal past.

This can also be facilitated through a causal curve in the form of a loop, i.e.,
the curve intersects itself. In the case of a non-time-orientable manifold, there
would then be the possibility that at the intersection, the two tangent vectors
lie in different components of the light cone. Thus, the "time traveler" at the
encounter with himself, which he experiences twice, may notice a reversal of the
past and future time directions in his surroundings during the second occurrence.
Regardless of whether this effect exists or not, during the second experience of the
encounter, which he perceives as an encounter with a younger version of himself,
the traveler can causally influence this younger version and its surroundings.
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Appendix

A Generalized affine parameter

A.1 Alternative proof for Estimate 4.3

Proof. For any two basis of Tγ(t)M which are parallel transported along γ, then in
the case of a change of basis, the components V i(t) with respect to another basis
are given by

Ṽ j(t) =
n∑
i=1

AjiV
i(t).

The constant items Aji are entries in a constant, non-degenerate n × n matrix A.
From this it follows that

q(t) :=
δτσṼ

τ (t)Ṽ σ(t)

δαβV α(t)V β(t)
=

(
∑n

i=1A
τ
i V

i(t))
(∑n

i=1 A
σ
j V

j(t)
)

δαβV α(t)V β(t)
.

Furthermore, we can view δτσA
τ
iA

σ
j and δαβ as elements of a matrixMB̃ = (δτσA

τ
iA

σ
j )

and EN = (δαβ), respectively, in RN with a basis B. Then (δτσA
τ
iA

σ
j ) and (δαβ)

define symmetric, positive definite bilinear forms, B̃ and B, in RN .

It can be easily seen that the quotient

B̃(X,X)

B(X,X)
=: Q(X)

is scale invariant, i.e. ∀ X ∈ RN \ {0}:

B̃( X
|X| ,

X
|X|)

B( X
|X| ,

X
|X|)

=
( 1
|X|)

2B̃(X,X)

( 1
|X|)

2B(X,X)
=
B̃(X,X)

B(X,X)
.

Therefore, without loss of generality, we can restrict B̃(X,X)
B(X,X)

to the unit sphere{
X ∈ RN :

f
X
f

= 1
}
. Then as a continuous, real-valued function on a compact

set, the quotient Q(X) is bounded. Based on the extreme value theorem (where
each continuous function on a compact set attains its maximum and minimum)
there exist λ1, λ2 ∈ R with 0 < λ1 ≤ λ2 < ∞, such that λ1 ≤ B̃(X,X)

B(X,X)
≤ λ2

∀ X ∈ RN \ {0}.
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Define now

C :=

{
λ1 if λ1λ2 ≤ 1
1
λ2
if λ1λ2 ≥ 1 ,

then we have the following equation:

C ≤ B̃(X,X)

B(X,X)
≤ 1

C
∀ X ∈ RN \ {0}.

We first consider the case λ1λ2 ≤ 1 for which we have C = λ1 ≤ Q(X) ≤ λ2 ≤
1
λ1

= 1
C
. The case λ1λ2 ≥ 1 is handled similarly: C = 1

λ2
≤ λ1 ≤ Q(X) ≤ λ2 = 1

C
.

Using this result, it follows that there exists a C ∈ [0, 1], such that ∀t: C ≤ q(t) ≤
1
C
.

(i) If γ is a (possibly not affinely parametrized) geodesic, then according to
proposition 4.4 are

µ(t) =

ˆ t

t0

√√√√ n∑
i=1

[V i(t)]2dt

and

µ̃(t) =

ˆ t

t0

√√√√ n∑
i=1

[Ṽ i(t)]2dt

affine parameters. The change of basis in TpM which yields

Ṽ j(t) =
n∑
i=1

AjiV
i(t)

also induces an affine reparametrization µ̃ = aµ+ b.

(ii) If γ is not a (possibly not affinely parametrized) geodesic, then we have

dµ̃
dt
dµ
dt

=
dµ̃

dµ
=
√
q(t) =

√
Q(V ) =

√
Q(V 1(t), . . . , V N(t)),
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which immediately yields

√
C ≤ dµ̃

dµ︸︷︷︸√
q(t)

≤ 1√
C
∀ t ∈ J.

On the other hand we have

dµ̃
dt
dµ
dt

=
√
q(t)⇐⇒ dµ̃

dt
=
√
q(t)

dµ

dt
=
√
q(t)

√√√√ n∑
i=1

[V i(t)]2

=⇒ µ̃ =

tˆ

t0

√
q(t)

√√√√ n∑
i=1

[V i(t)]2dt.

Including the above reasoning, we then get

tˆ

t0

√
C

√√√√ n∑
i=1

[V i(t)]2dt ≤ ˜µ(t) ≤
tˆ

t0

1√
C

√√√√ n∑
i=1

[V i(t)]2dt

⇐⇒
√
Cµ(t) ≤ µ̃(t) ≤ 1√

C
µ(t).
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B Conformal transformation

B.1 Geodesics

The metric ḡ is defined by

ds2 = sgn(f(t))[−(dt)2 +
1

f(t)
(dx1)2 + · · ·+ 1

f(t)
(dxn−1)2],

and the corresponding Lagrangian and Euler-Lagrange equations are given by

L =
1

2

(
−sgn(f(t))ṫ2 +

sgn(f(t))

f(t)

n−1∑
i=1

(ẋi)2

)
=
−sgn(f(t))

2

(
ṫ2 − 1

f(t)

n−1∑
i=1

(ẋi)2

)
,

0 =
∂L
∂t
− d

ds
(

∂L
∂ṫ︸︷︷︸

−sgn(f(t))ṫ

) = −1

2
sgn(f(t)) · f

′(t)

f(t)2

n−1∑
i=1

(ẋi)2 + sgn(f(t))ẗ,

0 =
∂L
∂xi
− d

ds
(

∂L
∂ẋi︸︷︷︸

sgn(f(t))
f(t)

ẋi

) = − d

ds

sgn(f(t))

f(t)
ẋi

=⇒ sgn(f(t))
f(t)

ẋi = cxi is a constant.

From this follows

1

2
sgn(f(t)) · f

′(t)

f(t)2

n−1∑
i=1

(ẋi)2 = sgn(f(t))ẗ

⇐⇒ ẗ =
1

2

f ′(t)

f(t)2

n−1∑
i=1

(ẋi)2,

and f(t) = ẋi · sgn(f(t))
cxi

⇐⇒ ẋi =
cxi

sgn(f(t))
· f(t).

167



Note that for the latter we have for any i, j = 1, . . . , (n− 1) the following relation-
ship at hand:

f(t) = ẋi · sgn(f(t))

cxi
= ẋi · sgn(f(t))

cxj
,

therefore ẋi =
cxi
c
xj
· ẋj and ẋj =

c
xj

cxi
· ẋi.

From
ẋi =

cxi

sgn(f(t))
· f(t)

we get by integration

xi(s) =
cxi

sgn(f(t))

ˆ
f(t)ds.

And by the substitutions ẋi ←→ f(t)
sgn(f(t))

· cxi in the Lagrangian L we obtain

2L =

(
−sgn(f(t))ṫ2 +

sgn(f(t))

f(t)

n−1∑
i=1

(ẋi)2

)

= −sgn(f(t))ṫ2 +
sgn(f(t))

f(t)

n−1∑
i=1

(
f(t)

sgn(f(t))
· cxi

)2

= −sgn(f(t))ṫ2+
n−1∑
i=1

f(t)

sgn(f(t))
(cxi)

2 ⇐⇒

ṫ2 =
1

sgn(f(t))

(
n−1∑
i=1

(
f(t)

sgn(f(t))
(cxi)

2

)
− 2L

)
=
n−1∑
i=1

(f(t)(cxi)
2)− 2L

sgn(f(t))
.

By the substitutions

ẋi ←→ f(t)

sgn(f(t))
· cxi

in ẗ = 1
2
f ′(t)
f(t)2

n−1∑
i=1

(ẋi)2 we obtain
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ẗ =
1

2

f ′(t)

f(t)2

n−1∑
i=1

(
f(t)

sgn(f(t))
· cxi

)2

=
1

2

f ′(t)

f(t)2

n−1∑
i=1

(f(t)2 · (cxi)2)

=
1

2
f ′(t)

n−1∑
i=1

(cxi)
2,

from which we get by integration

ṫ(s) =
1

2

n−1∑
i=1

(cxi)
2

ˆ
df(t)

dt︸ ︷︷ ︸
f ′(t)

ds.

Expressed through the above partial results, we have

i) Geodesic equation for xi(s):

2L = −sgn(f(t))ṫ2+
n−1∑
i=1

(
(cxi)

2

sgn(f(t))
f(t)

)

= −sgn(f(t))(
1

2

n−1∑
i=1

(cxi)
2

ˆ
df(t)

dt
ds︸ ︷︷ ︸

ṫ

)2+
n−1∑
i=1

 (cxi)
2

sgn(f(t))
· sgn(f(t))

cxj
ẋj︸ ︷︷ ︸

f(t)



= −1

4
sgn(f(t))

(
n−1∑
i=1

(cxi)
2

)2(ˆ
df(t)

dt
ds

)2

+
n−1∑
i=1

(cxi)
2

cxj
ẋj.

This is equivalent to

ẋi =
cxj

n−1∑
i=1

(cxi)2

2L+
1

4
sgn(f(t))

(
n−1∑
i=1

(cxi)
2

)2(ˆ
df(t)

dt
ds

)2
 ,

which implies

xj(s) =
2Lcxj

n−1∑
i=1

(cxi)2

s+
sgn(f(t))cxj

4

(
n−1∑
i=1

(cxi)
2

)ˆ (ˆ
df(t)

dt
ds

)2

ds.
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ii) Geodesic equation for t(s):

Combining the above two results for ṫ we have
ṫ2 =

n−1∑
i=1

(f(t)(cxi)
2)− 2L

sgn(f(t))

ṫ = 1
2

n−1∑
i=1

(cxi)
2
´ df(t)

dt
ds

,

which yields

(ˆ
df(t)

dt
ds

)2

=
4

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2

(
n−1∑
i=1

(
f(t)

sgn(f(t))
(cxi)

2

)
− 2L

)

⇐⇒
(ˆ

df(t)

dt
ds

)2

=
4f(t)

n−1∑
i=1

(cxi)2

− 8L

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2 .

B.2 Turning Point

A pseudo-timelike geodesic has its turning point (in the Riemannian region) at
ṫ(s) = 0. This means

ṫ(s) =
1

2

n−1∑
i=1

(cxi)
2

ˆ
df(t)

dt
ds = 0

⇐⇒
ˆ
df(t)

dt
ds = 0

⇐⇒ 4f(t)
n−1∑
i=1

(cxi)2

− 8L

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2 = 0

⇐⇒ f(t) =
2L

sgn(f(t))
n−1∑
i=1

(cxi)2

=
1

sgn(f(t))
n−1∑
i=1

(cxi)2

.
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Calculation via the Lagrangian when ṫ(s) = 0:

2L =
sgn(f(t))

f(t)

n−1∑
i=1

(ẋi)2

⇐⇒ f(t) =
sgn(f(t))

2L

n−1∑
i=1

(ẋi)2

⇐⇒ 1

f(t)
=

sgn(f(t))

2L

n−1∑
i=1

(
cxi

sgn(f(t))
)2

⇐⇒ f(t) =
2L

sgn(f(t))

1
n−1∑
i=1

(cxi)2

=
1

sgn(f(t))

1
n−1∑
i=1

(cxi)2

.

B.3 Intersection Point

A pseudo-timelike geodesic intersects itself (in the Lorentzian region) at

−2f(t) =
−4L

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2 ·
n−1∑
i=1

(cxi)
2 =

2

sgn(f(t))

(
n−1∑
i=1

(cxi)2

)2 ·
n−1∑
i=1

(cxi)
2.
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C Local transformation theorem
An alternative proof for the ” =⇒ ” direction of the local Transformation Theorem,
using radical-adapted Gauss-like coordinates:

Proof. ” =⇒ ” Recall from Section 9 that (M, g̃) is a transverse, signature-type
changing manifold with a transverse radical if and only if for any q ∈ H there exist
a neighborhood U(q) and smooth radical-adapted Gauss-like coordinates such that
g̃ = −t(dt)2 + gijdx

idxj, for i, j ∈ {1, . . . , n− 1}.

Let g̃ be a transverse, signature-type changing metric with a transverse radical.
Consequently for any q ∈ H we have d(det(g̃µν)) 6= 0 and there exists a neigh-
bourhood U(q) and smooth radical-adapted Gauss-like coordinates such that the
metric takes the form g̃ = −t(dt)2 + g̃ijdx

idxj, for i, j ∈ {1, . . . , n−1}. Then in the
neighborhood U :=

⋃
q∈H U(q) of H the associated matrix representation is given

by

[g̃µν ] =


−t 0 · · · 0
0 g̃11 · · · g̃1n−1
...

...
...

0 g̃n−11 · · · g̃n−1n−1

 =


−1 0 · · · 0
0
... G̃
0

+


1− t 0 · · · 0

0
... 0
0

 ,

which can be written as g̃ = g + f · E11, with the matrix unit E11 and f(t, x̂) =
1 − h(t, x̂) = 1 − t.102Notice that because of the properties of g̃, the metric g is
non-degenerate, hence Lorentzian, and properly defined on U .

In these coordinates the locus of signature change is at t = 0, the Lorentzian
sector ML is determined by t > 0 and the Riemannian sector MR is set by t < 0.
Furthermore in the neighborhood U of H there is a unique absolute time function
defined by h(t, x̂) := t,103 and in the Lorentzian sector we have h |ML

(t, x̂) =

102The E11 matrix unit is an n-by-n matrix with only one nonzero entry with value 1 in the 1st
row and 1st column. With respect to radical-adapted Gauss-like coordinates is E11 is the matrix
representation of the (0, 2)-tensor field dt⊗ dt = δ0µδ

0
νdx

µ ⊗ dxν for µ, ν ∈ {0, . . . , n− 1}. This is
because E11 is the matrix with the components δ0µδ0ν .

103For this particular class of metrics this is predicated on the fact that on the hypersurface,
the coordinate basis vector ∂t is the only eigenvector for the eigenvalue g00 |H= λ00 |H= 0. From
this then follows that Radq = span({∂t}) for q ∈ H and g(∂t, �)(q) = 0 =⇒ ∂t is lightlike.
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−g̃ |ML
(∂t, ∂t) = t > 0. According to Lemma 13.11 we can thus on ML define a

smooth non-vanishing timelike line element field {W,−W} corresponding to ∂
∂t

=:
W in ML ∩U . Hence, locally in ML ∩U this will be a smooth timelike vector field
W (i.e. a timelike line element field with determined sign). Since the absolute time
function allows to introduce a time concept in MR ∩ U , this implies also that ∂

∂t
is

future pointing there. For this reason, W = ∂
∂t

on U , and moreover {W,−W} on
U is a smooth non-vanishing timelike line element field with respect to g.

Then in U we have

−t = g̃(∂t, ∂t) = g(∂t, ∂t)︸ ︷︷ ︸
−1

+ f︸︷︷︸
1−t

· E11(∂t, ∂t)︸ ︷︷ ︸
1

.

From this follows directly (notice that [ is with respect to the metric g, not g̃)

1 = g(∂t, ∂t) · g(∂t, ∂t) = g(W,W )︸ ︷︷ ︸
W [(W )

⊗ g(W,W )︸ ︷︷ ︸
W [(W )

= (W [ ⊗W [)(W,W )

⇐⇒ 1 = (W [ ⊗W [)(∂t, ∂t),

0 = g(∂t, ∂t) · g(∂t, ∂i)︸ ︷︷ ︸
0

= g(W,∂t) · g(W,∂i)

= (g(W, �)⊗ g(W, �))(∂t, ∂i) = W [ ⊗W [(∂t, ∂i)

⇐⇒ 0 = (W [ ⊗W [)(∂t, ∂i)

and

0 = g(∂t, ∂i)︸ ︷︷ ︸
0

· g(∂t, ∂j)︸ ︷︷ ︸
0

= g(W,∂i) · g(W,∂j)

= (g(W, �)⊗ g(W, �))(∂i, ∂j) = W [ ⊗W [(∂i, ∂j)

⇐⇒ 0 = (W [ ⊗W [)(∂i, ∂j),
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for i, j ∈ {1, . . . , n− 1}.

Hence, E11 := W [ ⊗W [ is a (0, 2)-tensor field on U where W [ = −dt, and we are
able to write the metric g̃ = −t(dt)2 + g̃ijdx

idxj in the following way:

g̃ = g + f · E11 =
(
−(dt)2 + gijdx

idxj
)

+ (1− t)W [ ⊗W [,

with f(t, x̂) := 1− h(t, x̂) = 1− t and gij = g̃ij for i, j ∈ {1, . . . , n− 1} on U .
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D Global pseudo-timelike loops
Coordinates adapted to the foliation (St)t∈R in the Lorentzian sector ML of the
signature-type changing, n-dimensional manifold (M, g̃) are introduced [35] on
each hypersurface St as a spatial coordinate system ζ = (x1, . . . , xn−1) that varies
smoothly between adjacent hypersurfaces. Then ζt = (t, x1, . . . , xn−1) is a well-
behaved coordinate system of ML. On each TpM the basis associated to ζt is given
by the time vector ∂t =: m + β = Nn + β and ∂i := ∂

∂i
, i ∈ {1, . . . , n − 1}, where

m = Nn is the normal evolution vector (adapted to the temporal function T ), N
the lapse function,104 and β is the shift vector that measures the difference between
∂t and m.105

It is noteworthy that ∂t is tangent to the curves of constant spatial coordinates, and
∂i ∈ TpSt ⊂ TpM . Moreover, the vector β =: βi∂i is tangent to the hypersurfaces
St, and the vector n is normal to St. As an immediate consequence β = γ(∂t)can
be regarded as the orthogonal projection

γ : TpML −→ TpSt

∂t 7→ ∂t + (n · ∂t)n =: β

of ∂t onto St. Thus we can decompose ∂t into its normal and tangential parts
with respect to the surfaces St. Based on this reasoning we can easily deduce the
metric components with respect to coordinates ζt = (t, x1, . . . , xn−1) adapted to
the foliation (St)t∈R:

g00 = g(∂t, ∂t) = −N2 + βiβ
i,

and
g(∂t, ∂t) < 0⇐⇒ βiβ

i < N2,

104The lapse function, or specifically N(t) = g00 being a function of coordinate time, can be
normalized away, ensuring proper time equals coordinate time.

105These relation and properties mean that the any adjacent hypersurface St+δt can be reached
from the hypersurface St by the infinitesimal displacement δtm of each point of St.
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g0i = g(∂t, ∂i) = (m+ β) · ∂i = m∂i︸︷︷︸
0

+ β∂i = βi,

where βi are the components of the metric dual form of β =: βi∂i with respect to
the spatial coordinates ζ = (x1, . . . , xn−1). As ∂i and ∂j are both tangent to St,106

gij = g(∂i, ∂j) = γ(∂i, ∂j) = γij,

where γij are the components of the (n− 1)-metric with respect to the coordinates
ζ = (x1, . . . , xn−1).

Taking into consideration that βi = γijβ
j, this yields the following line element

g = −N2dt2 + γij(dx
i + βidt)(dxj + βjdt)

= (−N2+γijβ
jβi︸ ︷︷ ︸

βiβi

)dt2+γijβ
j︸ ︷︷ ︸

βi

dtdxi+γijβ
i︸︷︷︸

βj

dtdxj+ γij︸︷︷︸
gij

dxidxj, i, j ∈ {1, . . . , n−1},

and the expression for the associated matrix representation

gµν =


−N2 + βkβ

k β1 · · · βn−1

β1 γ11 · · · γ1n−1
...

... . . . ...
βn−1 γn−11 · · · γn−1n−1

=


−N2 + βkβ

k βj

βi γij

 ,

Thus we constructed a globally defined pointwise splitting of the metric g =
−N(t)2dt2 + γij(dx

i + βidt)(dxj + βjdt), where N(t) is a smooth function on M
and γ is a Riemannian metric on each level St. Note that the determinant of g is
given by det g = −N2 · det γ, where γ = γijdx

idxj, i, j ∈ {1, . . . , n− 1}.

Since in our case, the hypersurface of signature change H, radical-adapted Gauss-
like coordinates and the absolute time function are given, it makes sense to initially
define on H a scalar field N(t) as well as a vector field β in some neighborhood
of H,107 such that for x0 = t = 0 is S0 := H. Furthermore, in the neighborhood

106In the neighborhood of the hypersurface of signature change H we have established the
condition that ∂t is timelike, and this consequently means that g(∂t, ∂t) < 0⇐⇒ βiβ

i < N2.
107Clearly, within neighborhood patches equipped with radical-adapted Gauss-like coordinates

we have N(t) =
√
t and β = 0.
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of H we have established the condition that ∂t is time-like, and this consequently
means that g(∂t, ∂t) < 0 ⇐⇒ βiβ

i < N2. Then the lapse function at each point
of H determines a unique vector m = Nn as described above, and accordingly the
location of the “ensuing” hypersurface Sδt. Then the shift vector prescribes how to
propagate the coordinate system from H = S0 to Sδt.
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