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Abstract

This thesis consists of the collection of the papers [Mos21a; MS22; CMW21; Mos21b;
Mos20; MM22]. The results mainly consider the construction of (global) perturbative
topological quantum field theories (TQFTs) with symmetry (gauge theories) in the BV-
BFV formalism, i.e. on manifolds with boundary, and also higher codimension methods.
Some parts of the results consider the field of deformation quantization and its relation
to some algebraic properties derived from field-theoretic concepts.
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Chapter 1

Introduction

1.1 Topological Quantum Field Theories (TQFTs)

This thesis mainly deals with quantum field theories of topological type. The notion of
a quantum field theory can be understood in many different settings. Two of the most
important notions are perturbative and functorial (see [Ati88] for a detailed discussion).
In this thesis we are mainly interested in the perturbative approach.

1.1.1 Perturbative TQFTs

In the perturbative setting, we consider functional integrals of the form

Z =

ˆ
ϕ∈FM

e
i
ℏS(ϕ)D [ϕ], (1.1.1)

where FM denotes some “space of fields” depending on some “space–time” manifoldM , S
some function on FM (usually called the action functional), i the imaginary unit, ℏ some
small parameter and D some (possibly ill-defined) measure1 on FM . If the space of fields
FM is e.g. infinite-dimensional (which is the typical case in the setting of quantum field
theory), the measure D is not defined and hence it is not clear how such an object can
be defined. The way out of this problem is usually to consider a perturbative expansion
in terms of Feynman diagrams (see e.g. [FH65; Pol05]), i.e. to write

Z ≈
∑

n≥0

∑

Γ

wΓℏn,

where Γ denotes a Feynman graph, wΓ ∈ R denotes the weight associated to Γ and ≈
means the perturbative expansion when ℏ ! 0. In this approach, one considers the
method of stationary phase expansion to expand perturbatively around classical solutions
of S (i.e. solutions to the Euler–Lagrange equations δS = 0) to obtain a formal power
series in ℏ with coefficients given by the weights of the Feynman diagrams. These weights
can be computed in terms of integrals involving a propagator (a.k.a. Green’s function,

1We will sometimes drop the measure D in the notation of such an integral whenever it is clear.
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a.k.a. integral kernel) for the corresponding system. The action functional S is typically
assumed to be local, i.e. of the form

S(ϕ) =

ˆ
M

L (ϕ, ∂ϕ, . . . , ∂Nϕ) (1.1.2)

for some integer N ∈ Z>0, where L denotes a density on M called the Lagrangian. This
means that L depends on the field ϕ and its higher derivatives. Let us give the definition
of a topological field theory in this setting:

Definition 1.1.1 (Topological field theory). A classical field theory, described by an
action functional S of the form (1.1.2), is said to be topological if it is independent of
reparametrization and has no local degrees of freedom. In particular, S is independent of
any metric.

Definition 1.1.2 (Topological quantum field theory). A topological quantum field theory
is a functional integral Z of the form (1.1.1), where the actional functional S describes a
classical topological field theory.

1.1.2 Gauge theories

If the classical system carries any symmetries, i.e. if the Lagrangian L is invariant under
the action of a Lie group G, we speak of a gauge theory. In this case, the formula for
the stationary phase expansion fails,2 and one has to come up with more sophisticated
methods. One of the first developed methods is the Faddeev–Popov ghost method [FP67].
There, one introduces new type of fields, the ghost fields, and considers a graded configu-
ration space of fields in order to show that the integral Z reduces to an integral which is
indeed well-defined. However, this method is only restricted to the case of certain type of
theories (those where the gauge group acts linearly on the space of fields) and hence needs
to be enhanced. Another important approach was given in the construction of BRS(T)3

[BRS74; BRS75; BRS76; Tyu76]. There, one considers the methods of Faddeev–Popov
in a cohomological formalism by formulating the information of the symmetry into a co-
homological vector field Q. The gauge invariance then reduce to the fact that the action
functional S is closed with respect to Q and the cohomology can be considered since
Q2 = 0. This leads to reducing Z to an integral of the form

ˆ
e

i
ℏ (S+Q(Ψ)),

where Q(Ψ) is some Q-exact term and Ψ denotes an odd function on the space of fields
FM called the gauge-fixing fermion. Actually, it can then happen that even though the

2The reason is that in the stationary phase formula we have a term of the form 1√
det(∂2S)

. This means

that the critical points of S around which we want to expand, all have to be isolated. Unfortunately, this
is never the case for gauge theories since all critical points appear in G-orbits.

3BRST stands for Becchi, Rouet, Stora and Tyutin. The papers by Becchi–Rouet–Stora are indepen-
dent from the work of Tyutin who developed the same formalism by himself. Thus, sometimes it is also
written BRS(T) instead of BRST in order to emphasize this independence.
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critical points of S are all non-isolated, the ones of S +Q(Ψ) are all isolated and this is
a good choice of gauge-fixing.
Nevertheless, this method is again only applicable if the theory is of linear nature. As soon
as the theory gets more general both methods fail and need to be adapted. The formalism
that is suitable to use for the general case was provided by Batalin and Vilkovisky and
is called the the Batalin–Vilkovisky (BV) formalism [BV77; BV81; BV83]. There, one
considers a different space of fields FM , which is now a Z-graded supermanifold, instead of
FM , endowed with an odd symplectic form of degree −1. One also introduces additional
anti-fields which can be seen as the momentum variables for the fields4. In combination
with the cohomological methods of the BRST formalism and with the additional methods
of symplectic geometry, this formalism has proven to be the most powerful formalism in
order to treat gauge theories in the quantum setting. In particular, one can show that
the integral ˆ

FM

e
i
ℏS

can be replaced with an integral ˆ
L
e

i
ℏS ,

where S denotes an even function on FM of degree 0. The gauge-fixing consists in choos-
ing a Lagrangian submanifold L ⊂ FM . The main theorem of Batalin–Vilkovisky (see
also the work of Schwarz [Sch93] for a more mathematical approach) states that under

certain circumstances, the integral
´
L e

i
ℏS is independent of the choice of the Lagrangian

submanifold L. In particular, if certain assumptions hold, we can replaceˆ
L
e

i
ℏS −!

ˆ
L′
e

i
ℏS

whenever one can continuously deform the Lagrangian L to the Lagrangian L′ ⊂ FM .
The assumption for this is called the quantum master equation (QME) and describes an

algebraic closedness property for the function e
i
ℏS with respect to an operator ∆, called

the BV Laplacian. This means that if the integral
´
L e

i
ℏS is not well-defined for some

Lagrangian submanifold L ⊂ FM (e.g. FM ), but the QME holds, we can continuously

deform L to some Lagrangian L′ for which the integral
´
L′ e

i
ℏS is well-defined without

changing the value of the original integral. The BV formalism is restricted to work on
closed space–time manifolds M . Nevertheless, it is important to also consider manifolds
with boundary in order to simplify the gauge formalism on complicated manifolds M by
using cutting–gluing techniques. Such a formalism was provided by Cattaneo, Mnev and
Reshetikhin [CMR14; CMR17]. They used the construction of Batalin–Vilkovisky in the
bulk and combined it with the Hamiltonian approach developed by Batalin, Fradkin and
Vilkovisky (BFV formalism) on the boundary [BF83; BF86; FV75; FV77; FF78]. They
formulated everything in a coherent setting in the classical as well as in the quantum
case for the symplectic cohomological formalism. This perturbative gauge formalism on
manifolds with boundary is known today as the BV-BFV formalism [CM20]. The BV-
BFV formalism is the main formalism considered in this thesis.

4The BV formalism is sometimes also called anti-field formalism.
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1.2 The Batalin–Vilkovisky (BV) formalism

1.2.1 Classical BV formalism

Definition 1.2.1 (Lagrangian field theory). A d-dimensional Lagrangian field theory
assigns to a d-manifold M a pair (FM , SM ), where FM is some space of fields5 and
SM ∈ C∞(FM ) is a function on FM , called the action (functional). We say that a
Lagrangian field theory is local if we can express SM as

SM (ϕ) =

ˆ
M

L (jkϕ), ϕ ∈ FM .

where L denotes a Lagrangian density on M and jkϕ denotes the k-th jet prolongation
of the field ϕ ∈ FM as a section of the jet bundle of FM .

Definition 1.2.2 (BV manifold). A BV manifold consists of a triple (F ,S, ω), where
F is a Z-graded6 supermanifold7, S an even function on F of degree 0 and ω and odd
symplectic form on F of degree −1, such that the classical master equation (CME) holds:

(S,S) = 0. (1.2.1)

Here, ( , ) denotes the odd Poisson bracket of degree +1 induced by ω.

Remark 1.2.3. We call F the BV space of fields, S the BV action (functional) and ω
the BV symplectic form. The odd Poisson bracket ( , ) is usually called the BV bracket
(or anti-bracket)8. If we consider a vector bundle over M and a section σ, we will denote
by gh(σ) ∈ Z the Z-grading and by |σ| ∈ Z2 the parity. If σ is a differential form, we will
denote by deg σ its form degree.

We also consider the Hamiltonian vector field Q of S, i.e. the unique vector field of degree
+1 satisfying the equation

ιQω = δS,
where δ here denotes the de Rham differential on F . It is easy to see that the vector
field Q is actually cohomological, i.e. we have Q2 = 0 and moreover, by definition, it
is symplectic, i.e. we have LQω = 0. Here L denotes the Lie derivative. Note that, by
definition, we have that Q = (S, ) and hence by the CME (1.2.1) we get QS = 0. We
will call Q the BV charge9.

Definition 1.2.4 (BV theory). A d-dimensional BV theory is the assignment of a closed
compact, connected d-manifold M to a BV manifold (FM ,SM , ωM ).

5An important class of examples of FM is given by the space of sections of a vector bundle over M ,
e.g. vector fields on M , differential forms on M . However, it can be much more complicated such as the
space of connections or metrics on M .

6The Z-grading is called the ghost number in the physics literature according to the construction by
Faddeev–Popov [FP67].

7The supermanifold structure induces an additional Z2-grading which is referred to as parity, often
called odd and even.

8The BV bracket is usually denoted by round brackets ( , ) instead of { , } in order to emphasize
the fact that it is an odd Poisson bracket. This notation is due to the original notation by Batalin and
Vilkovisky [BV81].

9The cohomological vector field Q is the same as the one in the BRST formalism [BRS74; BRS75;
Tyu76] measuring the symmetries of the theory, thus often also called the BRST charge.
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1.2.2 Quantum BV formalism

In the quantum setting we consider an operator ∆ on functions on the BV space of
fields F , denoted by Dens

1
2 (F), with the property that ∆2 = 0. To be more precise,

let σ ∈ Dens
1
2 (F) be some nowhere-vanishing reference half-density on F . We can then

define ∆σf := 1
σ∆

1
2 (fσ), where ∆

1
2 denotes the canonical operator on Dens

1
2 (F) that

squares to zero. Moreover, we have that

∆σ(fg) = ∆σfg ± f∆σg ± (f, g), f, g ∈ C∞(F).

This operator is canonical in the finite-dimensional case [Khu04] and needs to be properly
regularized in the infinite-dimensional setting. We will just write ∆ instead of ∆σ when-
ever the reference half-density is understood and sometimes we will also write ∆ instead
of ∆

1
2 whenever it is understood. The operator ∆ is often called the BV Laplacian or

BV operator. On an odd-symplectic supermanifold (M, ω) with local coordinates (xi, θ
i),

where xi denote the even coordinates and θi denote the odd coordinates, it is given by

∆ =
∑

i

∂2

∂xi∂θi
.

In particular, we have

∆f =
1

2
div(f, ), f ∈ C∞(F). (1.2.2)

Theorem 1.2.5 (Batalin–Vilkovisky–Schwarz[BV81; Sch93]). Consider two half-densities
f, g on an odd-symplectic supermanifold (M, ω). Then

(1) if f = ∆g (BV exact), we get that

ˆ
L⊂M

f =

ˆ
L⊂M

∆g = 0,

for any Lagrangian submanifold L ⊂ M.

(2) if ∆f = 0 (BV closed), we get that

d

dt

ˆ
Lt⊂M

f = 0,

for any continuous family (Lt) of Lagrangian submanifolds of M. In particular, when
two Lagrangian submanifolds L1 ⊂ M and L2 ⊂ M can be continuously deformed
into each other, we have ˆ

L1⊂M
f =

ˆ
L2⊂M

f.

Remark 1.2.6. Note that in the finite-dimensional case, when f is a half-density, then
its restriction to a Lagrangian submanifold L makes it a density f |L on L.
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For the setting of quantum gauge field theories, we are mainly interested in the case
where our odd-symplectic supermanifold is given by a tuple (F , ω) and the half-density f

is of the form e
i
ℏSρ ∈ Dens

1
2 (F), where ρ denotes a reference ∆-closed, nowhere-vanishing

half-density on F . Then, when considering an integral of the form
´
L e

i
ℏSρ, the choice of

Lagrangian submanifold corresponds to choosing a gauge10. Note that the second point of
Theorem 1.2.5 is then a condition for gauge-independence of the classical theory described
by the action S. In the case of interest, we want thus

∆e
i
ℏS = 0 ⇐⇒ 1

2
(S, S)− iℏ∆S = 0. (1.2.3)

Equation (1.2.3) is called the quantum master equation (QME). Note that in the semi-
classical limit ℏ ! 0 we get the CME. When S depends on ℏ as a formal power series
S = S0 + ℏS1 + ℏ2S2 + · · · , we can try to solve the QME order by order in ℏ. When
we consider the BV action S, which gives a solution to the CME (1.2.1), we need to
make sure that ∆S = 0. This is true for many different theories of interest, but is not
immediate in general. In general, we need to find a suitable regularization in order to
make the QME hold. Note also that by Equation (1.2.2), we have

∆S =
1

2
divQ.

1.2.3 Example: 2D (abelian) BF theory

Let M be a connected closed 2-manifold and let G be a Lie group with Lie algebra g.
Let P ! M be a principal G-bundle over M . Consider the space of connection 1-forms
A := Ω1(M, adP ) with values in the adjoint bundle of P . We define the space of fields
for 2-dimensional BF theory to be

FM := A⊕ Ω0(M, ad∗P ),

where ad∗P denotes the coadjoint bundle of P . The BF action is given by

SM :=

ˆ
M
⟨B,FA⟩ =

ˆ
M

(
⟨B, dA⟩+ 1

2
⟨B, [A,A]⟩

)
, (1.2.4)

where (A,B) ∈ FM and FA := dA+ 1
2 [A,A] denotes the curvature 2-form of the connec-

tion 1-form A. We have denoted by ⟨ , ⟩ the pairing between the forms of adjoint and
coadjoint type as an extension of the pairing between g and g∗. It is easy to see that
the critical points of SM are given by pairs (A,B) ∈ FM where A is a flat connection
and dAB = 0, where dA denotes the covariant derivative with respect to the connection
A. Denote by G the group of gauge transformations of the space of connection 1-forms
on P and let Ag denote the gauge transformed connection for a gauge transformation
g ∈ G. Then we can consider the extension to the space of fields FM by the semi-direct

10When choosing a gauge-fixing fermion Ψ, the case where we can reduce to the cohomological setting
of the BRST formalism is given by taking the Lagrangian submanifold to be the graph of the differential
of the gauge-fixing fermion, i.e. we take L = graph(dΨ).
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product G̃ := G ⋊ Ω0(M, ad∗P ), where G acts on Ω0(M, ad∗P ) by coadjoint action. It is
then not hard to see that the BF action (1.2.4) is invariant with respect to the gauge
transformation

A 7! Ag, (1.2.5)

B 7! B(g,f) := Ad∗g−1B + dAgf, (1.2.6)

i.e. we have

SM (Ag, B(g,f)) =

ˆ
M

(
⟨B(g,f),dAg⟩+ 1

2
⟨B(g,f), [Ag, Ag]⟩

)

=

ˆ
M

(〈
Ad∗g−1B + dAgf,dAg

〉
+

1

2

〈
Ad∗g−1B + dAgf, [Ag, Ag]

〉)

=

ˆ
M

(
⟨B, dA⟩+ 1

2
⟨B, [A,A]⟩

)
= S(A,B).

If g = R, we speak of abelian BF theory. In this case we have

FM = Ω1(M)⊕ Ω0(M),

and

SM =

ˆ
M
B ∧ dA.

The critical points here are pairs (A,B) ∈ FM of the form dA = 0 and dB = 0. An
example of 2-dimensional abelian BF theory is the trivial Poisson sigma model. There,
we consider a 2-dimensional source manifold11 Σ and some target manifoldM . The space
of fields FM is given by vector bundle maps between the tangent bundle TΣ of the source
and the cotangent bundle T ∗M of the target. The fields are thus tuples (X, η) where
X : Σ!M is a map and η ∈ Γ(Σ, T ∗Σ⊗X∗T ∗M) is a 1-form with values in the pullback
bundle X∗T ∗M . The action is then of the form

SΣ :=

ˆ
Σ
η ∧ dX.

The BV formulation of 2-dimensional BF theory is not hard to construct. The BV space
of fields associated to the 2-manifold M is given by

FM := Ω•(M, adP )[1]⊕ Ω•(M, ad∗P ),

where Ω• =
⊕2

j=0Ω
j . The superfields are tuples (A,B) ∈ FM of the form

A := c+A+B+, (1.2.7)

B := B +A+ + c+, (1.2.8)

11Note that here Σ takes the place of M before. We have chosen this notation here because of historical
reasons.

8



where gh(c) = 1, gh(A) = gh(B) = 0, gh(A+) = gh(B+) = −1, gh(c+) = −2. Moreover,
deg(c) = deg(B) = 0, deg(A) = deg(A+) = 1, deg(B+) = deg(c+) = 2. For a classical
field ϕ, we have denoted by ϕ+ its anti-field with the property gh(ϕ) + gh(ϕ+) = −1 and
deg(ϕ) + deg(ϕ+) = 2. Note that, we have denoted by c the ghost field. We can define
the curvature of the superconnection A by FA defined by

FA := FA0 + dA0a+
1

2
[a,a],

where here [ , ] denotes now the induced bracket on the super Lie algebra, A0 is some
reference connection 1-form and a := A − A0 ∈ Ω•(M, adP )[1]. The BV action is then
given by

SM (A,B) :=

ˆ
M
⟨B,FA⟩, (1.2.9)

where ⟨ , ⟩ here denotes the pairing between the forms of adjoint and coadjoint type as
an extension of the pairing between g and g∗ with shifted degree, i.e. with additional
sign coming from the Z-grading. It is then not hard to see that SM satisfies the CME
(SM ,SM ) = 0. Note also that QMA = (SM ,A) = FA and QMB = (SM ,B) = dAB. In
particular, the cohomological vector field of degree +1 is given by

QM = (SM , ) =

ˆ
M

(
dA

δ

δA
+ dB

δ

δB

)

=

ˆ
M

(
dc

δ

δc
+ dA

δ

δA
+ dB+ δ

δB+
+ dB

δ

δB
+ dA+ δ

δA+
+ dc+

δ

δc+

)
. (1.2.10)

The BV symplectic form of degree −1 is given by

ωM =

ˆ
M
δA ∧ δB =

ˆ
M

(
δc ∧ δc+ + δA ∧ δA+ + δB ∧ δB+

)
.

Remark 1.2.7. The general structure of BF theory can be easily generalized to arbitrary
dimension.

1.2.4 Example: AKSZ theories

An important class of BV theories were developed by Alexandrov, Kontsevich, Schwarz
and Zaboronsky in [Ale+97] known today as AKSZ theories. They formulated a method
how to obtain a solution of the CME by considering a special form for the space of
fields, namely, mapping spaces between supermanifolds. Let us first describe the ingredi-
ents needed to formulate these type of theories. Let M be a closed, connected, oriented
d-manifold and consider a differential graded symplectic manifold (M, ω) where the sym-
plectic form is exact, i.e. ω = dα, and of degree d − 1. Moreover, let Θ be a function
on M of degree d such that {Θ,Θ}ω = 0, where { , }ω denotes the Poisson bracket of
degree 1 + d induced by ω. Moreover, consider the Hamiltonian vector field Q for the
Hamiltonian function Θ which is cohomological by definition, i.e. Q2 = 0. Define the
space of fields as

FAKSZ
M := Map(T [1]M,M).

9



Using the symplectic structure on M, we can construct a symplectic structure on FAKSZ
M

by transgression. Namely, we have a diagram

Map(T [1]M,M)× T [1]M M

Map(T [1]M,M)

p

ev

where ev denotes the evaluation map and p the projection onto the first factor. Thus, on
the level of forms, we can define a transgression map T : Ω•(M)! Ω•(Map(T [1]M,M))
by

T(η) := p∗ev∗η =

ˆ
T [1]M

µev∗η, η ∈ Ω•(M)

where µ is the standard Berezinian on T [1]M . Hence, we define a symplectic form on
FAKSZ
M by

ωM := T(ω) =
ˆ
T [1]M

µev∗ω,

where ω is the symplectic form on M. Note that since ω was of degree d− 1, we get that
ωM is of degree (d − 1) − d = −1 which is the correct degree for a BV symplectic form.
We can define a cohomological vector field on the mapping space as the sum of the lift of
the de Rham differential on M and the lift of the cohomological vector field on M:

QM := d̂M + Q̂,

where the hats denote the lift to the mapping space. The BV action is then constructed
by using the primitive α of ω and the Hamiltonian function Θ. We define

SAKSZ
M := ι

d̂M
T(α) + T(Θ).

It is then not difficult to see that SAKSZ
M is indeed of degree 0 and satisfies the CME.

Remark 1.2.8. Many interesting theories are of AKSZ type, such as e.g. Chern–Simons
theory [CS74; Wit89; AS91; AS94], the Poisson sigma model [Ike94; SS94; CF01a], or
Witten’s A- and B-twisted sigma models [Wit88b; Ale+97]. The most important one
for the purposes of this thesis are so-called BF -like theories, which are deformations of
abelian BF theory.

1.3 Extension to Manifolds with Boundary: The BV-BFV
Formalism

1.3.1 Classical BV-BFV formalism

In the BV formalism the source manifoldM was always assumed to have empty boundary
(i.e. ∂M = ∅). In order to overcome this and still make sense of a gauge formalism for
manifolds with boundary, one couples the Lagrangian approach of the BV theory in
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the bulk to the Hamiltonian approach of the BFV theory12 on the boundary such that
everything is coherent at the end. The coupling of bulk and boundary was considered in
the classical setting first in [CMR14].

Definition 1.3.1 (BFV manifold). A BFV manifold is a quadruple

(F∂ , ω∂ ,S∂ , Q∂)

such that F∂ is a Z-graded supermanifold, S∂ is an odd function on F∂ of degree +1, ω is
an even symplectic form on F∂ of degree 0 and Q∂ is a cohomological vector field on F∂ of
degree +1 such that it ιQ∂ω∂ = δS∂ . Note that we than get that {S∂ ,S∂}ω∂ = 0, where

{ , }ω∂ denotes the even Poisson bracket of degree 0 induced by the symplectic form ω∂ .
We say that a BFV manifold is exact, if the symplectic form is exact, i.e. ω∂ = δα∂ .

Remark 1.3.2. We call F∂ the BFV space of fields, S∂ the BFV action (functional), ω∂

the BFV symplectic form and Q∂ the BFV charge. If we consider the exact case, we will
call α∂ the BFV 1-form.

Definition 1.3.3 (BV-BFV manifold over exact BFV manifold). A BV-BFV manifold
over an exact BFV manifold (F∂ , ω∂ ,S∂ , Q∂) is a quintuple

(F , ω,S, Q, p),

where F is a Z-graded supermanifold, S is an even function on F of degree 0, ω is an odd
symplectic form on F of degree −1, Q is the cohomological vector field of degree +1 and
p : F ! F∂ is a surjective submersion, such that

(1) ιQω = δS + p∗α∂ ,

(2) δpQ = Q∂ .

Remark 1.3.4 (modified CME). It is easy to see that the conditions of Definition 1.3.3
implies the modified classical master equation (mCME)

QS = p∗(2S∂ − ιQ∂α∂). (1.3.1)

Note that in the closed setting, we have required the CME QS = 0, whereas in the
setting with boundary it is not zero anymore, but given entirely in terms of boundary
data. We call condition (1) the modified CME [CMR14]. Condition (2) tells us that the
BV charge is projectable onto the BFV charge Q∂ . For examples and more insights on
the classical BV-BFV formalism we refer to [CMR14; CM20]. Note also that if F∂ is a
point, Definition 1.3.3 reduces to the one of a BV manifold.

Definition 1.3.5 (BV-BFV theory). A BV-BFV theory assigns to each d-manifold M
with boundary (d− 1)-manifold ∂M a BV-BFV manifold

(FM , ωM ,SM , QM , pM ),

with pM : FM ! F∂
∂M , over an exact BV-BFV manifold (F∂

∂M , ω
∂
∂M = δα∂

∂M ,S∂
∂M , Q

∂
∂M ).

12The letters BFV stand for Batalin–Fradkin–Vilkovisky due to their work [BF83; BF86; FV75; FV77]
where they developed the Hamiltonian setting.
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1.3.2 Quantum BV-BFV formalism

The quantum BV-BFV formalism, for a given BV-BFV theory, is given by the following
data:

(i) The state space HP
Σ , a graded vector space associated to some (d − 1)-manifold Σ

with a choice of a polarization13 P on F∂
Σ. The state space is constructed through

the methods of geometric quantization (see e.g. [Kir85; Woo97; BW12]) for the
symplectic manifold (F∂

Σ, ω
∂
Σ).

(ii) The quantum BFV operator ΩP
Σ , a coboundary operator on the state space HP

Σ

which is determined as a quantization of the BFV action S∂
Σ.

(iii) The space of residual fields VM , a finite-dimensional graded manifold endowed with
a symplectic form of degree −1 associated to a d-manifold M and a polarization P
on F∂

∂M . Moreover, we can define the graded vector space

ĤP
M := HP

∂M ⊗̂Dens
1
2 (VM ),

where Dens
1
2 (VM ) denotes the space of half-densities on VM . This graded vector

space is endowed with two commuting coboundary operators

Ω̂P
M := ΩP

∂M ⊗ id,

∆̂P
M := id⊗∆VM

,

where ∆VM
denotes the canonical BV Laplacian on half-densities on residual fields.

(iv) A state ψ̂M ∈ ĤP
M that satisfies the modified quantum master equation (mQME)

(
ℏ2∆̂P

M + Ω̂P
M

)
ψ̂M = 0.

This equation is the quantum version of Equation (1.3.1).

1.4 Deformation Quantization

The theory of deformation quantization was proposed by Dirac [Dir30] and Weyl [Wey31]
in order capture the mathematical transition form the commutative algebra of classical
observables to the non-commutative algebra of quantum observables. These ideas were
carried further by the operator quantization and the exact quantization question. It was
Groenewold [Gro46] who showed that an exact quantization is actually not possible in
general and thus the question for deformations came into play. These mathematical
questions have been made popular by Bayen–Flato–Fronsdal–Lichnerowicz–Sternheimer
[Bay+78a; Bay+78b]. In particular, one would like to map the classical commutative

13A polarization is the choice of an involutive Lagrangian subbundle of the tangent bundle of a manifold.
In our case, P is an involutive Lagrangian subbundle of TF∂

Σ.

12



product on smooth functions to a deformation of it by a small deformation parameter.
Usually, the deformation parameter is ℏ. Thus, for two smooth functions f and g we have

fg 7! f ⋆ g := fg +
∑

k≥0

Bk(f, g)ℏk,

where the Bk denote some bidifferential operators with certain additional properties. The
power series on the right has to be understood in a formal way, i.e. we are not interested
in convergence issues. The phase space arising in the classical setting is usually given
by a symplectic manifold (M,ω). In particular, when considering the space of classical
observables C∞(M), it can be endowed with a Poisson bracket { , } induced by the
symplectic structure ω. A requirement in the definition of a star product is that the B1

are given in terms of the Poisson bracket { , }. We say that ⋆ is a deformation of the
pointwise product on C∞(M) in direction of { , }. The local case of (R2n, ω0), where
ω0 =

∑
1≤i<j≤n dq

i ∧dpj is the standard symplectic form with (qi, pi) coordinates in R2n,
there is a construction of a star product proposed by Moyal [Moy49]. The globalization
to any symplectic manifold was constructed later independently by De Wilde–Lecomte
[DL83] and Fedosov [Fed94]. The general construction, i.e. the case when the Poisson
bracket is coming from a general Poisson structure π, was given by Kontsevich [Kon03].
He gave an explicit formula for a star product which was formulated for the local case
when starting with a Poisson manifold (Rd, π). The underlying objects in Kontsevich’s
formula are graphs (also called Kontsevich graphs), which in fact are related to Feynman
diagrams for a certain perturbative quantum field theory, in particular the Poisson sigma
model [Ike94; SS94; CF01c] on the 2-dimensional disk, as it was shown by Cattaneo–
Felder [CF00]. Each graph contributes a weight (a real number), which is given in terms of
configuration space integrals, i.e. integrals over configuration spaces of points on the upper
half-plane. Actually, Kontsevich gave a much more general result in [Kon03], which is
known as formality. He showed that the differential graded Lie algebra of multidifferential
operators endowed with the Gerstenhaber bracket and the Hochschild differential is L∞-
quasi-isomorphic to the differential graded Lie algebra of multivector fields endowed with
the Schouten–Nijenhuis bracket and the zero differential. This result implies the result
for deformation quantization for the case of bidifferential operators and bivector fields.
Another approach to prove Kontsevich’s formality theorem was proposed by Kontsevich
and Tamarkin in [Kon99] and [Tam03], respectively, by using the notion of operads. This
method has several advantages and showed to be useful in order to prove (higher versions
of) Deligne’s conjecture [Del95]. The gobalization of Kontsevich’s star product to any
Poisson manifold (M,π) was given by Cattaneo–Felder–Tomassini [CFT02]. In their
approach, they used similar techniques as Fedosov in [Fed94] for the Poisson case mixed
with methods of formal geometry developed by Gelfand–Fuks [GF69; GF70], Gelfand–
Kazhdan [GK71] and Bott [Bot10]. In particular, they used Kontsevich’s L∞-morphism
to construct a connection and curvature term and showed that these satisfy a similar
globalization equation as in [Fed94].
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Symplectic groupoids and reduction

The field-theoretic formulation of Kontsevich’s star product leads to important insights
in the field of symplectic and Poisson geometry. In particular, the Poisson sigma model
turns out to carry interesting geometric structure when considering its phase space, as it
was shown by Cattaneo–Felder [CF01d]. They show that the phase space, given by the
space of leaves for a Hamiltonian foliation, has a natural groupoid structure and is in fact
given by a symplectic groupoid if it is a manifold. This is considered after gauge-reduction.
However, the case before reduction yields also an interesting structure as it was shown
by Cattaneo–Contreras [CC13; CC15]. They have formulated an axiomatic approach
to this construction and called the resulting mathematical object a relational symplectic
groupoid (RSG). An RSG is given by some (infinite-dimensional) Banach manifold G
together with some Lagrangian relations L1 ⊂ G, L2 ⊂ G × G, L3 ⊂ G × G × G and an
involution operation I. Interpreting the Lagrangian relations as 2-dimensional disks with
a particular way of choosing polarization and boundary conditions on the boundary, it
was shown in [CMW17] that the quantization of the Moyal star product, following [CF00],
can be constructed by using the BV-BFV formalism. It is expected that the general case
of Kontsevich’s star product can also be constructed with techniques of cutting–gluing.
In [Haw08], Hawkins showed how to quantize a symplectic groupoid using methods of
geometric quantization together with concepts of C∗-algebras. A first step towards the
quantization for the relational case has been done in [CMW21] which is part of this thesis.
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Chapter 2

Paper Abstracts and Main Results

2.1 4-Manifold Topology, Donaldson–Witten Theory, Floer
Homology and Higher Gauge Theory Methods in the
BV-BFV Formalism

2.1.1 Abstract

We study the behavior of Donaldson’s invariants of 4-manifolds [Don87] based on the
moduli space of anti self-dual connections (instantons) in the perturbative field theory
setting where the underlying source manifold has boundary. It is well-known that these
invariants take values in the instanton Floer homology groups of the boundary 3-manifold
[Flo89; Don02]. Gluing formulae for these constructions lead to a functorial topological
field theory description according to a system of axioms developed by Atiyah [Ati87],
which can be also regarded in the setting of perturbative quantum field theory, as it
was shown by Witten [Wit88a], using a version of supersymmetric Yang–Mills theory,
known today as Donaldson–Witten theory. One can actually formulate an AKSZ model
[Ale+97] which recovers this theory for a certain gauge-fixing. We consider these con-
structions in a perturbative quantum gauge formalism for manifolds with boundary that
is compatible with cutting and gluing, called the BV-BFV formalism [CMR14; CMR17],
which was recently developed by Cattaneo, Mnev and Reshetikhin. We prove that this
theory satisfies a modified Quantum Master Equation and extend the result to a global
picture when perturbing around constant background fields. These methods are expected
to extend to higher codimensions and thus might help getting a better understanding
for fully extendable n-dimensional field theories (in the sense of Baez–Dolan [BD95] and
Lurie [Lur09]) in the perturbative setting, especially when n ≤ 4. Additionally, we relate
these constructions to Nekrasov’s partition function [Nek03] by treating an equivariant
version of Donaldson–Witten theory in the BV formalism [Bon+20]. Moreover, we discuss
the extension, as well as the relation, to higher gauge theory and enumerative geometry
methods, such as Gromov–Witten [Gro85; Wit91] and Donaldson–Thomas theory [DT98]
and recall their correspondence conjecture for general Calabi–Yau 3-folds. In particu-
lar, we discuss the corresponding (relative) partition functions, defined as the generating
function for the given invariants, and gluing phenomena.
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2.1.2 Main results

The purpose of this paper is to provide the reader with:

(i) a concise overview of the field of 4-manifold topology, both from the pure mathe-
matical and field-theoretic point of view. Especially, to explain some of the relations
of the literature as well as to new developements such as the BV-BFV techniques
developed recently.

(ii) a concise overview of (instanton and Lagrangian [Flo88]) Floer (co)homology and
how it fits into the 4D-3D bulk-boundary correspondence through Chern–Simons
theory [CS74; AS91; AS94].

(iii) a detailed formulation of a (global) perturbative quantization of the AKSZ for-
mulation of Donaldson–Witten theory on source manifolds with boundary which
fits into the gauge theory setting of the BV-BFV formalism by using methods of
configuration space integrals.

(iv) a short discussion of the quantization of higher defect theories through the recently
developed methods of shifted (symplectic or Poisson) structures.

(v) a concise overview of the relation to Seiberg–Witten theory [SW94b; SW94a] through
Nekrasov’s construction by using equivariant methods of localization and an equiv-
ariant version of the BV formalism in combination with Donaldson–Witten theory
and a description of the relation with Donaldson’s invariants through an equivariant
version of instanton Floer (co)homology [AB96].

(vi) a description of the relation to constructions of Donaldson–Thomas theory.

(vii) a concise overview of the conjectured correspondence of Donaldson–Thomas theory
and Gromov–Witten theory and connections to other fields, such as e.g. topological
recursion or supergeometry [BL75; Lei80; CS11; CM20].

2.2 Formal Global Perturbative Quantization of the
Rozansky–Witten Model in the BV-BFV Formalism
(Joint with D. Saccardo)

2.2.1 Abstract

We describe a globalization construction for the Rozansky–Witten model in the BV-BFV
formalism for a source manifold with and without boundary in the classical and quantum
case. After having introduced the necessary background, we define an AKSZ sigma model,
which, upon globalization through notions of formal geometry extended appropriately to
our case, is shown to reduce to the Rozansky–Witten model. The relations with other
relevant constructions in the literature are discussed. Moreover, we split the model as a
BF -like theory and we construct a perturbative quantization of the model in the quan-
tum BV-BFV framework. In this context, we are able to prove the modified differential
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Quantum Master Equation and the flatness of the quantum Grothendieck BFV operator.
Additionally, we provide a construction of the BFV boundary operator in some cases.

2.2.2 Main results

In this paper, we continue the effort in analyzing TQFTs within the quantum BV-BFV
formalism by studying the Rozansky–Witten (RW) theory. The RW model is a topological
sigma model with a source 3-dimensional manifold Σ3, which was introduced by Rozansky
andWitten in [RW97] through a topological twist of a 6-dimensional supersymmetric sigma
model with target a hyperKähler manifold M . Of particular interest is the perturbative
expansion of the RW partition function. Rozansky and Witten obtained this expansion
as a combinatorial sum in terms of Feynman diagrams Γ, which are shown to be trivalent
graphs:

ZM (Σ3) =
∑

Γ

bΓ(M)IΓ(Σ3), (2.2.1)

the bΓ(M) are complex valued functions on trivalent graphs constructed from the target
manifold, while IΓ(Σ3) contains the integral over the propagators of the theory and de-
pends on the source manifold. There are evidences which suggest that IΓ(Σ3) are the LMO
invariants of Le, Murakami and Ohtsuki [LMO98]. On the other hand, Rozansky and
Witten showed that bΓ(M) satisfy the famous AS (which is reflected in the absence of tad-
poles diagrams) and IHX relations. As a result, bΓ(M) constitute the Rozansky–Witten
weight system for the graph homology, the space of linear combinations of equivalence
classes of trivalent graphs (modulo the AS and IHX relations). This means that the RW
weights can be used to construct new finite type topological invariants for 3-dimensional
manifolds [Bar95].
The main contribution of this paper is to add the RW theory to the list of TQFTs which
have been studied successfully within the globalized version of the quantum BV-BFV
framework [CMW19]. This will be a step towards the higher codimension quantization of
RW theory, which will possibly lead to new insights towards the 3-dimensional correspon-
dence between CS theory [Wit89] and the Reshetikhin–Turaev construction [RT91] from
the point of view of (perturbative) extended field theories described by Baez–Dolan [BD95]
and Lurie [Lur09]. Moreover this could also help in understanding (generalizations of a
globalized version of the) Berezin–Toeplitz quantization (star product) [Sch10] through
field-theoretic methods using cutting and gluing similarly as it was done for Kontsevich’s
star product [Kon03] in the case of the Poisson sigma model in [CMW20].
We construct the BV-BFV extension of an AKSZ model having a 3-dimensional manifold
Σ3 (possibly with boundary) as source and a holomorphic symplectic manifoldM as target
with holomorphic symplectic form Ω. Following [Kap99], we define a formal holomorphic
exponential map φ. This is used to linearize the space of fields of our model obtaining

F̃Σ3,x = Ω•(Σ3)⊗ T 1,0
x M, (2.2.2)

where Ω•(Σ3) denotes the complex of de Rham forms on the source manifold and T 1,0
x M

is the holomorphic tangent space on the target. In order to vary the constant solution
around which we perturb, we define a classical Grothendieck connection which can be
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seen as a complex extension of the Grothendieck connection used in [CMW19; CMW20].
In this way, we construct a formal global action for our model, i.e.

S̃Σ3,x :=

ˆ
Σ3

(
1

2
ΩijX̂

idX̂j +
(
R̂i

Σ3

)
j
(x; X̂)ΩilX̂

ldxj +
(
R̂i

Σ3

)
j
(x; X̂)ΩilX̂

ldxj
)

(2.2.3)

with X̂i the coordinates of the spaces of fields F̃Σ3,x organized as superfields, x is the con-

stant map over which we expand,
(
R̂i

Σ3

)
j
and

(
R̂i

Σ3

)
j
the components of the Grothendieck

connection given by

Ri
j(x; y)dx

j := −
[(

∂φ

∂y

)−1]i

p

∂φp

∂xj
dxj ,

Ri
j
(x; y)dxj := −

[(
∂φ

∂y

)−1]i

p

∂φp

∂xj
dxj ,

(2.2.4)

where {yi} are the generators of the fiber of Ŝym
•
(T∨1,0M). The formal action is such

that the differential Classical Master Equation (dCME) is satisfied, namely

dM S̃Σ3,x +
1

2
(S̃Σ3,x, S̃Σ3,x) = 0, (2.2.5)

with dM = dx + dx the sum of holomorphic and antiholomorphic Dolbeault differentials
on M . The dCME presented here is different from the one presented in e.g. [BCM12;
CMW19; CMW20] since there dM was the de Rham differential on the body of the target
manifold.
The globalized model is then shown to be a globalization of the RW model [RW97],
which reduces to the RW model itself in the appropriate limits. Our globalization of the
RW model is compared with other globalization constructions as the one developed in
[CLL17] for a closed source manifold by using Costello’s approach [Cos11b; Cos11a] to
derived geometry [Toë06; Toë14; Pan+13], the procedure in [Ste17] which extends the
work of [CLL17] to manifolds with boundary and the procedure in [QZ10; KQZ13]. In
general, our model is compatible with all these apparently different views. In particular,
we give a detailed account of the similarities between our method and the one in [CLL17],
thus confirming the claim in Remark 3.6 in [CMW19] about the equivalence between
Costello’s approach and ours.
In order to quantize the theory according to the quantum BV-BFV formalism, we formu-
late a split version of our globalized RW model. Since the globalization is controlled by
an L∞-algebra, following [Ste17] and inspired by the work of Cattaneo, Mnev and Wernli
for Chern–Simons theory [CMW17], we assume that we can split the L∞-algebra in two
isotropic subspaces. The action of the globalized split RW model is then

S̃S
Σ3,x =

〈
B̂, DÂ

〉
+
〈(
R̂Σ3

)
j
(x; Â+ B̂)dxj , Â+ B̂

〉
+
〈(
R̂Σ3

)
j̄
(x; Â+ B̂)dxj̄ , Â+ B̂

〉
,

(2.2.6)
where ⟨−,−⟩ denotes the BV symplectic form on the space of fields F̃S

Σ3,x
with values in

the Dolbeault complex ofM , Âi and B̂i are the fields found from the splitting of the field
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X̂i, and D denotes the superdifferential. Note that d is the de Rham differential on the
target, not on the source.
Finally, we quantize the globalized split RW model within the quantum BV-BFV formal-
ism framework. Here, we obtained the following two theorems.

Theorem 2.2.1 (Flatness of the qGBFV operator). The quantum Grothendieck BFV
(qGBFV) operator ∇G for the anomaly-free globalized split RW model squares to zero,
i.e.

(∇G)
2 ≡ 0, (2.2.7)

where

∇G = dM − iℏ∆VΣ3,x
+
i

ℏ
Ω∂Σ3 = dx + dx − iℏ∆VΣ3,x

+
i

ℏ
Ω∂Σ3 , (2.2.8)

with dM the sum of the holomorphic and antiholomorphic Dolbeault differentials on the
target M , ∆VΣ3,x

the BV Laplacian and Ω∂Σ3 the full BFV boundary operator.

Theorem 2.2.2 (mdQME for anomaly-free globalized split RW model). Consider the
full covariant perturbative state ψ̂Σ3,x as a quantization of the anomaly-free globalized
split RW model. Then

(
dM − iℏ∆VΣ3,x

+
i

ℏ
Ω∂Σ3

)
ψ̂Σ3,x = 0. (2.2.9)

We also provide an explicit expression for the BFV boundary operator up to one bulk
vertices in the B-representation by adapting to our case the degree counting techniques of
[CMW19]. Unfortunately, due to some complications related to the number of Feynman
rules, we are not able to provide an explicit expression of the BFV boundary operator in
the B-representation in the case of a higher number of bulk vertices.

2.3 Convolution Algebras for Relational Symplectic Groupoids
and Reduction
(Joint with I. Contreras and K. Wernli)

2.3.1 Abstract

We introduce the notions of relational groupoids and relational convolution algebras. We
provide various examples arising from the group algebra of a group G and a given normal
subgroup H. We also give conditions for the existence of a Haar system of measures on a
relational groupoid compatible with the convolution, and we prove a reduction theorem
that recovers the usual convolution of a Lie groupoid.

2.3.2 Main results

We study various examples of relational convolution algebras that arise from extending
Haar systems of measures to relational groupoids, and we prove the main result: a re-
duction theorem for relational convolution algebras, which recovers the usual groupoid
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convolution algebra. This is also the first step towards proving the “quantization com-
mutes with reduction” conjecture by Guillemin and Sternberg [GS82] in the setting of
groupoid quantization.
In particular, this result serves as the first step towards reduction of its quantization
(convolution algebras for relational groupoids). The next step is to construct the po-
larized algebra for relational symplectic groupoids. In addition to this, we hope to use
relational convolution algebras to recover the C∗-algebra quantization of Poisson pencils
via reduction, recovering the results obtained in [Bon+14] regarding the Bohr-Sommerfeld
groupoid.
The second main idea behind this paper is that the relational symplectic groupoids could
be used to study the relation between groupoid quantization and deformation quantization
in a field-theoretic way, as follows. Relational symplectic groupoids were introduced
in [CC15; CC13] in order to describe the groupoid structure of the phase space of a
2-dimensional topological field theory, the Poisson Sigma Model (PSM) [Ike94; SS94;
CF01b], before gauge reduction [CF01d]. In [CF00], Cattaneo and Felder have shown that
the perturbative quantization of the PSM using the Batalin–Vilkovisky (BV) formalism
[BV77; BV81; BV83] yields Kontsevich’s star product [Kon03], a deformation quantization
associated to any Poisson manifold.
Recently [CMW17], this formalism has been applied to the relational symplectic groupoid
for constant Poisson structures, linking the BV-BFV perturbative quantization of the
relational symplectic groupoid and Kontsevich’s star product in this case by methods of
cutting and gluing for Lagrangian evolution relations. Another motivation to this paper is
the connection between groupoids and Frobenius objects in a dagger monoidal category.
For instance, a representative example of a relational convolution algebra is the relational
group algebra, a version up to equivalence, of the group algebra of a group G. Group
algebras are particular cases of Frobenius algebras, so relational convolution algebras
provide a new class of examples of Frobenius objects in the category of sets and relations,
which are also in correspondence with groupoids [HCC13; MZ20].

2.4 On Quantum Obstruction Spaces and Higher Codimen-
sion Gauge Theories

2.4.1 Abstract

Using the quantum construction of the BV-BFV method for perturbative gauge theories,
we show that the obstruction for quantizing a codimension 1 theory is given by the second
cohomology group with respect to the boundary BRST charge. Moreover, we give an idea
for the algebraic construction of codimension k quantizations in terms of Ek-algebras and
higher shifted Poisson structures by formulating a higher version of the quantum master
equation.
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2.4.2 Main results

We show that the obstruction for the quantization of manifolds with boundary is con-
trolled by the second cohomology group with respect to the cohomological vector field on
the boundary fields. Moreover, we formulate a classical extension of higher codimension
k theories as in [CMR14] which we call BFkV theories. The coupling for each stratum,
in fact, is easily extended in the classical setting (BV-BFkV theories), whereas for the
quantum setting it might be rather involved. In order to formulate a fully extended
topological quantum field theory in the sense of Baez–Dolan [BD95] or Lurie [Lur09],
the coupling is indeed necessary. Since one layer of the quantum picture, namely the
quantum master equation, is described in terms of deformation quantization, we can for-
mulate an algebraic approach for the higher codimension extension in terms of Ek- and
Pk-algebras [Lur17; Saf18]. Here Ek denotes the ∞-operad of little k-dimensional disks
[Lur17; Kon99; FW20]. Moving to one codimension higher corresponds to the shift of the
Poisson structure by −1 since the symplectic form is shifted by +1 (see [Pan+13] for the
shifted symplectic setting). This is controlled by the operad Pk on codimension k which
corresponds to (1 − k)-shifted Poisson structures [Cal+17; Saf17]. Using this notion, we
give some ideas for the quantization in higher codimension. Moreover, if one uses the
notion of Beilinson–Drinfeld (BD) algebras [BD04; CG16], in particular BD0- and BD1-
algebras, one can try to consider the action of P0

∼= BD0/ℏ (for ℏ ! 0) on P1
∼= BD1/ℏ

(for ℏ ! 0) in order to capture the algebraic structure of the classical bulk-boundary
coupling (see also [Saf17, Section 5]). Here ∼= denotes an isomorphism of operads. In
general, one can define the BDk operads to provide a certain interpolation between the
Pk and Ek operads in the sense that they are graded Hopf [LP08] differential graded (dg)
operads over K[[ℏ]], where ℏ is of weight +1 and K a field of characteristic zero, together
with the equivalences

BDk/ℏ ∼= Pk, BDk[[ℏ−1]] ∼= Ek((ℏ)).

The formality of the Ek operad [Tam03; Kon99; FW20] implies the equivalence BDk
∼=

Pk[[ℏ]]. There is a formulation of a BD2-algebra in terms of brace algebras [CW15; Saf18]
and one can show that there is in fact a quasi-isomorphism P2

∼= BD2/ℏ (for ℏ ! 0).
However, the notion of a BDk-algebra for k ≥ 3 in terms of braces is currently not defined,
but there should not be any obstruction to do this. Using these operads, one can define
a deformation quantization of a Pk+1-algebra A to be a BDk+1-algebra Aℏ together with
an equivalence of Pk+1-algebras Aℏ/ℏ ∼= A (see [Cal+17; MS18] for a detailed discussion).

2.5 Formal Global AKSZ Gauge Observables and General-
ized Wilson Surfaces

2.5.1 Abstract

We consider a construction of observables by using methods of supersymmetric field theo-
ries. In particular, we give an extension of AKSZ-type observables constructed in [Mne15]
using the Batalin–Vilkovisky structure of AKSZ theories to a formal global version with
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methods of formal geometry. We will consider the case where the AKSZ theory is “split”
which will give an explicit construction for formal vector fields on base and fiber within
the formal global action. Moreover, we consider the example of formal global generalized
Wilson surface observables whose expectation values are invariants of higher-dimensional
knots by using BF field theory. These constructions give rise to interesting global gauge
conditions such as the differential Quantum Master Equation and further extensions.

2.5.2 Main results

The aim of this paper is to extend the constructions of [Mne15] to a formal global con-
struction. In fact we will construct formal global observables by using the notion of a
Hamiltonian Q-bundle [KS15] together with notions of formal geometry, and we will study
the formal global extension of Wilson loop type observables for the Poisson sigma model.
Additionally, we discuss the formal global extension of Wilson surface observables which
have been studied in [CR05] by using the AKSZ formulation of BF theories. We will
show that these constructions lead to interesting gauge conditions such as the differential
Quantum Master Equation (and further extensions).
These constructions are expected to extend to manifolds with boundary by using the BV-
BFV formalism as the globalization constructions have been studied for nonlinear split
AKSZ theories on manifolds with boundary [CMW19].

2.6 Computation of Kontsevich Weights of Connection and
Curvature Graphs for Symplectic Poisson Structures
(Joint with F. Musio)

2.6.1 Abstract

We give a detailed explicit computation of weights of Kontsevich graphs which arise from
connection and curvature terms within the globalization picture as in [CMW20] for the
special case of symplectic manifolds. We will show how the weights for the curvature
graphs can be explicitly expressed in terms of the hypergeometric function as well as by
a much simpler formula combining it with the explicit expression for the weights of its
underlined connection graphs. Moreover, we consider the case of a cotangent bundle,
which will simplify the curvature expression significantly.

2.6.2 Main results

Let M be a smooth manifold and let ϕ : TM ! M be a formal exponential map and
consider the lift ϕ : TN ! N to the cotangent bundle N = T ∗M . We set x = (q, p) ∈ N
and y = (q̄, p̄) ∈ TxN . Note that this is a particular case of a canonical symplectic
manifold. We will consider the lifted vector fields R to the cotangent case, which induce
lifted interaction vertices within the Feynman graphs which appear in the computation
of the connection 1-form and its curvature 2-form and see how these terms simplify. First
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we note that A(R,Tϕ
∗
π) is still given by

A(Rx,Tϕ
∗
xπ)(σx) = dxi

∞∑

n=0

ℏn

2nn!

1 + (−1)n

2n+1(n+ 1)
(Tϕ

∗
xπ)

i1j1 · · · (Tϕ∗xπ)injn(Rx)
k
i,i1···in(σx) ,kj1···jn ,

(2.6.1)

where T denotes the Taylor expansion around y = 0. The simplification in this case is
a small one: All summands containing a term (Rx)

k
i,i1···in with more than one derivative

with respect to p̄ will vanish [Mos19]. For the case of the curvature 2-form FN the
simplification is more interesting. Since for each non-vanishing coefficient (Tϕ

∗
xπ)

ij one of
the two outgoing edges is always representing a q̄-derivative and the other corresponding
edge representing a p̄-derivative (since we work with Darboux coordinates around x ∈ N),
we see that the sum of the Weyl curvature terminates at n = 2. Or put differently, we
only have to consider the graphs Γn up to n = 2, i.e. with at most two wedges attached
to the wheel consisting of two R-vertices. Moreover, since the Kontsevich weights1 wΓn

are, up to n = 2, given by wΓ0 = 0, wΓ1 = 1
24 and wΓ2 = 0, we get

FN
x = F (Rx, Rx,Tϕ

∗
xπ) =

ℏ
48

(Tϕ
∗
xπ)

rs(Rx)
k
i,lr(Rx)

l
j,ksdx

i ∧ dxj , (2.6.2)

where we sum over the indices i, j, r, s, k, l and where again summands containing a term
(Rx)

k
i,lr with more than one derivative with respect to p̄ vanish. So in the case of a

cotangent bundle we get a much simpler expression for the Weyl curvature FN .

1The weights wΓn are the weights of graphs of a wheel consisting of two points, i.e. two edges between
two points, and n wedge-graphs attached to it.
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Abstract. We study the behavior of Donaldson’s invariants of 4-manifolds based on the
moduli space of anti self-dual connections (instantons) in the perturbative field theory
setting where the underlying source manifold has boundary. It is well-known that these
invariants take values in the instanton Floer homology groups of the boundary 3-manifold.
Gluing formulae for these constructions lead to a functorial topological field theory descrip-
tion according to a system of axioms developed by Atiyah, which can be also regarded in
the setting of perturbative quantum field theory, as it was shown by Witten, using a version
of supersymmetric Yang–Mills theory, known today as Donaldson–Witten theory. One can
actually formulate an AKSZ model which recovers this theory for a certain gauge-fixing.
We consider these constructions in a perturbative quantum gauge formalism for manifolds
with boundary that is compatible with cutting and gluing, called the BV-BFV formalism,
which was recently developed by Cattaneo, Mnev and Reshetikhin. We prove that this
theory satisfies a modified Quantum Master Equation and extend the result to a global
picture when perturbing around constant background fields. These methods are expected
to extend to higher codimensions and thus might help getting a better understanding for
fully extendable n-dimensional field theories (in the sense of Baez–Dolan and Lurie) in the
perturbative setting, especially when n ≤ 4. Additionally, we relate these constructions
to Nekrasov’s partition function by treating an equivariant version of Donaldson–Witten
theory in the BV formalism. Moreover, we discuss the extension, as well as the relation,
to higher gauge theory and enumerative geometry methods, such as Gromov–Witten and
Donaldson–Thomas theory and recall their correspondence conjecture for general Calabi–
Yau 3-folds. In particular, we discuss the corresponding (relative) partition functions,
defined as the generating function for the given invariants, and gluing phenomena.
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1. Introduction

1.1. Overview and motivation. There is no doubt that the study of gauge theories had a
big influence on modern mathematics and physics. A particularly influential and important
one is the study of the topology of 4-manifolds by using Yang–Mills theory and the notion
of anti self-dual connections, also called instantons, which can be considered as a class of
critical points of the Yang–Mills action functional. An early attempt, maybe even one of
the starting points, was the construction of instantons given in [Ati+78]. Shortly thereafter,
Donaldson introduced in [Don83; Don84; Don90] his famous polynomial invariants which
are a type of topological invariants based on the theory of characteristic classes on vector
bundles (topological K-theory) and the construction of the moduli space of anti self-dual
connections. In particular, these invariants are described as integrals of a product of certain
cohomology classes over the moduli space. Thus, defining these invariants relies very much
on the behaviour of the moduli space as a sufficiently “nice” manifold. Many different people,
including Uhlenbeck [Uhl82a; Uhl82b], Freed [FU84], Freedman [Fre82] and Taubes [Tau82],
provided results which contributed to the fact that these moduli spaces are indeed “nice”
enough. However, at first, these invariants have been only defined for the case when the
4-manifold is closed.
A new drive came into play when Floer introduced in [Flo89a; Flo89b] a type of topological
invariant of closed 3-manifolds by using methods of gauge theories based on ideas of Witten
regarding the constructions of Morse theory in the setting of perturbative quantum field
theory [Wit82]. In particular, he constructed an infinite-dimensional version of Morse theory
based on the moduli space of anti self-dual connections together with the Chern–Simons
action functional playing the role of the Morse function. The main invariants are then given
by the homology groups, called instanton Floer homology groups, similarly as the Morse
homology groups in the finite setting. Braam and Donaldson then realized in [BD95b;
Don02] that the polynomial invariants defined by Donaldson can be extended to 4-manifolds
with boundary by imposing that the invariants are then exactly valued in these Floer groups.
Moreover, they proved a gluing formula which endows the invariant with the structure of a
functorial TQFT according to Atiyah’s axioms [Ati88].
Another type of a similar approach to a homology theory for Floer’s construction was consid-
ered in [Flo88] by using the symplectic manifolds and corresponding transversal Lagrangian
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submanifolds thereof. Besides important insights regarding the Arnold conjecture (see e.g.
[HZ94]), it was soon realized that this type of homology theory plays a fundamental role in
order to formulate and understand the mirror symmetry appearing in string theory [Yau92;
Hor+03] from a homological point of view. In particular, it was Fukaya who constructed an
A∞-category in [Fuk93] (see also [Fuk+09a; Fuk+09b]) from out of this notion and Kontse-
vich who used these categories to formulate a conjecture which, for two mirror Calabi–Yau
manifolds, relates this category of one side of the mirror to the derived category of coherent
sheaves of the other side of the mirror through an equivalence of triangulated categories.
This is known famously today as the homological mirror symmetry conjecture [Kon94a].
On the other hand, based on ideas of Atiyah [Ati87], Witten gave a way of obtaining Donald-
son’s polynomials by considering the perturbative expansion of the expectation value (path
integral quantization) for a certain observable with respect to a local action functional.
He also gave an argument involving the case of manifolds with boundary by interpreting
the boundary states as the Floer groups in agreement with Donaldson’s observation. The
perturbative methods of treating quantum gauge theories have developed through time by
different approaches.
The Batalin–Vilkovisky (BV) formalism [BV77; BV81; BV83a] provides a nice way of dealing
with quantum gauge theories in a cohomological symplectic formalism [KT79] by using
methods of functional integrals. In fact, the gauge-fixing there is equivalent to the choice of a
Lagrangian submanifold which, by similar methods as the BRST formalism [BRS74; BRS75;
Tyu76] and Faddeev–Popov ghosts [FP67], gives a way of computing the partition function
by the perturbative expansion into Feynman graphs. The methods described by Batalin
and Vilkovisky are considered from a Lagrangian point of view, whereas the Hamiltonian
counterpart was described in the work of Batalin, Fradkin, Fradkina and Vilkovisky [BF83;
BF86; FV75; FF78], usually called the BFV formalism. Note that these constructions can
be considered separately for closed spacetime manifolds. However, one is often interested
in the quantization picture for manifolds with boundary in order to use the concept of
locality for the simplification through cutting and gluing properties. Additionally, everything
should be consistent with Atiyah’s TQFT axioms and Segal’s axioms regarding conformal
field theories [Seg88]. Such an extension has been recently provided by Cattaneo, Mnev
and Reshetikhin to deal with the classical and quantum formalism of local gauge theories
on manifolds with boundary in the cohomological symplectic setting by coupling the BV
construction in the bulk to the BFV construction on the boundary [CMR14; CMR17].
These constructions can be easily extended to higher codimensions in the classical setting,
but need more sophisticated techniques in the quantum setting. Nevertheless, this formalism
is expected to give a reasonable candidate for a perturbative formulation of (fully) extended
TQFTs (in the sense of Baez–Dolan [BD95a] or Lurie [Lur09]) for the case of interest.
As it was shown in [Ike11], it turns out that the field theory constructed by Witten can be
naturally formulated by using a type of BV theory developed by Alexandrov, Kontsevich,
Schwarz and Zaboronsky (AKSZ) in [Ale+97] for a special gauge-fixing. This formulation
extends in a nice way to the BV-BFV formalism since AKSZ theories often appear as suitable
deformations of abelian BF theory [Mne19]. This is also the case for Donaldson–Witten
theory, formulated as a 4-dimensional AKSZ theory with target h[1] ⊕ h[2] for some Lie
algebra h. An approach to globalize a special type of AKSZ theories has been given in
[CMW20]. There one starts with an AKSZ theory of any dimension which is of split-type.
Choosing a background field as an element of the moduli space of classical solutions, one can
vary the local theories over the target manifold by considering the Grothendieck connection
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as in the setting of formal geometry developed by Gelfand–Fuks [GF69; GF70], Gelfand–
Kazhdan [GK71] and Bott [Bot10]. Within the BV-BFV formalism, this leads to more
general gauge conditions, such as the modified differential Quantum Master Equation.
Another approach, which is related to Donaldson’s construction, to obtain topological in-
variants of 4-manifolds is due to Seiberg and Witten [SW94b; SW94a] (see also [Nic00] for
a more mathematical introduction). They considered N = 2 supersymmetric Yang–Mills
theory1 and formulated a set of equations (Seiberg–Witten equations) which contains the
same information of the 4-manifold as the Yang–Mills equations but has the advantage that
it is much easier to deal with. Solutions of these equations are usually called monopoles2.
The field-theoretic approach of Seiberg–Witten theory is in its nature given by an A-model
as in [Wit88b]. The low energy effective action can actually be written in terms of a holo-
morphic function F, called the Seiberg–Witten prepotential. In [Nek03], Nekrasov showed
how one can compute this prepotential F as a certain limit by using techniques of equivari-
ant localization for a given torus action to define a partition function proportional to the
volume of the moduli space of instantons. In particular, this partition function is given as a
generating function with coefficients given by the volumes of the connected components of
the moduli space of instantons controlled through the instanton numbers. This is achieved
by formulating a 6-dimensional theory (i.e. a given 4-manifold, or locally R4, times a torus
T) and then perform dimensional reduction. This is also called the N = 2 supersymmetric
Yang–Mills theory in the Ω-background, where Ω is a 4× 4 matrix with entries given by one
of the two generators of the torus T with a sign or zero in a certain way. This background
in fact allows one to integrate out all the fluctuations (high energy modes) appearing in the
functional integral quantization, and hence get rid of any divergencies.
Since the underlyingN = 2 supersymmetric Yang–Mills theory in this setting is based on the
techniques of equivariant localization, one can study an equivariant version of Donaldson–
Witten theory in the AKSZ-BV setting and consider a (regularized) perturbative quanti-
zation in order to obtain the mentioned partition function. In order to deal with with the
quantization of such an equivariant field theory, it is natural to formulate an equivariant
version of the BV formalism as it was developed in [Bon+20]. However, the extension to
manifolds with boundary is still open but following the constructions of Atiyah, Donald-
son and Witten for the non-equivariant setting, the boundary states, hence the geometric
quantization procedure for the state space in the BV-BFV formalism, should recover an
equivariant version of instanton Floer homology as discussed in [AB96].
An approach to the construction of Donaldson for higher dimensional gauge theories was
initiated through the work of Donaldson and Thomas in [DT98] and developed further by
Thomas in [Tho00]. In particular, using a holomorphic version of Chern–Simons theory
[CS74], Thomas constructed topological invariants for Calabi–Yau 3-folds by constructing
a holomorphic version of the Casson invariant [Sav99] which counts the bundles over the
given Calabi–Yau 3-fold and extends to the counting of curves in algebraic 3-folds. The
formulation of these invariants in terms of a weighted Euler characteristic was given by
Behrend in [Beh09]. One can consider the Donaldson–Thomas partition function, similarly
as for Gromov–Witten theory [Wit91; Beh97], as a generating function for the correspond-
ing invariants on any Calabi–Yau 3-fold X. Moreover, one can prove gluing formulae for
these partition functions, first considered in [LW15] by considering an associated divisor
and the properties of the Hilbert scheme of 1-dimensional subschemes of X. By the nature

1Recall that N denotes the number of irreducible real spin representations in a supersymmetry (SUSY)
algebra.

2According to the equations for magnetic monopoles in the theory of electromagnetism.
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of its construction, Donaldson–Thomas theory is related to the construction of Nekrasov
theory through its way of instanton counting (the modified moduli space of instantons in
Nekrasov’s theory is replaced by the Hilbert scheme of 1-dimensional subschemes of X in
Donaldson–Thomas theory). Moreover, it seems plausible that the Donaldson–Thomas par-
tition function is related to the Gromov–Witten partition function by a certain correspon-
dence. Such a correspondence for general Calabi–Yau 3-folds was conjectures by Maulik,
Nekrasov, Okounkov and Pandharipande in [Mau+06a; Mau+06b] and proven for toric
3-folds in [Mau+11] by Maulik, Oblomkov, Okounkov and Pandharipande. The correspon-
dence seems to formulate a version of the homological mirror symmetry conjecture, which
was already known to be true for toric 3-folds.

eq. AKSZ-DW AKSZ-DW DW Donaldson

Nekrasov eq. Floer Floer DT GW

Lagr. Floer MS

VI
V

IV II I

III XI

IX

VIIIVII X

XIII

XII

XVI

XIV
XV

Figure 1.1.1. Diagrammatic illustration of the relations discussed in this paper.

Legend for Figure 1.1.1:
I Witten’s construction to obtain Donaldson polynomials via field theory,
II AKSZ-BV formulation of Donaldson–Witten theory,
III When the source manifold has boundary. Boundary states are given by Floer groups,
IV Equivariant formulation of the AKSZ-BV formulation of Donaldson–Witten theory

through an equivariant BV construction,
V BV partition function of equivariant Donaldson–Witten theory cooresponds to Nekrasov’s

partition function,
VI BV-BFV quantization of equivariant Donaldson–Witten theory produces equivariant

Floer groups on the boundary,
VII Equivariant formulation of Floer (co)homology,
VIII Through Taubes’ construction: the Euler characteristic with respect to Floer homol-

ogy for any homology 3-sphere coincides with its Casson invariant. In particular,
Donaldson–Thomas invariants are a complex version of such Euler characteristic when
using the Floer groups with respect to the holomorphic Chern–Simons action functional
for certain Calabi–Yau manifolds,

IX Through enumerative counting methods and the nature of its formulation,
X Conjectured correspondence by Maulik, Nekrasov, Okounkov and Pandharipande,
XI Higher gauge theory approach when passing to complex geometry,
XII Formulation of Gromov–Witten invariants through the moduli space of pseudo-holomorphic

curves as an A-model path integral,
XIII The Atiyah–Floer conjecture,
XIV Ingredients for mirror symmetry,
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XV Ingredients for mirror symmetry,
XVI Ingredients for mirror symmetry.

1.2. Main purpose of the paper. The purpose of this paper is to provide the reader with:
(i) a concise overview of the field of 4-manifold topology, both from the pure mathematical

and field-theoretic point of view. Especially, to explain some of the relations of the
literature as well as to new developements such as the BV-BFV techniques developed
recently.

(ii) a concise overview of (instanton and Lagrangian) Floer (co)homology and how it fits
into the 4D-3D bulk-boundary correspondence through Chern–Simons theory.

(iii) a detailed formulation of a (global) perturbative quantization of the AKSZ formulation
of Donaldson–Witten theory on source manifolds with boundary which fits into the
gauge theory setting of the BV-BFV formalism by using methods of configuration
space integrals.

(iv) a short discussion of the quantization of higher defect theories through the recently
developed methods of shifted (symplectic or Poisson) structures.

(v) a concise overview of the relation to Seiberg–Witten theory through Nekrasov’s con-
struction by using equivariant methods of localization and an equivariant version of
the BV formalism in combination with Donaldson–Witten theory and a description of
the relation with Donaldson’s invariants through an equivariant version of instanton
Floer (co)homology.

(vi) a description of the relation to constructions of Donaldson–Thomas theory.
(vii) a concise overview of the conjectured correspondence of Donaldson–Thomas theory

and Gromov–Witten theory and connections to other fields, such as e.g. topological
recursion or supergeometry.

1.3. Structure of the paper. The paper is structured as follows:
• In Section 2 we recall the definition of the moduli space of anti self-dual connec-
tions (instantons) together with some properties and define Donaldson’s invariants.
Moreover, we briefly discuss Witten’s construction by using methods of field theory
in order to obtain the aforementioned invariants.
• In Section 3 we recall the construction of Morse theory and Morse homology in order
to construct instanton Floer homology by using the Chern–Simons action functional
as a Morse function. We describe the relation of Donaldson’s invariants with this
homology theory through the setting of 4-manifolds with boundary. Moreover, we
recall the construction of Lagrangian Floer homology, the Atiyah–Floer conjecture
and give a remark on an approach for proving it.
• In Section 4 we recall the classical and quantum BV-BFV formalism, the notion
of BV algebras and give the important examples of AKSZ theories and abelian
BF theories. Moreover, we briefly discuss higher codimension (defects, branes)
extensions and give some ideas for the quantization approach.
• In Section 5 we give an AKSZ construction of Donaldson–Witten theory and show
how it fits into the classical BV-BFV setting.
• In Section 6 we consider the quantization of the classical setting obtained in Section
5 by describing the Feynman rules and the partition function. In particular, we
prove that the Donaldson–Witten partition function satisfies a modified version of
the Quantum Master Equation by using configuration space integrals and show that
we get a well-defined cohomology theory on the boundary state space. Moreover, we
construct a perturbative globalization approach by using methods of formal geometry
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and argue that the partition function constructed through the globalization approach
lies in the kernel of a certain operator that squares to zero which also leads to a
cohomology theory in this setting, similarly as for the nonglobal case.
• In Section 7 we introduce Nekrasov’s partition function in terms of polynomial counts
through the Hilbert scheme of monomial ideals in C[u1, u2] and the Ext1-groups by
using the modular interpretation of the tangent bundle. We also consider an equivari-
ant version of the BV gauge formalism and hence consider an equivariant version of
Donaldson–Witten theory. On closed 4-manifolds the quantum picture corresponds
to Nekrasov’s partition function, whereas for 4-manifolds with boundary it induces
an equivariant version of instanton Floer (co)homology as the boundary state. We
describe the notion of equivariant Floer (co)homology following the construction of
Austin–Braam in the Cartan model. Moreover, we discuss its relation to Donaldson’s
invariants. In particular, we consider the fact that these equivariant (co)homology
groups appear as the (dual) image of the invariants.
• In Section 8 we recall Donaldson–Thomas invariants through their description as
the relative topological Euler characteristic of the Hilbert scheme of 1-dimensional
subschemes of a Calabi–Yau 3-fold by using Behrend’s construction. We also recall
Taubes’ construction for their relation to Floer homology by considering them as a
holomorphic version of the Casson invariant. Moreover, we construct the Donaldson–
Thomas partition function as a generating function with respect to the Donaldson–
Thomas invariants, extend it to a relative version when considering appropriate
divisors of the underlying Calabi–Yau 3-fold and describe their gluing properties.
• In Section 9 we recall Kontsevich’s moduli space of stable maps for a Calabi–Yau
3-fold and define the corresponding Gromov–Witten invariants. We also recall the
partition function for Gromov–Witten invariants, similarly as before, as a gener-
ating series for these invariants and extend also this to a relative version for ap-
propriate divisors. We briefly explain some ideas of topological recursion and its
connection to Gromov–Witten invariants. To close the circle, we recall the Gromov–
Witten/Donaldson–Thomas correspondence conjecture for Calabi–Yau 3-folds. Fi-
nally, we give some ideas for Gromov–Witten invariants on (graded) supermanifolds
by considering ideas of Keßler–Sheshmani–Yau in the case of super Riemann surfaces.

Notation. Throughout the paper, Σ will denote a 4-manifold and N a 3-manifold. It
might happen that N appears as the boundary 3-manifold of a 4-manifold Σ, otherwise the
boundary of Σ is denoted by ∂Σ. Riemann surfaces of genus g will be denoted by Σg. Moduli
spaces, of different flavor however, will be denoted by the calligraphic letterM and specified
through different decorations. We will denote real numbers by R, complex numbers by C
and integers by Z. If a (co)homology group takes values in R, we will not further emphasize
it, i.e. we write H•(Σ) instead of H•(Σ,R), whereas for integer-valued groups we will try
to indicate it, i.e. we write H•(Σ,Z). The exterior product between differential forms is
sometimes explicitly written and sometimes left out to avoid any cumbersome notation. The
Einstein summation convention is assumed, i.e. we sum over repeating indices, whenever
the summation sign is not written explicitly. Algebro-geometrical objects (e.g. (projective)
algebraic varieties, schemes, etc.) are usually denoted by X, which should be distinguished
from the classical base field in the AKSZ formulation of Donaldson–Witten theory, which
will be also denoted by X. Classical action functionals are usually denoted by S (with
additional decorations, depending on the given theory), whereas the BV action is denoted
by the calligraphic version S. The same holds for the space of fields, usually denoted by F ,
and its BV counterpart F . The space of connections on some principal bundle P is usually
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denoted by A (sometimes also A(P ) to emphasize the bundle). Smooth maps on a manifold
M will be denoted either by C∞(M) or by OM (as the structure sheaf) depending on the
context. Sections of a bundle E are denoted by Γ(E). The space of smooth differential forms
on a manifold M will be denoted by Ω•(M). Differential forms on M with values in some
bundle E will be denoted by Ω•(M,E). Finally, we will denote by i :=

√
−1 the imaginary

unit.
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N. Reshetikhin for discussions and comments. This research was supported by the NCCR
SwissMAP, funded by the Swiss National Science Foundation, and by the SNF grants No.
200020_192080 and P2ZHP2_199401.

2. Donaldson–Witten theory

2.1. Moduli space of anti self-dual connections. Let (Σ, g) be a 4-dimensional Rie-
mannian manifold and let g = Lie(G) be the Lie algebra of a Lie group G. Moreover, let
P ! Σ be a principal G-bundle and consider its adjoint bundle adP := P ×G g. Using the
Hodge star operator ∗, we can define for a 2-form χ ∈ Ω2(Σ) its self-dual and anti self-dual
parts by

(2.1.1) χ± =
1

2
(χ± ∗χ).

Note that in four dimensions we have ∗ : H2(Σ) ! H2(Σ). We can extend the splitting
of (2.1.1) naturally to differential forms with values in adP . In particular we can extend
this to the curvature 2-form FA of a connection 1-form A ∈ Ω1(Σ, adP ). A connection
A ∈ Ω1(Σ, adP ) is called anti self-dual or instanton if F+

A = 0. We define the instanton
number of A to be

(2.1.2) kA :=
1

8π2

∫

Σ
Tr(FA ∧ FA).

This number is an integer only if G = SU(2). Moreover, if the corresponding SU(2)-bundle
lifts to a 2-dimensional complex vector bundle E, we have kA =

∫
Σ c2(E) ∈ Z, i.e. the

instanton number is determined by the second Chern class since c1(E) = 0 (because in this
case Tr(FA ∧FA) = 0). Note that if A is an anti self-dual connection, the instanton number
is positive. Consider the Yang–Mills action functional3

(2.1.3) SYM
Σ (A) =

∫

Σ
‖FA‖2,

where we have considered the curvature locally as FA = 1
2Fijdx

i ∧ dxj . Hence, we get that

(2.1.4) SYM
Σ (A) =

∫

Σ
‖FA‖2 =

∫

Σ
‖F−A ‖2 +

∫

Σ
‖F+

A ‖2 ≥ 8π2kA.

This shows that the critical points of SYM
Σ are bounded by 8π2kA, and in fact the minimum

is attained if A is anti self-dual, i.e. F+
A = 0. Note that Tr(FA ∧ FA) = −‖FA‖2 and

thus Tr(FA ∧ FA) = −
(
‖F+

A ‖2 − ‖F−A ‖2
)
. Let us denote by A := Ω1(Σ, adP ) the space of

connections on P . One can check that this is an infinite-dimensional space. Define the map

s : A! Ω2
ASD(Σ, adP ),

A 7! F+
A ,

(2.1.5)

3We will not always indicate the measure whenever it is clear. When we write
∫
‖FA‖2, we actually mean∫

‖FA‖2dµ.
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where we have denoted by Ω2
ASD(Σ, adP ) the anti self-dual 2-forms on Σ with values in

adP . Moreover, denote by G := Γ(Aut(adP )) the infinite-dimensional Lie group of gauge
transformations of adP . Then we can define the moduli space of anti self-dual connections4

by

(2.1.6) Mk
ASD(Σ, G) := s−1(0) = {[A] ∈ A/G | s(A) = 0, kA = k}.

2.2. Donaldson polynomials. In [Don83], Donaldson defined topological invariants for
4-manifolds by using methods of gauge theory. If Σ is an oriented, compact and simply
connected 4-manifold, we can split H2(Σ) into eigenspaces H2

+(Σ) ⊕ H2
−(Σ) by using the

Hodge star (dual and anti self-dual part). Let b2+ := dimH2
+(Σ), P ! Σ a principal SU(2)-

bundle with second Chern class c2(P ) and k :=
∫

Σ c2(P ) ∈ Z, the instanton number (2.1.2).
The moduli space of anti self-dual connectionsMASD in this setting5, as defined in (2.1.6),
is of dimension6

(2.2.1) dimMASD = 8k − 3(1 + b2+),

which is even if b2+ is odd. Let us assume that b2+ is indeed odd and let dimMASD = 2d. We
also need the notion of an irreducible connection. A connection A ∈ A is called irreducible, if
the image of the holonomy representation is not contained7 in a one parameter subgroup of
SU(2). Denote the space of irreducible connections by A∗ ⊂ A. Consider the quotient A∗/G
by the gauge transformations and note that MASD ⊂ A∗/G is a subspace of the quotient.
Moreover, it is quite compact and almost defines an element of H2d(A∗/G,Z).
Let R denote the space of all Riemannian metrics on Σ of class Cr for some r ≥ 0. Freed
and Uhlenbeck have shown in [FU84] that for all k > 0, the moduli space

MR := (A∗/G)×R
is in fact a manifold. Moreover, for k > 0, there exists a subset of R′ ⊂ R (elements of R′
are called generic metrics) such thatMASD is a smooth submanifold of A∗/G for all g ∈ R′
and with virtual dimension equal to the expected dimension.

2.2.1. Uhlenbeck compactification. By a combination of two theorems in [Uhl82a; Uhl82b],
Uhlenbeck showed that there exists a natural compactification MASD of the moduli space
MASD. If we denote the moduli space of anti self-dual connections byMk

ASD to indicate its

4Sometimes it is also called moduli space of instantons. Moreover, we drop the dependence on the
instanton number k, the 4-manifold Σ and the group G from the notation and just write MASD whenever
it is clear.

5For k > 0, there is a more complicated notion of dimension called the virtual dimension (see Footnote
44 for more details on the virtual fundamental class) for the moduli space MASD. The virtual dimension
and the dimension might be different for certain metrics. However, it was argued in [FU84] that for the
subspace of Riemannian metrics on Σ consisting of generic metrics, the virtual dimension and the actual
dimension ofMASD coincide, i.e.

vdimMASD = dimMASD = 8k − 3(1 + b2+).

6A general formula for the dimension is given by dimMASD = 4a(G)k − dimG(1 + b2+), where a(G) ∈ Z
is an integer depending on the group G (in our case a(SU(2)) = 2). Note that we have dim SU(2) = 3. A
first approach to the dimension was considered in [AHS77; AHS78] for S4 which is given by 8k − 3 since
then b+ = 0.

7This is equivalent to saying that the holonomy group of the connection is precisely SU(2) and not a
proper subgroup.
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dependence of the instanton number k, we get that

(2.2.2) MASD ⊂
k⋃

j=0

Mk−j
ASD ∪ Symj(Σ).

This holds for any generic metric g ∈ R′. The following theorem due to Uhlenbeck will be
very important also for later constructions:

Theorem 2.2.1 (Uhlenbeck[Uhl82b]). Let A be an anti self-dual connection in a principal
bundle P over the punctured 4-ball B4 \ {0}. If the L2-norm of the curvature FA of A is
finite, i.e. if ∫

B4\{0}
‖FA‖2 <∞,

then there exists a gauge in which the bundle P extends to a smooth bundle P̃ over B4 and
the connection A extends to a smooth anti self-dual connection Ã in B4.

Note that Theorem 2.2.1 implies in particular that every anti self-dual connection over R4

with bounded Yang–Mills action functional with respect to the L2-norm can be obtained
from an anti self-dual connection over S4 = R4 ∪ {∞}.

∞
•

Figure 2.2.1. Compactification of R4 to S4.

2.2.2. Construction of invariants. On (A∗/G)× Σ one can define a principal SO(3)-bundle
P̃ as (π∗P ! A∗ × Σ)/G with π : A× Σ ! Σ being the projection onto the second factor.
Note that an SO(3)-bundle P ! Σ is classified by the second Stiefel–Whitney class w2(P ) ∈
H2(Σ,Z/2) and the first Pontryagin class p1(P ) ∈ H4(Σ,Z). When w2(P ) = 0, then
the bundle lifts to an SU(2)-bundle with second Chern class c2(P ) = −1

4p1(P ). However,
also if w2(P ) 6= 0, everything can be done more or less similarly as before (although the
orientability of the moduli space will be more complicated8). Using the first Pontryagin
class p1(P̃ ) ∈ H4((A∗/G)× Σ,Z), we can define a map

µ : H2(Σ,Z)! H2(A∗/G,Z),

[C] 7!

∫

C
p1(P̃ ).

(2.2.3)

8In fact, if w is a class in H2(Σ,Z/2) and devide the integral lifts c of w into equivalence classes through
the relation c ∼ c if and only if 1

2
(c−c′) is even. Note that when Σ is spin, then there is only one equivalence

class and there are two otherwise. The orientation on the moduli space is then induced by the orientation of
H2

+ and a choice of equivalence class of the integral lifts of the second Stiefel–Whitney class w2 of the given
SO(3)-bundle.
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Thus, one can define polynomials D(Σ) of degree d on H2(Σ,Z) as a map

D(Σ): H2(Σ,Z)× · · · ×H2(Σ,Z)! Z,

([C1], . . . , [Cd]) 7! D(Σ)([C1], . . . , [Cd]) :=

∫

MASD

d∏

i=1

µ([Ci]).
(2.2.4)

Theorem 2.2.2 (Donaldson[Don83]). Suppose that b2+ > 1 and k > 3
2

(
b2++1

2

)
. Then the

polynomials D(Σ) are independent of the metric and indeed only depend on the homology
classes of C1, . . . , Cd, hence D(Σ) define topological invariants of Σ.

Theorem 2.2.3 (Donaldson[Don90]). Suppose Σ is a simply connected, oriented 4-manifold
with b2+ odd and there is an orientation preserving diffeomorphism between Σ and an oriented
connected sum of manifolds Σ1, Σ2 both having b2+ > 0. Then D(Σ) = 0 for all k.

2.3. Field theory formulation. In [Wit88a], Witten provided a way of obtaining the Don-
aldson polynomials by formulating a topological quantum field theory and using methods of
functional integrals. In particular, he computed the expectation value of a certain observable
by a perturbative expansion for a suitable Lagrangian density. The action that was used is
given in components by

(2.3.1) SDW
Σ =

∫

Σ
d4u
√
gTr

(
3

8
FijF

ij +
1

2
φDiD

iλ− iηDiψ
i + iDiψjχ

ij−

− i

8
φ[χij , χ

ij ]− i

2
λ[ψi, ψ

i]− i

2
φ[η, η]− 1

8
[φ, λ]2

)
,

where the fields are defined as in [Wit88a]. We will refer to this action as the classical
Donaldson–Witten (DW) action functional. Denote by Φ the collection of all fields of the
theory. Then, Donaldson’s polynomials (2.2.4) can be obtained by using the correlation
function with respect to (2.3.1) as

〈Oa1 · · ·Oad〉 :=

∫
exp(iSDW

Σ (Φ)/~)
d∏

j=1

Oaj (Φ)D [Φ],

for some observables Oa1 , . . . , Oad . The observables of interest are given by

(2.3.2) O(γ) :=

∫

γ
Wkγ ,

where γ ∈ Hkγ (Σ,Z) and, for kγ = 0, . . . , 4, we have W0 := 1
2 Tr(φ ∧ φ), W1 := Tr(φ ∧ ψ),

W2 := Tr(1
2ψ ∧ψ+ iφ∧F ), W3 := i Tr(ψ ∧F ) and W4 := −1

2 Tr(F ∧F ). To each O(γ), one
actually associates a (4− kγ)-form µ(γ) onMASD as in Section 2.2. Explicitly, we get

〈
O(γ1) · · ·O(γd)

〉
=

∫
exp(iSDW

Σ (Φ)/~)
d∏

j=1

O(γj)(Φ)D [Φ]

=

∫
exp(iSDW

Σ (Φ)/~)
d∏

j=1

∫

γj

Wkj (Φ)D [Φ]

=

∫

MASD

d∏

j=1

µ(γj) = D(Σ)(γ1, . . . , γd).

(2.3.3)
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Remark 2.3.1. The integral in (2.3.3) is rigorously defined since the differential forms µ(γ)

can be obtained from each observable O(γ) by integrating out the high energy modes.

3. Instanton and Lagrangian Floer homology

3.1. Morse homology. Let us recall the construction of Morse homology. Fix a compact,
closed manifold Σ. A function f : Σ ! R is called Morse function, if all its critical points
are non-degenerate, i.e. for all critical points, the Hessian of f is invertible. In other words,
the section df is transverse to the zero section of T ∗Σ. Since the Hessian is self-adjoint, it
has real spectrum and hence we define indpf to be the dimension of the sum of all negative
eigenspaces. Moreover, we assume that for any two critical points p, q of f we have that
indpf > indqf implies f(p) > f(q). The function f is then said to be self-indexing. If we
choose a Riemannian metric on Σ, we can look at the gradient ∇f and the corresponding
flow equations

(3.1.1) γ̇(t) = −∇γ(t)f.

For two critical points p, q of f , we define the moduli spaceM(p, q) of solutions of (3.1.1)
such that

(3.1.2) lim
t!−∞

γ(t) = p, lim
t!+∞

γ(t) = q.

Note thatM(p, q) is empty unless f(p) > f(q). In fact, we have the following theorem:

Theorem 3.1.1 (Morse–Smale). Let p, q be two distinct critical points of a Morse function
f . ThenM(p, q) is a manifold of dimension indpf − indqf .

There is a free and proper R-action onM(p, q) given by reparametrization γ(t) 7! γ(t− a)
for some a ∈ R. We consider then the quotient

M(p, q) :=M(p, q)/R.

One can check that if indpf = indqf + 1, thenM(p, q) is a compact, oriented 0-dimensional
manifold. Hence, by counting its points by signs, we can deduce

(3.1.3) #M(p, q) ∈ Z.

We can now construct a chain complex as follows. Define the chain groups to be given by

(3.1.4) CMk(Σ, f) :=
⊕

p critical point of f
indpf=k

Z〈p〉.

The boundary operator ∂ will be constructed by counting flow lines. Namely, for critical
points p of f with indpf = k we define the boundary operator by

(3.1.5) ∂p =
∑

q critical point of f
indqf=k−1

#M(p, q) · q

One can show (although it is non-trivial) that ∂2 = 0 and thus indeed defines a differential.
Finally, Morse homology is given by the homology of this complex, and we denote it by

HM•(Σ, f) := ker ∂/im ∂.
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3.2. The (holomorphic) Chern–Simons action functional. An important action func-
tional for further discussions is given by Chern–Simons theory [CS74], which is a topological
field theory on a 3-manifold with many connections to other mathematical theories [Wit89;
RT91; CM08]. Let us briefly recall its construction and extension to a holomorphic version
which will be important later (see Section 8). Let N be a real 3-manifold and consider a
vector bundle E ! N with structure group G. The curvature FA of a connection A ∈ A
defines a closed 1-form

(3.2.1) a 7!
1

4π2

∫

N
Tr(a ∧ FA), a ∈ Ω1(N, adE)

on A. In fact, we can extend (3.2.1) to gauge equivalence classes since this expression is
gauge invariant. Fix a base point A0 in the space of gauge equivalence classes. One can show
that (3.2.1) actually appears as the exterior derivative of a local action functional given by

(3.2.2) SCS
N (A) :=

∫

N
Tr

(
dA0a ∧ a+

2

3
a ∧ a ∧ a

)
, A = A0 + a.

This is the Chern–Simons action functional. One can check that this is gauge invari-
ant under transformations connected to the identity. Moreover, on the gauge equivalence
classes it is well-defined modulo Z. Note also that critical points are given by flat con-
nections. One can extend this picture to Calabi–Yau 3-folds, i.e. smooth compact Käh-
ler 3-folds X with trivial canonical bundle KX

∼= OX . Consider now the space Ahol :=
{∂̄-operators on a fixed smooth bundle E ! X} and the closed 1-form

(3.2.3) a 7!
1

4π2

∫

X
Tr
(
a ∧ F 0,2

A

)
∧ dvolX , a ∈ Ω0,1(X, adE),

where F 0,2
A denotes the antiholomorphic curvature (i.e. with respect to ∂̄) of a holomorphic

connection A ∈ Ahol and dvolX denotes the complex volume form on X. similarly as before,
the 1-form (3.2.3) is gauge invariant and thus descends to the space of gauge equivalence
classes. Again, fixing a basepoint A0 ∈ Ahol, (3.2.3) appears as the exterior derivative of a
local holomorphic action functional given by

(3.2.4) Shol,CS
X (A) :=

1

4π2

∫

X
Tr

(
∂̄A0a ∧ a+

2

3
a ∧ a ∧ a

)
∧ dvolX , A = A0 + a.

This the holomorphic Chern–Simons action functional. Again, one can check that (3.2.4)
is gauge invariant with respect to transformations connected to the identity. The critical
points of (3.2.4) are given by integrable holomorphic structures on the bundle E.

3.3. A 4D-3D bulk-boundary correspondence on (infinite) cylinders. Let Σ be a 4-
manifold. Moreover, let G = SU(2) and consider a principal G-bundle P ! Σ. Then P has
one characteristic class, the second Chern class c2(P ) ∈ H2(Σ,Z). Using the Chern–Weil
formalism [Wei49; Che52], we can identify it with its de Rham cohomology representative
in the image of H2(Σ,R), which is given by

(3.3.1) c2(P ) =
1

8π2
Tr(FA ∧ FA),

for some connection 1-form A ∈ A on P and its corresponding curvature 2-form FA =
dA+ 1

2 [A,A]. Indeed, this cohomology class is independent of the choice of connection and
it is a closed 2-form. Note also that its integral over any 4-manifold Σ is an integer, since
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c2(P ) is an integral class. If G = SO(3), we get that the corresponding class is given by the
first Pontryagin class of the associated bundle P SO(3) := P ×SO(3) R

3, which is given by

(3.3.2) p1(P SO(3)) = − 1

2π2
Tr(FA ∧ FA).

Note that these classes vanish on 3-manifolds. However, there is a way how we can construct
invariants on 3-manifolds by using Chern–Simons theory (see Section 3.2). One can actually
check that

(3.3.3)
(∫

Σ
Tr(FA ∧ FA)

)/
8π2Z

depends only on the gauge equivalence class of A
∣∣
∂Σ

and not on Σ nor on A in the bulk. If
A extends9 to a connection A′ on an extended bundle P ′ ! Σ′, then we can glue Σ to Σ′

along their common boundary N and obtain a new bundle P ′′ ! Σ′′ := Σ ∪N Σ′. Hence

(3.3.4)
∫

Σ
Tr(FA ∧ FA)−

∫

Σ′
Tr(FA′ ∧ FA′) =

∫

Σ′′
Tr(FA′′ ∧ FA′′) ∈ 8π2Z.

Let B be a connection on P ! N . Then the Chern–Simons action functional SCS
N (B) at B

is given by (3.3.3) where FA is the curvature of a connection A that is given as an extension
of B to some bundle over Σ. Let B0 be a fixed connection on P and consider a family
of connections (Bt)t∈[0,1] such that B1 = B, which we can regard as a connection A on
I × P ! I ×N . Then we have

(3.3.5) SYM
I×N,B0

(B) =

∫

I×N
‖FA‖2 = −

∫

I×N
Tr(FA ∧ FA).

Consider the path Bt = B0 + tb for some b such that B = B0 + b, and assume that B0 is a
trivial connection by choosing a trivialization for G = SU(2). Then

(3.3.6) FA = d(tb) +
t2

2
[b ∧ b] = dt ∧ b+ tdb+

t2

2
[b ∧ b],

which gives

(3.3.7) Tr(FA ∧ FA) = dt ∧ Tr(b ∧ (2tdb+ t2[b ∧ b])).
Hence, we get the following chain of equality:

SYM
I×N (B) = −

∫

I×N
Tr(FA ∧ FA)

= −
∫

I×N
dt ∧ Tr(b ∧ (2tdb+ t2[b ∧ b]))

= −
∫

N
Tr

(
b ∧ db+

2

3
b ∧ b ∧ b

)
= −SCS

N,B0
(b).

(3.3.8)

Moreover, if B0 does not arise from a trivialization, we get

(3.3.9) SYM
I×N (B) = −

∫

N
Tr

(
2b ∧ FB0 + b ∧ db+

2

3
b ∧ b ∧ b

)
,

where FB0 is the curvature of the connection B0.

9In fact, one can always extend an SU(2)- or SO(3)-bundle on a closed oriented 3-manifold over some
compact oriented 4-manifold. In particular, this follows from the fact that for these groups the cobordism
group is given by the third homology group of their classifying spaces.
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3.4. Instanton Floer homology. We will restrict ourselves to the case where G = SU(2)
and N is an oriented integral homology 3-sphere10 endowed with a Riemannian metric.
Denote by A the set of all connections on P ! N , which is an affine space over Ω1(N, adP ).
Recall that a gauge transformation g is a bundle automorphism of P covering the identity
map of Σ. For such a transformation g : P ! P , we can construct a new map ĝ : P ! G
by g(p) = pĝ(p), with the property ĝ(ph) = h−1ĝ(p)h for all p ∈ P and h ∈ G. We call
the set of all gauge transformations G. The elements of G are identified with sections of
AdP = P ×Ad G. We would like to construct a Morse chain complex (as in Section 3.1)
over A/G. Indeed, this can be done since by completing A and G with respect to the Sobolev
norm topology11, the spaces A and G have the structure of an infinite-dimensional manifold.
Passing to the quotient will produce a manifold by a local slice theorem for the natural
action of G on A, which is given by pulling back 1-forms on P , i.e. A 7! g∗A. Note that the
curvature FA of A would transform to the curvature of g∗A by Fg∗A = Adĝ FA. Denote by
A∗ ⊂ A the subspace of irreducible connections and consider the tangent space of A∗ at a
reference connection B, which is given by

(3.4.1) TBA∗ ∼= Ω1(N, adP ).

Next, we would like to consider the tangent space at some equivalence class [B] ∈ A∗/G.
For this purpose, we use the Hodge star ∗ : Ωj(N)! Ω3−j(N) induced by the metric on N .
Moreover, recall that on j-forms we have ∗2 = (−1)j(3−j). Denoting by dB : Ωj(N, adP )!
Ωj+1(N, adP ) the covariant derivative with respect to B, we can define its formal adjoint
by d∗B := − ∗ dB∗. Then we can obtain

(3.4.2) T[B](A∗/G) ∼= ker(d∗B).

The key point for our Morse complex is that we want to consider the Chern–Simons action
functional

SCS
N : A∗/G ! R/8π2Z

to play the role of a Morse function12. For convenience, we actually want to consider −SCS
N .

Recall from Section 3.2 that critical points of the Chern–Simons action functional on A∗ are
given by flat connections and on A∗/G by gauge equivalence classes of flat connections.
The Floer chains CF•(N) are given by the Z-module with generators [B] being gauge equiv-
alence classes of flat connections of the trivial SU(2)-bundle over N . For two flat connections
B0, B1 consider a path t 7! Bt connecting them. The corresponding path of operators has
a spectral flow which is defined by pursuing the net number of eigenvalues crossing zero.
Denote by Eig∓(Bt) the set of eigenvalues that pass along the path of operators Bt from
negative to positive and by Eig±(Bt) the set of eigenvalues that pass along the path of

10This is a 3-manifold N whose homology groups are the same as for S3. Namely, H0(N,Z) = H3(N,Z) ∼=
Z and H1(N,Z) = H2(N,Z) = 0.

11For the analytic sides of the construction, one needs the notion of a Sobolev space Lp` of sections of
bundles associated to P , i.e. sections locally represented by functions with first ` derivatives in Lp. There
one can define a norm ‖ ‖Lp

`
(A) for any smooth connection A, for example, if p = 2 and ` = 1, we have

‖σ‖2L2
1(A) = ‖dAσ‖2L2 + ‖σ‖2L2 =

∫

Σ

dµ
(
‖dAσ‖2 + ‖σ‖2

)
.

12Of course, this requires the Chern–Simons action functional to actually be Morse, i.e. with critical points
being nondegenerate. In particular, one can consider small perturbations ε (holonomy perturbations) such
that SCS + ε is indeed sufficiently nice. Here, ε : A∗/G ! R/8π2Z is some admissible perturbation function.
In particular, the existence of regular values for the perturbed action is connected to the properties of being
smooth and its differential to be a Fredholm operator.
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operators Bt from positive to negative. Following [APS76], we define the spectral flow to be
the number

(3.4.3) sf(B0, B1) := #Eig∓(Bt)−#Eig±(Bt).

Note that in finite dimensions, this corresponds to the difference of the index of critical
points. This will replace the grading of the Floer chains for the infinite-dimensional setting.
Consider the space of connections A on R× P , which is a bundle over R×N , satisfying:

(1) A is anti-self dual, i.e. FA = − ∗ FA,
(2) limt!−∞[A|{t}×N ] =: A−,
(3) limt!+∞[A|{t}×N ] =: A+,
(4) A has finite energy, i.e. the curvature FA has finite L2-norm:

‖FA‖22 =

∫

R×N
‖FA‖2 <∞.

If we denote the space of such connections by M̂(A−, A+), we can define a moduli space

M(A−, A+) := M̂(A−, A+)/G,
where G := Aut(R×P ) = {f : R×N ! SU(2)} denotes the gauge transformations. We can
define an R-action onM(A−, A+) by shifting the t variable and define

M(A−, A+) :=M(A−, A+)/R.

In fact, there exists (see [Flo89a; Don02; Sav01]) a small (holonomy) perturbation ε > 0 of
SCS
N which leads to a moduli spaceMε(A−, A+) such thatMε(A−, A+) is a smooth oriented

manifold with
dimMε(A−, A+) = sf(A−, A+)− 1.

Moreover, if dimMε(A−, A+) = 0, then Mε(A−, A+) is compact. Finally, the boundary
operator is defined through the counting of instantons as

∂A− :=
∑

A+∈Aflat
sf(A−,A+)=1

#Mε(A−, A+) ·A+,

where Aflat denotes the space of flat connections. One can show that the resulting complex
CF•(N, ∂) is actually independent of the metric and the perturbation and that ∂2 = 0.
Therefore, we get a well-defined homology theory [Flo89a; Don02]. The corresponding
homology, denoted by HF•(N) := ker ∂/im ∂, is called instanton Floer homology13.

3.5. Relation to Donaldson polynomials. After Floer defined his homology groups,
Donaldson soon realized how they were related to the polynomials he has constructed.
Good expositions can be also found in [Ati87; Bra91]. Assume that Σ = Σ1∪N Σ2, where N
is an oriented homology 3-sphere and Σ1 (resp. Σ2) is a simply connected 4-manifold with
boundary N (resp. Nopp)14. By the assumption that b2+ > 0 for both Σ1 and Σ2, Donaldson
defined polynomials

D(Σ1) : H2(Σ1,Z)× · · · ×H2(Σ1,Z)! (HF•(N))∗,(3.5.1)
D(Σ2) : H2(Σ2,Z)× · · · ×H2(Σ2,Z)! (HF•(Nopp))∗,(3.5.2)

13We will sometimes also just call it Floer homology, i.e. dropping the word instanton, whenever it is clear.
We mainly consider this type of Floer homology in this paper. There are different types of Floer homology
constructions such as e.g. Lagrangian Floer homology (see Section 3.7) which, e.g., plays an important role
in the formulation of Kontsevich’s homological mirror symmetry conjecture (Conjecture 3.8.6)

14Here we denote Nopp to be N with opposite orientation.
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that is that the polynomials D are valued in the dual of the Floer homology on the boundary.
In fact, one can define a pairing 〈 , 〉HF between elements of (HF (N))∗ and (HF (Nopp))∗

(3.5.3) 〈 , 〉HF : (HFj(N))∗ × (HF3−j(Nopp))∗ ! Z

by using the fact that CFj(N) = CF3−j(Nopp) and for irreducible flat connections A ∈
CFj(N) and B ∈ CFj−1(N), that both, 〈dNA,B〉 and 〈A, dNoppB〉, are the number of flow
lines from A to B counted with sign. Here we have denoted by dN the de Rham differential on
N and by dNopp the de Rham differential on Nopp. In fact, the signs are the same and hence
these numbers do agree. Note that by defining a cochain complex CF j := Hom(CFj ,Z), we
get

HFj(N) ∼= HF 3−j(Nopp).

Theorem 3.5.1 (Braam–Donaldson[BD95b; Don02]). We have

D(Σ1 ∪N Σ2) = 〈D(Σ1),D(Σ2)〉HF ,
where 〈 , 〉HF denotes the pairing as in (3.5.3).

Theorem 3.5.1 tells us how Donaldson polynomials glue along boundaries of 4-manifolds.
This will be interesting in connection to the perturbative field-theoretic approach of quantum
gauge theories on manifolds with boundary which in the cohomological symplectic setting
is compatible with cutting and gluing [CMR17]. We will see how this result fits into this
framework.

∂Σ1 = N

∂Σ2 = Nopp
Σ1 Σ2

Figure 3.5.1. Gluing of two manifolds along a common boundary with
opposite orientations. Think of Σ1 and Σ2 as two 4-manifolds with boundary
3-manifolds ∂Σ1 and ∂Σ2, respectively.

3.6. Field theory approach to instanton Floer homology. Based on ideas of Atiyah
[Ati87], Witten gave an approach for a quantum field theoretic construction regarding the ap-
pearance of Floer homology in Donaldson theory for 4-manifolds with boundary in [Wit88b].
His construction uses a supersymmetric field theory approach to Morse theory developed
in [Wit82]. Moreover, he gave a quantum field theoretic interpretation for the gluing of
4-manifolds along a common boundary 3-manifold with pairing ground states on the bound-
ary contained in the instanton Floer homology groups which recovers the result of Theorem
3.5.1. Recall that, in general, we are considering expectation values to be given by an
integral of the form

(3.6.1) 〈O〉 =

∫
exp(iS(Φ)/~)O(Φ)D [Φ],

where S is the action of the theory and Φ denotes the collection of all integration variables.
Let Σ be the underlying 4-manifold with boundary ∂Σ and consider the field theory as in
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Section 2.3. Choosing boundary conditions on ∂Σ is usually required for the computation
of a path integral as in (3.6.1). For the 3-manifold ∂Σ (more precisely, the infinite cylinder
∂Σ × R), we can consider the associated state space H∂Σ. Let Φ|∂Σ be the restriction of
all integration variables to ∂Σ and note that then H∂Σ denotes the space of functionals
depending on Φ|∂Σ and a state corresponds to a functional Ψ(Φ|∂Σ). If we consider the
state Ψ(Φ|∂Σ) to define a boundary condition, we can consider the path integral (3.6.1) in
terms of this condition to be

(3.6.2) 〈OΨ(Φ|∂Σ)〉 =

∫
exp(iSDW

Σ (Φ)/~)O(Φ)Ψ(Φ|∂Σ)D [Φ],

where SDW
Σ is defined as in (2.3.1) and

(3.6.3) O :=

d∏

j=1

∫

γj

Wkj ,

with γj ∈ Hkj (Σ,Z) and Wkj defined as in Section 2.3. In fact, (3.6.2) turns out to be a
topological invariant if Ψ represents an instanton Floer cohomology class and it depends
only on the cohomology class represented by Ψ. The observables are chosen similarly as for
the Donaldson polynomials (see Section 2.3). Hence, one obtains the Donaldson polynomials
with values in the (dual of the) instanton Floer cohomology groups as in Section 2.2.

3.7. Lagrangian Floer homology. Besides the instanton construction [Flo89b], there is
another type of Floer homology theory which uses the data of a symplectic manifold [Flo88].
We will mainly use the excellent introductory paper [Aur14] for this section and we refer
to it and the references within for more details and further constructions using Lagrangian
Floer homology. We should remark that there the construction is dual to Floer’s original
construction and thus the grading convention will be reversed (so we should rather speak of
cohomology instead of homology, but we decide to keep the original term). Let (Σ, ω) be a
compact symplectic manifold and consider two compact Lagrangian submanifolds L0,L1 ⊂
Σ. Then we can associate to the pair (L0,L1) of Lagrangians a chain complex CF (L0,L1)
which is freely generated by the intersection points of L0 and L1 together with a differential
∂ : CF (L0,L1)! CF (L0,L1) such that ∂2 = 0 and thus we can consider its corresponding
homology HF (L0,L1) := ker ∂/im ∂. Moreover, if there is a Hamiltonian isotopy between
two compact Lagrangian submanifolds L1 and L′1, we get an isomorphism HF (L0,L1) ∼=
HF (L0,L′1) and if there is a Hamiltonian isotopy between L0 and L1, then HF (L0,L1) ∼=
H•(L0). Similarly as before, Lagrangian Floer homology can be formally viewed as an
infinite version of Morse homology with respect to the Morse function given by the functional
defined on the universal cover of the path space Path(L0,L1) := {γ : [0, 1] ! Σ | γ(0) ∈
L0, γ(1) ∈ L1} which is given by

S(γ, [Γ]) = −
∫

Γ
ω,

with γ ∈ Path(L0,L1) and [Γ] the equivalence class of a homotopy Γ: [0, 1] × [0, 1] ! Σ
between γ and a fixed base point in the connected component of Path(L0,L1) containing
γ. Usually, we want that the two Lagrangian submanifolds intersect transversally, such that
there is a finite set of intersection points. The Lagrangian Floer chain complex is then given
by

CF (L0,L1) :=
⊕

p∈L0∩L1

Λ · p,
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where Λ := {∑i≥0 aiT
λi | ai ∈ K, λi ∈ R, limi!∞ = +∞} denotes the Novikov field for

some field K. Let J be a ω-compatible almost-complex structure on Σ. We can define the
differential ∂ by counting pseudo-holomorphic strips in Σ with boundary contained in L0

and L1. This is parametrized through the following construction: Let p, q ∈ L0 ∩ L1. Then
the coefficient of q in ∂p is given by the moduli space of maps u : R× [0, 1]! Σ such that:

(1) it solves the Cauchy–Riemann equation

∂̄Ju :=
∂u

∂s
+ J(u)

∂u

∂t
= 0,

with respect to the boundary conditions
{
u(s, 0) ∈ L0 and u(s, 1) ∈ L1, ∀s ∈ R,

lims!+∞ u(s, t) = p, lims!−∞ u(s, t) = q

(2) it has finite energy (symplectic area of the strip):
∫
u∗ω =

∫∫ ∣∣∣∣
∂u

∂s

∣∣∣∣
2

dsdt <∞.

Let M̂(p, q; [u], J) denote the moduli space defined through the conditions (1) and (2) above
and M(p, q; [u], J) the moduli space after taking the quotient by the R-action given by
reparametrization (i.e. u(s, t) 7! u(s − a, t) for some a ∈ R). We have denoted by [u] the
homotopy class of u in π2(Σ,L0 ∩ L1). Moreover, define the Maslov index of the homotopy
class [u] as

ind([u]) := indR(D∂̄J ,u
) = dim kerD∂̄J ,u

− dim cokerD∂̄J ,u
,

where D∂̄J ,u
denotes the linearization of ∂̄J at a given solution u. One can show that

D∂̄J ,u
is indeed a Fredholm operator and thus one can compute its Fredholm index. In

particular, it can be shown that M̂(p, q; [u], J) is a smooth manifold of dimension ind([u])
if all solutions of (1) and (2) are regular, i.e. the operator D∂̄J ,u

is surjective at each point
u ∈ M̂(p, q; [u], J). Thus, M(p, q; [u], J) is an oriented 0-dimensional manifold whenever
ind([u]) = 1. Compactness of the moduli space is given through Gromov’s compactness
theorem [Gro85]. Indeed, Gromov showed that any sequence of J-holomorphic curves with
uniformly bounded energy admits a subsequence which converges, up to reparametrization,
to a nodal tree of J-holomorphic curves. Denote by LGr(n) the Grassmannian of Lagrangian
n-planes in the standard symlectic space (R2n, ω0) and by LGr(TΣ) the Grassmannian of
Lagrangian planes in TΣ as an LGr(n)-bundle over Σ. The Z-grading of the complex is
obtained by ensuring that the difference of the index of a strip depends only on the difference
between the degrees of the two generators that it connects and not on its homotopy class15.
Then we can construct the grading as follows: For all p ∈ L0∩L1 we can obtain a homotopy
class of a path connecting TpL0 and TpL1 in LGr(TpΣ) by connecting the chosen graded
lifts of the tangent spaces at p through a path in L̃Gr(TpΣ). Composing this path with

15This is actually obstructed by the following two conditions: The first Chern class of Σ has to be 2-torsion
and the Maslov class µL ∈ Hom(π1(L),Z) = H1(L,Z) of L vanishes, i.e. 2c1(TΣ) = 0, which allows to lift
the Grassmannian LGr(TΣ) to a fiberwise universal cover L̃Gr(TΣ) given as the Grassmannian of graded
Lagrangian planes in TΣ. In particular, if we have a nowhere vanishing section σ ∈ Γ(

∧n
C T
∗Σ⊗∧nC T ∗Σ),

the argument of σ assigns to each Lagrangian plane ` a phase φ(`) := arg(σ|`) ∈ S1 = R/2πZ. Thus, one
defines a graded lift of ` to be the choice of a real lift ϕ̃(`) ∈ R of ϕ(`). The Maslov class is defined as the
obstruction for choosing graded lifts of the tangent spaces to L, i.e. lifting the section of LGr(TΣ) over L
given by p 7! TpL to a section of the infinite cyclic cover L̃Gr(TΣ). The Lagrangian L together with such a
choice of lift is called graded Lagrangian submanifold of Σ.
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the canonical short path from TpL0 and TpL1, denoted by −λp, we get a closed loop in
LGr(TpΣ). We can then define the degree of p to be the Maslov index of this loop. One can
check that for any strip u connecting p and q, we get

ind(u) = deg(q)− deg(p),

The differential can be then defined as

∂p =
∑

q∈L0∩L1
ind([u])=1

#M(p, q; [u], J)Tω([u])q,

where #M(p, q; [u], J) ∈ Z (or Z2) is the signed (or unsigned) count of pseudo-holomorphic
strips connecting p to q in the class [u], and ω([u]) =

∫
u∗ω < ∞ is the symplectic area of

these strips. One can observe that ∂ is indeed of degree +1. The fact that it squares to
zero is a non-trivial observation which requires some assumptions. Let us go back to the
compactness argument. In our case, we consider J-holomorphic strips u : R × [0, 1] ! Σ
with boundary on Lagrangian submanifolds L0 and L1. Then we have three situations that
can appear: the first situation is called strip breaking (see Figure 3.7.1) and occurs if energy
concentrates at either end s ! ±∞, i.e. there exists a sequence (an) with an ! ±∞ such
that the sequence of strips un(s− an, t) converges to a non-constant limit strip. The second
situation is called disk bubbling (see Figure 3.7.2) and occurs if energy concentrates at a
point on the boundary of the strip, i.e. when t ∈ {0, 1}, where suitable rescalings of un
converge to a J-holomorphic disk in Σ with boundary completely contained in either L0 or
L1. the third situation occurs if energy concentrates at an interior point of the strip, where
suitable rescalings of un converge to a J-holomorphic sphere in Σ.

L1 L1

L0 L0

q pr

Figure 3.7.1. Example of a broken strip situation.

L1

L0

q p

Figure 3.7.2. Example of a disk bubbling situation.

Strip breaking is in fact the ingredient needed for the differential ∂ to square to zero whenever
disk bubbling can be excluded. We can make sure that disk and sphere bubbles do not
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appear by imposing the condition [ω] · π2(Σ,Lj) = 0 for j ∈ {0, 1}. There are also other
more general ways to avoid disk and sphere bubbling, e.g. to impose a lower bound on the
Maslov index by considering the case when the symplectic area of disks and their Maslov
index are proportional to each other. One then speaks ofmonotone Lagrangian submanifolds
in monotone symplectic manifolds.

3.8. The Atiyah–Floer conjecture. In [Ati87], Atiyah conjectured that instanton Floer
homology should be related to Lagrangian Floer homology in the following way (see also
[Sal95; Weh05b; Weh05a; SW08] for a slightly different approach to the same conjecture
using Lagrangian boundary conditions):

Conjecture 3.8.1 (Atiyah–Floer[Ati87]). Let Σg be a Riemann surface of genus g ≥ 1.
Then the space of flat SU(3)-connections on Σg, denoted by ASU(2)

flat (Σg), up to isomorphism
has a symplectic structure. Suppose N is an integral homology sphere with Heegaard split-
ting along the surface Σg, given by

N = H1
g ∪Σg H

2
g ,

where H i
g denotes a handle-body of genus g. Then the space ASU(2)

flat (H i
g) of flat connec-

tions on Σg which extend to flat connections on H i
g determines a Lagrangian subspace of

ASU(2)
flat (Σg). In particular, we have

HinstF•(N) ∼= HLagrF•(ASU(2)
flat (H1

g ),ASU(2)
flat (H2

g )),

where HinstF• denotes the instanton Floer homology and HLagrF• denotes the Lagrangian
Floer homology. Here, ASU(2)

flat (H1
g ) and ASU(2)

flat (H2
g ) are considered as Lagrangian subman-

ifolds of ASU(2)
flat (Σg). Usually, HLagrF•(ASU(2)

flat (H1
g ),ASU(2)

flat (H2
g )) is called the symplectic

instanton Floer homology of N .

Remark 3.8.2. The Atiyah–Floer conjecture leads to a better understanding of the instan-
ton Floer homology for 3-manifolds with boundary. In particular, for a 4-manifold together
with a principal PU(2)-bundle, where PU denotes the projective unitary group, one can de-
fine numerical invariants as in (2.2.4) due to Donaldson. For a 3-manifold together with
a principal PU(2)-bundle, one can define the instanton Floer homology group as in Sec-
tion 3.4. For a 2-manifold together with a principal PU(2)-bundle, we can construct an
A∞-category16. Moreover, as we have seen in Section 3.5, the Donaldson invariants of a
4-manifold Σ with boundary is valued in the instanton Floer homology of ∂Σ. Finally, it is
expected that the Floer homology of a 3-manifold N with boundary gives an object in the
A∞-category associated to ∂N .

Remark 3.8.3 (A way of proving Conjecture 3.8.1). In [DF17], Daemi and Fukaya have
proposed a proof for the Atiyah–Floer conjecture. In particular, they construct a different
version of Lagrangian Floer homology and translate the Atiyah–Floer conjecture to the
equivalent conjecture which states that this new version is actually isomorphic to HinstF•.
They proposed a solution to this equivalent conjecture by considering a mixture of the
moduli space of anti self-dual connections and the moduli space of pseudo-holomorphic
curves. Moreover, they gave a formulation in terms of A∞-categories in order to state

16An A∞-category is, roughly speaking, a category whose associativity condition for the composition of
morphisms is relaxed in a higher unbounded homotopical way (see e.g. [KS08a]). Usually, the morphisms
are given by chain complexes as for the meaning of a linear category.
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conjectures for stronger versions of some properties for instanton Floer homology of 2- and
3-manifolds.

Remark 3.8.4 (Fukaya category). The A∞-category whose objects are given by certain La-
grangian submanifolds of a given symplectic manifold (Σ, ω) and morphisms between objects
are given by the Lagrangian Floer chain complexes is called the Fukaya category [Fuk93] and
is denoted by Fuk(Σ, ω) (see also [Fuk+09a; Fuk+09b; Kon94a; Aur14]). In particular, one
could also construct a more general version of this category by using Lagrangian foliations as
the objects. Such a construction would be interesting in order to understand the boundary
structure when combining with the methods of geometric quantization as for the bounary
state space construction in the BV-BFV setting.

Remark 3.8.5 (Homological mirror symmetry). Based on the mirror symmetry conjecture
(A- and B-model mirror construction) considered in string theory for Calabi–Yau 3-folds (see
e.g. [Yau92; Hor+03]), Kontsevich formulated a homological version in terms of equivalences
of triangulated categories. For some projective variety X, let DbCoh(X) denote the derived
category of coherent sheaves on X. Kontsevich’s conjecture is then formulated as follows:

Conjecture 3.8.6 (Homological mirror symmetry[Kon94a]). Let X and Y be mirror dual
Calabi–Yau varieties. Then there is an equivalence of triangulated categories

(3.8.1) Fuk(X) ∼= DbCoh(Y ),

Conjecture 3.8.6 has been proven by various people for different types of mirror varieties
(e.g. toric 3-folds, quintic 3-folds). However, a general direct proof still remains open.

4. The BV-BFV formalism

In this section, we want to recall the most important concepts of [CMR17]. Good introduc-
tory references for the BV and BV-BFV formalisms are [Cos11; Mne19; CM20]. In order to
avoid large formulae, we will not always write out the exterior product between differential
forms, hence we remark that from now on this is automatically understood.

4.1. BV formalism. Let us start with the BV construction on a closed d-dimensional
source manifold Σ.

Definition 4.1.1 (BV manifold). A BV manifold is a triple (F , ω,S), where F is a Z-graded
supermanifold17, ω an odd symplectic form on F of degree −1 and S an even function on
F of degree 0 such that

(4.1.1) (S,S) = 0,

where ( , ) denotes the odd Poisson bracket induced by the odd symplectic form ω.

Equation (4.1.1) is called Classical Master Equation (CME).

Remark 4.1.2. We call F the BV space of fields18, ω the BV symplectic form and S the
BV action (functional). Moreover, ( , ) is often called BV bracket or anti-bracket. In the
physics literature, the Z-grading is called ghost number. We will denote the ghost number
by gh. When considering differential forms, we will denote the form degree by deg.

17Recall that a supermanifold is a locally ringed space (F ,OF ) such that the structure sheaf is locally,
for some open set U ⊂ Rd, given by C∞(U)⊗∧• V ∗, where V is some finite-dimensional real vector space.

18Usually, the BV space of fields is given by the (−1)-shifted cotangent bundle of the BRST space of
fields, i.e. FBV = T ∗[−1]FBRST. The fiber fields are usually called anti-fields. For each field Φ, there is
a corresponding notion of anti-field through duality, denoted by Φ†. Recall that gh(Φ) + gh(Φ†) = −1.
Moreover, if FΣ = Ω•(Σ), then deg(Φ) + deg(Φ†) = dim Σ.
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Definition 4.1.3 (BV theory). The assignment of a source manifold Σ to a BV manifold

(FΣ, ωΣ,SΣ)

is called a BV theory.

4.1.1. Quantization. For the quantum picture one considers a canonical second-order differ-
ential operator ∆ on half-densities on F with the properties

∆2 = 0,(4.1.2)

∆(fg) = ∆fg ± f∆g ± (f, g), ∀f, g ∈ Dens
1
2 (F),(4.1.3)

where Dens
1
2 (F) denotes the space of half-densities on F . The operator ∆ is called BV

Laplacian. If Φi and Φ†i denote field and anti-field respectively, we have

∆f =
∑

i

(−1)gh(Φi)+1f

〈  −
δ

δΦi
,

 −
δ

δΦ†i

〉
, f ∈ Dens

1
2 (F).

We denote by
 −
δ
δΦ and

−!
δ
δΦ the left- and right-derivatives. Namely, we have

−!
δ

δΦi
f = (−1)gh(Φi)(gh(f)+1)f

 −
δ

δΦi
,

−!
δ

δΦ†i
f = (−1)(gh(Φi)+1)(gh(f)+1)f

 −
δ

δΦ†i
.

Remark 4.1.4. In particular, one can show that for any odd symplectic supermanifold F ,
there is a supermanifold N such that F ∼= T ∗[1]N . Hence, functions on F are given by
multivector fields on N . Moreover, the Berezinian bundle on F is given by

Ber(F) ∼=
top∧
T ∗N ⊗

top∧
T ∗N .

Thus, half-densities on F are defined by

Dens
1
2 (F) := Γ

(
Ber(F)

1
2

)
.

One can show that there exists a canonical operator ∆
1
2
F on Dens

1
2 (F) which squares to zero

[Khu04]. Then, fixing a non-vanishing, ∆
1
2
F -closed reference half-density σ ∈ Dens

1
2 (F), one

can define a Laplacian on functions on F by

(4.1.4) ∆σf :=
1

σ
∆

1
2
F (fσ).

It is easy to check that ∆σ squares to zero. For convenience, we write ∆ when we actually
mean ∆σ in order to not emphasize on the choice of reference half-density. It is important
to mention that this construction needs a suitable regularization in the case where F is
infinite-dimensional. See also [Šev06] for describing the BV Laplacian naturally through a
spectral sequence approach of a double complex using the odd symplectic structure.

Theorem 4.1.5 (Batalin–Vilkovisky–Schwarz[BV81; Sch93]). Let f, g ∈ Dens
1
2 (F) be two

half-densities on F . Then
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(1) if f = ∆g (BV exact), we get that
∫

L
f = 0,

for any Lagrangian submanifold L ⊂ F .
(2) if ∆f = 0 (BV closed), we get that

d

dt

∫

Lt
f = 0,

for any smooth family (Lt) of Lagrangian submanifolds of F .
For the application to quantum field theory, we want to consider19

f = exp(iS/~).

The choice of Lagrangian submanifold is in fact equivalent to the choice of gauge-fixing.
Thus, the second point of Theorem 4.1.5 tells us that the the gauge-independence condition
is encoded in the equation

∆ exp(iS/~) = 0,

which is equivalent to

(4.1.5) (S,S)− 2i~∆S = 0.

Equation (4.1.5) is called Quantum Master Equation (QME). Note that the QME reduces
to the CME for ~! 0.

Example 4.1.6 (AKSZ theory[Ale+97]). A natural example of BV theories was formulated
by Alexandrov, Kontsevich, Schwarz and Zaboronsky in [Ale+97]. A differential graded
symplectic manifold of degree d consists of a graded manifold M endowed with an exact
symplectic form ω = dMα of degree d and a smooth Hamiltonian function Θ onM of degree
d+ 1 satisfying

{Θ,Θ} = 0,

where { , } is the Poisson bracket induced by ω. Such a triple (M, ω = dMα,Θ) is
sometimes also called a Hamiltonian manifold. A d-dimensional AKSZ sigma model with
target a Hamiltonian manifold (M, ω = dMα,Θ) of degree d − 1 is the BV theory, which
associates to a d-manifold Σ the BV manifold (FΣ, ωΣ,SΣ), where20

(4.1.6) FΣ = Map(T [1]Σ,M),

the BV symplectic form ωΣ is of the form

(4.1.7) ωΣ =

∫

T [1]Σ
µdωµνδΦ

µδΦν ,

and the BV action is given by

(4.1.8) SΣ =

∫

T [1]Σ
µd (αµ(Φ)dΣΦµ + Θ(Φ)) .

we have denoted by Φ ∈ FΣ the superfields, by ωµν the components of the symplectic form
ω, by αµ the components of α and Φµ are the components of Φ in local coordinates (u, θ).
Moreover, µd := dduddθ denotes the measure on T [1]Σ and δ is the de Rham differential on

19More precisely, we want to consider f = exp(iS/~)ρ, where ρ is some ∆-closed reference half-density
on F .

20This is the infinite-dimensional graded manifold adjoint to the Cartesian product (internal morphisms).
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FΣ. Indeed, one can check that ωΣ is symplectic of degree −1 and that SΣ is of degree 0
satisfying the CME

(SΣ,SΣ) = 0.

This is obtained by considering the transgression map

T : Ω•(M)! Ω•(Map(T [1]Σ,M)),

given by the following diagram:

Map(T [1]Σ,M)× T [1]Σ M

Map(T [1]Σ,M)

ev

π1

where π1 denotes the projection to the first factor and ev denotes the evaluation map. The
transgression map is then defined as T := (π1)∗ev∗. Note that the map (π1)∗ denotes
fiber integration. The (−1)-shifted symplectic form on Map(T [1]Σ,M) is then given by
ωΣ = T (ω) = (π1)∗ev∗ω. Many theories of interest are in fact of AKSZ-type such as
e.g. Chern–Simons theory [Wit89; AS91; AS94], the Poisson sigma model [CF00; CF01],
Witten’s A- and B-model [Wit88b; Ale+97] and 2-dimensional Yang–Mills theory [IM19].

4.2. BV algebras. We want to recall some notions on BV algebras as in [Get94], and how
it is related to the original BV formalism. A braid algebra Br is a commutative DG algebra
endowed with a Lie bracket [ , ] of degree +1 satisfying the Poisson relations

(4.2.1) [a, bc] = [a, b]c+ (−1)|a|(|b|−1)b[a, c], ∀a, b, c ∈ Br
An identity element in Br is an element 1 of degree 0 such that it is an identity for the
product and [1, ] = 0. A BV algebra BV is a commutative DG algebra endowed with an
operator ∆: BV• ! BV•+1 such that ∆2 = 0 and

∆(abc) = ∆(ab)c+ (−1)|a|a∆(bc) + (−1)(|a|−1)|b|b∆(ac)

−∆abc− (−1)|a|a∆bc− (−1)|a|+|b|ab∆c, ∀a, b, c ∈ BV.
(4.2.2)

An identity in BV is an element 1 of degree 0 such that it is an identity for the product and
∆1 = 0. One can show that a BV algebra is in fact a special type of a braid algebra. More
precisely, a BV algebra is a braid algebra endowed with an operator ∆: BV• ! BV•+1 such
that ∆2 = 0 and such that the bracket and ∆ are related by

(4.2.3) [a, b] = (−1)|a|∆(ab)− (−1)|a|∆ab− a∆b, ∀a, b ∈ BV.
Moreover, in a BV algebra we have

(4.2.4) ∆([a, b]) = [∆a, b] + (−1)|a|−1[a,∆b], ∀a, b ∈ BV.
The motivation for such an algebra structure comes exactly from the approach of the BV
formalism in quantum field theory. Let (F , ω) be an odd symplectic (super)manifold. Let
f ∈ OF , where OF denotes the space of functions on F , and consider its Hamiltonian vector
field Xf . One can check that OF endowed with the BV anti-bracket

(4.2.5) (f, g) := (−1)|f |−1Xf (g)

is a braid algebra. Let µ ∈ Γ(Ber(F)) be a nowhere-vanishing section of the Berezinian
bundle of F . As we have seen before, this represents a density which is characterized by the
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integration map
∫

: Γ0(F ,Ber(F)) ! R, where Γ0 denotes sections with compact support.
Hence, µ induces an integration map on functions with compact support

(4.2.6) OF 3 f 7!
∫

L⊂F
fµ1/2,

for some Lagrangian submanifold L ⊂ F , where the integral exists. Then one can define a
divergence operator divµX by

(4.2.7)
∫

F
(divµX)fµ = −

∫

F
X(f)µ.

Lemma 4.2.1. For a vector field X, define X∗ := −X − divµX. Then

(4.2.8)
∫

F
fX(g)µ = (−1)|f ||X|

∫

F
X∗(f)gµ.

Moreover, divµ(fX) = f divµX − (−1)|f ||X|X(f) and if S ∈ OF is an even function, then

divexp(S)µX = divµX +X(S).

One can then define the BV Laplacian ∆ to be the odd operator on OF given by

(4.2.9) ∆f = divµXf .

A BV (super)manifold (F , ω, µ) is then an odd symplectic (super)manifold with Berezinian
µ such that ∆2 = 0.

Proposition 4.2.2 (Getzler[Get94]). Let (F , ω, µ) be a BV (super)manifold.
(1) The algebra (OF , ( , ),∆) is a BV algebra, where ∆ is given as in (4.2.9) and ( , )

is the odd Poisson bracket coming from the odd symplectic form ω as in (4.2.5).
(2) The Hamiltonian vector field associated to some f ∈ OF is given by the formula

Xf = −[∆, f ] + ∆f , where [ , ] denotes the commutator of operators.
(3) If S ∈ OF and ∆S is the operator associated to the Berezinian exp(S)µ, then ∆S =

∆−XS and ∆2
S = X∆S+ 1

2
(S,S).

Note that point (3) of Proposition 4.2.2 is exactly the case that we have in quantum field
theory. Moreover, if

(4.2.10) ∆S +
1

2
(S,S) = 0,

we get that ∆2
S = 0, which ensures a BV algebra structure. Note that here we have set

i~ = 1.

4.3. BFV formalism. We want to continue with the Hamiltonian approach of the BFV
formalism for closed source manifolds.

Definition 4.3.1 (BFV manifold). A BFV manifold is a triple (F∂ , ω∂ , Q∂) such that
F∂ is a Z-graded supermanifold, ω∂ is an even symplectic form of degree 0 and Q∂ is
a cohomological (Q2 = 0) and symplectic (LQω = 0) vector field on F of degree +1.
Moreover, the Hamiltonian function S∂ of Q∂ defined by the equation ιQ∂ω

∂ = δS∂ , is
required to satisfy the CME

(4.3.1) {S∂ ,S∂} = 0,

where { , } denotes the Poisson bracket of degree 0 induced by the even symplectic form
ω∂ .
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Note that we have denoted by δ the de Rham differential on F∂ . Moreover, we can, equiv-
alently, express Equation (4.3.1) as Q∂S∂ = 0. Similarly, for a BV manifold (F , ω,S) we
can consider the Hamiltonian vector field Q associated to S through the equation ιQω = δS
(by abuse of notation, we also denote the de Rham differential on F by δ). Hence, we can
express Equation (4.1.1) as QS = 0.

Definition 4.3.2 (Exact BFV manifold). We call a BFV manifold (F∂ , ω∂ , Q∂) exact, if
ω∂ is exact, i.e. there is a 1-form α on F∂ such that ω∂ = δα∂ .

Definition 4.3.3 (BFV theory). The assignment of a manifold Σ to a BFV manifold

(F∂∂Σ, ω
∂
∂Σ, Q

∂
∂Σ)

is called a BFV theory.

Remark 4.3.4. Given an AKSZ theory (FΣ = Map(T [1]Σ,M), ωΣ,SΣ) as in Example
4.1.6 associated to a manifold with boundary Σ, we can easily construct its BFV data by
restriction to the boundary. The BFV action thus given by

S∂∂Σ = SΣ

∣∣
∂Σ
.

Similarly we can obtain the BFV space of boundary fields

F∂∂Σ = Map(T [1]∂Σ,M) = FΣ

∣∣
∂Σ

and the BFV symplectic form
ω∂∂Σ = ωΣ

∣∣
∂Σ
.

4.4. BV-BFV formalism. Consider now a source manifold Σ with boundary ∂Σ.

Definition 4.4.1 (BV-BFV manifold). A BV-BFV manifold over an exact BFV manifold
(F∂ , ω∂ = δα∂ , Q∂) is a quintuple (F , ω,S, Q, π) such that F is a Z-graded supermanifold,
ω is an odd symplectic form of degree −1 on F , S is an even functional of degree 0, Q is a
cohomological, symplectic vector field on F and π : F ! F∂ a surjective submersion such
that

(1) δπQ = Q∂ ,
(2) ιQω = δS + π∗α∂ ,

where δπ denotes the tangent map of π. In fact, condition (1) and (2) together imply the
modified Classical Master Equation (mCME)

(4.4.1) QS = π∗(2S∂ − ιQ∂α∂).

Definition 4.4.2 (BV-BFV theory). The assignment of a source manifold with boundary Σ
to a BV-BFV manifold (FΣ, ωΣ,SΣ, QΣ, πΣ) over an exact BFV manifold (F∂∂Σ, ω

∂
∂Σ, Q

∂
∂Σ)

is called a BV-BFV theory.

4.4.1. Quantization. For the quantization, one chooses a polarization21 P on the boundary
and assume a symplectic splitting22 of the BV space of fields with respect to it

(4.4.2) F = BP × Y.
21This is an involutive ω∂-Lagrangian subbundle of TF∂ .
22Actually, this is only needed locally, so one can also allow F to be a BV bundle over BP . A fiber

bundle F over a base B with odd-symplectic fiber (Y, ω) is called a BV bundle if the transition maps of
F are given by locally constant fiberwise symplectomorphisms. An even more general setting is given by a
hedgehog fibration where the fibers of the fiber bundle are given by hedgehogs [CMR17].
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Σ ∂Σ

BFV

BV

Figure 4.4.1. The BV theory is associated to the bulk and the BFV theory
to the boundary such that we have a coherent coupling.

Here BP denotes the leaf space for the polarization P which we assume to be smooth and Y
is a complement. Note that we can always split the BV space of fields in such a way but it
is important to assume that it is symplectic, i.e. that the BV symplectic form ω is constant
on BP . In fact, we consider ω to be a weakly nondegenerate23 2-form on Y which extends
to the product BP ×Y. For BF -like theories24, which includes AKSZ-type theories, one can
think of BP to be the fields restricted to the boundary and Y to be the bulk part. Using the
fact that the BFV space of boundary fields (F∂ , ω∂) is a symplectic manifold, we consider
a geometric quantization (see e.g. [Woo97; BW12; Mos20a]) on the boundary to obtain a
vector space HP . In order to take care of regularization, we consider another splitting of
the bulk part

(4.4.3) Y = V × Y ′,

where V denotes the space of residual fields25. Moreover, let Z := BP×V denote the bundle
of residual fields over BP . Note that we also assume a splitting of the symplectic manifold
(Y, ω) into two symplectic manifolds

Y = V × Y ′,
ω = ωV + ωY ′ .

Gauge-fixing is then equivalent to the choice of a Lagrangian submanifold L of (Y ′, ωY ′).
Define ĤP := Dens

1
2 (Z) = Dens

1
2 (BP)⊗̂Dens

1
2 (V) and the BV Laplacian ∆̂P := id ⊗ ∆V

on ĤP . We have denoted by ∆V the BV Laplacian on V. Note that the space Dens
1
2 (BP)

coincides with the vector space HP constructed by geometric quantization on the boundary.
Thus we have

ĤP = HP⊗̂Dens
1
2 (V).

Remark 4.4.3. Another important assumption is that for any Φ ∈ Z, the restriction of the
action to {Φ} × L has isolated critical points on {Φ} × L.

23In the finite-dimensional case the BV-BFV formalism is not consistent with the nondegeneracy of ω on
the whole space and thus one has to exactly assume nondegeneracy along the fibers.

24These are perturbations of BF theories.
25V is often also called the space of low energy fields or zero modes which we assume to be finite-

dimensional. The complement Y ′ is accordingly often called space of high energy fields or fluctuation fields
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The state is then defined through the perturbative expansion into Feynman graphs of the
BV integral

(4.4.4) ZBV−BFV(Φ) =

∫

L
exp (iS(Φ)/~) D [Φ] ∈ ĤP , Φ ∈ Z.

Remark 4.4.4. If one uses a different choice of residual fields V ′ such that V fibers over V ′ as
a hedgehog (see [CMR17] for the definition of a hedgehog fibration), then the corresponding
quantum theories are BV equivalent in the sense of [CMR17]. however, there is a minimal
choice for the residual fields for which the assumption in Remark 4.4.3 is satisfied by a good
choice of Lagrangian submanifold L. For the case of abelian BF theory, the minimal space
of residual fields is given by the de Rham cohomology of the underlying source manifold.

If ∆S = 0, which we usually want to assume, the QME is replaced by the modified QME
(mQME)

(4.4.5)
(
~2∆ + ΩP

)
exp (iS/~) = 0,

where, for local coordinates (bi) ∈ BP , we have that

ΩP := S∂
(
bi,−i~

δ

δbi

)

is the standard ordering quantization of S∂ . If S depends on ~ and (or) ∆S 6= 0, we get the
mQME from the assumption of the QME in the bulk by defining S∂~ := S∂ + O(~) via the
equation

π∗S∂~ =
1

2
(S,S)− i~∆S

and setting ΩP to be the standard ordering quantization of S∂~ . Note that the operator
~2∆ + ΩP is of order +1. Moreover, we assume that the operator ~2∆ + ΩP squares to
zero in order to have a well-defined BV cohomology. In the finite-dimensional setting we
automatically get that Ẑ solves the mQME:

(4.4.6)
(
~2∆V + ΩP

)
Ẑ = 0.

In the infinite-dimensional setting, where we have to compute the Feynman graphs instead
of an integral, the mQME is only expected to hold and requires a separate checking.

4.5. Gluing of BV-BFV partition functions. Let Σ be a d-manifold and consider two d-
manifolds Σ1,Σ2 such that Σ = Σ1∪N Σ2 where N is the (d−1)-manifold which is identified
with the common boundaries ∂Σ1 and ∂Σ2 (see Figure 4.5.1). Then in general, following
Atiyah’s TQFT axioms [Ati88], we can define the glued partition function by the pairing

(4.5.1) ZΣ =

∫

N
ZΣ1,∂Σ1ZΣ2,∂Σ2 .

We want to see how this is adapted to the BV-BFV partition function. Let (Y, ω) be a
direct product of two odd symplectic manifolds (Y ′, ω′) and (Y ′′, ω′′), i.e. Y = Y ′ × Y ′′,
ω = ω′ + ω′′. Then the space of half-densities on Y factorizes as

Dens
1
2 (Y) = Dens

1
2 (Y ′)⊗̂Dens

1
2 (Y ′′).

If we consider BV integration on the second factor for some Lagrangian submanifold L ⊂ Y ′′,
we can define a pushforward map on half-densities

∫

L
: Dens

1
2 (Y)

id⊗
∫
L−−−−! Dens

1
2 (Y ′).
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N

Σ1 Σ2

Figure 4.5.1. Gluing of Σ1 and Σ2 along N .

If we consider the space of fields F = B×Y given by a product as in Section 4.4, and assuming
that Y splits into a product of two odd symplectic manifolds (V, ωV) and (Y ′, ωY ′), we can
consider a version of the BV pushforward in terms of families over B by

∫

L
: Dens

1
2 (F)

id⊗
∫
L−−−−! Dens

1
2 (Z),

where Z = BP ×V for some chosen polarization P and L ⊂ Y ′ is a Lagrangian submanifold.
In particular, we have the coboundary operator ~2∆V+ΩP on Z, where ∆V is the canonical
BV Laplacian on V. In fact, the BV-BFV partition function is then defined through the
family version of the BV pushforward.
The gluing of BV-BFV partition functions as in (4.4.4) is given by

(4.5.2) ZBV
Σ =

∫

L

〈
ZBV−BFV

Σ1,∂Σ1
,ZBV−BFV

Σ2,∂Σ2

〉
N
∈ Dens

1
2 (VΣ),

where
∫
L denotes the BV pushforward with respect to the map

VΣ1 × VΣ2 ! VΣ,

for some Lagrangian submanifold L in the bulk complement of VΣ and 〈 , 〉N is the pairing
in HPN . Note that the product of the space of residual fields VΣ1×VΣ2 is a hedgehog fibration
as in [CMR17]. The BV-BFV partition function depends only on residual fields when Σ is
closed. If we assume that the space of residual fields VΣ is finite-dimensional, which is the
case for many theories of interest including AKSZ theories, we can compute the number
valued partition function by integrating out the residual fields

∫
VΣ

ZBV
Σ ∈ C. If the glued

manifold Σ has boundary itself (see Figure 4.5.2), the BV-BFV partition function depends
on the boundary fields BP∂Σ. In particular, we get

ZBV−BFV

Σ,∂Σ =

∫

L

〈
ZBV−BFV

Σ1,∂Σ1
,ZBV−BFV

Σ2,∂Σ2

〉
N
∈ HP∂Σ⊗̂Dens

1
2 (VΣ).

4.6. Example: abelian BF theory. Let Σ be a d-manifold with compact boundary ∂Σ.
The BV space of fields is then given by FΣ = Ω•(Σ)[1] ⊕ Ω•(Σ)[d − 2]. Denote a field in
FΣ by X⊕Y, where X ∈ Ω•(Σ)[1] and Y ∈ Ω•(Σ)[d− 2]. The BV symplectic form is then
given by

ωΣ =

∫

Σ

∑

i

δYiδX
i,

the BV action by

SΣ =

∫

Σ

∑

i

YidΣX
i,



32 N. MOSHAYEDI

Σ1 Σ2

∂Σ

Figure 4.5.2. Example of the case when Σ = Σ1 ∪ Σ2 has boundary.

Σ1 Σ2

∂Σ

Figure 4.5.3. Closing the manifold Σ.

and the cohomological vector field by

QΣ =

∫

Σ

∑

i

(
dΣYi

δ

δYi
+ dΣX

i δ

δXi

)
,

where δ denotes the de Rham differential on FΣ and dΣ the one on Σ. The exact BFV
manifold (F∂∂Σ, ω

∂
∂Σ = δα∂∂Σ, Q

∂
∂Σ) assigned to the boundary ∂Σ is given by the BFV space

of fields F∂∂Σ = Ω•(∂Σ)[1]⊕ Ω•(∂Σ)[d− 2], the primitive 1-form

α∂∂Σ = (−1)d
∫

∂Σ

∑

i

YiδX
i,

the BFV boundary action

S∂∂Σ =

∫

∂Σ

∑

i

Yid∂ΣX
i,

and cohomological vector field

Q∂∂Σ =

∫

∂Σ

∑

i

(
d∂ΣYi

δ

δYi
+ d∂ΣX

i δ

δXi

)
.

We have denoted by X ⊕ Y = i∗Σ(X ⊕ Y) ∈ F∂∂Σ for X ⊕ Y ∈ FΣ, where iΣ : ∂Σ ↪! Σ

denotes the inclusion. The surjective submersion πΣ : FΣ ! F∂∂Σ is given by restricting to
the boundary, i.e. πΣ = i∗Σ.
Consider the case where ∂Σ is given by the disjoint union of two compact manifolds ∂1Σ
and ∂2Σ such that we can consider a splitting F∂∂Σ = F∂∂1Σ × F∂∂2Σ. Then we can consider
a polarization P on F∂∂Σ which is given by a direct product of polarizations on each factor.
One can choose the convenient δ

δY -polarization on ∂1Σ and identify the quotient leaf space
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with B∂1Σ
∼= Ω•(∂1Σ)[1] whose coordinates are given by the X fields. On ∂2Σ one can choose

the convenient δ
δX -polarization and similarly as before identify the quotient leaf space with

B∂2Σ
∼= Ω•(∂2Σ)[d−2] whose coordinates are given by the Y fields. The leaf space associated

to the boundary polarization is then given by BP∂Σ = B∂1Σ × B∂2Σ.

δ
δY

δ
δX

∂1Σ ∂2ΣΣ

Figure 4.6.1. Example of Σ with two boundaries ∂1Σ and ∂2Σ. On ∂1Σ we
choose the δ

δY -polarization (i.e. the X-representation) and on ∂2Σ we choose
the δ

δX -polarization (i.e. the Y-representation).

The case when we have more than two boundary components is illustrated and explained
in Figure 4.6.2. The case for boundary components with mixed polarization is explained in
Figure 4.6.3. However, we will not consider this case in this paper26.
In particular, we want to assume for the leaf space BP∂Σ the property that for a suitably
chosen local functional fP∂Σ, the restriction of the adapted BFV 1-form α∂,P∂Σ := α∂∂Σ − δfP∂Σ
to the fibers of the polarization P vanishes. In this case we can identify the space of
boundary states HP∂Σ with Dens

1
2 (BP∂Σ) by multiplying with exp(ifP∂Σ/~). Moreover, we can

then modify the BV action SΣ to SPΣ := SΣ +π∗Σf
P
∂Σ. In our case, we consider the functional

fP∂Σ = (−1)d−1

∫

∂2Σ

∑

i

YiX
i,

the adapted BFV 1-form

α∂,P∂Σ = (−1)d
∫

∂1Σ

∑

i

YiδX
i −
∫

∂2Σ

∑

i

δYiX
i

and the modified BV action

SPΣ =

∫

Σ

∑

i

Yid∂ΣX+ (−1)d−1

∫

∂2Σ

∑

i

YiX
i.

Denote by X̃ ⊕ Ỹ := π∗Σ(X ⊕ Y) an extension of X ⊕ Y to FΣ and denote by X̂ ⊕ Ŷ the
complement such that

X = X̃+ X̂,

Y = Ỹ + Ŷ.

26This case was studied for the Poisson sigma model (2-dimensional AKSZ theory) in [CMW20] for the
quantization of the relational symplectic groupoid. Another (a bit different) approach was considered for
2-dimensional Yang–Mills theory in [IM19].
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X

X

Y

∂
(1)
1 Σ

∂
(2)
1 Σ

∂2Σ

Σ

Figure 4.6.2. Example of a manifold with three boundary components
where two components have the X-representation and one component has
the Y-representation. Note that in this case we have ∂1Σ = ∂

(1)
1 Σ ∪ ∂(2)

1 Σ.
In general we can have r1 boundary components in the X-representation
and r2 boundary components in the Y-representation. In this case we have
∂1Σ =

⋃r1
k=1 ∂

(k)
1 Σ and ∂2Σ =

⋃r2
k=1 ∂

(k)
2 Σ.

YX

Y X

Figure 4.6.3. Example of a boundary component with mixed boundary
polarization.

Note that we require that i∗1X̂ = 0 and i∗2Ŷ = 0, where ij : ∂jΣ ↪! Σ denotes the inclusion
of the corresponding boundary components for j = 1, 2. Let us choose this section of the
bundle FΣ ! BP∂Σ. The modified BV action is then given by

SPΣ =

∫

Σ

∑

i

(
Ỹid∂ΣX̃

i + ỸidΣX̂
i + Ŷid∂ΣX̃

i + ŶidΣX̂
i
)

+ (−1)d−1

∫

∂2Σ

∑

i

(
YiX̃

i +YiX̂
i
)
.
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Consider the last bulk term which we denote by ŜΣ :=
∫

Σ

∑
i ŶidΣX̂

i. Note that, by the
vanishing boundary conditions, we get the critical points defined by the equations dΣX̂ =

dΣŶ = 0. Moreover, consider the subcomplex of the de Rham complex Ω•(Σ) given by

Ω•Dj(Σ) := {γ ∈ Ω•(Σ) | i∗jγ = 0},
where D stands for Dirichlet. The residual fields are then given by

VΣ = H•D1(Σ)[1]⊕H•D2(Σ)[d− 2],

which is a finite-dimensional BV manifold. Note that we have a natural identification with
relative cohomology H•Dj(Σ) ∼= H•(Σ, ∂jΣ) for j = 1, 2. Hence, we can define a canonical
BV Laplacian by choosing coordinates (zj , z†j ) on VΣ. Choosing a basis ([κj ]) of H•D1(Σ)

with representative κj ∈ Ω•D1(Σ) and the corresponding dual basis ([κj ]) of H•D2(Σ) with
representative κj ∈ Ω•D2(Σ) satisfying the relation

∫
Σ κ

iκj = δij , we can write the residual
fields as

(4.6.1) x =
∑

j

zjκj , y =
∑

j

z†jκ
j .

The BV Laplacian on VΣ is given by

∆VΣ
=
∑

j

(−1)(d−1) gh(zj)+1 ∂2

∂zi∂z†j

and the BV symplectic form on VΣ is given by

ωVΣ
=
∑

j

(−1)(d−1) gh(zj)+1δz†jδz
j .

Note that gh(zj) = 1 − gh(κj) and gh(z†j ) = gh(κj) − 2. Consider another splitting of the
fields

X̂ = x + X ,

Ŷ = y + Y ,

where X ⊕Y denotes the corresponding complement of the field x⊕ y ∈ VΣ as elements of
a symplectic complement Y ′Σ of VΣ. Note that i∗1X = i∗2Y = 0. Using this, we can see that
ŜΣ =

∫
Σ Y dΣX which can be regarded as a quadratic function on Ω•D1(Σ)[1]⊕Ω•D2(Σ)[d−2]

and has critical points given by closed forms. One can now choose a Lagrangian submanifold
L of Y ′Σ where ŜΣ has isolated critical points at the origin, which is to say that the de Rham
differential d has trivial kernel. This can be done by Hodge theory for manifolds with
boundary. Consider the Hodge star operator ∗ for a chosen metric on Σ with product
structure near the boundary, i.e. there is a diffeomorphism ϕ : ∂Σ ⊃ U ! ∂Σ × [0, ε) for
some ε > 0 such that the restriction of ϕ to ∂Σ is the identity on ∂Σ and the metric on Σ
restricted to the neighborhood U has the form ϕ∗(g∂Σ + dt2), where g∂Σ denotes the metric
on the boundary and t ∈ [0, ε) the coordinate on ∂Σ× [0, ε). One can define the Lagrangian
submanifold

L = (d∗Ω•+1
N2 (Σ) ∩ Ω•D1(Σ))[1]⊕ (d∗Ω•+1

N1 (Σ) ∩ Ω•D2(Σ))[d− 2],

where d∗ := ∗d∗ and
Ω•Nj(Σ) := {γ ∈ Ω•(Σ) | i∗j ∗ γ = 0}

is the space of Neumann forms relative to ∂jΣ. One can check that the restriction of ŜΣ to L
is nondegenerate. Moreover, one can show (see [CMR17] for more details) that L is is indeed
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Lagrangian in the symplectic complement Y ′Σ of VΣ. One can then construct a propagator
P as the integral of the chain contraction K of Ω•D1(Σ) onto H•D1(Σ). The gauge-fixing
Lagrangian is then given as

L = im(K)[1]⊕ im(K∗)[d− 2].

This can be done by choosing a Hodge chain contraction K : Ω•D1(Σ)! Ω•−1
D1 (Σ). We call a

differential form β ∈ Ω•(Σ) ultra-Dirichlet relative to ∂jΣ if the pullbacks to ∂jΣ of all even
normal derivatives of β and pullbacks of all odd normal derivatives of ∗β vanish. We call
a differential form β ∈ Ω•(Σ) ultra-Neumann relative to ∂jΣ if pullbacks to ∂jΣ of all even
normal derivatives of ∗β and pullbacks of all odd normal derivatives of β vanish. Denote
by Ω•

D̂j
(Σ) and Ω•

N̂j
(Σ) the space of ultra-Dirichlet and ultra-Neumann forms, respectively.

We call a differential form β ∈ Ω•(Σ) ultra-harmonic if it is closed with respect to d and
d∗. Denote by Ĥarm

•
(Σ) the space of ultra-harmonic forms on Σ. Note that Ω•

D̂j
(Σ)

and Ω•
N̂j

(Σ) are both subcomplexes of Ω•(Σ) with respect to d and d∗, respectively. One
can easily see that ultra-harmonic Dirichlet forms are ultra-Dirichlet and ultra-harmonic
Neumann forms are ultra-Neumann. Let ∆Hodge := dd∗ + d∗d denote the Hodge Laplacian.
The Hodge chain contraction is then given by K = d∗/(∆Hodge + πHarm), where πHarm

denotes the projection to (ultra-)harmonic forms. The propagator P is then a smooth
form on the compactified configuration space Conf2(Σ) := {(u1, u2) ∈ Σ× Σ | u1 6= u2}.
Moreover, consider the space D := {(u1, u2) ∈ (∂1Σ × Σ) ∪ (∂2Σ × Σ) | u1 6= u2} (see
Appendix B for more on configuration spaces on manifolds with boundary). Then we get that
P ∈ Ωd−1(Conf2(Σ),D) = {γ ∈ Ωd−1(Conf2(Σ)) | i∗Dγ = 0}, where iD : D ↪! Conf2(Σ)
denotes the inclusion. We can write the propagator as a path integral

P =
1

TΣ

(−1)d

i~

∫

L
exp

(
iŜΣ/~

)
π∗1X π∗2Y ,

where πj : Σ × Σ ! Σ for j = 1, 2 denotes the projection onto the first and second factor,
respectively and TΣ =

∫
L exp(iŜΣ/~) ∈ C⊗Dens

1
2 (VΣ)/{±1} is given in terms of the Ray–

Singer torsion [RS71] which is defined through zeta regularization which does not depend
on the choice of L since the Ray–Singer torsion does not depend on the choice of metric.
Let N be a (d − 1)-manifold and let HnN,` be the vector space of n-linear functionals on
Ω•(N)[`] of the form

Ω•(N)[`] 3 D 7!
∫

Nn

γπ∗1D · · ·π∗nD

up to multiplication with a term given by the Reidemeister torsion [Rei35] of N . We have
denoted by γ a distributional form on Nn. The boundary state space HP∂Σ is then given by

HP∂Σ =

∞∏

n1,n2=0

Hn1
∂1Σ,1⊗̂Hn2

∂2Σ,d−2

and ĤPΣ = HP∂Σ⊗̂Dens
1
2 (VΣ). Perturbatively, the BV-BFV partition function is asymptoti-

cally given by

TΣ exp(iSeff
Σ /~)×

×
∑

j≥0

~j
∑

n1,n2≥0

∫

(∂1Σ)n1×(∂2Σ)n2

Rjn1n2
(x, y)π∗1,1X

i1 · · ·π∗1,n1
Xinπ∗2,1Yi1 · · ·π∗2,n2

Yin ,
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whereRjn1n2(x, y) denotes distributional forms on (∂1Σ)n1×(∂2Σ)n2 with values in Dens
1
2 (VΣ).

Note that we sum over i1, . . . , in. Moreover, we have denoted by Seff
Σ the effective action27

given by

Seff
Σ = (−1)d−1

(∫

∂2Σ

∑

i

Yix
i −
∫

∂1Σ

∑

i

yiX
i

)
− (−1)2d

∫

∂2Σ×∂1Σ

∑

i

π∗1YiPπ∗2X
i.

The BFV boundary operator acting on HP∂Σ is then given by the ordered standard quanti-
zation of the BFV boundary action S∂∂Σ:

ΩP∂Σ = (−1)di~

(∫

∂2Σ

∑

i

d∂ΣYi
δ

δYi
+

∫

∂1Σ

∑

i

d∂ΣX
i δ

δXi

)
.

Suppose now that we have two smooth d-manifolds Σ1 and Σ2 with common boundary
component (d− 1)-manifold N . We can then compute the glued partition function ZBV

Σ for
the glued manifold Σ = Σ1 ∪N Σ2 (see Figure 4.5.1) out of the BV-BFV partition functions
ZBV−BFV

Σ1,∂Σ1
on Σ1 and ZBV−BFV

Σ2,∂Σ2
on Σ2. We consider the transversal polarization on F∂N . In

particular, we decompose the boundaries ∂Σ1 = ∂1Σ1 t ∂2Σ1 and ∂Σ2 = ∂1Σ2 t ∂2Σ2 such
that N ⊂ ∂1Σ1 and Nopp ⊂ ∂2Σ2. Let XN

1 and YN
2 be the coordinates on Ω•(N)[1] and

Ω•(N)[d− 2], respectively. The glued state is then given by

ZBV
Σ =

∫

{XN1 ,YN2 }
exp

(
i

~
(−1)d−1

∫

N

∑

i

(YN
2 )i(X

N
1 )i

)
ZBV−BFV

Σ1,∂Σ1
ZBV−BFV

Σ2,∂Σ2
.

The glued partition function can be computed by considering the glued effective action and
then considering ZBV

Σ = TΣ1TΣ2 exp(iSeff
Σ /~).

Remark 4.6.1. This construction can be generalized to the case of BF -like theories (pertur-
bations of abelian BF theory), see [CMR17] for more details. In particular, this is important
since AKSZ theories often appear as BF -like theories. This will be relevant especially for
treating DW theory in the BV-BFV setting by regarding it as an AKSZ theory, which will
be the content of Section 5. An important result regarding the gluing for BF -like theories
is given by the following proposition.

Proposition 4.6.2 (Cattaneo–Mnev–Reshetikhin[CMR17]). Let Σ be cut along a codimension-
one submanifold N into Σ1 and Σ2. Let ZBV−BFV

Σ1,N
and ZBV−BFV

Σ2,Nopp be the boundary states for
Σ1 and Σ2 with a choice of residual fields and propagators and transverse (X vs. Y) polar-
izations on N . Then the gluing of ZBV−BFV

Σ1,N
and ZBV−BFV

Σ2,Nopp is the state ZBV−BFV

Σ,∂Σ for Σ with the
consequent choice of residual fields and propagators.

4.7. BV-BFkV extension and shifted symplectic structures. If we move to higher
defects, the symplectic form will be shifted by degree +1. In particular, if we consider a
codimension k submanifold Nk ⊂ Σ, then the symplectic gauge formalism associated to Nk

will be (k− 1)-shifted. We will call the theory associated to a codimension k submanifold a
BFkV theory and the coupling for each contiguous codimension (fully extended) a BV-BFkV
theory associated to the d-manifold Σ. The underlying mathematical theory for shifted
symplectic structures was developed first in [Pan+13] by using methods and the language
of derived algebraic geometry and studied further by various people. In [Pan+13], they
define first a symplectic form on a smooth scheme over some base ring k of characteristic

27One can easily check that the partition function ZBV−BFV

Σ,∂Σ = TΣ exp(iSeff
Σ /~), defined through the

effective action Seff
Σ , satisfies the mQME (4.4.5)
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zero to be a 2-form ω ∈ H0(X,Ω2,cl
X/k) which moreover is required to be nondegenerate, i.e.

it induces an isomorphism Θω between the tangent and cotangent bundles of X. Then
one can define an n-shifted symplectic form on a derived Artin stack X (in particular,
they consider X to be the solution of a derived moduli problem (see also [Toë14])) to be a
closed 2-form ω ∈ Hn(X,

∧2 LX/k) of degree n on X such that the corresponding morphism
Θω : TX/k ! LX/k[n] is an isomorphism in the derived category of quasi-coherent sheaves
DbQCoh(X) on X. Here we have denoted by LX/k the cotangent complex of X and by TX/k
its dual, the tangent complex of X. Of course, it is important to mention what closed in this
setting actually means. They define closedness of general p-forms by interpreting sections
of
∧2 LX/k as functions on the derived loop stack LX and consider it as some type of S1-

equivariance property. An important result of [Pan+13] is an existence result concerning a
derived algebraic version of the AKSZ formulation in this setting. In particular, they prove
the following theorem:

Theorem 4.7.1 (Pantev–Toën–Vaquié–Vezzosi[Pan+13]). Let X be a derived stack endowed
with an O-orientation of dimension d, and let (F, ω) be a derived Artin stack with an n-
shifted symplectic structure ω. Then the derived mapping stack Map(X,F ) carries a natural
(n− d)-shifted symplectic structure.

The BV-BFV formalism, as described in Section 4, can be easily extended to higher codi-
mensions in the classical setting, but needs more sophisticated methods in the quantum
setting [CMR14; Mos21]. As discussed in [Mos21], the quantum setting needs to couple
the methods of deformation quantization to the methods of geometric quantization, both in
the shifted setting. Fortunately, also the methods for shifted Poisson structures and shifted
deformation quantization have been developed in [Cal+17; Saf17]. The setting of geometric
quantization in the shifted picture has been recently considered in [Saf20]. The methods
developed in [Pan+13] have been considered for the setting of codimension 1 structures
(BV-BFV) in [Cal15] for the setting of AKSZ topological field theories by using Lagrangian
correspondences and have been recently (fully) extended by Calaque, Haugseng and Sche-
imbauer [CHS].

Example 4.7.2 (Chern–Simons theory). As an example we want to discuss the 3-dimensional
case of Chern–Simons theory (see Section 3.2). Recall that the phase space is given by the
moduli space of flat G connections for some compact Lie group G. In the codimension 0
case, we are working over a closed oriented 3-manifold Σ (see Figure 4.7.1) which carries the
induced BV symplectic structure, i.e. a (−1)-shifted structure. In the codimension 1 case
we are working over a closed oriented 2-manifold N1 ⊂ Σ (e.g. some Riemann surface Σg of
genus g), to which we can associate a phase space endowed with the Atiyah–Bott symplectic
structure [AB83], which is a 0-shifted structure. In the codimension 2 case we are working
over a closed oriented 1-manifold S1 ∼= N2 ⊂ Σ, for which the phase space is given by the
stack of conjugacy classes [G/G] and we can consider a 1-shifted symplectic structure by
the canonical 3-form on G. Finally, in the codimension 3 case we consider a point pt (0-
manifold), for which the phase space is given by the classifying stack BG = [pt/G] endowed
with the 2-shifted symplectic form given by the invariant pairing (Killing form) on the Lie
algebra g = Lie(G).
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Figure 4.7.1. Examples of 2-dimensional defects sitting inside the 3-ball.

5. AKSZ formulation of DW theory

In this section we want to describe a way of obtaining the DW action functional as in Section
2.3 in terms of an AKSZ theory by choosing a suitable gauge-fixing Lagrangian submanifold
L [BS89; Ike11; Bon+20].

5.1. AKSZ data. Let h be a Lie algebra and consider its Weil model28 (W(h),dW). Note
thatW(h) can be endowed with a natural symplectic form of degree +3 if h is endowed with
an invariant, nondegenerate symmetric pairing 〈 , 〉. We want to consider this symplectic
manifold to be the target for a 4-dimensional AKSZ theory. The graded vector space h[1]⊕
h[2] is endowed with the symplectic structure

ω = 〈δX, δY 〉,
where X denotes the coordinate of degree +1 and Y denotes the coordinate of degree +2.
We can define a Hamiltonian of degree +4 by

Θ(X,Y ) =
1

2
〈Y, Y 〉+

1

2
〈Y, [X,X]〉.

One can check that the Hamiltonian vector field of Θ with respect to ω is given by the Weil
differential dW . We have

(5.1.1) dWX = Y +
1

2
[X,X], dWY = [X,Y ].

Let now Σ be a 4-manifold and consider the BV space of fields

FΣ = Map(T [1]Σ, h[1]⊕ h[2]) ∼= Ω•(Σ)⊗ h[1]⊕ Ω•(Σ)⊗ h[2].

The superfields are given by

X(u, θ) = X +Aθi1 + χθi1θi2 + ψ†θi1θi2θi3 + Y †θi1θi2θi3θi4 ,(5.1.2)

Y(u, θ) = Y + ψθi1 + χ†θi1θi2 +A†θi1θi2θi3 +X†θi1θi2θi3θi4 .(5.1.3)

for local coordinates (ui, θ
i) on T [1]Σ. The BV symplectic form is given by

ωΣ =

∫

T [1]Σ
µ4〈δX, δY〉,

28For a Lie algebra h, the Weil model is given by the algebra W(h) :=
∧•(h∗ ⊕ h∗[1]) together with

a differential dW : W(h) ! W(h) such that (W(h),dW) is a differential graded algebra. The differential
is defined to act on h∗ as the differential for the Chevalley–Eilenberg algebra of h plus the degree shift
differential. In particular dW = dCE(h) + ds, where ds acts by degree shift h∗ ! h∗[1] for elements in h and
by 0 for elements in h∗[1].
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and the AKSZ-BV action is given by

SΣ =

∫

T [1]Σ
µ4

(
〈Y,dΣX〉+

1

2
〈Y,Y〉+

1

2
〈Y, [X,X]〉

)
.

We have denoted by µ4 := d4ud4θ the supermeasure on T [1]Σ. If we expand things into
components and perform Berezinian integration, we get

(5.1.4) ωΣ =

∫

Σ
d4u

(
δXδX† + δAδA† + δχδχ† + δψ†δψ + δY †δY

)

and

(5.1.5) SΣ =

∫

Σ
d4u

(
〈ψ,dAχ〉+

1

2
〈Y, [χ, χ]〉+ 〈ψ†, (dAY + [X,ψ])〉

+ 〈χ†, (FA + [X,χ])〉+ 〈A†, (ψ + dAX)〉+ 〈Y †, [X,Y ]〉

+

〈
X†,

(
1

2
[X,X]

)〉
+

1

2
〈χ†, χ†〉

)
,

where dA = dΣ + [A, ] denotes the covariant derivative of A and FA = dΣA+ 1
2 [A,A]. The

BV transformations on the superfields are then given by

QΣX = dΣX + Y +
1

2
[X,X],(5.1.6)

QΣY = dΣY + [X,Y],(5.1.7)

i.e., in superfield notation, the cohomological vector field is given by

(5.1.8) QΣ =

∫

T [1]Σ
µ4

((
dΣX + Y +

1

2
[X,X]

)
δ

δX
+
(
dΣY + [X,Y]

) δ

δY

)

In component fields and after Berezinian integration, we get the cohomological vector field

(5.1.9) QΣ =

∫

Σ
d4u

((
Y +

1

2
[X,X]

)
δ

δX
+ (ψ + dAX)

δ

δA
+ (χ† + FA + [X,χ])

δ

δχ

+ (dAχ+A† + [X,ψ†])
δ

δψ†
+ (dAψ

† +X† + [X,Y †])
δ

δY †
+ [X,Y ]

δ

δY

+ (dAY + [X,ψ])
δ

δψ
+ (dAψ + [X,χ†] + [χ, Y ])

δ

δχ†

+ (dAχ
† + [X,A†] + [ψ†, Y ] + [χ.ψ])

δ

δA†

+ (dAA
† + [X,X†] + [Y †, Y ] + [ψ†, ψ] + [χ, χ†])

δ

δX†

)
,

where we have used the relation in (5.1.1).

5.2. A suitable gauge-fixing. Consider a Riemannian metric on Σ such that we can take
a splitting of the fields χ, χ† into self-dual and anti self-dual parts

χ = χ+ + χ−,(5.2.1)

χ† = χ+† + χ−†.(5.2.2)

We can take the gauge-fixing where χ− = χ+† = 0 and all other forms are coexact when
using Hodge decomposition. This will imply that X† = Y † = 0. Introduce new fields X̄ and
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b with deg(X̄) = deg(b) = 0 and gh(X̄) = −1 and gh(b) = 0 together with corresponding
anti-fields X̄† and b† with deg(X̄†) = deg(b†) = 4, such that gh(X̄†) = 0 and gh(b†) = −1,
respectively. Moreover, we consider the term

S(1)
Σ =

∫

Σ

(
〈X̄†, (b+ [X, X̄])〉+ 〈b†, ([X, b]− [Y, X̄])〉

)
.

Additionally, introduce more new fields (Ȳ , η) with deg(Y ) = deg(η) = 0 and gh(Ȳ ) = −2
and gh(η) = −1 together with corresponding anti-fields Ȳ † and η† with deg(Ȳ †) = deg(η†) =
4, such that gh(Ȳ †) = +1 and gh(η†) = 0. We consider the term

S(2)
Σ =

∫

Σ

(
〈Ȳ †, (η + [X, Ȳ ]〉+ 〈η†, ([X, η] + [Ȳ , Y ])〉

)
.

The gauge-fixed BV action is then obtained by

Sgf
Σ = SΣ + S(1)

Σ + S(2)
Σ

with gauge-fixing fermion

(5.2.3) Ψgf =

∫

Σ
〈X̄, d ∗A〉+

∫

Σ
〈Ȳ , d ∗ ψ〉.

such that Sgf
Σ = SΣ + QΣΨ

gf . The auxiliary fields χ−† have ghost number zero and can be
actually integrated out. One can check that the gauge-transformations for each field squares
to zero except the one for χ+. Namely, we have

δ2χ+ = (dAψ)+ + [Y, χ+],

which is the equation of motion for this setting. Hence, the tuple

(A, Y, ψ, χ+, Ȳ , η)

is the same as in the construction of Section 2.3.

5.3. BV-BFV formulation. As an AKSZ theory, there a nice way of treating DW theory
as a gauge-theory on 4-manifolds with boundary. Let Σ be a 4-manifold with 3-dimensional
boundary ∂Σ. As obtained in Section 5.1, the BV theory of the AKSZ construction of DW
theory is given by

(FΣ, ωΣ,SΣ).

One can then easily formulate a BFV theory on the boundary ∂Σ by setting

F∂∂Σ := Map(T [1]∂Σ, h[1]⊕ h[2]) ∼= Ω•(∂Σ)⊗ h[1]⊕ Ω•(∂Σ)⊗ h[2],(5.3.1)

ω∂∂Σ :=

∫

T [1]∂Σ
µ3〈δX, δY〉,(5.3.2)

S∂∂Σ :=

∫

T [1]∂Σ
µ3

(
〈Y,d∂ΣX〉+

1

2
〈Y,Y〉+

1

2
〈Y, [X,X]〉

)
,(5.3.3)

where µ3 := d3ud3θ denotes the supermeasure on T [1]∂Σ for local coordinates (ui, θi) on
T [1]∂Σ. The boundary superfields are given by

X(u, θ) = X + Aθi1 + χθi1θi2 + ψ†θi1θi2θi3 ,(5.3.4)

Y(u, θ) = Y + ψθi1 + χ†θi1θi2 + A†θi1θi2θi3 .(5.3.5)

The cohomological vector field Q∂∂Σ is given by the Hamiltonian vector field of S∂∂Σ:

ιQ∂∂Σ
ω∂∂Σ = δS∂∂Σ.
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It is easy to see that ω∂∂Σ is exact with primitive 1-form

α∂∂Σ =

∫

T [1]∂Σ
µ3〈Y, δX〉.

If we expand things into components and perform Berezinian integration, we get

(5.3.6) ω∂∂Σ =

∫

∂Σ
d3u

(
δXδA† + δAδχ† + δχδψ + δψ†δY

)

and

(5.3.7) S∂∂Σ =

∫

∂Σ
d3u

(
〈ψ,FA〉+ 〈χ†,dAX〉+ 〈Y,dAX〉

+

〈
A†,Y +

1

2
[X,X]

〉
+ 〈Y, [X, ψ†]〉+ 〈ψ, χ† + [X, χ]〉

)
,

where dA = d∂Σ + [A, ] denotes the covariant derivative of A and FA = d∂ΣA+ 1
2 [A,A]. The

BV transformations on the superfields are then given by

Q∂∂ΣX = d∂ΣX+Y +
1

2
[X,X],(5.3.8)

Q∂∂ΣY = d∂ΣY + [X,Y],(5.3.9)

i.e., in superfield notation, the cohomological vector field is given by

(5.3.10) Q∂∂Σ =

∫

T [1]∂Σ
µ3

((
d∂ΣX+Y +

1

2
[X,X]

)
δ

δX
+
(
d∂ΣY + [X,Y]

) δ
δY

)

In component fields and after Berezinian integration, we get the cohomological vector field

(5.3.11) Q∂∂Σ =

∫

∂Σ
d3u

((
Y +

1

2
[X,X]

)
δ

δX
+ (ψ + dAX)

δ

δA
+ (χ† + FA + [X, χ])

δ

δχ

+ (dAχ + A† + [X, ψ†])
δ

δψ†
+ (dAψ

† + [X,Y])
δ

δY

+ (dAY + [X, ψ])
δ

δψ
+ (dAψ + [X, χ†] + [χ,Y])

δ

δχ†

+ (dAχ
† + [X,A†] + [ψ†,Y] + [χ, ψ])

δ

δA†

)
.

By setting πΣ : FΣ ! F∂∂Σ to be the restriction of the fields to the boundary, we get that
the modified CME

QΣSΣ = π∗Σ(2S∂∂Σ − ιQ∂∂Σ
α∂∂Σ)

is satisfied and that the cohomological vector field QΣ is indeed projectable, i.e. we have

δπΣQΣ = Q∂∂Σ.

6. Quantization of DW theory in the BV-BFV setting

6.1. The BFV boundary operator. Assume now that we can write the boundary as
a disjoint union ∂Σ = ∂1Σ t ∂2Σ where ∂1Σ and ∂2Σ have opposite orientation. We
choose the convenient polarization P on ∂Σ consisting of choosing the δ

δY -polarization
(X-representation) on ∂1Σ and the δ

δX -polarization (Y-representation) on ∂2Σ (see Fig-
ure 4.6.1). As we have seen in Section 4.4, we can compute the BFV boundary operator
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ΩP∂Σ as the ordered standard quantization of the boundary action S∂∂Σ with respect to the
chosen polarization. We get

ΩP∂Σ = ΩP0 + ΩPpert,

where

(6.1.1) ΩP0 := i~
∫

∂1Σ

∑

i

d∂1ΣX
i δ

δXi

︸ ︷︷ ︸
=:ΩX0

+ i~
∫

∂2Σ

∑

i

d∂2ΣYi
δ

δYi
︸ ︷︷ ︸

=:ΩY0

,

and

(6.1.2) ΩPpert = ΩXpert + ΩYpert,

with

(6.1.3) ΩXpert :=

∫

∂1Σ


−~2

2

∑

i,j

δ2

δXiδXj
+

i~
2

∑

i,j,k

ckijX
iXj δ

δXk


 ,

and

(6.1.4) ΩYpert :=

∫

∂2Σ


1

2

∑

i,j

δijYiYj −
~2

2

∑

i,j,k

ckijYk
δ2

δYiδYj


 ,

where δij denotes the Kronecker delta and ckij the structure constants of the Lie bracket [ , ].

6.2. Composite fields. In order to regularize the higher functional derivatives, one needs
to introduce the concept of composite fields as in [CMR17]. In particular, we want to regard
the higher functional derivates as a single first order derivative with respect to the composite
field. In order to get it coherent to the naive interpretation where a higher functional
derivative concentrates the fields on some diagonal, we should also understand the product
of integrals as containing the diagonal contributions for the corresponding composite field.
We consider the following bullet product of integrals

(6.2.1)

(∫

∂kΣ

∑

i

αiΦ
i

)
•



∫

∂kΣ

∑

j

βjΦ
j


 :=

(−1)gh(Φi)(gh(βj)−3)+3gh(αi)



∫

Conf2(∂kΣ)

∑

i,j

π∗1αiπ
∗
2βjπ

∗
1Φiπ∗2Φj +

∫

∂kΣ

∑

i,j

αiβj [Φ
iΦj ]


 ,

where α and β are smooth forms which depend on the bulk and residual fields and we
denote by [ΦiΦj ] the composite field. We can now interpret the operator

∫
∂kΣ φ

ij δ2

δΦiδΦj
as∫

∂kΣ φ
ij δ
δ[ΦiΦj ]

. Hence, we get
∫

∂kΣ
φij

δ2

δΦiδΦj

((∫

∂kΣ
αiΦ

i

)
•
(∫

∂kΣ
βjΦ

j

))
=

∫

∂kΣ
αiβjφ

ij .

More general, let I := (i1, . . . , in) be a multi-index and note that we can replace the higher
derivative δn

δΦi1 ···δΦin by the first order derivative δ
δ[ΦI ]

:= δ
δ[Φi1 ···Φin ]

with respect to the
composite field [ΦI ] := [Φi1 · · ·Φin ]. The higher functional derivatives appearing in the
BFV boundary operator are then regularized by using composite fields and it acts on the
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state space given by regular functionals, i.e. on the algebra which is generated by linear
combinations of expressions of the form

(6.2.2)
∫

Confm1 (∂1Σ)×Confm2 (∂2Σ)
Z
J1

1 ···J
`1
1 J1

2 ···J`2 ···
I1
1 ···I

r1
1 I1

2 ···I
r2
2 ···

π∗1

r1∏

j=1

[
XIj1

]
· · ·π∗m1

rm1∏

j=1

[
XIjm1

]
×

× π∗1
`1∏

j=1

[
Y
Jj1

]
· · ·π∗m2

`m2∏

j=1

[
Y
Jjm2

]
,

where Iji and J ji are multi-indices and Z
J1

1 ···J
`1
1 J1

2 ···J`2 ···
I1
1 ···I

r1
1 I1

2 ···I
r2
2 ···

is a smooth form on the product

Confm1(∂1Σ) × Confm2(∂2Σ). If we denote by exp• the exponential defined through the
bullet product • constructed as in (6.2.1), we can see that

∫

∂kΣ
φI

δ

δΦI

〈
exp• (Sres

Σ + Ssource
Σ )

〉
=

〈∫

∂kΣ
φI

δ

δΦI
exp• (Sres

Σ + Ssource
Σ )

〉
,

where

Sres
Σ :=

∫

∂1Σ
〈y,X〉 −

∫

∂2Σ
〈Y, x〉,

Ssource
Σ :=

∫

∂1Σ
〈Y ,X〉 −

∫

∂2Σ
〈Y,X 〉,

The full boundary state is then defined through the regularization of composite fields by
using (6.2.2):

(6.2.3) Z•,BV−BFV

Σ,∂Σ := ZBV−BFV

Σ,∂Σ

〈
exp• (Sres

Σ + Ssource
Σ )

〉
,

where
〈 〉

denotes the expectation value with respect to SΣ, i.e. for an observable O ∈ OF ,
we have

〈
O
〉

:=

∫
exp(iSΣ(X,Y)/~)O(X,Y)D [X]D [Y].

Let I1, . . . , Im1 and J1, . . . , Jm2 be multi-indices for m1,m2 ≥ 1. Denote by Γ′k for k = 1, 2
the graphs with m1 vertices on ∂kΣ, where vertex s has valency |Is| ≥ 1, with adjacent half-
edges oriented inwards and decorated with boundary fields

[
ΦI1
k

]
, . . . ,

[
Φ
Im1
k

]
all evaluated

at the point of collapse u ∈ ∂kΣ. We also want them to have |J1|+ · · ·+ |Jm2 | outward leaves
if k = 1 and |J1|+ · · ·+ |Jm2 | inward leaves if k = 2, decorated with functional derivatives
with respect to the boundary fields:

i~
δ

δ
[
ΦJ1
k

] , . . . , i~ δ

δ
[
Φ
Jm2
k

]

evaluated at the point of collapse u ∈ ∂kΣ. Moreover, there are no outward leaves if k = 2
and no inward leaves if k = 1. Denote by σΓ′i

the differential form given by

σΓ′k
:=

∫

CΓ′
k

(H4)
ωΓ′k

,

where ωΓ′k
denotes the product of limiting propagators at the point of collapse u ∈ ∂kΣ

and vertex tensors. Then we can construct the corresponding full BFV boundary operator
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through the regularization of composite fields as

(6.2.4) Ω•,P∂Σ = ΩP0 + Ω•,Xpert + Ω•,Ypert,

where

Ω•,Xpert :=
∑

m1,m2≥0

∑

Γ′1

(−i~)`(Γ
′
1)

|Aut(Γ′1)|

∫

∂1Σ

(
σΓ′1

)J1···Jm2

I1···Im1

m1∏

j=1

[
XIj

]
(

(−1)4m2(i~)m2
δ|J1|+···+|Jm2 |

δ
[
XJ1 · · ·XJm2

]
)(6.2.5)

Ω•,Ypert :=
∑

m1,m2≥0

∑

Γ′2

(−i~)`(Γ
′
2)

|Aut(Γ′2)|

∫

∂2Σ

(
σΓ′2

)J1···Jm2

I1···Im1

m1∏

j=1

[
YIj
]
(

(−1)4m2(i~)m2
δ|J1|+···+|Jm2 |

δ
[
YJ1 · · ·YJm2

]
)(6.2.6)

6.3. Feynman rules. In order to formulate a BV-BFV quantization, i.e. for the boundary
state and the BFV boundary operator, we need to consider the Feynman graphs on the source
manifold Σ (see Figure 6.3.1 for an example) for DW theory. The graphs are determined
by the Feynman rules of the theory and the corresponding degree count (see Section 6.5).
The Feynman rules are determined by the AKSZ action functional SΣ of DW theory. In
particular, the interaction vertices are given by the ones as in Figure 6.3.2. The boundary
vertices are given by Figure 6.3.3 and 6.3.4.

X

X

Y

∂
(1)
1 Σ

∂
(2)
1 Σ

∂2Σ

Figure 6.3.1. Example of a Feynman graph on the source manifold.

6.4. The partition function. The partition function (or boundary state) is then formally
given by the functional integral where we integrate out the fluctuations, i.e. by

(6.4.1) ZBV−BFV

Σ,∂Σ (X,Y, x, y; ~) =

∫

L⊂Y ′
exp (iSΣ(X,Y)/~) D [X ]D [Y ]

where the Lagrangian submanifold is given by the gauge-fixing as in Section 5.2, i.e.

L = graph(dΨgf),
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1
ck(X)

x

y

Figure 6.3.2. The Feynman rules for DW theory. The first type of vertex
corresponds to the term 1

2〈Y,Y〉 = 1
2

∑
iYiYi. There are two outgoing

arrows and no incoming arrow for the first vertex type. The second type of
vertex corresponds to the term 1

2〈Y, [X,X]〉 = 1
2

∑
i,j,k c

k
ijX

iXjYk, where
ckij are the structure constants of the Lie bracket and where we have denoted
ck(X) := ckijX

iXj . There are at most two incoming arrows and exactly
one outgoing arrow for the second vertex type. Finally, we also have leaves
corresponding to the residual fields. Note that an arrow between vertices
represents the propagator from the starting to the end point.

u1X

u2 Y

Figure 6.3.3. The Feynman rules for vertices on the boundary

[Xi1 · · ·Xin ]

[Yi1 · · ·Yin ]

...
...

Figure 6.3.4. The Feynman rules for composite field vertices on the boundary

where Ψgf is the gauge-fixing fermion constructed as in (5.2.3). The integral (6.4.1) is defined
perturbatively as a formal power series in ~ in terms of the Feynman graphs given by the
according Feynman rules as in Section 6.3, i.e. we can rewrite it as a perturbative expansion
around critical points of SΣ as

(6.4.2) ZBV−BFV

Σ,∂Σ (X,Y, x, y; ~) = TΣ exp

(
i

~
∑

Γ

(−i~)`(Γ)

|Aut(Γ)|

∫

ConfΓ(Σ)
ωΓ(X,Y, x, y)

)
,

where we sum over connected Feynman graphs Γ and where `(Γ) denotes the number of
loops of Γ. Moreover, the integral in (6.4.2) is over the configuration space of the vertex
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set of Γ regarded as points in Σ where we integrate a differential form ωΓ depending on the
boundary fields and residual fields.

6.5. Degree count and Feynman graphs. Note that we want the dimension of the con-
figuration space ConfΓ(Σ) to match the form degree of the differential form ωΓ in order to
perform the integrals in (6.4.2). Note that the dimension of the configuration space is given
by

dim ConfΓ(Σ) = 4n+ 3m,

where n denotes the amount of vertices in the bulk and m the amount of vertices on the
boundary. Using the fact that the propagator P ∈ Ω3(Conf2(Σ)) is a 3-form on the
configuration space of two points, the form degree of the differential form ωΓ is given by
6 ·#I + 3 ·#II, where #I denotes the amount of first type vertices and #II the amount
of second type vertices as in Figure 6.3.2. Thus we get the system of equations

4n+ 3m = 6 ·#I + 3 ·#II,
n = #I + #II.

(6.5.1)

Now if m = 0, we get 2 ·#I = #II. Hence, one can check that the diagrams which give a
contribution are either wheels with an even amount of type II vertices and 1

2 ·#I vertices
attached to them as in Figure 6.5.1.

u1

u2

u3

u4

u5

u6

u1

u2

u3

u4

u5

u6

u7

u8

u9

u1 u2

u3

Figure 6.5.1. Example of wheel graphs appearing due to the degree count.
In the first graph we have #II = 2 and #I = 1, in the second graph we have
#II = 4 and #I = 2 and in the third graph we have #II = 6 and #I = 3.
In fact, the first graph does not give any contribution, since by Kontsevich’s
lemma [Kon03] all the graphs with double edges (i.e. graphs where there exist
two vertices which have exactly two arrows (propagators) connecting them)
vanish. This can be seen by using the angle form on H4.

When m 6= 0, the system of equations (6.5.1) gives us 2 ·#I −#II − 3m = 0. Example of
Feynman graphs in this setting are given in Figure 6.5.3.

6.6. The modified Quantum Master Equation. We can now prove the following theo-
rem:

Theorem 6.6.1 (mQME for DW theory). The BV-BFV partition function ZBV−BFV

Σ,∂Σ for DW
theory satisfies the modified Quantum Master Equation, i.e.

(
~2∆VΣ

+ Ω•,P∂Σ

)
Z•,BV−BFV

Σ,∂Σ = 0,
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u

Figure 6.5.2. Short loop graphs (tadpoles) are not allowed since the propa-
gator is singular on the diagonal. By a unimodularity condition which needs
to be satisfied on h[1] ⊕ h[2], one can actually exclude these graphs. The
condition is that the structure constants ckij of the Lie bracket on h[1]⊕ h[2]

satisfy
∑

i c
i
ij = 0. In fact, the unimodularity condition can be dropped if

the Euler characteristic of Σ vanishes.

u1

u2

u3

u

u1 u2

u3

u4 u5

u6

u1 u2

Figure 6.5.3. Example of Feynman graphs when m 6= 0. In the left graph
we have m = 1, #I = 2 and #II = 2. In the right graph we have m = 2,
#I = 4 and #II = 2. Similarly as befor, the second graph does not give any
contribution since by Kontsevich’s lemma [Kon03] all the graphs with double
edges vanish.

u1

u2

u3

u4

u5

u6

y x

yx

u1

u2
u3

u4

u5

u6

u7

u8

u9

y x

yxy

x

Figure 6.5.4. Example of Feynman graphs with leaves (residual fields).
Note that the y-leaves give a contribution of form degree 2, whereas the x-
leaves give a contribution of form degree 1. Gluing residual fields will induce
a propagator of form degree 3.

where Ω•,P∂Σ = ΩP0 + Ω•,Ppert with ΩP0 being the unperturbed quantization part as defined in
(6.1.1) and Ω•,Ppert := Ω•,Xpert + Ω•,Ypert is fully determined by the boundary configuration space
integrals.
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Proof of Theorem 6.6.1. The proof is on the level of graphs. First, we want to describe
the construction of Ω•,Ppert in terms of boundary configuration space integrals. Consider
the compactified configuration space ConfΓ and ωΓ the corresponding differential form, for
some Feynman graph Γ. Then, using Stokes’ theorem, we get

∫
ConfΓ

dωΓ =
∫
∂ConfΓ

ωΓ.
When we apply the de Rham differential d to ωΓ on the left-hand-side, it can either act
on an X-field, Y-field or on the propagator P. Clearly, the part acting on the X- or Y-
fields corresponds to the action of 1

i~ΩP0 , whereas the part acting on the propagator will
correspond to the action of −i~∆VΣ

on the partition function Z•,BV−BFV

Σ,∂Σ . The integral over
the boundary configuration space on the right-hand-side contains terms of different possible
strata for the corresponding manifold with corners. It either contains integrals over boundary
components where two vertices collapse in the bulk, which we denote as situation (a), or
integrals over boundary components where more than two vertices collapse in the bulk29,
which we denote by situation (b), or integrals over boundary components where two or more
(bulk and/or boundary) vertices collapse at the boundary or one single bulk vertex collapses
to the boundary, which we denoted by situation (c). For situation (a), we can note that
since we assume the CME to hold which equivalently translates to the fact that

1

2

4∑

i=1

± δ

δXi
(〈Y,Y + [X,X]〉) · δ

δYi
(〈Y,Y + [X,X]〉) = 0,

the combinatorics of the Feynman graphs in the perturbative expansion leads to the can-
cellation of such terms when summing over all graphs. For situation (b), one can use the
usual vanishing theorems [Kon03; Kon93; Bot96; BT94] in order to get rid of faces where
all vertices of a connected component of a Feynman graph collapse. For situation (c), note
that we can split such integrals into an integral over a subgraph Γ′ ⊂ Γ and an integral over
the graph which can be obtained by identifying all the vertices of Γ′ and deleting all edges
of Γ′ which we denote by Γ/Γ′. Hence, one can define the action of i

~Ω•,Ppert as the sum of the
boundary contributions coming from the subgraphs Γ′ ⊂ Γ and thus we have

Ω•,PpertZ
•,BV−BFV

Σ,∂Σ :=
∑

Γ

∑

Γ′⊂Γ

∫

CΓ′ (H4)×ConfΓ/Γ′ (Σ)
ωΓ′ .

�
Remark 6.6.2 (Principal part). It is important to note that in the setting of DW theory,
there are no higher corrections for the definition of the principal part of Ω•,P∂Σ , i.e. the term
Ω•,Ppert which is in general of the form (6.2.5)+(6.2.6). This is due to the fact that we are
working with 4-dimensional source manifolds and by the result of the following lemma.

Lemma 6.6.3 (Cattaneo–Mnev–Reshetikhin[CMR17]). Let Σ be a d-dimensional source
manifold. If d is even, then the principal part of Ω•,P∂Σ is directly given by the ordered standard
quantization of the boundary action S∂∂Σ. If d is odd, the principal part of Ω•,P∂Σ is given by
the ordered standard quantization of the modified boundary action

S̃∂∂Σ := S∂∂Σ − i~
[ d−3

4 ]∑

j=0

∫

∂Σ
γj Tr add−4j

X ,

where γj is a closed 4j-form on ∂Σ which is an invariant polynomial, with universal coeffi-
cients, of the curvature of the connection used in the construction of the propagator.

29Usually called hidden faces.
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Moreover, we can prove the following theorem:

Theorem 6.6.4 (Flatness of BFV boundary operator). The full BFV boundary operator
Ω•,P∂Σ for DW theory squares to zero and hence we have a well-defined BV-BFV cohomology
for DW theory, i.e. the operator ~2∆VΣ

+ Ω•,P∂Σ squares to zero.

Proof of Theorem 6.6.4. It is easy to see that if Ω•,P∂Σ squares to zero, so does ~2∆VΣ
+ Ω•,P∂Σ

since ∆VΣ
squares to zero and [∆VΣ

,Ω•,P∂Σ ] = 0. Consider again a subgraph Γ′ ⊂ Γ as in the
definition of Ω•,P∂Σ in the proof of Theorem 6.6.1 with corresponding differential form σΓ′ over
the configuration space CΓ′(H4). Using Stokes’ theorem, we get

∫
CΓ′ (H4)

dσΓ′ =
∫
∂CΓ′ (H4)

σΓ′ .
Similarly as before, we can obtain that the part where the de Rham differential acts on the
boundary fields in σΓ′ corresponds to the action of 1

i~ΩP0 . Moreover, we can obtain the similar
three situations as in the proof of Theorem 6.6.1. In particular, the terms of situation (a)
cancel out when summing over all graphs, the terms of situation (b) are excluded by the
vanishing theorems and the terms of situation (c) lead to the action of Ω•,Ppert when summing
over all graphs. Hence, we have

ΩP0 Ω•,Ppert + Ω•,PpertΩ
P
0 + (Ω•,Ppert)

2 = 0,

since (ΩP0 )2 = 0. �

Remark 6.6.5. Instead of considering the boundary operator in terms of boundary config-
uration space integrals, one can also take the explicit form of Ω•,P∂Σ as in (6.2.4) in order to
prove that it squares to zero. In particular, for the full perturbation part, one can take the
sum of the corresponding full versions of (6.1.3) and (6.1.4).

Remark 6.6.6. By Witten’s approach [Wit88a] (see also Section 3.6), the expectation value
of the observable O as in (3.6.3) with respect the BV-BFV partition function for the DW
AKSZ-BV-action SΣ should be given by a Floer cohomology class associated to the boundary
after integrating out the residual fields (see [CMR17] for a possible integration theory on
VΣ). The resulting boundary state would then be of the form

Ψ∂Σ(X,Y) =

∫

VΣ

∫

L
exp(iSΣ(X,Y)/~)O(X,Y)D [X ]D [Y ]

︸ ︷︷ ︸
=
〈∏d

j=1O
(γj)

〉
=

〈∏d
j=1

∫
γj
Wkj

〉

∈ HF •(∂Σ) ⊂ HP∂Σ.

For a particular polarization adapted to the boundary condition given by the Floer co-
homology class Ψ∂Σ, the boundary state space HP∂Σ in this case should include the Floer
cohomology classes and thus the BFV boundary operator Ω•,P∂Σ should be given in terms of
the Floer differential. Note that here we want h = su(2). The gauge-fixing Lagrangian L is
given by the one considered in Section 5.2.

6.7. The modified differential Quantum Master Equation. Following the construc-
tion in [CMW19], we can perform globalization on the target of the DW AKSZ theory by
using methods of formal geometry as developed in [GF69; GF70; GK71; Bot10]. For a
manifold M and an open neighborhood U ⊂ TM of the zero section, we can consider a
generalized exponential map ϕ : U ! M such that ϕ(x, y) := ϕx(y), i.e. ϕ satisfies the
properties:

• ϕx(0) = x, ∀x ∈M ,
• dϕx(0) = idTxM , ∀x ∈M .
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Locally, we get

(6.7.1) ϕix(y) = xi + yi +
1

2
ϕix,jky

jyk +
1

3!
ϕix,jk`y

jyky` + · · ·

where (xi) are coordinates on the base and (yi) are coordinates on the fiber. A formal
exponential map is given by the equivalence class of generalized exponential maps with
respect to the equivalence relation which identifies two generalized exponential maps when
their jets agree to all orders. By abuse of notation, we will also denote formal exponential
maps by ϕ. We can define a flat connection D on Ŝym(T ∗M), where Ŝym denotes the
completed symmetric algebra. The connection is called Grothendieck connection [Gro68]
and can be locally written as D = d + R, where d denotes the de Rham differential on M
and R denotes a 1-form with values in derivations of the completed symmetric algebra of
the cotangent bundle30. For a section σ ∈ Γ(Ŝym(T ∗M)), we get that R acts on σ through
the Lie derivative, i.e. we have R(σ) = LRσ. Locally, we can express R = R`dx

`, where
R` := Rj`(x, y) ∂

∂yj
and

Rj`(x, y) := −∂ϕ
k

∂x`

((
∂ϕ

∂y

)−1
)j

k

= −δj` + O(y).

Thus, for a section σ ∈ Γ(Ŝym(T ∗M)), we have

R(σ) = LRσ = R`(σ)dx` = − ∂σ
∂yj

∂ϕk

∂y`

((
∂ϕ

∂y

)−1
)j

k

dx`.

Moreover, one can extend the Grothendieck connection D to the complex Γ(
∧• T ∗M ⊗

Ŝym(T ∗M)) consisting of Ŝym(T ∗M)-valued forms.

Proposition 6.7.1 (e.g. [Kon03; Fed94; BCM12; Mos20b]). A section σ ∈ Γ(Ŝym(T ∗M))
is D-closed if and only if σ = Tϕ∗f for some f ∈ C∞(M), where T denotes the Taylor
expansion around the fiber coordinates at zero. Moreover, the D-cohomology is concentrated
in degree zero and is given by

H0
D(Ŝym(T ∗M)) = Tϕ∗C∞(M) ∼= C∞(M).

The main part of the proof of Proposition 6.7.1 uses methods from cohomological perturbation
theory. let us now consider the AKSZ construction of DW theory as in Section 5. In
particular, the techniques of [CMW19] can be used here since the target is of the form
h[1] ⊕ h[2]. Consider a 4-dimensional source manifold (possibly with boundary) and recall
the BV space of fields of DW theory

FΣ = Map(T [1]Σ, h[1]⊕ h[2]) ∼= Map(T [1]Σ, (T [1]h)[1]).

Consider then the formal exponential map given by

ϕ : Th ∼= h⊕ h! h,

(x, y) 7! ϕx(y) := x+ y.

Note also that a particularly easy class of solutions of AKSZ theories is given by constant
ones of the type x = (x, 0) : T [1]Σ ! h[1] ⊕ h[2], where x = const. Thus, we can consider
the linearized space of fields at a constant solution x, given by

ϕ∗xFΣ := Map(T [1]Σ, (T [1]Txh)[1]).

30Note that flatness of D is equivalent to the Maurer–Cartan equation dR+ 1
2
[R,R] = 0.
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Let (X,Y) ∈ FΣ. Then the corresponding lifts by ϕx are given by

X̂ := ϕ−1
x (X), Ŷ := (dϕx)∗Y.

The Grothendieck connection can be computed by noticing that Rj`(x, y) = −δj` . We can
then define the formal global action by

ŜΣ,x :=

∫

Σ

(
ŶidΣX̂

i + Θ̂x(X̂, Ŷ)− Ŷ`dELx
`
)
.

Here we have denoted Θ̂x(X̂, Ŷ) := Tϕ̂∗xΘ(X,Y), where ϕ̂x : ϕ∗xFΣ ! FΣ. Note also that
dEL denotes the de Rham differential on the moduli space EL of classical solutions, which
can be identified with the target by considering constant solutions. One can then check that
the differential CME (dCME) holds:

(6.7.2) dxŜΣ,x +
1

2
(ŜΣ,x, ŜΣ,x) = 0.

If Σ has boundary, one can show that a differential version of the mCME (4.4.1) is also
satisfied [CMW19]. For the quantum case, we have the following theorem:

Theorem 6.7.2 (mdQME for DW theory). The formal global BV-BFV partition function
for DW theory, given formally by the functional integral

Ẑ•,BV−BFV

Σ,∂Σ =

∫

L
exp(iŜΣ,x/~),

satisfies the modified differential QME (mdQME)

(6.7.3)
(

dx − i~∆VΣ
+

i

~
Ω•,P∂Σ

)
Ẑ•,BV−BFV

Σ,∂Σ = 0.

Moreover, using similar methods as in [CMW19], we can show the following theorem:

Theorem 6.7.3 (Flatness of qGBFV operator for DW theory). The quantum Grothendieck
BFV (qGBFV) operator

∇G := dx − i~∆V +
i

~
Ω•,P

is flat and behaves well under change of data. Moreover, it defines a cohomology theory on
the globally extended state space.

Proof of Theorem 6.7.3. This proof is similar to the one in [CMW19]. In particular, the
flatness of ∇G is equivalent to the equation

(6.7.4) i~dxΩ•,P∂Σ −
1

2

[
Ω•,P∂Σ ,Ω

•,P
∂Σ

]
= 0.

Using the explicit expression of Ω•,P∂Σ through configuration space integrals by using the
perturbed parts (6.2.5) and (6.2.6), we can apply Stokes’ theorem

(6.7.5) dx

∫

ConfΓ(Σ)
ωΓ =

∫

ConfΓ(Σ)
dωΓ ±

∫

∂ConfΓ(Σ)
ωΓ,

where d = dx + d1 + d2 is the differential on (h[1]⊕h[2])×ConfΓ(Σ) with d1 the differential
acting on the propagator, i.e. on the residual fields, and d2 the differential acting on the
boundary fields. Then by [CMW19, Lemma 4.9], we can observe that the boundary face
where more than two bulk vertices in a subgraph Γ′ ⊂ Γ collapse to the boundary was shown
to be 1

2

[
Ω•,Ypert,Ω

•,Y
pert

]
(and similarly for the X-representation). For the case where exactly
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two bulk vertices collapse, we can observe that these faces cancel with dxωΓ′ by using the
dCME (6.7.2). �

Proof of Theorem 6.7.2. Again, using the configuration space integral formulation of the
partition function as in (6.4.2), we can apply Stokes’ theorem (6.7.5) in order to obtain
similar relations of d1 with ∆VΣ

, d2 with ΩP0 and dx with the boundary contribution when
applied to the partition function Ẑ•,BV−BFV

Σ,∂Σ as in [CMW19]. �

7. Nekrasov’s partition function, equivariant BV formalism and
equivariant Floer (co)homology

7.1. Seiberg–Witten theory. In [SW94b; SW94a], Seiberg and Witten have formulated
a way of describing low-energy behaviour for special supersymmetric gauge field theories.
Moreover, they have formulated topological invariants of 4-manifolds which can be shown
to be equivalent to the Donaldson polynomials but in general easier to compute. The gauge
group is fixed to be SU(2) in this setting. Recall that an N = 2 chiral multiplet (or vector
multiplet) includes a gauge field Aµ, two Weyl fermions31 λ, ψ and a scalar field φ in the
adjoint representation, i.e. we have something of the form

((Aµ, (λ, ψ), φ)),

where the brackets (( )) here indicate that we have singlets Aµ, φ and a doublet (λ, ψ). When
N = 1, we can express this in one vector multiplet Wα (containing Aµ and λ) and a chiral
multiplet Φ (containing φ and ψ). In N = 1 superspace, one can express the fermionic
low-energy effective action in terms of a holomorphic function F as

(7.1.1) SSW,eff =
1

4π
Im

(∫
d4θ

∂F(A)

∂A
Ā+

∫
d2θ

1

2

∂2F(A)

∂A2
WαW

α

)
,

where θ denotes the angle for the global SU(2)-action, A denotes the N = 1 chiral multiplet
in the N = 2 vector multiplet whose scalar component is given by some complex parameter
which labels the vacua. The holomorphic function F is in fact the free energy which can be
expressed in terms of the Seiberg–Witten formula for periods32 of some differential dS on
some algebraic curve C (Seiberg–Witten curve).

7.2. Nekrasov’s partition function. In [Nek03], Nekrasov constructed a regularized par-
tition function ZNek for the supersymmetric gauge field theories appearing in the construc-
tion of Seiberg–Witten, i.e. based on N = 2 supersymmetric Yang–Mills theory. The idea
was to use equivariant integration with respect to a natural symmetry group for a long-
distance cut-off regularization with parameter ε. Moreover, he proposed that for ε ! 0,
asymptotically we get logZNek ∼ − 1

ε2
F. The proof was given by Nekrasov and Okounkov

for U(r)-gauge theories with matter fields in fundamental and adjoint representations of the
gauge group and for 5-dimensional theories compactified on the circle. Consider a connection
A on a trivial rank r > 1 bundle over Σ = R4 such that the Yang–Mills action functional
SYM

Σ (A) =
∫

Σ ‖FA‖2 < ∞. In this case, as we have seen in Section 2.1, it is bounded from
below

8π2kA ≤ SYM
Σ (A) =

∫

Σ
‖FA‖2.

31Recall that a Weyl fermion (or Weyl spinor) is a spinor which satisfies the Weyl equations σµ∂µψ = 0,
where σµ denotes the Pauli matrices for µ = 0, . . . , 3.

32Recall that a period of a closed differential form ω over some n-cycle C is given by
∫
C
ω.
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Moreover, as we have also seen in Section 2.1, if A is an instanton (anti self-dual connection),
we get equality. Donaldson showed in [Don84] that the moduli space of anti self-dual con-
nectionsMASD is equal to the moduli space of holomorphic bundles on Σ = C2 ∼= R4 which
are trivial at infinity. One can describe Nekrasov’s theory as a (Aut(Σ)×GL(r))-equivariant
integration over a certain partial compactification

MASD ⊂Mr = {framed torsion-free sheaves on Σ of rank r}.
Note that each element of Aut(Σ)×GL(r) can always be considered in the form

(
ε1

ε2

)
×



a1

. . .
ar


 .

In particular, ε1 and ε2 can be considered as two rotations of C2 regarded as the generators
of a torus T. LetM be any smooth algebraic variety and consider a torus T acting on it and
E a T-equivariant coherent sheaf onM. Furthermore, let Σ be a projective surface, e.g. P2,
and choose an embedding Σ ↪! Σ with a framing33 φ : E|D ! O⊕rD of E where D = Σ \ Σ.
Then one can consider the localization formula [CG97], given by

χ(M, E) = χ
(
MT, E|MT ⊗ Sym

(
N∗
(
M/MT))) ∈ KT(pt)

[
1

1− εν
]
⊂ Q(T),

where εν denote the weights of the normal bundle N
(
M/MT

)
and where Sym denotes the

symmetric algebra. Here we have denoted by KT(pt) the T-equivariant K-theory over a
point and Q(T) denotes the representation ring of T.

Remark 7.2.1. If a point p ∈ MT is isolated, and if the tangent space at that point is
given by TpM =

∑
i ε
νi as a T-module, then

Sym
(
N∗
(
M/p

))
=
∏

i

1

1− ενi .

This product is given by the character of the T-action on functions on the formal neighbor-
hood of p ∈M.

We will only consider the case where all fixed points are isolated, hence χ
(
MT

r

)
is a finite sum

over r-tuples of partitions. Consider the Hilbert scheme (see also [Nak99] for the definition
of a Hilbert scheme)

Hilb(Σ, k) := {I ⊂ C[u1, u2] | I ideal of codimension k, u1, u2 ∈ Σ}
and let ε := (ε1, ε2) acting on it by f(u) 7! f(ε−1 · u). In particular, if I is fixed, we get34

Hilb(Σ, k)ε = {I ⊂ C[u1, u2] | I monomial ideal of codimension k, u1, u2 ∈ Σ}
∼= {partitions of k}.

Table 7.2.1 gives a good illustration for the relation between these ideals and the partitions.
Consider the collection

E := Iλ(1) ⊕ · · · ⊕ Iλ(r) ∈M,

33Note that GL(r) ∼= Aut(O⊕rD ) acts on φ which is the same as the action of constant gauge transforma-
tions on instantons.

34A partition of a number k is a monotone sequence λ = (λ1 ≥ λ2 ≥ · · ·λ`(λ) ≥ 0) consisting of
nonnegative integers whose sum is equal to k. Most of the times, we denote by |λ| := ∑`(λ)

j=1 λj = k the size
and `(λ) the length of a partition λ.
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2
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1u
4
2 u5

1u
4
2 u6

1u
4
2 u7

1u
4
2 u8

1u
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4
2
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5
2 u4
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5
2 u6
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5
2 u7
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5
2 u8
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5
2 u9
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5
2

u6
2 u1u

6
2 u2

1u
6
2 u3

1u
6
2 u4

1u
6
2 u5

1u
6
2 u6

1u
6
2 u7

1u
6
2 u8

1u
6
2 u9

1u
6
2

Table 7.2.1. Illustration for the ideal Iλ ⊂ OΣ generated by monomials
u8

1, u
6
1u2, . . . , u

6
2 which corresponds to the partition λ = (8, 6, 4, 3, 1, 1) of

k = 23. The entries in the table for λ correspond to a basis of OΣ/Iλ.

where Iλ(j) denotes the ideal corresponding to the partition λ(j). To compute the tangent
space TEM, we can use the modular interpretation of M. Generally, we can compute the
tangent space to the moduli space of (coherent) sheaves by using the Ext1-groups35. So we
get

TEM = Ext1
Σ

(E , E(−D))

=
⊕

1≤i,j≤r
aj/ai ⊗ Ext1

Σ

(
Iλ(i) , Iλ(j)(−D)

)
.(7.2.1)

In fact, we get

Sym(T ∗EM) =
∏

i,j

E
(
λ(i), λ(j), aj/ai

)−1
,

with

(7.2.2) E(λ, µ, u) :=
∏

w weights of u⊗ Ext1
Σ

(
Iλ, Iµ(−D)

)
(1− w−1).

Lemma 7.2.2. For a partition λ, consider the generating function

Gλ = χC2
(OΣ/Iλ) =

∑

uai u
b
j 6∈Iλ

ε−a1 ε−b2 ,

where the sum corresponds to the boxes � = (a + 1, b + 1) in the table of λ. Moreover,
define36 the arm-length for the partition λ of a box � = (j, i) by aλ(�) := λi − j and the
leg-length by `λ(�) := λ′j− i, where λ′ denotes the transposed table of λ. Then the character

35Recall first that, for D = Spec(k[t]/t2), a deformation over D of a coherent sheaf E over a scheme X is
defined to be a coherent sheaf E ′ on X ′ := X ×D, flat over D, together with a homomorphism E ′ ! E such
that the induced map E ′⊗D k ! E is an isomorphism. Then there is a theorem (see e.g. [Har10]) which says
that deformations of E over D are in natural one-to-one correspondence with elements of Ext1

X(E , E), with
the zero element corresponding to the trivial deformation. Finally, by the universal property of the moduli
spaceM, its tangent space at E consists of the deformations of E over D.

36Note that these numbers will be negative for � 6∈ λ.
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in (7.2.2) is given by

Ext1
Σ

(Iλ, Iµ(−D)) = Gµ + ε1ε2Gλ − (1− ε1)(1− ε2)GµGλ(7.2.3)

=
∑

�∈µ
ε
−aµ(�)
1 ε

`λ(�)+1
2 +

∑

�∈λ
ε
aλ(�)+1
1 ε

−`µ(�)
2 .(7.2.4)

Proof. The proof of (7.2.3) is given in [Oko19, Lemma 3.1] and the proof of (7.2.4) is given
in [CO12, Lemma 3]. �

Remark 7.2.3. Note that εd = ε−d denotes the usual duality for representations and
characters. Moreover, in particular, there are |λ|+ |µ| factors in (7.2.2).

Define now

(7.2.5) M :=
∏

i

Mri ⊃MASD(Σ,U(ri)).

Then we can define a preliminary partition function as

Zpre
Σ := χ

(
M,

∏

i

z
c2(Ei)
i χtop(M)

)

=
∑

r-tuple of partitions

z#�
∏

η,ν r-tuples
interactions with mass uk

E(η, ν, uk)
±1,

(7.2.6)

where r =
∑

i ri denotes the total rank and

z#� :=
∏

i

z
c2(Ei)
i = z

∑
i |λ(i)|

1 z
∑
j |µ(j)|

2 · · ·

We have denoted by M in (7.2.6) the matter that is described by fermions which are defined
through their representations of the gauge group of the form (Cri)∗ ⊗ Crj .
Using the discussions before, we can define Nekrasov’s partition function by

(7.2.7) ZNek
Σ := ZpertZpre

Σ

∣∣∣
E7!Ê,

where E is defined as in (7.2.2),

Ê(λ, µ, u) :=
∏

w weights of u⊗ Ext1
Σ

(
Iλ, Iµ(−D)

)

same w

(w1/2 − w−1/2)

and Zpert denotes a perturbation factor given by

(7.2.8) Zpert(ε, a1, . . . , ar) :
∏

1≤i1,i2≤r

∏

j1,j2≥1

i(ai1 − ai2 + ε(j1 − j2)),

where : denotes the equality up to regularization of the product on the right-hand-side. A
suitable regularization is given by (see e.g. [NO06; Oko06]) using Barne’s double Γ-function
[Rui00]. Define

(7.2.9) ζ2(s, w | c1, c2) :=
1

Γ(s)

∫ ∞

0

dt

t
ts

exp(−wt)∏
i(1− exp(−cit))

, c1, c2 ∈ R, Re (w)� 0,

which has a meromorphic extension in s with poles at s = 1, 2. Define now

Γ2(w | c1, c2) := exp

(
d

ds
ζ2(s, w | c1, c2)

) ∣∣∣∣∣
s=0

.
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Using the difference equation

wΓ2(w)Γ2(w + c1 + c2) = Γ2(w + c1)Γ2(w + c2),

we can see that it extends to a meromorphic function of w. Moreover, define

(7.2.10) Λ := exp(−4π2β/r)

for some parameter β > 0 and the scaled perturbation factor

(7.2.11) Zpert(ε, a1, . . . , ar,Λ) :=
∏

1≤i1,i2≤r
Γ2

(
i(ai1 − ai2)

Λ

∣∣∣∣∣
iε

Λ
,
−iε

Λ

)−1

,

where Γ2 is analytically continued to imaginary arguments by using

Γ2(xw | xc,−xc) = x
w2

2c2
− 1

12 Γ2(w | c,−c), ∀x 6∈ (−∞, 0].

Note also that
Γ2(0 | 1, 1) = exp(−ζ ′(−1)).

The instanton equations (ASD equations) are conformally invariant and can be translated to
a punctured 4-sphere S4 = R4 ∪ {∞} by stereographic projection. Recall that Uhlenbeck’s
theorem for removing singularities (Theorem 2.2.1) implies that any instanton on R4 extends
to one on S4. Hence, there is an interpretation for an instanton at ∞. Consider the group

G0 := {g : S4 ! U(r) | g(∞) = 1}
and define M(r, k) := Mk

ASD(S4,U(r))/G0. Note that dimRM(r, k) = 4rk < ∞ but
nevertheless M(r, k) is not compact and thus has infinite volume. This is basically due
to two problems: An element ofM(r, k) is, roughly speaking, a nonlinear superposition of
k instantons with charge +1. Some can be point-like37, others can go to ∞. Uhlenbeck’s
construction will only solve the first problem by replacing point-like instantons by points
in R4, but it does not solve the second problem, while Nekrasov’s idea of using equivariant
integration (see Appendix A) gives a suitable regularization procedure for those instantons.
We can rewrite Nekrasov’s partition function as

(7.2.12) ZNek
Σ!S4(ε, a1, . . . , ar,Λ) = Zpert(ε, a1, . . . , ar,Λ)

∑

k≥0

Λ2rk

∫

M(r,k)
1,

where the integral can be computed via equivariant localization (see Appendix A, Equation
(A.1.2)) by using the formula

∫

Σ
1 =

∑

u∈ΣC×

1

det ξ|TuΣ
.

Here we consider the group C× acting on a complex manifold Σ and ΣC× denotes the isolated
fixed points with respect to this action. Moreover, ξ = (diag(−iε, iε),diag(ia1, . . . , iar)) ∈
SU(2)× SU(r) and Zpert is defined as in (7.2.8).

Remark 7.2.4 (Gluing). A way of expressing the gluing of Nekrasov’s partition function
for 5-manifolds with boundary has been studied in [Qiu+15].

37This means that their curvature might be concentrated in a peak with respect to the Dirac delta
function.
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7.3. Equivariant BV formalism. The equivariant formulation of DW theory and Nekrasov’s
construction are a main motivation to formulate a gauge formalism which deals with field
theories in the equivariant setting. The equivariant extension of the BV formalism, which
has been considered in [Bon+20], is a suitable method to deal with the AKSZ construction
of DW theory as in Section 5 by extending it naturally to equivariant solutions of the CME,
as it was also shown in [Bon+20]. We want to give the main ideas of this approach.

7.3.1. Equivariant (co)homology. consider a Lie algebra g and define a g-differential algebra
O to be a dg algebra (O, d) with Lie derivative and contraction Lξ ∈ Der0O and ιξ ∈
Der−1O, respectively for all ξ ∈ g which is linear in ξ and satisfies the usual equations
in Cartan’s calculus. Define the subalgebra Ob := {O ∈ O | LξO = ιξO = 0, ∀ξ ∈ g}.
Choosing a basis (ea) of g, we can define its Weil model W(g) := (

∧• g∗ ⊗ Sym(g∗),dW)
where the differential is given by

dWθi := ui +
1

2
[θ, θ]i,(7.3.1)

dWui := [θ, u]i.(7.3.2)

Here, θ denote the odd coordinates of degree +1 on
∧• g∗ and u the even coordinates of

degree +2 on Sym(g∗). Moreover, we have ιei = ∂
∂θi

and Lei = {ιei ,dW}. Note that
the subcomplex Ob is given by g-invariant polynomials in u endowed with the differential
given by dW restricted to Ob, i.e. we have (C[u]g ∼= Sym(g∗)g, dW |Ob). Let H•G(O) the
cohomology of the subcomplex OG := (O ⊗ W(g))b. This is called the Weil model for
H•G(O). Similarly, we can consider the Cartan model for H•G(O) by considering the graded
algebra O[u] := O⊗ Sym(g∗) together with the differential dG := d−uiιei and the diagonal
g-action. It is easy to check that (dG)2 = uiLei . Thus, we have a dg algebra (O[u]g,dG)
with O[u]g := {Ou ∈ O[u] | LξOu = 0, ∀ξ ∈ g}. In fact, we have an isomorphism between
the cohomology of (O[u]g,dG) and H•G(O). Indeed, one can check that the map

Expg := exp (−(ιea ⊗ θa)) : O ⊗W(g)! O ⊗W(g)

can be restricted to an isomorphism of dg-algebras Expg : OG ! O[u]g.

7.3.2. Equivariant extension for AKSZ-BV theories. We can formulate an equivariant ex-
tension of the AKSZ construction as follows: Let Σ be a d-manifold togeher with a Lie
algebra g acting on it by the vector fields vξ for some ξ ∈ g. LetM be a graded manifold
together with a symplectic form ω of degree d− 1 and a smooth Hamiltonian function Θ on
M of degree d. The Hamiltonian vector field of Θ is denoted by DΘ. The space of fields is
given by FΣ = Map(T [1]Σ,M) and the cohomological vector field by

QΣ = d̂Σ + D̂Θ = (SΣ, ),

where SΣ = S0 + SΘ with S0 and SΘ being the Hamiltonian functions of d̂Σ and D̂Θ, re-
spectively. The “hat” denotes the lift to a vector field on the mapping space Map(T [1]Σ,M)
of the corresponding vector field either on the source or on the target. It is easy to check
that since (DΘ)2 = 0 and (QΣ)2 = 0, the CME (SΣ,SΣ) = 0 holds. Denote by OFΣ

the
g-dg algebra of functionals on FΣ endowed with the differential d̂Σ + Q̂. Consider then the
contraction ι̂vξ and Lie derivative L̂vξ on OFΣ

for ξ ∈ g and their corresponding Hamiltonian
functions Sι̂vξ and SL̂vξ , respectively. Define also OFΣ

[u] := OFΣ
⊗ Sym(g∗). If we choose a

basis (ei) of g, we can consider the equivariant Cartan model of the BV action as

SCartan
Σ = SΣ − uiSι̂vi ,
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and therefore we get an equivariant model for the cohomological vector field as

QCartan
Σ = (SCartan

Σ , ) = d̂Σ + D̂Σ − uiι̂vi .
Define now Lξ := −ξickijuj ∂

∂uk
and Lξ := Lξ + L̂vξ and note that then LξSCartan

Σ = 0. This
implies that SCartan

Σ ∈ O[u]g and it satisfies an equivariant version of the CME

(7.3.3)
1

2
(SCartan

Σ ,SCartan
Σ ) + uiSL̂vi = 0.

We further define

TΣ :=
1

2
(SCartan

Σ ,SCartan
Σ )− i~∆SCartan

Σ = −uiSL̂vi − i~∆SCartan
Σ ,

such that TΣ = −ui(SL̂vi + i~∆Sι̂vi )− i~∆SCartan
Σ . If we apply ∆ to S0 and Sι̂vi , we can use

the fact that they are quadratic in the fields and thus we get

(7.3.4) (∆S0, ) = (∆Sι̂vξ , ) = 0, ∀X ∈ g.

This gives us that

∆SL̂vξ = ∆(S0,Sι̂vξ ) = (∆S0,Sι̂vξ )± (S0,∆Sι̂vξ ) = 0,

which needs to hold for consistency with the definition of a BV algebra as in Section 4.2.
Hence, ∆TΣ = 0 and thus [∆, L̂vξ ] = 0. We can then check that QCartan

Σ TΣ = 0.
Let us briefly consider a more general case. For an observable O, note that we want the
equation ∆O + i

~QΣO = 0, with QΣ = (SΣ, ), to be satisfied in order for point (2) of
Theorem 4.1.5 to hold. This equation can be rephrased by using the twisted BV Laplacian
∆SΣ

:= exp(−iSΣ/~)∆ exp(iSΣ/~) according to the definition of the BV Laplacian on func-
tions on the space of fields by Equation (4.1.4). In this case, O is called a BV observable.
However, without assuming the Quantum Master Equation, we can define

TΣ :=

(
i

~

)2

exp(−iSΣ/~)∆ exp(iSΣ/~) =
1

2
(SΣ,SΣ)− i~∆SΣ

and note that the twisted operator is given by

∆SΣ,TΣ := exp(−iSΣ/~)∆(exp(iSΣ/~)O) = ∆O +
i

~
QΣO +

(
i

~

)2

TΣO.

The observation is that then

∆TΣ +
i

~
QΣTΣ = 0,

since ∆SΣ,TΣTΣ = 0 and (TΣ)2 = 0.
Moreover, if we apply ∆ to (SL̂vi ,Sι̂vj ) we get ckij∆Sι̂vk = 0. Using (7.3.4), we also get
(TΣ, O) = (T ′Σ, O) with T ′Σ := −uiSL̂vi − i~∆SΘ. Define now

NTΣ := {O ∈ OFΣ
[u] | (T ′Σ, O) ∈ ITΣ},

where ITΣ denotes the ideal generated by TΣ in OFΣ
[u] and consider the subalgebra

N ′TΣ := {O ∈ OFΣ
[u] | LξO = 0, ∀ξ ∈ g} ⊂ NTΣ .

Then, one can show that if (7.3.4) holds, N ′TΣ is a Poisson subalgebra which is invariant
under both QCartan

Σ and ∆SΣ,TΣ and TΣ ∈ N ′TΣ . Moreover, it is easy to see that the ideal
I ′TΣ ⊂ N

′
TΣ generated by TΣ is a ∆SΣ,TΣ-invariant Poisson ideal. Now one can define the
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algebra of quantum equivariant preobservables asO′FΣ
:= N ′TΣ/I

′
TΣ together with the induced

differential

(7.3.5) ∆SΣ,TΣ [O] := [∆SΣ,TΣO] =

[(
∆ +

i

~
QCartan

Σ

)
O

]
.

A quantum equivariant observable can then be defined as a quantum equivariant preobserv-
able which is additionally ∆SΣ,TΣ-closed.

Remark 7.3.1 (Gauge-fixing for (graded) linear targets). If the targetM is a graded vector
space V , we can write the space of fields as FΣ = Ω•(Σ)⊗ V . Consider an invariant metric
on Σ and define a the submanifold L := Ω•coex(Σ)⊗V , where Ω•coex(Σ) denotes the subspace
of coexact forms. Note that, in general, L is only isotropic due to harmonic forms. However,
by invariance of the metric, we have [Lvξ ,d

∗] = 0, and thus i∗LSL̂vξ = 0, where iL : L ↪! FΣ.

The foliation then defined by (TΣ, ) is the same as the infinitesimal g-action and hence we
have to require that the Lie group G is compact.

7.4. Equivariant DW theory. Consider the set-up of Section 5.1 and let g be the Lie
algebra of a Lie group G acting on the 4-manifold Σ with vector fields vξ for ξ ∈ g. If we
replace now dΣ with the equivariant differential dG := dΣ − uiιvi , we get the equivariant
extension of the action as

SCartan
Σ =

∫

T [1]Σ
µ4

(
〈Y,dGX〉+

1

2
〈Y,Y〉+

1

2
〈Y, [X,X]〉

)

= SΣ − ui
∫

Σ

(
ψιviY

† + χ†ιviψ
† +A†ιviχ+X†ιviA

)
.

(7.4.1)

The BV transformations of the superfields are then given by

QCartan
Σ X = dGX + Y +

1

2
[X,X],(7.4.2)

QCartan
Σ Y = dGY + [X,Y],(7.4.3)

i.e. in superfield notation, the equivariant cohomological vector field is given by

(7.4.4) QCartan
Σ =

∫

T [1]Σ
µ4

((
dGX + Y +

1

2
[X,X]

)
δ

δX
+ (dGY + [X,Y])

δ

δY

)
.

In component fields and after Berezinian integration, we get the equivariant cohomological
vector field

(7.4.5) QCartan
Σ =

∫

Σ

((
Y +

1

2
[X,X]− uiιviA

)
δ

δX
+ (ψ + dAX − uiιviχ)

δ

δA

+ (χ† + FA + [X,χ]− uiιvaψ†)
δ

δχ
+ ([X,Y ]− uiιviψ)

δ

δY

+ (dAY + [X,ψ]− uiιviχ
†)
δ

δψ

)
.

7.4.1. Relation to Nekrasov’s partition function. We can construct then a gauge-fixed solu-
tion for the equivariant CME (7.3.3) similarly as before whenever the chosen metric on Σ is
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invariant. In particular, we have

(7.4.6) SCartan,gf
Σ = SCartan

Σ +

∫

Σ

(
〈X̄†, (b+ [X, X̄])〉+ 〈b†, (LvX̄ + [X, b]− [Y, X̄])〉

)

+

∫

Σ

(
〈Ȳ †, (η + [X, Ȳ ])〉+ 〈η†, (LvȲ + [X, η] + [Ȳ , Y ])〉

)
.

If we redefine the fields, we can see that the transformations are the same as in [Nek03;
NO06]. In particular, one can take vi to be the two rotations of C2 and consider instead of ui
the parameters38 εi. In fact, the (regularized) path integral quantization of this equivariant
theory leads to Nekrasov’s partition function (7.2.12), i.e. we have

ZBV
Σ =

∫

L
exp(iSCartan

Σ (X,Y)/~)D [X ]D [Y ] = ZNek
Σ ,

where L denotes the gauge-fixing Lagrangian as in (7.4.6). It is important to note that in
the mentioned construction, we are considering the perturbation around constant solutions
rather than general instantons. Moreover, the methods presented in this section are only
considered for the finite-dimensional case.

Remark 7.4.1. Similar equivariant extensions have been studied e.g. in [CF10; Mos19] for
a (global) S1-equivariant setting of the Poisson sigma model on the disk, and in [Get19]
where a classical BV-equivariance under source diffeomorphisms for 1-dimensional systems
is considered. Generalizations of this construction would lead to equivariant cohomological
methods similarly as for the methods which appear in [Pes12].

7.5. Equivariant Floer (co)homology and boundary structure. Since the perturba-
tive expectation value for DW theory of an observable as in [Wit88a] reproduces the Floer
(co)homology groups as the boundary states on the corresponding boundary 3-manifold (see
also Section 2.3), we expect to produce similarly in a perturbative way an equivariant ver-
sion of Floer (co)homology as the boundary state when considering equivariant DW theory
on a 4-manifold with boundary. An equivariant extension of Floer (co)homology groups in
the setting of 4-manifold topology was considered in [AB96]. The convenient model chosen
there is the Cartan model similarly as discussed in Section 7.3. In particular, for G = SU(2)
and g = Lie(G) = su(2) we can construct equivariant Floer homology and cohomology as
follows: For any G-manifold N , define complexes

ΩG,•(N) := (Sym(g)⊗ ΩdimN−•(N))G,

Ω•G(N) := (Sym(g∗)⊗ Ω•(N))G,

endowed with the boundary and coboundary operators ∂G and dG, respectively. They
define equivariant homology and cohomology HG,•(N) and H•G(N), respectively. Consider
the SU(2)-invariant Chern–Simons action functional SCS

N : A/G̃0 ! S1, where G̃0 denotes
the group of based gauge transformations of degree 0 and denote by A and B critical orbits
of the perturbed action SCS

N + f for which the moduli space of gradient lines between A

and B then becomes a smooth SU(2)-manifold M̃0(A,B) (here f denotes an element of a
suitable class of perturbations). For 0 < p < ∞ and δ ∈ R, denote by Lpδ(E), for some

38This is true whenever the evaluation map which evaluates ui at εi commutes with the path integral
with the additional assumption that εi are not on the support of the equivariant cohomology class induced
by the path integral.
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bundle E ! Σ over a 4-manifold Σ, the Banach space completion of smooth and compactly
supported sections of E by using the norm

‖σ‖Lpδ :=

(∫

Σ
dvolΣ(exp(τδ)|σ|p)

)1/p

,

where τ : End(Σ) ! (0,∞) denotes a distance function on Σ defined as in [Tau87]. Fur-
thermore, for 1 ≤ p <∞, 0 ≤ ` <∞ and δ ∈ R, define the weighted Sobolev space Lp`,δ(E)
to be the completion of smooth and compactly supported sections of E with respect to the
norm

‖σ‖Lp`,δ :=



∫

Σ
dvolΣ


exp(τδ)

∑

0≤k≤`
|∇kσ|p






1/p

,

where ∇k := ∇∇ · · ·∇ k-times and ∇ : Γ∞0 (E ⊗q T ∗Σ)! Γ∞0 (E ⊗q+1 T
∗Σ) is the covariant

derivative from the end-periodic39 connections on E and T ∗Σ. We have denoted by Γ∞0 the
space of smooth sections with compact support.
We can then consider the Atiyah–Hitchin–Singer deformation theory [AHS77; AHS78] to
the moduli spaceMε(A,B) for ε < 0, which is locally a smooth (G(N)A×G(N)B)-manifold
whenever the cokernel of the following deformation operator vanishes. Define the deforma-
tion and gauge-fixing operator at some instanton At as

a 7!

(
d

dt
a+ ∗dAta+ ∂2fAta,

d

dt
a+ d∗Ata

)

and note that this indeed defines a Fredholm operator

Lp`,ε(Ω
1(N × R, adP ))! Lp`−1,ε((Ω

0 ⊕ Ω1)(N × R, adP )).

Denote by sf(A,B) the index 40 of this operator and note that we then get

dimM0(A,B) = sf(A,B) + 3− dimG(N)A − dimG(N)B.

Define then the index of a critical orbit A ∈ A/G̃0 of the perturbed Chern–Simons action
functional SCS

N + f as

iN (A) := −sf(θ,A) + dimG(N)A,

where θ denotes a preferred trivial connection in A/G̃0 and ε is chosen to be negative and
sufficiently small. Fix a homotopy of the corresponding principal SU(2)-bundle P over N
and note that

dimM̃0(A,B) = iN (A)− iN (B) + dimA− 1.

For the 3-manifold N , we can then define graded vector spaces

CFG,k :=
⊕

iN (A)+j=k

ΩG,j(A),

CF kG :=
⊕

iN (A)+j=k

Ωj
G(A),

39The definition of end-periodic connections is rather technical and we refer to [Tau87] for a definition of
end-periodic connections and manifolds. In fact, these objects are only defined for end-periodic 4-manifolds.

40This is again the spectral flow as defined in Section 3.4.
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with boundary and coboundary operators given by

(7.5.1) (δG)A,BΨ :=





∂GΨ, if A = B,

(−1)deg Ψ(e−B)∗(e
+
A)∗Ψ, if iN (A) > iN (B),

0, otherwise.

and

(7.5.2) (DG)A,BΨ :=





dGΨ, if A = B,

(−1)deg Ψ(e+
A)∗(e

−
B)∗Ψ, if iN (A) > iN (B),

0, otherwise.

We have used the endpoint maps

e+
A : M̃0(A,B)! A,

e−B : M̃0(A,B)! B.

It is easy to see that the equivariant Floer complexes are actually filtered by index

CF
(m)
G,k :=

⊕

iN (A)+j=k

iN (A)<m

ΩG,j(A),(7.5.3)

CF
k,(m)
G :=

⊕

iN (A)+j=k

iN (A)≥m

Ωj
G(A),(7.5.4)

with the corresponding relative equivariant (co)homology groups

HF
(m)
G,• := H•(CFG,•/CF

(m)
G,• ),(7.5.5)

HF
•,(m)
G := H•(CF •G/CF

•,(m)
G ).(7.5.6)

Theorem 7.5.1 (Austin–Braam[AB96]). The operators δG and DG square to zero and define
equivariant Floer homology (resp. cohomology) HFG,•(N) (resp. HF •G(N)) of the 3-manifold
N . Moreover, there is a pairing HFG,•(N) × HF •G(N) ! R which is defined on the level
of chains by

⊕
A〈 , 〉A. Furthermore, these groups are independent of the metric on N

and the choice of perturbation withing a class of perturbations, up to natural isomorphisms.
An orientation preserving diffeomorphism of N induces a natural map on equivariant Floer
(co)homology.

Remark 7.5.2. Equivariant Floer homology and cohomology are both modules over equi-
variant polynomials Sym(g∗)G ∼= R[u] and the action of Sym(g∗)G is symmetric with respect
to the pairing. Moreover, the complexes defining equivariant homology and cohomology are
filtered by index and there is an associated spectral sequence, whose E1 and E1 terms are
the equivariant (co)homology of the critical locus.

Example 7.5.3 (3-sphere). The equivariant Floer groups for S3 are simple since there is
only one flat connection, the trivial one. Hence, we get

HFG,•(S3) = HG,•(pt) = R[u],

HF •G(S3) = H•G(pt) = R[û].

Example 7.5.4 (Poincaré 3-sphere). In the case of the Poincaré 3-sphere S3
P , there are two

irreducible flat connections A and B. These are indexed by iS3
P

(A) = 0 and iS3
P

(B) = 4 by
using the standard orientation induced from S3. The first term in the spectral sequence of
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the equivariant Floer cohomology complex has then generators endowed with index 0 and
4 coming from the connections A and B, together with a tower of H•G(pt) at index 0 which
represents the trivial connection. Then the dimension of the nonzero terms will give lead to
the fact that all higher differentials vanish and thus, after taking the quotient with respect
to the Z-translations, we get

HF •G(S3
P ) = H•G(pt)⊕H•(pt)⊕H•−4(pt),

HFG,•(S3
P ) = HG,•(pt)⊕H•(pt)⊕H•−4(pt).

Consider now a U(2)-bundle P ! Σ = Σ1∪NΣ2 over an oriented 4-manifold Σ with ∂Σ1 = N
and ∂Σ2 = Nopp. Moreover, consider the moduli space M0(Σ,U(2)) of projectively anti
self-dual connections on P with fixed central parts. Moreover, assume thatM0(Σ,U(2)) is
compact. Define now M0(P1, A) and M0(P2, A) to be the moduli spaces of anti self-dual
connections modulo gauge transformations asymptotic to the flat connection defined by A.
Then we have

dimM0(P1, A) = CΣ1 − iN (A),(7.5.7)
dimM0(P2, A) = CΣ2 + 3− iN (A),(7.5.8)

for some constants CΣ1 and CΣ2 . For the framed moduli space, we get the SU(2)-invariant
endpoint maps

e1
A : M0(P1, A)! A,

e2
A : M0(P2, A)! A.

If P1 and P2 are trivial bundles such that c2(P1)+c2(P2) = c2(P ), we get a gluing map with
open image

M0(P1, A)×M0(P2, A)!M0(Σ,U(2)).

Theorem 7.5.5 (Austin–Braam[AB96]). Let M0(Σ,U(2)) be compact and let P1, P2 run
over bundles such that c2(P1) + c2(P2) = c2(P ). Assume that for a generic one parameter
family of metrics on Σ1 no reducible connections exist on P1 for any A. Assume further
that b2+(Σ2) = 0 or b2+(Σ2) > 1.

(1) Let a ∈ H•G(A(P1)/G0(P1)) and denote by γ := [M0(P1, A)]G ∈ HG,•(M0(P1, A))
the fundamental class. Then

ΨΣ1(a) :=
⊕

iN (A)≥m
(e1
A)∗(γ ∩ a) ∈ CFG,•(N)

defines an element of HF (m)
G,• (N) whenever m > CΣ1 − 8; that is, it is closed and,

up to boundaries, independent of the choice of metric on Σ1.
(2) Let b ∈ H•G(A(P2)/G0(P2)). The integration over the fiber gives an element

D(Σ2)(b) :=
⊕

A

(e2
A)∗b ∈ CF •G(N)

which is coclosed and up to coboundaries independent of the metric on Σ2. Moreover,
it also defines an element of HF •,(m)

G (N) for all m < −3− CΣ2:
∫

M0(Σ,U(2))
a ∪ b = 〈ΨΣ1(a),D(Σ2)(b)〉

HF
(m)
G

.
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7.5.1. Irreducible connection on one side. Assume now that the 2d-dimensional moduli space
of anti self-dual connections on P splits uniquely as

M0(Σ,U(2)) =M0(P1, A)×AM0(P2, A),

along a Z/2 connection A. Then, we get that H•G(A,R) = R[u] such that u is of degree 4.
Moreover, suppose thatM0(P2, A) ' S2 only consists of a single reducible connection which
defines a line bundle reduction L⊕ Lopp ! Σ2. Recall from Section 2.2 that the Donaldson
polynomials are given by

D(Σ)([C], . . . , [C]) =

∫

M0(Σ,U(2))
µ([C])d,

for a 2-dimensional homology class [C] ∈ H2(Σ,Z). Let us first look at the Σ2 side. There,
we get that M0(P2, A) ' S2 corresponds to a single reducible connection with endpoint
map e2

A : M0(P2, A)! A which sends S2 to one single point. We can extend the map µ to
equivariant cohomology µ : H2(Σ2,Z)! H2

G(A(P2)/G0(P2)) and hence

µ([C]) = −2

∫

C
c1(L)v ∈ H2

G(M0(P2, A)) = R[u],

where v is of degree 2 and such that v2 = u. Note that we have a push-forward (e2
A)∗ : R[v]!

R[u] such that {
vk 7! u(k−1)/2, k odd,
0, otherwise.

Finally, the relative Donaldson polynomial in the equivariant Floer cohomology of N defined
by Σ2 is given by

(7.5.9) D(Σ2)(µ([C])d) =





(−2)d
(∫

C
c1(L)

)d
u(d−1)/2, d odd,

0, otherwise.

Now we look at the Σ1 side. There we need ΨΣ1(1) := (e1
A)∗(γ) ∈ CFG,•(N) in the equi-

variant Floer homology of N . In particular, we get

ΨΣ1(1) =

∫

M0(P1,A)
γ =

2(d−1)/2

(d− 1)!
p

(d−1)/2
1 û(d−1)/2 ∈ HG,•(A) = R[û],

where HG,•(pt) = R[û]. In fact, the framed moduli space of anti self-dual connections on Σ1

is an SO(3)-bundle and thus has a Pontryagin class p1.

Remark 7.5.6. Note that the latter construction only holds if d < 4, otherwise the com-
pactness of the moduli spaces can be violated. Moreover, as it was mentioned in [AB96],
this construction also coincides with the Friedman–Morgan construction [FM94a] if Σ is the
blow-up of an algebraic surface, in particular, Σ2 = CP2 and N = S3, thus the moduli space
on Σ has to split along the trivial connection.

Remark 7.5.7. Similarly as mentioned in Remark 6.6.6, this construction is expected to be
consistent with a possible equivariant extension of the BV-BFV formalism in parallel to the
BV case for closed manifolds. In the same way as the BV partition function of equivariant
DW theory on closed manifolds yields Nekrasov’s partition function, one should be able to
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produce the equivariant Floer groups as a BV-BFV partition function for equivariant DW
theory in the presence of boundary. This yields a boundary state of the form

Ψeq.
∂Σ(X,Y) =

∫

VΣ

∫

L
exp(iSCartan

Σ (X,Y)/~)Õ(X,Y)D [X ]D [Y ]

︸ ︷︷ ︸
=
〈∏d

j=1 Õ
(γj)

〉
eq.

=

〈∏d
j=1

∫
γ̃j
W̃kj

〉

eq.

∈ HF •G(∂Σ) ⊂ HP∂Σ,

where Õ, γ̃j and W̃kj are equivariant extensions of the respective objects as in Section 3.6 and
〈 〉eq. denotes the expectation for the BV-BFV partition function with respect to SCartan

Σ . In
particular, the boundary state space HP∂Σ in this case should include the equivariant Floer
cohomology and thus a possible equivariant extension of the BFV boundary operator Ω•,P∂Σ
should be given in terms of the equivariant Floer differential. Moreover, the polarization
needs to be adapted to the boundary condition defined by the state Ψeq.

∂Σ. Note that here
we want h = su(2).

8. Relation to Donaldson–Thomas theory

Donaldson–Thomas theory, starting first in [DT98], was motivated by formulating Donald-
son’s construction of invariants of 4-manifolds in higher dimensions. In [Tho00], Thomas
constructed a holomorphic Casson invariant (see Definition8.1.2) counting bundles on a
Calabi-Yau 3-fold, by using the holomorphic Chern–Simons action functional (see Section
3.2). He developed the deformation theory necessary to obtain certain virtual moduli cy-
cles in moduli spaces of stable sheaves whose higher obstruction groups vanish, which gives
Donaldson- and Gromov–Witten- (see Section 9) like invariants of Fano 3-folds. Moreover,
he defined the holomorphic Casson invariant of a Calabi–Yau 3-fold X and proved that it is
deformation invariant. In particular, when considering real Chern–Simons theory as in Sec-
tion 3.2, one can show that the Hessian of the action functional is symmetric and hence the
deformation complex is defined by its critical locus, given by flat connections, is self-dual.
Thus, by Poincaré duality, we get

H i(adE,A) ∼= (H3−i(adE,A))∗

and hence the virtual dimension of the moduli space of flat connectionsMflat is given by

vdimMflat =
3∑

i=0

(−1)i+1 dimH i(adE,A) = 0.

A similar observation is also true when considering holomorphic Chern–Simons theory (see
Section 3.2). In particular, instead of Poincaré duality one can use Serre duality to obtain
that the virtual dimension of the moduli space of holomorphic bundles is zero. This obser-
vation in fact leads to the countig of bundles over Calabi–Yau 3-folds and more generally
curves in algebraic 3-folds.

8.1. DT invariants. Let X be a Calabi–Yau 3-fold. Define

Hilbβ(X, k) := {X0 ⊂ X | [X0] = β, χhol(OX0) = k}
to be the Hilbert scheme depending on the 1-dimensional subschemes in the curve class β ∈
H2(X,Z) with holomorphic41 Euler characteristic k ∈ Z. By Behrend’s construction [Beh09],

41Recall that this is defined through the alternating sum of the dimension of sheaf cohomology
χhol(OX) :=

∑dimX
i=0 (−1)i dimHi(X,OX).
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one can define the Donaldson–Thomas (DT) invariants as a weighted Euler characteristic
of the underlying moduli space. In particular, it is defined as

(8.1.1) DTX
β,k := χtop

(
Hilbβ(X, k), νXβ,k

)
:=
∑

l∈Z

lχtop

((
νXβ,k

)−1
(l)
)
,

where χtop denotes the topological Euler characteristic and

(8.1.2) νXβ,k : Hilbβ(X, k)! Z

denotes Behrend’s constructible42 function [Beh09].

Remark 8.1.1. A result of Brav, Bussi, Dupont and Joyce was to prove that the coarse
moduli space of simple perfect complexes of coherent sheaves, with fixed determinant, on a
Calabi–Yau 3-fold admits, locally, for the analytic topology, a potential, i.e. it is isomorphic
to the critical locus of a function. As it was shown in [PT14], such a result is not true
for general symmetric obstruction theories. Thus, the existence of such local potentials will
crucially depend on the existence of a (−1)-shifted symplectic structure (in the setting of
[Pan+13], see also Section 4.7) on the derived moduli stack of simple perfect complexes on a
Calabi–Yau 3-fold X. As it was shown in [Ben+15; BBJ19], there is an étale local version of
Darboux’s theorem for k-shifted symplectic structures with k < 0. However, extending such
a local structure theorem to general n-shifted symplectic structures, especially for the case
of interest where n ≥ 0, might lead to the existence of DT invariants for higher dimensional
Calabi–Yau manifolds. Moreover, the results of [Ben+15] might lead to a categoryfied
version of DT theory and a motivic version of DT invariants similarly as in [KS08b].

8.1.1. Relation to instanton Floer homology. DT invariants can be interpreted as a complex
version of a certain invariant of homology 3-spheres, called Casson invariant, and then
related to the instanton Floer homology construction as it was shown in [Tau90]. Let us
first recall the definition of a Casson invariant.

Definition 8.1.2 (Casson invariant[Sav99]). Let S be the class of oriented integral homol-
ogy 3-spheres. A Casson invariant is a map λ : S ! Z such that:

(1) λ(S3) = 0, and λ(S ) is not contained in any proper subgroup of Z.
(2) For any homology sphere N and knot k ⊂ N , the difference

(8.1.3) λ′(k) := λ

(
N +

1

m+ 1
· k
)
− λ

(
N +

1

m
· k
)
, m ∈ Z,

is independent of m.
(3) Let k ∪ ` be a link in a homology sphere N with linking number lk(k, `) = 0 and

note that then for any integers m,n the manifold

N +
1

m
· k +

1

n
· `

is a homology 3-sphere. We have

(8.1.4) λ′′(k, `) := λ′
(
` ⊂ N +

1

m+ 1
· k
)
− λ′

(
` ⊂ N +

1

m
· k
)

= 0,

for any boundary link k ∪ ` in a homology sphere N .

42That is to say for a quasi-projective proper moduli scheme with a symmetric obstruction theory, in
our case Hilbβ(X, k), the weighted Euler characteristic χtop(Hilbβ(X, k), νXβ,k) is the degree of the virtual
fundamental class [Hilbβ(X, k)]vir (see Footnote 44 for a definition of the virtual fundamental class).
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Theorem 8.1.3 (Casson). There is a Casson invariant λ which is unique up to sign. More-
over, it has the following properties:

(i) λ′(k31) = ±1, where k31 denotes the trefoil knot.
(ii) λ′(k ⊂ N) = 1

2∆′′k⊂N (1) · λ′(k31) for any knot k ⊂ N ,
(iii) λ(−N) = −λ(N) where −N stands for N with reversed orientation,
(iv) λ(N1#N2) = λ(N1) + λ(N2),
(v) λ(N) = µ(N) mod 2, where µ denotes the Rohlin invariant43.

In [Tau90], Taubes has shown that the Casson invariant as in Theorem 8.1.3 can be defined
by using an infinite-dimensional generalization of the topological Euler characteristic using
instanton Floer homology for an oriented homology 3-sphere. Let G be a finitely presented
group and N a homology 3-sphere. Denote by R(G) = Hom(G, SU(2)) where G is assumed
to have the discrete topology. Note that one can turn R(G) into a real algebraic variety by
regarding SU(2) as S4. The quotient R(G) := R(G)/SU(2) under the SU(2)-action given
by conjugation, is the SU(2)-character variety of G. Denote the open set of irreducible
representations by R∗(G). Then we can consider the quotient R∗(G) := R∗(G)/SO(3) ⊂
R(G). Now let R∗(N) := R∗(π1(N)), where π1(N) denotes the fundamental group of
N . Moreover, for some admissible perturbation function f : A∗/G ! R/8π2Z, define the
perturbed moduli space

Rf (N) := {A ∈ A | ∗FA − 4π2(∇f)(A) = 0}/G.
Finally, define R∗f (N) to be the subset of Rf (N) consisting of the orbits of irreducible
perturbed flat connections. Then, we have the following theorem;

Theorem 8.1.4 (Taubes[Tau90]). The Euler characteristic

χtop(N) =
1

2

∑

A∈R∗f (N)

(−1)µ(A)

with Floer index µ(A) := sf(θ,A) mod 8, where θ denotes the trivial connection, is indepen-
dent of the holonomy perturbation f and the metric on N and equals up to an overall sign
the Casson invariant of N .

However, working with a homology 3-sphere does simplify things tremendously since it
prevents the existence of non-trivial reducible flat connections before and after small per-
turbations. In fact, this allows to use the standard cobordism argument to show that the
alternating sum is indeed independent of the choice of metric. We refer also to [Sav01] for
an excellet overview.

8.2. DT partition function. Let X be a Calabi–Yau 3-fold. Using the DT invariants
(8.1.1), we can define the DT partition function as a generating function by

(8.2.1) ZDT
X (q) :=

∑

(β,k)∈H2(X,Z)⊕Z

DTX
β,kq

β(−z)k,

where qβ := qβ1
1 · · · qβnn with β = β1C1 + · · · + βnCn where {C1, . . . , Cn} denotes a basis of

H2(X,Z) which is chosen such that βi ≥ 0 for any effective curve class. Note that ZDT
X (q) is

a formal power series in q1, . . . , qn with coefficients in formal Laurent series in the complex

43For an oriented integral homology 3-sphere N , there exists a smooth simply-connected oriented 4-
manifold Σ with even intersection form such that ∂Σ = N . Then the signature of Σ is divisible by 8 and
µ(N) := 1

8
sign Σ mod 2 is independent of the choice of Σ [Sav99]. The number µ(N) is called Rohlin

invariant of N .
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variable z. In particular, since X is a 3-fold, we can split the Hilbert scheme into components
according to the degree and the arithmetic genus of C when β = [C]. We get

([C], χhol(OC)) ∈ H2(X,Z)⊕H0(X,Z).

Consider a smooth divisor D ⊂ X which algebraically takes the place of the boundary when
X is a smooth manifold. We can define the relative DT partition function corresponding to
the pair (X,D) as

(8.2.2) ZDT
X/D(q) :=

∑

(β,k)∈H2(X,Z)⊕H0(X,Z)

qβ(−z)k
∫

Hilbβ(X,k)
Ξ(D),

where Ξ(D) denotes a collection of forms constructed from the boundary conditions. We
need to make sense of the integral in (8.2.2). The integral localizes to a virtual fundamental
class44 [MDT]vir ∈ H2vdim(X), where MDT denotes the moduli space of supersymmetric
configurations. In particular, for the Hilbert scheme, we get the virtual dimension45

vdim Hilbβ(X, k) =

∫

β
c1(X).

Using this construction, we can formulate a more precise version of (8.2.2) by

(8.2.3) ZDT
X/D(q) =

∑

(β,k)∈H2(X,Z)⊕H0(X,Z)

qβ(−z)k
∫

[Hilbβ(X,k)]vir

[Ξ](D),

where [Ξ](D) denotes the collection of cohomology classes constructed from the boundary
conditions.

Remark 8.2.1. Note that in fact, using the virtual fundamental class, we can equivalently
express the DT invariants (8.1.1) as a virtual count by

DTX
β,k =

∫

[Hilbβ(X,k)]
vir

1.

8.3. Gluing of DT partition functions. We want to describe the gluing procedure for
partition functions in DT theory. Let X be given by two parts X1 and X2. The Hilbert
scheme of the singular variety

X0 := X1 ∪D X2

is not nice (although well-defined) since if C intersects D in a nontransverse way, it will
lead to different problems including the failure for the obstruction theory. However, one can
resolve this by using expanded degenerations. There we allow X0 to insert bubbles B such
that

X0[`] = X1 ∪D1 B ∪D2 · · · ∪D` B︸ ︷︷ ︸
`

∪D`+1
X2,

where B := P(N(X1/D)⊕OD) is a P1-bundle over D associated to the rank 2 vector bundle
N(X1/D) ⊕ OD, where N(X1/D) denotes the normal bundle of D in X1. The divisors

44Following [Beh09], for a scheme (or Deligne–Mumford stack) X with cotangent complex LX , the virtual
fundamental class is defined through a perfect obstruction theory of E ! LX , where E ∈ D(OX) (here
D(OX) denotes the derived category of sheaves of OX -modules). In particular, E defines a vector bundle
stack C over X. The virtual fundamental class [X]vir ∈ ArkE(X) is then defined as the intersection of the
fundamental class of the intrinsic normal cone [CX ] (the perfect obstruction theory E ! LX induces a
closed immersion of cone stacks CX ↪! C) with the zero section of C, i.e. [X]vir := 0!

C[CX ]. Note that we
have denoted by Ar(X) the Chow group of r-cycles modulo rational equivalence on X with values in Z.

45Typically computed by using some version of the Riemann–Roch theorem.
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D1
∼= D2

∼= · · · ∼= D`+1
∼= D are all copies of D which appear together with the bubbles B.

We consider now subschemes C ⊂ X0[`] of the form C = C0 ∪ C1 ∪ · · · ∪ C` ∪ C`+1 with
components {Ci} all being transverse to the divisors {Di}. We can glue them together by
the setting

Ci ∩Di+1 = Di ∩ Ci+1.

This produces a new bubble each time the intersection does not appear to be transversal.
The moduli spaces for different ` can be captured into one single orbifold

Hilb(X0[•]) =
⋃

`≥0

Hilb(X0[`])semistable

/
(C×)`,

where C× acts on the P1-bundle. Note that when talking about the smooth setting for
a manifold Σ, we consider tubular neighborhoods of the boundary ∂Σ × [0, 1] in order
to glue the two boundary pieces ∂Σ × {0} and ∂Σ × {1}, which in the algebraic setting
corresponds to the gluing of two distinguished divisors, namely D0 = P(N(X/D)) ⊂ B and
D∞ = P(OX) ⊂ B. In fact, the C×-action on P1 preserves the divisors D0 and D∞. The
DT gluing formula is then given by setting

(8.3.1)
∫

[Hilb(X)]vir

[Ξ](D) =

∫

[Hilb(X0[•])]vir

[Ξ](D),

where [Ξ](D) denotes a cohomology class defined by using boundary conditions away from
D or in any other way such that it is well-defined as a cohomology class on the whole family
of the Hilbert schemes. Additionally, we need to require that the integral on the right-hand-
side of (8.3.1) can be computed in terms of DT counts in X1 and X2 relative to the divisor
D. In particular, this means

(8.3.2) ZDT
X =

〈
ZDT
X1/D

, (−z)| · |ZDT
X2/D

〉
H•(Hilb(D))

,

where ZDT
Xi/D

for i = 1, 2 is defined as in (8.2.2) and | · | denotes the grading onH•(Hilb(D)) =
⊕

kH•(Hilb(D, k)). We put the extra weight (−z)| · | since
χhol(OC) = χhol(OC1) + χhol(OC2)− χhol(OC1∩D)

whenever C = C1 ∪C1∩D C2 is a transverse union along the common intersection with D.

9. Relation to Gromov–Witten theory

9.1. The moduli space of stable maps. Gromov–Witten (GW) theory [Gro85; Wit91;
Beh97] of a non-singular projective variety X deals with the moduli spaces of stable maps46

constructed by Kontsevich (first appeared in [Kon95; KM94]), which is a generalization
for the moduli space Mg,n of n-pointed stable curves47 of genus g (see also [Pan99; FP97;
Hor+03]). As a set, Mg,n is the set of isomorphism classes of n-pointed stable curves of
genus g. It actually turns out thatMg,n is a quasi-projective variety of dimension 3g−3+n

46Recall that a stable map on a non-singular projective variety X is a morphism f from a pointed nodal
curve C to X such that if f is constant on any component of C, then that component is required to have
at least three distinguished points. The distinguished points are either marked points, or points lying over
nodes in the normalization of C.

47This is a complete algebraic curve whose automorphism group, as an n-pointed curve, is finite.
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and is given as a projective compacification48 of the moduli space given by the isomorphism
classes of smooth n-pointed stable curves of genus g, which is usually denoted byMg,n.
In particular, the moduli space of stable maps from n-pointed nodal curves49 of genus g
to a non-singular projective variety X representing50 the class β ∈ H2(X,Z) is denoted by
Mg,n(X,β). In fact,Mg,n(X,β) is a Deligne–Mumford stack. It is easy to see that if X is
a point, we get that

Mg,n(X, 0) =Mg,n.

A natural cohomology class on the moduli space of stable maps is given by the pull-
back of X (see below), i.e. ev∗i (γ) where γ ∈ H•(X,Z) for i = 1, . . . , n. At each point
[C, p1, . . . , pn, f ] ∈Mg,n(X,β), the cotangent space to C at each point pi is a 1-dimensional
vector space. Gluing all these spaces together, we get a line bundle Li called i-th tautological
line bundle. Denote by ψi := c1(Li) its first Chern class. Then we have the string equation
forMg,n

(9.1.1)
∫

Mg,n+1

n∏

i=1

ψβii =

n∑

i=1

∫

Mg,n

ψβ1
1 · · ·ψβi−1

i · · ·ψβnn .

One can then easily prove the dilaton equation forMg,n

(9.1.2)
∫

Mg,n+1

ψn+1

n∏

i=1

ψβii = (2g − 2 + n)

∫

Mg,n

n∏

i=1

ψβii

for 2g − 2 + n > 0. Moreover, define

〈τβ1 , . . . , τβn〉g :=

∫

Mg,n

n∏

i=1

ψβii .

The virtual dimension of the moduli space of stable maps [BF97] is given by

(9.1.3) vdimMg,n(X,β) =

∫

β
c1(X) + (dimX − 3)(1− g) + n.

Similarly as for the DT construction, one can also consider the virtual fundamental class
[
Mg,n(X,β)

]vir
∈ H2vdim(X,Q).

In particular, if there is no obstruction for all stable maps, we get that the virtual fundamen-
tal class is equal to the ordinary fundamental class. As already mentioned, for i = 1, ..., n
there are evaluation maps evi : Mg,n(X,β)! X such that evi(f) = f(xi) for xi ∈ C. Thus,
the classes γ ∈ H•(X,Z) can be pulled back to classes in H•(Mg,n(X,β),Q) by the map
ev∗i : H•(X,Z)! H•(Mg,n(X,β),Q).

48One can show thatMg,n is not compact by noticing that in general a family of smooth curves over a
noncomplete base is not extendable to a family of smooth curves over a completion of it. The completion
can be realized by allowing fibers that have nodes at worst and using the stable reduction theorem, hence
compactness ofMg,n.

49Recall that a nodal curve is a complete algebraic curve such that each of its points is either smooth
or locally complex-analytically isomorphic to a neighborhood of the origin within the locus of the equation
xy = 0 in C2 [ACG11].

50Any stable map f : C ! X represents a homology class β ∈ H2(X,Z) whenever f∗[C] = β.
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9.2. GW invariants. Given cohomology classes γ1, . . . , γn ∈ H•(X,Z), we can define the
GW invariants by

(9.2.1) GWX
g,β(γ1, . . . , γn) :=

∫
[
Mg,n(X,β)

]vir

n∏

i=1

ev∗i (γi).

Remark 9.2.1. According toWitten’s notation, we may sometimes also write 〈∏n
i=1 γi〉

X
g,β =

〈γ1 · · · γn〉Xg,β instead of GWX
g,β(γ1, . . . , γn).

One can also define a generalized version of the GW invariants, called the gravitational
descendant invariants or just descendant invariants, defined by

(9.2.2)

〈
n∏

i=1

τai(γi)

〉X

g,β

:=

∫
[
Mg,n(X,β)

]vir

n∏

i=1

ev∗i (γi)ψ
ai
i ,

where γi ∈ H•(X,Z) and ai ∈ Z>0. We can extend the string (9.1.1) and dilaton (9.1.2)
equations to the moduli space of stable mapsMg,n(X,β). The string equation is given by

(9.2.3)

〈
n∏

i=1

τai(γi)1

〉X

g,β

=

n∑

j=1

〈
j−1∏

i=1

τai(γi)τaj−1(γj)

n∏

i=j+1

τai(γi)

〉X

g,β

where 1 ∈ H•(X,Z) denotes the unit. The dilaton equation is given by

(9.2.4)

〈
n∏

i=1

τai(γi)τ1(1)

〉X

g,β

= (2g − 2 + n)

〈
n∏

i=1

τai(γi)

〉X

g,β

.

It is easy to see that (9.2.3) reduces to (9.1.1) and (9.2.4) to (9.1.2) if X is a point.

9.3. GW partition function. One can then define the GW partition function as

ZGW
X (q, u) :=

∑

(β,g)∈H2(X,Z)⊕Z

GWX
β,g(γ1, . . . , γn)qβu2g−2

=
∑

(β,g)∈H2(X,Z)⊕Z

qβu2g−2

∫
[
Mg,n(X,β)

]vir

n∏

i=1

ev∗i (γi)
(9.3.1)

Remark 9.3.1. GW theory can be regarded as some A-mirror since the invariants can be
thought of an A-model with path integral over the space of fields given through pseudo-
holomorphic curves as for the construction of Lagrangian Floer homology (see Section 3.7).
We refer to the excellent reference [Hor+03] for more details on GW theory and its connection
to mirror symmetry.

Remark 9.3.2 (Korteweg-de-Vries (KdV) hirarchy). Consider the generating series

(9.3.2) F(t0, t1, . . .) :=
∑

g≥0,n≥0
2g−2+n≥0

1

n!

∑

β1,...,βn≥0

(∫

Mg,n

n∏

i=1

ψβii

)
tβ1
0 t

β2
1 · · · tβnn .
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In [Wit91], Witten conjectured that the function u := ∂2F
∂t20

satisfies the KdV hirarchy, i.e.

ut1 = uux +
1

12
uxxx,

ut2 =
1

2
u2ux +

1

12
(2uxuxx+ uuxxx) +

1

240
uxxxxx

...

(9.3.3)

where x := t0. Using the string equation (9.1.1), we get

(9.3.4)
∂F

∂t0
=
∑

i≥0

ti+1
∂F

∂ti
+
t20
2
.

If F satisfies condition (9.3.3) together with (9.3.4), one can uniquely determine the gener-
ating series F. Witten’s conjecture was proven by Kontsevich in [Kon92].

9.4. Topological recursion. Topological recursion started with the work of Eynard–Orantin
in [EO09] which uses the recursive methods of symplectic invariants to solve matrix model
loop equations. In particular, as an application they show how one can obtain e.g. a
proof of Witten’s conjecture (see Remark 9.3.2), Mirzakhani’s recursive methods of deriving
Weil–Petersson volumes [Mir07] and certain constructions of topological string theories. In
particular, one is interested in the data given by a spectral curve C = (Σg, x, y, B), where
Σg denotes a Riemann surface of genus g ≥ 0, x, y are two meromorphic functions on Σg

and B is some 2-form on Σg ×Σg. Assume moreover that the zeros of dx are all simple and
do not coincide with the zeros of dy. Then, as a result of topological recusrsion, one obtains
symmetric multidifferentials ωg,n ∈ H0(KΣg(∗D)⊗n, (Σg)

n)Sn for g ≥ 0 and n ≥ 1 such that
2g − 2 + n > 0. These differentials are usually called correlators. We have denoted by D
the divisor of zeros of dx = 0 and by Sn the symmetric group of order n. Note that then
the multidifferentials ωg,n will be holomorphic outside of dx = 0 and can have poles of any
order when the given variables approach the divisor D. The key is to define the correlators
recursively. In particular, we define first the exceptional cases

ω0,1(p1) = y(p1)dx(p1),(9.4.1)
ω0,2(p1, p2) = B(p1, p2).(9.4.2)

Then, the recursive relation for the correlators in general is given by

(9.4.3) ωg,n(p1,pI) =
∑

dx(α)=0

Resp=αK(p1, p)×

×




ωg−1,n+1(p, σα(p),pI) +

ω̂0,1∑

h+h′=g
JtJ′=I

ωh,1+|J |(p,pJ)ωh′,1+|J ′|(σα(p),pJ ′)




.

We have used the notation I = {2, 3, . . . , n} and pJ = {pj1 , . . . , pjk} for J = {j1, j2, . . . , jk} ⊆
I. Note that the holomorphic function p 7! σα(p) is the non-trivial involution which is lo-
cally defined at the ramification point α and satisfies x(σα(p)) = x(p). Moreover, we have
denoted by

∑̂ω0,1 in the bracket the sum which leaves out the terms involving ω0,1. The
recursion kernel is given by

(9.4.4) K(p1, p) :=
1

2

1

(y(p)− y(σα(p)))dx(p)

∫ p

σα(p)
ω0,2(p1, ).
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Note that the recursion will only depend on the local behaviour of y near the zeros of dx up
to functions which are even with respect to the involution σα and thus it only depends on
dy. If 2g−2+n > 0, one can observe that ωg,n(p1, . . . , pn) are meromorphic forms on (Σg)

n

with poles at pi ∈ D. Therefore, they can be expressed in terms of polynomials for a basis
of 1-forms with poles only in D and divergent part being odd with respect to each local
involution σα. If we denote such a basis by (ξαk ), we can write down a partition function for
the spectral curve C as

(9.4.5) ZC({tαk}; ~) := exp




∑

g≥0, n≥1
2g−2+n>0

~g−1

n!
ωg,n

∣∣
ξαk=tαk


 .

Remark 9.4.1. The relation to GW theory was considered in [Dun+14] and studied fur-
ther in [BN19]. In particular, in [Dun+14], they show how this construction fits into the
cohomological field theory encoding GW invariants of P1 which corresponds to the spectral
curve given by

CP1 =

(
P1, x = z +

1

z
,dy =

dz

z
,B =

dz1 ∧ dz2

(z1 − z2)2

)
.

Remark 9.4.2. An interesting approach to the formulation of topological recursion would
be to combine it with the methods of [Pan+13] (see Section 4.7) in order to talk about
a shifted version of the multidifferentials (9.4.3), i.e. to consider the behaviour of forms
in ωg,n ∈ Hk(KΣg(∗D)⊗n, (Σg)

n)Sn , or more generally a shifted version of the symplectic
invariants as defined in [EO09]. This would lead to a relation of the BV-BFkV formalism by
considering enumerative methods, such as GW invariants, for stratified spaces in the setting
of perturbative gauge theories.

Remark 9.4.3. In [Bor+21], it was recently also shown how one can obtain Nekrasov’s
partition function by using methods of topological recursion.

9.5. GW/DT correspondence. Based on a duality construction involving topological
strings in the limit of the large string coupling constant described in terms of a classical
statistical mechanical model of crystal melting considered in [ORV06], Maulik, Nekrasov,
Okounkov and Panharipande have formulated a correspondence between GW and DT parti-
tion functions in [Mau+06a; Mau+06b]. In particular, in [ORV06] one considers the crystal
to be a discretization of the toric base of some Calabi–Yau manifold. Moreover, a more
general duality involving the A-model string on a toric 3-fold was proposed. For this, let X
be a nonsingular projective 3-fold and define the generating function

(9.5.1) Z̃GW
X

(
u,

n∏

i=1

τai(γi)

)

β

:=
∑

g∈Z

〈〈
n∏

i=1

τai(γi)

〉〉X

g,β

u2g−2

for a fixed nontrivial class β ∈ H2(X,Z). Here we have defined
〈〈

n∏

i=1

τai(γi)

〉〉X

g,β

:=

∫
[
M′g,n(X,β)

]vir

n∏

i=1

ev∗i (γi)ψ
ai
i ,

with M′g,n(X,β) the moduli space of maps with possibly disconnected domain curves C
of genus g where there are no collapsed components, hence each component C represents
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a nontrivial51 class β ∈ H2(X,Z). Let Ik(X,β) be the moduli space of ideal sheaves52

satisfying χhol(OY ) = k and [Y ] = β ∈ H2(X,Z) for some subscheme Y ⊂ X. The
descendent fields τ̃a(γ) in DT theory correspond to (−1)a+1cha+2(γ), where

(9.5.2) cha+2(γ) : H•(Ik(X,β),Q)! H•−2a+2−`(Ik(X,β),Q)

for γ ∈ H`(X,Z). One can express the map cha+2(γ) by considering the projections π1

and π2 to the first and second factor of Ik(X,β) ×X, respectively and the universal sheaf
I ! Ik(X,β) × X. One can show that there is53 a finite resolution of I by locally free
sheaves on Ik(X,β) × X. This will guarantee that the Chern classes of I are well-defined
and thus one can express the map (9.5.2) by

cha+2(γ)(ξ) = (π1)∗
(
cha+2(I)(π2)∗(γ) ∩ (π1)∗(ξ)

)
.

We can then define the descendent invariants by

(9.5.3)

〈
n∏

i=1

τ̃ai(γi)

〉X

k,β

=

∫
[
Ik(X,β)

]vir

n∏

i=1

(−1)ai+1chai+2(γi).

Using this construction, and noticing that the moduli space Ik(X,β) is canonically isomor-
phic to the Hilbert scheme Hilbβ(X, k), we can define the DT partition function by

ZDT
X

(
q,

n∏

i=1

τ̃ai(γi)

)

β

=
∑

k∈Z

〈
n∏

i=1

τ̃ai(γi)

〉X

k,β

qk.

We then define the reduced DT partition function by formally removing the degree zero
contributions

Z̃DT
X

(
q,

n∏

i=1

τ̃ai(γi)

)

β

:=
ZDT
X (q,

∏n
i=1 τ̃ai(γi))β

ZDT
X (q)0

.

For simplicity, we state the GW/DT correspondence for primary fields τ0(γ) and τ̃0(γ).

Conjecture 9.5.1 (Maulik–Nekrasov–Okounkov–Pandharipande[Mau+06a]). Considering
the change-of-variables exp(iu) = −q, we have

(−iu)dZ̃GW
X

(
u,

n∏

i=1

τ0(γi)

)

β

= (−q)−d/2Z̃DT
X

(
q,

n∏

i=1

τ̃0(γi)

)

β

,

where d :=
∫
β c1(X).

Remark 9.5.2. Conjecture 9.5.1 has been proven for X being a toric 3-fold in [Mau+11].

9.5.1. Relative GW/DT correspondence. An important concept for us is the case for relative
theories which corresponds to the algebraic case when considering defects of a manifold in
the smooth setting. LetX be a nonsingular projective 3-fold and letD ⊂ X be a nonsingular
divisor. The relative GW invariants are then defined by

(9.5.4)

〈〈
n∏

i=1

τai(γi)

∣∣∣∣∣ η
〉〉X/D

g,β

:=
1

|Aut (η)|

∫
[
M′g,n(X/D,β,η)

]virt

n∏

i=1

ev∗i (γi)ψ
ai
i

m∏

j=1

ev∗j (δj),

51In particular, C has to represent a nonzero class.
52These are torsion-free sheaves of rank 1 with trivial determinant.
53This is due to the fact that I is π1-flat and X is nonsingular.
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where β ∈ H2(X,Z) is such that
∫
β[D] ≥ 0, η = (ηj) a partition whose components satisfy∑

j ηj =
∫
β[D] together with a certain ordering condition54 with respect to a basis δ1, . . . , δm

of H•(D,Q),M′g,n(X/D, β, η) denotes the moduli of stable relative maps with possibly dis-
connected domains and relative multiplicities determined by η, and evj : M′g,n(X/D, β, η)!
D are determined by the relative points. Hence, the relative GW partition function is given
by

(9.5.5) Z̃GW
X/D

(
u,

n∏

i=1

τai(γi)

)

β,η

=
∑

g∈Z

〈〈
n∏

i=1

τai(γi)

∣∣∣∣∣ η
〉〉X/D

g,β

u2g−2.

Similarly as we have seen in Section 8.2, we can construct a relative version of the DT
partition function by integration over the moduli space of relative ideal sheaves. Let η be
a cohomology weighted partition with respect to the basis δ1, . . . , δm ∈ H•(D,Q) and let
|η| :=

∑
j ηj . The relative moduli space55 Ik(X/D, β) in fact has still dimension

∫
β c1(X).

The relative DT partition function is then given by

(9.5.6) ZDT
X/D

(
q,

n∏

i=1

τ̃ai(γi)

)

β,η

=
∑

k∈Z

〈
n∏

i=1

τ̃ai(γi)

∣∣∣∣∣ η
〉

k,β

qk,

where the descendent invariants in the relative DT theory are given by
〈

n∏

i=1

τ̃ai(γi)

∣∣∣∣∣ η
〉

k,β

=

∫
[
Ik(X/D,β

]vir

n∏

i=1

(−1)ai+1chai+2(γi) ∩ ε∗Cη

with the canonical intersection map ε : Ik(X/D, β)! Hilb
(
D,
∫
β[D]

)
to the Hilbert scheme

of points and

Cη :=
1∏

i ηi|Aut(η)|
m∏

j=1

Pδj [ηj ] · 1 ∈ H• (Hilb (D, |η|) ,Q) ,

where we follow the notation of [Nak99]. The collection (Cη)|η|=k is called Nakajima basis
of the cohomology of the Hilbert scheme Hilb(D, k). The Nakajima basis is orthogonal with
respect to the Poincaré pairing on the cohomology

∫

Hilb(D,k)
Cη ∪ Cν =

(−1)k−`(η)

∏
i ηi|Aut(η)|δν,η∨ ,

54In fact, we can consider a weighted partition η which consists of tuples (ηj , δ`j ). One then chooses the
standard order, i.e. (ηj , δ`j ) > (ηj′ , δ`j′ ) if (ηj > ηi′) or if ηi = ηi′ and `i > `i′ . Then η is basically the
partition (η1, . . . , ηm) that is obtained from the standard order.

55We can construct a proper moduli space Ik(X/D, β) consisting of stable ideal sheaves relative on the
degenerations X[`] of X. We define an ideal sheaf on X[`] to be predeformable if for each singular divisor
Dl ⊂ X[`], the induces map

I ⊗OX[`]
ODl ! OX[`] ⊗OX[`]

ODl
is injective. Moreover, we call an ideal sheaf I on X[`] relative to Dl stable if Aut(I ) is finite. We can
then define the moduli space Ik(X/D, β) by the parametrization of stable, predeformable, ideal sheaves I
on degenerations X[`] relative to Dl satisfying χhol(OY ) = k and π∗[Y ] = β ∈ H2(X,Z) with π : X[`]! X
denoting the canonical stabilization map. In particular, Ik(X/D) is a complete Deligne–Mumford stack
together with a canonical perfect obstruction theory.
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where η∨ denotes the dual56 partition to the weighted partition η and `(η) is the length of
the partition η. We can define the reduced relative DT partition function by

(9.5.7) Z̃DT
X/D

(
q,

n∏

i=1

τ̃ai(γi)

)

β,η

:=
ZDT
X/D (q,

∏n
i=1 τ̃ai(γi))β,η

ZDT
X/D(q)0

.

Again, for simplicity, we restrict the relative GW/DT correspondence to primary fields.

Conjecture 9.5.3 (Maulik–Nekrasov–Okounkov–Pandharipande[Mau+06b]). Considering
the change-of-variables exp(iu) = −q, we have

(−iu)d+`(η)−|η|Z̃GW
X/D

(
u,

n∏

i=1

τ0(γi)

)

β,η

= (−q)−d/2Z̃DT
X/D

(
q,

n∏

i=1

τ̃0(γi)

)

β,η

,

where d :=
∫
β c1(X).

9.6. GW invariants on (graded) supermanifolds. Recall that in the BV-BFV formal-
ism we consider the space of boundary fields given by the BFV space (F∂∂M , ω∂∂M ) associated
to a smooth variety M , which is a graded symplectic supermanifold. It would be interesting
to understand the GW invariants on (graded) supermanifolds. Recently, an approach to this
aim has been done in [KSY20] for super Riemann surfaces, i.e. a complex supermanifold
M of dimension 1 | 1 endowed with a holomorphic distribution D ⊂ TM of rank 0 | 1 such
that D ⊗ D ∼= TM/D (the isomorphism should be induced from the commutator of vector
fields). Denote by I the almost complex structure on TM . They define the the notion of
super J-holomorphic curve (recall Section 3.7 for the case of usual J-holomorphic curves)
to be a map Φ: M ! N for some almost Kähler manifold (N,ω, J), if the differential
D̄JΦ := 1

2(1 + I ⊗ J)dΦ
∣∣∣
D
∈ Γ(D∗ ⊗Φ∗TN) vanishes. It was shown in [KSY20] that under

certain assumptions the moduli space of super J-holomorphic curves Φ: M ! N , denoted
byMsuper([Φ], J) is a smooth supermanifold of dimension

2n(1− g) + 2

∫

C
c1(N)

∣∣∣ 2

∫

C
c1(N),

where g denotes the topological genus of M and C ∈ H2(N) denotes the homology class
of the image of the reduction Φred : Mred ! N (see [KSY20] for a detailed discussion).
Using the construction of GW invariants through the moduli space of stable curves, it is
expected that also there we would be able to obtain a smooth supermanifold structure for
some non-singular projective variety X by using similar methods.

Appendix A. Equivariant localization

In this appendix we want to recall the most important notions on equivariant localization
techniques [Sza00; BV82; BV83b], notions of equivariant (co)homolgy according to [AB84]
and how they fit into the field theory setting, especially to the BV formalism [Ner93; Sza00].

A.1. The ABBV method. A way of treating (finite-dimensional) path integrals in QFT,
similarly as through the saddle point approximation, is given by a construction that uses
the symplectic structure of the underlying manifold, which is known today as the Atiyah–
Bott–Berline–Vergne (ABBV) equivariant localization [AB84; BV82; BV83b] based on the

56We define the dual partition by taking the Poincaré dual of the cohomology weights.
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Duistermaat–Heckman theorem [DH82] for symplectic manifolds (see also [Sza00]). For-
mally, as already seen, we describe the partition function as a functional integral of the
form

Z(~) =

∫

M

ωn

n!
exp(iΘ/~),

where we consider a Hamiltonian G-space (M, ω,Θ, G) . Assume moreover that the Hamil-
tonian Θ is a Morse function as in Section 3.1 and let vΘ be the Hamiltonian vector field of
Θ. Using the stationary phase expansion formula, we can expand Z around critical points
of Θ given by

Z(~) ∼ (2πi~)n
∑

p∈M
p critical point of Θ

(−i)indpΘ exp(iΘ(p)/~)

√
detω(p)

det ∂2Θ(p)
+ O(~n+1),

where ∂2Θ(x) =
(

∂2Θ
∂xi∂xj

(x)
)
denotes the Hessian of Θ. In [DH82], Duistermaat and Heck-

man found a class of Hamiltonian G-spaces for which the O(~n+1) term vanishes in the
above formula. Suppose thatM is a compact symplectic manifold of dimension 2n endowed
with a Riemannian metric and suppose that vΘ, the Hamiltonian vector field of Θ, generates
the global Hamiltonian action of a torus T on M (we can also work with the circle S1 for
simplicity) and is the Killing vector for the metric. The simplicity of considering the circle
action implies that ω+Θ is the equivariant extension of the symplectic form, i.e. it is closed
with respect to the equivariant differential dvΘ := d + ιvΘ . Then the partition function can
be written by

Z(~) =

∫

M
α(~),

where

α(~) := (−i~)n exp(i(ω + Θ)/~) = (−i~)n exp(iΘ/~)

n∑

k=0

(
i

~

)k ωk
k!
.

Note that since ω + Θ is equivariantly closed, we have dvΘα = 0. This allows us to apply
the Berline–Vergne localization formula [BV82; BV83b] which gives

(A.1.1)
∫

M
α(~) = (2πi~)n

∑

p critical point of Θ

exp(iΘ(p)/~)

Pfaff dV (p)
,

where dV (p) := ω−1(p)∂2Θ(p). Consider now the action of C× on some complex manifold
Σ and denote by ΣC× the set of isolated fixed points. Moreover, assume that the action of
U(1) ⊂ C× is generated by some Hamiltonian Θ with respect to a symplectic form ω. Then
the Atiyah–Bott–Duistermaat–Heckman equivariant localization formula is given by

(A.1.2)
∫

Σ
exp(ω − 2πξΘ) =

∑

u∈ΣC×

exp(−2πξΘ(u))

det ξ|TuΣ
.

Here ξ is considered to be an element of the Lie algebra of C× given by C, so it can act in
the complex tangent space TuΣ to some fixed point u ∈ Σ. An important remark is that
(A.1.2) can also work for non-compact manifolds Σ.
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A.2. Relation to the BV-BFV formalism. We have seen in Section 4.3 that in the
BFV formalism we are considering a Z-graded supermanifold F∂ together with a symplectic
form ω∂ of degree 0, thus we have a usual symplectic manifold (F∂ , ω∂). Hence, we can
use the equivariant localization construction without corrections. In the case of the BV
formalism the symplectic structure ω is odd of degree −1 inducing the anti-bracket ( , )
which requires the equivariant localization construction to be adapted to this case. We refer
to [Ner93; Sza00] for such a BV formulation.

Appendix B. Configuration spaces on manifolds with boundary

In this appendix we want to recall some of the most important notions on configuration
spaces on manifolds with boundary and their compactification. We refer to [Cam+18; BT94;
Bot96; Kon93] for an excellent introduction on this subject.

B.1. Open configuration spaces. Let Σ be a closed d-manifold. Denote the open config-
uration space of n points in Σ by

(B.1.1) Confn(Σ) := {(u1, . . . , un) ∈ Σn | ui 6= uj , for i 6= j}.
This is a manifold with corners of dimension d · n. If Σ has boundary, we consider can
consider the configuration space of n points in the bulk and m points on the boundary given
by

(B.1.2)
Confn,m(Σ) := {(u1, . . . , un, u1, . . . , um) ∈ Σn×(∂Σ)m | ui 6= uj , for i 6= j with 1 ≤ i, j ≤ n

and u` 6= uk, for ` 6= k with 1 ≤ `, k ≤ m}.
Moreover, we have

dim Confn,m(Σ) = d · n+ (d− 1) ·m.

B.2. Local formulation. A special case is when we consider the configuration of points
locally on Rd. In particular, there is a symmetry group acting on Confn(Rd), which is given
by the (d+ 1)-dimensional Lie group G(d+1) consisting of scaling and translation, i.e. u 7!
au+ b with a ∈ R and b ∈ Rd. The quotient Cn(Rd) := Confn(Rd)/G(d+1) is then a manifold
of dimension d ·n+(d−1) ·m−(d+1). For the case with boundary, i.e. when considering the
d-dimensional upper half-space Hd = {(u1, . . . , ud) ∈ Rd | ud ≥ 0}, one can see that there is
a d-dimensional Lie group G(d) acting on Confn,m(Hd) also by scaling and translation, i.e.
u 7! au+ b with a ∈ R and b ∈ Rd−1. The quotient Cn,m(Hd) := Confn,m(Hd)/G(d) is then
a manifold of dimension d · n+ (d− 1) ·m− d.

B.3. Compactification. There is a natural way of compactifying the open configuration
space. The compactification construction was first formulated for algebraic varieties by
Fulton–MacPherson [FM94b] and later adapted to the smooth setting of manifolds by
Axelrod–Singer [AS91; AS94]. This compactification is often called FMAS compactifica-
tion (see also [Sin04] for an introduction for the approach on manifolds). Let us give some
ideas of the Fulton–MacPherson construction. Let S be a finite set and consider the space
Map(S,Σ) of maps from S to Σ. Moreover, consider the smooth blow up B`(Map(S,Σ),∆S),
where ∆S denotes the diagonal ∆S ⊂ Map(S,Σ), consisting of constant maps S ! Σ. De-
note by ConfS(Σ) the space of embeddings of S into Σ. One can then observe that for every
inclusion K ⊂ S there are natural projections Map(S,Σ) ! Map(K,Σ) and corresponding
arrows ConfS(Σ)! ConfK(Σ) by restriction of maps from S to K as a functorial approach.
Further, one can show that the inclusions ConfS(Σ) ⊂ Map(S,Σ) can be lifted to inclusions
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ConfS(Σ) ⊂ B`(Map(S,Σ),∆S) since these sets avoid all diagonals. Thus, for a finite set
X, we have a canonical inclusion

ConfX(Σ) ↪!
⊗

S⊂X
|S|≥2

B`(Map(S,Σ),∆S)×Map(S,Σ).

The Fulton–MacPherson compactification, denoted by ConfX(Σ), is then defined as the
closure of ConfX(Σ) in this embedding. It turns out that the compactified configuration
space is a manifold with corners and comes with equivariant functorial properties under
embeddings and that the propagators do indeed extend smoothly to this compactification
in certain important cases, e.g. when Σ = R3, and Pij : Cn(R3) ! S2, Pij(x1, . . . , xn) :=
xj−xi
‖xj−xi‖ for 1 ≤ i, j ≤ n, such an extensions holds, which is important for different aspects in
the theory of Vassiliev’s knot invariants arising from configuration space integrals [Kon93;
Kon94b; Bot96; BC98].

Remark B.3.1 (Graphs). If we consider a graph Γ in Σ, i.e. a graph whose vertex set
V (Γ) is contained in Σ, we will write ConfΓ(Σ) := ConfV (Γ)(Σ) for the configuration space
of points in Σ which are vertices of Γ. Moreover, if V (Γ) = Vb(Γ)∪V∂(Γ) with Vb(Γ) the set
of vertices of Γ lying in the bulk and V∂(Γ) de set of vertices of Γ lying on the boundary, we
have ConfΓ(Σ) := Conf |Vb(Γ)|,|V∂(Γ)|(Σ).

B.4. Boundary structure. Since Confn,m(Σ) is a manifold with corners, we can consider
its boundary. The boundary is given by the collapsing of points in different situations, which
we call boundary strata. In particular, since we have a manifold with corners, the boundary
of the configuration space will consist of two different types of strata:

• (Strata of type S1) These are strata where i ≥ 2 points in the bulk collapse to
a point in the bulk. Elements of such a stratum can be described as points in
Confi(Σ)× Cn−i+1,m(H4),
• (Strata of type S2) These are strata where i > 0 points in the bulk and j > 0 points
on the boundary with 2i+ j − 2 ≥ 0 collapse to a point on the boundary. Elements
of such a stratum can be described as points in Confi,j(Σ)× Cn−i,m−j+1(H4).
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We describe a globalization construction for the Rozansky–Witten model in the BV-BFV 
formalism for a source manifold with and without boundary in the classical and quantum 
case. We define an AKSZ sigma model, which, upon globalization through notions of formal 
geometry extended appropriately to our case, is shown to reduce to the Rozansky–Witten 
model. The relations with other relevant constructions in the literature are discussed. 
Moreover, we split the model as a B F -like theory and we construct a perturbative 
quantization of the model in the quantum BV-BFV framework. In this context, we are 
able to prove the modified differential Quantum Master Equation and the flatness of the 
quantum Grothendieck BFV operator. Additionally, we provide a construction of the BFV 
boundary operator in some cases.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Overview and motivation

An important class of field theories in physics is represented by gauge theories. These are theories containing a redundant 
number of degrees of freedom which causes physical quantities to be invariant under certain local transformations, called 
gauge symmetries. Indeed the presence of gauge symmetries lead to challenging problems from the definition of path integral 
to the general problem of understanding the perturbative quantization of a gauge theory. Since the physical information 
about a classical field theory is encoded in the set of solutions of the Euler–Lagrange equations (the critical locus), a possible 
solution to deal with such problems is to consider the critical locus modulo the gauge symmetries. The fields are then 
constructed as functions on this quotient. However, this is not feasible since it turns out that these quotients are, in general, 
singular. Batalin and Vilkovisky introduced a method, which is known today as the BV formalism [10–12], that employs 
symplectic (co)homological tools [48] to treat these field theories, in particular it overcomes difficulties connected to the 
singularity of the quotient by taking homological resolution of the critical locus. A crucial observation in the BV formalism 
is also that gauge-fixing then corresponds to the choice of a Lagrangian submanifold. Another method developed around 
the same time is the BFV formalism by Batalin, Fradkin and Vilkovisky [8,9,36], which deals with gauge theories in the 
Hamiltonian setting, while the BV construction is formulated in the Lagrangian approach.

* Corresponding author.
E-mail addresses: nmosha@math.berkeley.edu (N. Moshayedi), davide.saccardo14@gmail.com (D. Saccardo).
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Recently, the study of gauge theories on spacetime manifolds with boundary lead Cattaneo, Mnev and Reshetikhin [22,23]
to relate these two formulations in order to develop the BV-BFV formalism. Their idea was that, under certain conditions, BV 
theories in the bulk can induce a BFV theory on the boundary. This approach was successfully applied to a large number 
of physical theories such as e.g. electrodynamics, Yang-Mills theory, scalar field theory and B F -theories [23]. In particular, 
the AKSZ construction, developed in [2], produces naturally a large variety of theories which satisfy automatically the BV-BFV 
axioms as it was shown in [23]. This is quite remarkable since many theories of interest are actually of AKSZ-type, such as 
e.g. Chern–Simons (CS) theory, B F -theory and the Poisson sigma model (PSM) [23].

In [24], a perturbative quantization scheme for gauge theories in the BV-BFV framework was introduced, which was 
called quantum BV-BFV formalism. The importance of this method relies on its compatibility with cutting and gluing in the 
sense of topological quantum field theories (TQFTs). The quantum BV-BFV formalism has been applied successfully in various 
physically relevant theories such as e.g. B F -theory and the PSM [24], split CS theory [25] and CS theory [18], the relational 
symplectic groupoid1 [26] and 2D Yang–Mills theory on manifolds with corners [41,42].

An important effort has been spent to study TQFT within the quantum BV-BFV framework. Indeed, the method has been 
introduced to accomplish the goal of constructing perturbative topological invariants of manifolds with boundary compatible 
with cutting and gluing for topological field theories. During the years, two prominent TQFTs have been studied in detail: 
CS theory [4,5] in [25,73] and the PSM [40,67] in [28].

In [27] a globalized version of the (quantum) BV-BFV formalism in the context of nonlinear split AKSZ sigma models 
on manifolds with and without boundary by using methods of formal geometry à la Bott [16], Gelfand and Kazhdan [37]
(see also [15] for an application of the globalization procedure for the PSM in the context of a closed source manifold) was 
developed. Their construction is able to detect changes of the quantum state when one modifies the constant map around 
which the perturbation is developed. This required them to formulate a “differential” version of the (modified) Classical 
Master Equation and the (modified) Quantum Master Equation, which are the two key equations in the BV(-BFV) formalism. As 
an example, this procedure was applied to the PSM on manifolds with boundary and extended to the case of corners in [28].

In this paper, we continue the effort in analyzing TQFTs within the quantum BV-BFV formalism by studying the Rozansky–
Witten (RW) theory. The RW model is a topological sigma model with a source 3-dimensional manifold �3, which was 
introduced by Rozansky and Witten in [63] through a topological twist of a 6-dimensional supersymmetric sigma model 
with target a hyperKähler manifold M . Of particular interest is the perturbative expansion of the RW partition function. 
Rozansky and Witten obtained this expansion as a combinatorial sum in terms of Feynman diagrams �, which are shown 
to be trivalent graphs:

Z M(�3) =
∑
�

b�(M)I�(�3), (1.1.1)

the b�(M) are complex valued functions on trivalent graphs constructed from the target manifold, while I�(�3) contains 
the integral over the propagators of the theory and depends on the source manifold. There are evidences which suggest 
that I�(�3) are the LMO invariants of Le, Murakami and Ohtsuki [51]. On the other hand, Rozansky and Witten showed that 
b�(M) satisfy the famous AS (which is reflected in the absence of tadpoles diagrams) and IHX relations. As a result, b�(M)

constitute the Rozansky–Witten weight system for the graph homology, the space of linear combinations of equivalence classes 
of trivalent graphs (modulo the AS and IHX relations). This means that the RW weights can be used to construct new finite 
type topological invariants for 3-dimensional manifolds [7].

The RW theory opened up a new branch of research which was undertaken by many mathematicians and physicists (e.g. 
[39,70]). Shortly after the original paper, Kontsevich understood that the RW invariants could be obtained by the charac-
teristic classes of foliations and Gelfand-Fuks cohomology [49]. Inspired by the work of Kontsevich, Kapranov reformulated 
the weight system in cohomological terms (instead of using differential forms) in [44]. This idea relies on the fact that 
one can replace the Riemann curvature tensor by the Atiyah class [3], which is the obstruction to the existence of a global 
holomorphic connection. As a consequence of Kontsevich’s and Kapranov’s approaches, the RW weights were understood 
to be invariant under the hyperKähler metric on M: in fact, the model could be constructed more generally with target a 
holomorphic symplectic manifold. In this way, the RW weights were also called RW invariants2 of M (see [66] for a detailed 
exposition). On the other hand, the possibility to consider as target manifold a holomorphic symplectic manifold was later 
interpreted in the context of topological sigma models by Rozansky and Witten in the appendix of [63].

In the last 20 years, the RW model has been the focus of intense research in order to formulate it as an extended TQFT 
(see [62,65]), in order to investigate its boundary conditions and defects [46,47], and in order to construct its globalization 
formulation [30,43,57].

1.2. Our contribution

The main contribution of this paper is to add the RW theory to the list of TQFTs which have been studied successfully 
within the globalized version of the quantum BV-BFV framework [27]. This will be a step towards the higher codimension 

1 The relational symplectic groupoid was first defined in [19].
2 The terminology is unfortunate as in reality the proper invariants should be the products of the weights with I�(�3).
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quantization of RW theory, which will possibly lead to new insights towards the 3-dimensional correspondence between CS 
theory [74] and the Reshetikhin–Turaev construction [60] from the point of view of (perturbative) extended field theories 
described by Baez–Dolan [6] and Lurie [52]. Moreover this could also help in understanding (generalizations of a globalized 
version of the) Berezin–Toeplitz quantization (star product) [68] through field-theoretic methods using cutting and gluing 
similarly as it was done for Kontsevich’s star product [50] in the case of the PSM in [28].

We construct the BV-BFV extension of an AKSZ model having a 3-dimensional manifold �3 (possibly with boundary) as 
source and a holomorphic symplectic manifold M as target with holomorphic symplectic form �. Following [44], we define 
a formal holomorphic exponential map ϕ . This is used to linearize the space of fields of our model obtaining

F̃�3,x = �•(�3) ⊗ T 1,0
x M, (1.2.1)

where �•(�3) denotes the complex of de Rham forms on the source manifold and T 1,0
x M is the holomorphic tangent 

space on the target. In order to vary the constant solution around which we perturb, we define a classical Grothendieck 
connection which can be seen as a complex extension of the Grothendieck connection used in [27,28]. In this way, we 
construct a formal global action for our model, i.e.

S̃�3,x :=
∫
�3

(
1

2
�i jX̂

idX̂ j +
(

R̂ i
�3

)
j
(x; X̂)�ilX̂

ldx j +
(

R̂ i
�3

)
j̄
(x; X̂)�ilX̂

ldx j̄
)

(1.2.2)

with X̂i the coordinates of the spaces of fields F̃�3,x organized as superfields, x is the constant map over which we expand, (
R̂ i

�3

)
j

and 
(

R̂ i
�3

)
j̄

the components of the Grothendieck connection given by

Ri
j(x; y)dx j := −

[(
∂ϕ

∂ y

)−1]i

p

∂ϕp

∂x j
dx j,

Ri
j̄
(x; y)dx j̄ := −

[(
∂ϕ

∂ y

)−1]i

p

∂ϕp

∂x j̄
dx j̄,

(1.2.3)

where {yi} are the generators of the fiber of Ŝym•(T ∨1,0 M). The formal action is such that the differential Classical Master 
Equation (dCME) is satisfied, namely

dM S̃�3,x + 1

2
(S̃�3,x, S̃�3,x) = 0, (1.2.4)

with dM = dx + dx̄ the sum of holomorphic and antiholomorphic Dolbeault differentials on M . The dCME presented here is 
different from the one presented in e.g. [15,27,28] since there dM was the de Rham differential on the body of the target 
manifold.

The globalized model is then shown to be a globalization of the RW model [63], which reduces to the RW model itself 
in the appropriate limits. Our globalization of the RW model is compared with other globalization constructions as the 
one developed in [30] for a closed source manifold by using Costello’s approach [31,32] to derived geometry [55,71,72], the 
procedure in [69] which extends the work of [30] to manifolds with boundary and the procedure in [43,57]. In general, our 
model is compatible with all these apparently different views. In particular, we give a detailed account of the similarities 
between our method and the one in [30], thus confirming the claim in Remark 3.6 in [27] about the equivalence between 
Costello’s approach and ours.

In order to quantize the theory according to the quantum BV-BFV formalism, we formulate a split version of our global-
ized RW model. Since the globalization is controlled by an L∞-algebra, following [69] and inspired by the work of Cattaneo, 
Mnev and Wernli for CS theory [25], we assume that we can split the L∞-algebra in two isotropic subspaces. The action of 
the globalized split RW model is then

S̃ s
�3,x = 〈B̂, DÂ〉 +

〈(
R̂�3

)
j
(x; Â + B̂)dx j, Â + B̂

〉
+

〈(
R̂�3

)
j̄
(x; Â + B̂)dx j̄, Â + B̂

〉
, (1.2.5)

where 〈−,−〉 denotes the BV symplectic form on the space of fields F̃ s
�3,x with values in the Dolbeault complex of M , Âi

and B̂i are the fields found from the splitting of the field X̂i , and D denotes the superdifferential. Note that d is the de 
Rham differential on the target, not on the source.

Finally, we quantize the globalized split RW model within the quantum BV-BFV formalism framework. Here, we obtained 
the following two theorems.

Theorem (Flatness of the qGBFV operator (Theorem 7.4.3)). The quantum Grothendieck BFV (qGBFV) operator ∇G for the anomaly-
free globalized split RW model squares to zero, i.e.

3



N. Moshayedi and D. Saccardo Journal of Geometry and Physics 174 (2022) 104454

(∇G)2 ≡ 0, (1.2.6)

where

∇G = dM − ih̄�V�3,x + i

h̄
�∂�3 = dx + dx̄ − ih̄�V�3,x + i

h̄
�∂�3 , (1.2.7)

with dM the sum of the holomorphic and antiholomorphic Dolbeault differentials on the target M, �V�3,x the BV Laplacian and �∂�3

the full BFV boundary operator.

Theorem (mdQME for anomaly-free globalized split RW model (Theorem 7.5.1)). Consider the full covariant perturbative state ψ̂�3,x

as a quantization of the anomaly-free globalized split RW model. Then(
dM − ih̄�V�3,x + i

h̄
�∂�3

)
ψ̂�3,x,R = 0. (1.2.8)

The proof of both the theorems is very similar to the ones exhibited in [27] for non linear split AKSZ sigma models. 
Hence, we refer to [27] when the procedure is the same whereas we remark when there are differences (which are related 
to the presence of the sum of the holomorphic and antiholomorphic Dolbeault differentials in the quantum Grothendieck 
BFV operator instead of the de Rham differential as in [27]).

We provide an explicit expression for the BFV boundary operator up to one bulk vertices in the B-representation by 
adapting to our case the degree counting techniques of [27]. Unfortunately, due to some complications related to the number 
of Feynman rules, we are not able to provide an explicit expression of the BFV boundary operator in the B-representation 
in the case of a higher number of bulk vertices. See [64] for a limited example of graphs that appear when there are three 
bulk vertices.

This paper is structured as follows:

• In Section 2 we define an AKSZ model which upon globalization can be reduced to the RW model.
• In Section 3 we compare our construction to the original construction by Rozansky and Witten.
• In Section 4 we compare our globalization construction with other globalization constructions of the RW model.
• In Section 5 we give a B F -like formulation by a splitting of the fields of the RW model in order to be able to give a 

suitable description of its quantization.
• In Section 6 we quantize the globalized split RW model according to the quantum BV-BFV formalism.
• In Section 7 we introduce the quantum Grothendieck BFV operator for the globalized split RW model, we prove that it is 

flat and, in the end, we use it to prove the modified differential Quantum Master Equation.
• Finally, in Section 8 we present some possible future directions.
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2. Classical formal globalization

The idea is to construct a 3-dimensional topological sigma model, which, when globalized, reduces to the original RW 
model. In particular, we are interested in the formulation of the RW model with target a holomorphic symplectic manifold3

(i.e. a complex symplectic manifold with a holomorphic symplectic form, see also the appendix in [63]). In this case, the 
space of maps is

F�3 := Maps

(
T [1]�3, M

)
, (2.0.1)

with M a holomorphic symplectic manifold endowed with coordinates Xi and Xī and holomorphic symplectic form � =
�i jδXiδX j ; �3 is a 3-dimensional manifold.

On the source manifold, we choose bosonic coordinates {u} (ghost degree 0) on �3 and fermionic odd coordinates {θ}
(ghost degree 1) on the fibers of T [1]�3. Moreover, by picking up local coordinates Xi on M , maps in F�3 can be described 
by a superfield X, whose components are chosen as:

3 This construction reduces to the RW model considered in the bulk of [63], when we consider as target a hyperKähler manifold.
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Xi = Xi(u) + θμ Xi
μ(u) + 1

2!θ
μθν Xi

μν(u) + 1

3!θ
μθνθχ Xi

μνχ (u), (2.0.2)

where Xi is a 0-form, Xi
μ is a 1-form etc. To these maps maps Xi, Xi

μ, . . . we assign ghost degrees such that the ghost 
degree of X is equal to the one of Xi (that is 0), for example Xi

μν has form degree 2 and ghost degree -2.

Now, by assigning ghost degree4 2 to �i j , we can form a BV manifold

ω�3 =
∫

T [1]�3

μ�3

(
1

2
�i jδXiδX j

)

S�3 =
∫

T [1]�3

μ�3

(
1

2
�i jX

i DX j
)

Q �3 =
∫

T [1]�3

μ�3

(
DXi δ

δXi

)
(2.0.3)

where δ denotes the de Rham differential on the space of fields, D = θμ ∂
∂uμ is the differential on T [1]�3, μ�3 is the 

canonical Berezinian on T [1]�3 of degree −3. When �3 is a closed manifold, the action S�3 satisfies the CME

(S�3 ,S�3) = 0, (2.0.4)

where we denote the odd Poisson bracket associated to � with round brackets (−, −) and we call it the BV bracket (or anti 
bracket). Equivalently the CME can be written as

ιQ �3
ω�3 = δS�3 . (2.0.5)

In the presence of boundaries, the model can be extended to a BV-BFV theory by associating the BV-BFV manifold

(F∂
∂�3

,ω∂
∂�3

= δα∂
∂�3

,S∂
∂�3

, Q ∂
∂�3

) (2.0.6)

over the BV manifold (F�3 , ω�3 , Q �3), with the following set of data

F∂
∂�3

= Maps(T [1]∂�3, X),

S∂
∂�3

=
∫

T [1]∂�3

μ∂�3

(
1

2
�i jX

i DX j
)

,

α∂
∂�3

=
∫

T [1]∂�3

μ∂�3

(
1

2
�i jX

iδX j
)

,

Q ∂
∂�3

=
∫

T [1]∂�3

μ∂�3

(
DXi δ

δXi

)
,

(2.0.7)

with μ∂�3 the Berezinian on the boundary ∂�3 of degree −2. The data is such that

ιQ �3
ω�3 = δS�3 + π∗α∂

∂�3
. (2.0.8)

Remark 2.0.1. A possible modification of the model consists in coupling the target manifold with g∨[1] ⊗ g[1] or g[1], 
forming thus the “B F -RW” model and the “CS-RW” model [43], respectively. In this way, after globalization, one should get 
an extension of the results obtained by Källén, Qiu and Zabzine [43].

2.1. Globalization

In the last section, we introduced a very simple AKSZ sigma model. Here we globalize that construction using methods 
of formal geometry [16,37] following [27]. First, we expand around critical points of the kinetic part of the action. The 
Euler–Lagrange equations for our model are simply dXi = 0, which means that the component of Xi of ghost degree 0 is a 
constant map: we denote it by xi and we think of it as a background field [53]. Moreover, since we want to vary x itself, we 
lift the fields as the pullback of a formal exponential map at x. We also note that the fields Xī are just spectators, which 

4 More precisely, we add a formal parameter q of ghost degree 2 in front of �i j . The parameter is immediately suppressed from the notation.
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means that they do not contribute to the action, hence we can think of taking constant maps also in the antiholomorphic 
direction.

The above allows to linearize the space of fields F�3 by working in the formal neighborhoods of the constant map x ∈ M . 
We define the following holomorphic formal exponential map

ϕ : T 1,0M → M

(x, y) �→ ϕ i(x, y) = xi + yi + 1

2
ϕ i

jk(xi, xī)y j yk + . . .
(2.1.1)

Remark 2.1.1. We think about the holomorphic formal exponential map here defined as an extension to the complex case 
of the formal exponential map used in e.g. [21]. This notion should correspond to the “canonical coordinates” introduced in 
[14] and the holomorphic exponential map applied by Kapranov to the RW case in [44].

The formal exponential map lifts F�3 to

ϕ̃x : F̃�3,x := Maps(T [1]�3, T 1,0
x M) → Maps(T [1]�3, M)

X̂ �→ X
(2.1.2)

which is given by precomposition with ϕ−1
x , i.e. F̃�3,x = ϕ−1

x ◦ F�3 and X = ϕx(X̂). Now, since the target is linear, we can 
write the space of fields as

F̃�3,x = �•(�3) ⊗ T 1,0
x M. (2.1.3)

Consequently, we lift the BV action, the BV 2-form and the primitive 1-form obtaining:

S�3,x := Tϕ̃∗
x S�3 =

∫
T [1]�3

μ�3

(
1

2
�i jX̂

i DX̂ j
)

,

ω�3,x := ϕ̃∗
x ω�3 =

∫
T [1]�3

μ�3

(
1

2
�i jδX̂iδX̂ j

)
,

α∂
∂�3,x := ϕ̃∗

x α
∂
∂�3

=
∫

T [1]∂�3

μ∂�3

(
1

2
�i jX̂

iδX̂ j
)

,

(2.1.4)

where T denotes the Taylor expansion around the fiber coordinates {y} at zero. This set of data satisfies the mCME for any 
x ∈ M:

ιQ �3,xω�3,x = δS�3,x + π∗α∂
∂�3,x, (2.1.5)

with Q �3,x = ∫
T [1]�3

μ�3

(
DX̂i δ

δX̂i

)
. Hence, we have a BV-BFV manifold associated to the space of fields F̃�3 ,x .

The next remark introduces an important ingredient to write down the globalized action.

Remark 2.1.2. The constant map x : T [1]�3 → M in F�3 can be thought of as an element in M . Hence, we have a natural 
inclusion M ↪→ F�3 . Hence, we can define a 1-form:

R�3 =
(

R�3

)
j
(x;X)dx j +

(
R�3

)
j̄
(x;X)dx j̄ ∈ �1

(
M,Der

(
Ŝym•(T ∨1,0M)

))
. (2.1.6)

As before, we lift this 1-form to F̃�3,x . This lift, denoted by R̂�3 , is locally written as:

R̂�3 =
(

R̂�3

)
j
(x; X̂)dx j +

(
R̂�3

)
j̄
(x;X)dx j̄ . (2.1.7)

2.2. Variation of the classical background

So far, the classical background x has been fixed. However, our aim is to vary x and construct a global formulation of the 
action. Hence, we understand the collection {S�3,x}x∈M as a map Ŝ�3 to be given by Ŝ�3 : x �→ S�3,x and we compute how 
it changes over M . In order to accomplish this task, inspired by [15,27,28,43], choosing a background field x ∈ M , we define

S�3,x,R :=
∫
�3

((
R̂ i

�3

)
j
(x; X̂)�ilX̂

ldx j +
(

R̂ i
�3

)
j̄
(x; X̂)�ilX̂

ldx j̄
)

= SR + SR̄ . (2.2.1)

6
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The integrand is a well defined term of degree 3, since we assigned degree 2 to the symplectic form and R̂�3 is a 1-form 
on M . After integration, S�3,x,R is then of total degree 0.

The term R̂�3 has been introduced in Remark 2.1.2. However, its connection with the globalization procedure is not clear. 
To explain it, we introduce the classical Grothendieck connection adapted to our case (see Appendix [21]).

Definition 2.2.1 (Classical Grothendieck connection). Given a holomorphic formal exponential map ϕ , we can define the asso-
ciated classical Grothendieck connection on Ŝym•(T ∨1,0 M), given by DG := dM + R , where dM is the sum of the holomorphic 
and antiholomorphic Dolbeault differentials on M and R ∈ �1

(
M, Der

(
Ŝym•(T ∨1,0 M)

))
. By using local coordinates {x} on 

the basis and {y} on the fibers, we have R = R j(x; y)dx j + R j̄(x; y)dx j̄ , where R j = Ri
j(x; y) ∂

∂ y and R j̄ = Ri
j̄
(x; y) ∂

∂ y with

Ri
j(x; y)dx j := −

[(
∂ϕ

∂ y

)−1]i

p

∂ϕp

∂x j
dx j,

Ri
j̄
(x; y)dx j̄ := −

[(
∂ϕ

∂ y

)−1]i

p

∂ϕp

∂x j̄
dx j̄.

(2.2.2)

Note that Ri
j(x; y) and Ri

j̄
(x; y) are formal power series in the second argument, namely

Ri
j(x; y) =

∞∑
k=0

Ri
j; j1,..., jk

(x)y j1 . . . y jk ,

Ri
j̄
(x; y) =

∞∑
k=0

Ri
j̄; j1,..., jk

(x)y j1 . . . y jk .

(2.2.3)

Remark 2.2.2. The classical Grothendieck connection has a couple of important properties:

• It is flat, which can be rephrased by saying that the following equation is satisfied

dM R + 1

2
[R, R] = 0. (2.2.4)

• A section σ is closed under DG i.e. DGσ = 0 if and only if σ = Tϕ∗
x f , where f ∈ C∞(M).

In more down-to-Earth terms, the second property says that the classical Grothendieck connection selects those sections 
which are global.

Finally, we can clarify the relation between R̂�3 and the Grothendieck connection. The components 
(

R̂ i
�3

)
j
(x; X̂) and (

R̂ i
�3

)
j̄
(x; X̂) are given by the components of the classical Grothendieck connection Ri

j(x; y) and Ri
j̄
(x; y) evaluated in the 

second argument at X̂.
Having set up all the necessary tools, we can compute how Ŝ�3 varies when we change the background x ∈ M . On a 

closed manifold, we have

dM Ŝ�3 = −(S�3,x,R , Ŝ�3), (2.2.5)

which follows from the Grothendieck connection and that S�3,x = Tϕ∗
x S�3 .

The above identities can be collected in a nicer way via the following definition.

Definition 2.2.3. (Formal global action) The formal global action for the model is defined by

S̃�3,x :=
∫
�3

(
1

2
�i jX̂

idX̂ j +
(

R̂ i
�3

)
j
(x; X̂)�ilX̂

ldx j +
(

R̂ i
�3

)
j̄
(x; X̂)�ilX̂

ldx j̄
)

= Ŝ�3 + SR + SR̄︸ ︷︷ ︸
:=S�3,x,R

.
(2.2.6)
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By using the formal global action, the differential Classical Master Equation (dCME) is satisfied

dM S̃�3,x + 1

2
(S̃�3,x, S̃�3,x) = 0. (2.2.7)

Remark 2.2.4. Note that S̃�3,x is an inhomogeneous form over M , where Ŝ�3 is a 0-form and S�3,x,R is a 1-form. Therefore, 
Eq. (2.2.7) has a 0-form, a 1-form and a 2-form part. Specifically, the 0-form part

(Ŝ�3 , Ŝ�3) = 0, (2.2.8)

is the usual CME. The 1-form part:

dM Ŝ�3 + (S�3,x,R , Ŝ�3) = 0, (2.2.9)

means that Ŝ�3 is a global object (see Remark 2.2.2). The 2-form part

dMS�3,x,R + 1

2
(S�3,x,R ,S�3,x,R) = 0, (2.2.10)

means that the operator DG is flat connection (see Eq. (2.2.4)). Explicitly, we have

dxSR + 1

2
(SR ,SR) = 0, (2.2.11)

dxSR̄ + 1

2
(SR ,SR̄) = 0, (2.2.12)

dx̄SR + 1

2
(SR̄ ,SR) = 0, (2.2.13)

dx̄SR̄ + 1

2
(SR̄ ,SR̄) = 0. (2.2.14)

Let �3 be (again) a manifold with boundary. The BV-BFV theory on F̃�3,x furnishes the cohomological vector field Q �3,x . 
Moreover, by using the lift of R̂�3 , we can define

Q̃ �3,x = Q �3,x + R̂�3 . (2.2.15)

Then, the modified differential Classical Master Equation (mdCME) is satisfied:

ιQ̃ �3,x
ω�3,x = δS̃�3,x + π∗α∂

∂�3,x, (2.2.16)

where

Q̃ �3,x =
∫
�3

(
− dX̂

δ

δX̂
− �pq

δ
(

R̂ i
�3

)
j
(x; X̂)

δX̂p
�ilX̂

ldx j δ

δX̂q
−

(
R̂ i

�3

)
j
(x; X̂)dx j�ip

δ

δX̂p

− �pq
δ
(

R̂ i
�3

)
j̄
(x; X̂)

δX̂p
�ilX̂

ldx j̄ δ

δX̂q
−

(
R̂ i

�3

)
j̄
(x; X̂)dx j̄�ip

δ

δX̂p

)
.

(2.2.17)

In preparation for the comparisons we will draw in the following section, we redefine the components 
(

R̂ i
�3

)
j

and (
R̂ i

�3

)
j̄

by a multiplicative factor 1/k! as

(
R̂ i

�3

)
j
(x; X̂) =

∞∑
k=0

1

(k + 1)! R̂ i
j; j1,..., jk

(x)X̂ j1 . . . X̂ jk ,

(
R̂ i

�3

)
j̄
(x; X̂) =

∞∑
k=0

1

(k + 1)! R̂ i
j̄; j1,..., jk

(x)X̂ j1 . . . X̂ jk .

(2.2.18)

8
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Table 3.0.1
Comparison between kinetic term and interaction term for the RW theory and our model.

Kinetic term Interaction term

Original RW model 1
2

1√
h
εμνρ�I J χ

I
μ∇νχ

J
ρ − 1

3! �I J R J
K LM̄

χ I
μχ K

ν χ L
ρηM̄

Our model 1
2 �i j X̂idX̂ j − 1

2 �i
jkX̂k�ilX̂ldx j 1

3! Ri
ks j̄

X̂kX̂s�ilX̂ldx j̄

3. Comparison with the original Rozansky–Witten model

In this section, we show that the globalized model we have just constructed reduces to the RW model and, moreover it 
provides a globalization of the former.

In order to compare effectively these models, we need to be more explicit about the terms involved in the classical 
Grothendieck connection. First, we discuss the choice of holomorphic formal exponential map in more detail. Since our 
target is a symplectic manifold, we choose the formal exponential map which preserves the symplectic form considered in 
[58] and we adapt it to our case, i.e.

ϕ i = xi + yi − 1

2
�i

jk y j yk +
{

− 1

6
∂c�

i
jk + 1

3
�i

mc�
m
jk − 1

24
Ri

cjk

}
yc y j yk + O (y4), (3.0.1)

where Ri
cjk = (�−1)bi R a

bc k�aj .
The Grothendieck connection is then

DG = dxi ∂

∂xi
+ dxī ∂

∂xī
+ dx j

(
R�3

)
j
+ dx j̄

(
R�3

)
j̄
, (3.0.2)

where the third term on the right hand side was computed in [58],

(
R̂ i

�3

)
j
dx j = −

[(
∂ϕ

∂ y

)−1]i

p

∂ϕp

∂x j
dx j = −

[
dx j

(
δi

j + �i
kj yk −

(
1

8
R i

j ks + 1

4
R i

jk s

)
yk ys

)
∂

∂ yi
+ . . .

]
, (3.0.3)

whereas the fourth term is
(

R̂ i
�3

)
j̄
dx j̄ = −

[(
∂ϕ

∂ y

)−1]i

p

∂ϕp

∂x j̄
dx j̄ =

[
− 1

2
�

p
ab, j̄

ya ybdx j̄
]
[δi

p + . . . ] = −
[

− 1

2
�i

ab, j̄
ya ybdx j̄ + . . .

]

= Ri
ab j̄

ya ybdx j̄ − . . . .

(3.0.4)

Considering the terms coming from the classical Grothendieck connection and the redefinition (2.2.18), we can re-write 
the formal global action (2.2.6) as

S̃�3,x =
∫
�3

(
1

2
�i jX̂

idX̂ j − 1

2
�i

jkX̂k�ilX̂
ldx j − δi

j�ilX̂
ldx j + · · · + 1

3! Ri
ks j̄

X̂kX̂s�ilX̂
ldx j̄ + . . .

)
. (3.0.5)

For convenience, we recall the RW action [63]

SRW =
∫
�3

1

2

1√
h
εμνρ

(
�I J χ

I
μ∇νχ

J
ρ − 1

3
�I J R J

K LM̄
χ I

μχ K
ν χ L

ρηM̄ + 1

3
(∇L�I K )(∂μφ I⊥)χ K

ν χ L
ρ

)
, (3.0.6)

where we refer to the original paper for an explanation of the various terms involved in the action. If we assume that the 
connection is compatible with the symplectic form, the third term in the RW action (3.0.6) drops. We are left with the first 
two terms. By associating X̂i ↔ χ I and dx j̄ ↔ ηM̄ , we can sum up the comparison in Table 3.0.1.

The sign discrepancy comes from having defined the connection as ∇ = d − � which gives a negative sign in front of the 
�i

jk (see Eq. (3.0.1)).
Moreover, when the curvature misses the (2, 0)-part (which could happen when we have a Hermitian metric), the 

remaining terms in our model are just the perturbative expansion of Ri
ks j̄

around x. If we cut off the expansion at the first 
order, we are left with the original RW model.

4. Comparison with other globalization constructions

In the next sections, we are going to compare our globalization model with other three constructions: the first by 
[30] uses tools of derived geometry to linearize the space of fields in the neighborhood of a constant map as well as the 
Fedosov connection [35], the second [69] is an extension to a manifold with boundary of the first procedure, while the third 
[43,56,57] uses an approach similar to ours.

9
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4.1. Comparison with the CLL construction

We compare our model with the formulation of the RW model constructed in [30] in the setting of derived geometry.
Let �3 be a closed 3 dimensional manifold and M be a holomorphic symplectic manifold with a non-degenerate holo-

morphic 2-form ω.
To determine fields we use the language of L∞-spaces (see [31,32] for an introduction) and we define the space of fields 

as

Maps(�3,dR, M∂̄ ), (4.1.1)

where �3, dR is the elliptic ringed space equipped with a sheaf of differential forms over �3, i.e. �•(�3) and M∂̄ = (M, gM)

is a sheaf of L∞-algebras, where gM = �•,•(M) ⊗ T 1,0M[−1] with T 1,0 M the holomorphic tangent bundle. Since the critical 
points of the action functional are constant maps from �3 to M , we are going to study Maps(�3, dR, M∂̄ ) in the neighbor-
hood of a constant map x ∈ Maps(�3, dR, M∂̄ ), namely

FCLL := M̂aps(�3,dR, M∂̄ ) = �•(�3) ⊗ gM [1], (4.1.2)

with M̂aps(�3, dR, M∂̄ ) defined as in [31,32].
Having specified the space of fields, the shifted symplectic structure is given by

〈−,−〉 : FCLL ⊗�•,•(M) FCLL → �•,•(M)[−1]
〈α ⊗ g1, β ⊗ g2〉 := ω(g1, g2)︸ ︷︷ ︸

sympl. struct. on M

∫
�3

α ∧ β, (4.1.3)

where �•,•(M) = � 
(∧• T ∨M

)
is a section of the cotangent bundle.

Since C•(gM) := Ŝym•
�•,•(M)(g

∨
M [1]) = �•,•(M) ⊗C∞(M) Ŝym•

C∞(M)
(T ∨1,0 M), to construct the action functional and to find 

our L∞-algebra we can use a procedure similar to the Fedosov’s construction of a connection on a symplectic manifold [34]. 
Let us denote the sections of the holomorphic Weyl bundle on M by

W = �•,•(M) ⊗C∞(M) Ŝym•(T ∨1,0M)[[h̄]] (4.1.4)

where Ŝym•(T ∨1,0 M)[ [h̄] ] is the completed symmetric algebra over T ∨1,0 M , the holomorphic cotangent bundle which has a 
local basis {yi} with respect to the local holomorphic coordinates {xi}. We call the sub-bundle �p,q(M) ⊗ Symr(T ∨1,0 M) of 
W its (p, q, r) component, in particular we refer to r as weight. To h̄ is assigned a weight of 2.

Proposition 4.1.1 ([30]). There is a connection on the holomorphic Weyl bundle of the following form

DF = ∇ − δ + 1

h̄
[I,−]W , (4.1.5)

which is flat modulo h̄ and [−, −]W is defined as in [30]. Here I is a 1-form valued section of the Weyl bundle of weight ≥ 3, i.e. 
I ∈ ⊕

r≥3 �(Symr(T ∨1,0 M) ⊗ T ∨M), ∇ is the extension to W of a connection on T 1,0M which is compatible with the complex 
structure as well as with the holomorphic symplectic form and torsion free, δ = dxi ∧ ∂

∂ yi is an operator on W .

The connection DF is called Fedosov connection and it provides the L∞-structure on gM . In these terms the action can be 
written as

SCLL = 1

2
〈d�3α,α〉 +

∞∑
k=0

1

(k + 1)! 〈�k(α
⊗k),α〉 (4.1.6)

with α ∈ FCLL, 〈−,−〉 defined as in (4.1.3) and �k are the higher brackets in the L∞-algebra, and d�3 the de Rham differential 
on the source �3. We can read �0 from the Fedosov connection in (4.1.5), i.e.

�0 = −dxi ∂

∂ yi
(4.1.7)

The L∞-products �1 and �2 are computed in the next section, when we compare the Fedosov connection with the 
classical Grothendieck connection.

Remark 4.1.2. The action in (4.1.6) satisfies the CME (SCLL, SCLL) = 0 (see [30, Proposition 2.16]). Moreover, in [30] it was 
observed that this construction is the formal version of the original RW model in the case when the (2, 0)-part of the 
curvature is zero (see [30, Section 2.3]).
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4.1.1. Comparison between the Fedosov connection and the classical Grothendieck connection
The sufficient condition for the flatness of DF (see the proof of Proposition 4.1.1 in [30]) implies that I satisfies

I = δ−1(R + ∇ I) + 1

h̄
δ−1 I2, (4.1.8)

where δ−1 = yi · ι∂xi (up to a normalization factor) is another operator on W and R is the curvature tensor.

Remark 4.1.3. Since I is a 1-form valued section of W , we can decompose it into its holomorphic and antiholomorphic 
component respectively. In particular the antiholomoprhic part component is the Taylor expansion of the Atiyah class as 
noted in [30]. In the case R2,0 = 0, the L∞-algebra is fully encoded by Taylor expansion of the Atiyah class as first noted by 
Kapranov in [44].

Since the operator δ−1 increases the weight by 1, while ∇ preserves the weight and I has at least weight 3, we can find 
a solution of the above equation with the following leading term (cubic term)5:

δ−1 R = 1

8

[ − �i jk,r + �sir�pjk�
sp]

yi y j yrdxk + 1

6
R

k̄ri j
yi y j yrdxk̄ = δ−1 Rt + δ−1 R̄. (4.1.9)

Since the Fedosov connection requires the computation of 1
h̄ [I, −]W , we compute this commutator for the leading order 

term of I , which is the cubic term we have just found. For the first term on the right hand side of Eq. (4.1.9) we have

1

h̄
[δ−1 Rt,−]W =

[
1

8

(
− �r jk,q + �srq�pjk�

sp
)

+ 1

4

(
− �qjk,r + �sqk�pjr�

sp
)]

�qi y j yrdxk ∂

∂ yi

=
[

1

8

(
− �mr�

m
jk,q + �mr�

m
sk�pjk�

sp
)

+ 1

4

(
− �mq�

m
jk,r + �mq�

m
sk�pjr�

sp
)]

×

× �qi y j yrdxk ∂

∂ yi

=
[

1

8
R i

k r j + 1

4
R i

kr j

]
y j yrdxk ∂

∂ yi
.

(4.1.10)

For the second term we have

1

h̄

[
δ−1 R̄,−]

W = 1

2
�i

jk,r̄ y j ykdzr̄ ∂

∂ yi
. (4.1.11)

After renaming some indices, the Fedosov connection is then

DF = dx + dx̄ − dx j ∂

∂ y j
− dx j�i

kj yk ∂

∂ yi
+ dx j

(
1

8
R i

j ks + 1

4
R i

jk s

)
yk ys ∂

∂ yi
+ 1

2
dx j̄�i

ks, j̄
yk ys ∂

∂ yi
+ . . . . (4.1.12)

More explicitly,

�1 = −dx j�i
kj yk ∂

∂ yi
,

�2 = dx j
(

1

8
R i

j ks + 1

4
R i

jk s

)
yk ys ∂

∂ yi
+ 1

2
dx j̄�i

ks, j̄
yk ys ∂

∂ yi
.

(4.1.13)

Remark 4.1.4. The first terms in the Fedosov connection, explicitly written in (4.1.12) coincide with the first terms for the 
classical Grothendieck connection (3.0.2). Furthermore, by substituting the explicit expressions of �1 and �2 in the action 
SCLL (4.1.6), we can see that it coincides with the action S̃�3,x (3.0.5).

4.1.2. Comparison between the CLL space of fields and globalization space of fields
By rephrasing the argument of [54, Section 6.1] to our context, we can extend the classical Grothendieck connection DG

to the complex

�

(∧•
T ∨M ⊗ Ŝym•(T ∨1,0M)

)
, (4.1.14)

which is the algebra of functions on the formal graded manifold

5 See also [33,38].
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T [1]M
⊕

T 1,0M. (4.1.15)

This graded manifold is turned into a differential graded manifold by the classical Grothendieck connection DG . Moreover, 
since DG vanishes on the body of the graded manifold, we can linearize at x ∈ M and we get

Tx[1]M
⊕

T 1,0
x M. (4.1.16)

On this graded manifold, we have a curved L∞-structure (which is the same as gM [1]) and Eq. (4.1.14) can be interpreted 
as the Chevalley–Eilenberg complex of the aforementioned L∞-algebra. Then, the space of fields for the globalized theory 
can be rewritten as

F̃�3,x = �•(�3) ⊗ �•,•(M) ⊗ T 1,0
x M (4.1.17)

which is the same as FCLL by linearizing at x ∈ M the holomorphic tangent bundle as DF vanishes on M .

Remark 4.1.5. The idea that the classical Grothendieck connection and the Fedosov connection coincide is not new, in 
particular see [27, Remark 3.6] and [30, Section 2.3].

Remark 4.1.6. Finally note that in [30] the source manifold �3 was considered to be a closed manifold. As explained above 
(see Section 2.2) our construction is valid also when ∂�3 �= ∅. In the next section, we tackle this last setting by comparing 
our approach with [69], where the derived geometric framework was implemented for manifolds with boundary.

4.2. Comparison with Steffens’ construction

In [69], Steffens applied the same derived geometry approach we have seen in the last section to what he calls AKSZ 
theories of Chern–Simons type: CS theory and RW theories. In particular, his BV formulation of the RW model is completely 
analogue to the one in [30]: same space of fields, L∞-algebra, action, etc. However, he takes a step further. He proves a 
formal AKSZ theorem [69, Theorem 2.4.1] in the context of derived geometry. His RW model is then shown to be an AKSZ 
theory by attaching degree 2 to the holomorphic symplectic form (as we did ourselves in Section 2). Consequently, he 
provides a BV-BFV formulation for the RW model. The BFV action found in [69] is analogous to the action in (4.1.6) in one 
dimension less (as it is customary with AKSZ theories). Even if the L∞ products are not explicit in his construction, by using 
the ones in (4.1.13), his BV-BFV formulation of the RW model is visibly identical to ours.

4.3. Comparison with the (K)QZ construction

Let �3 be a 3-dimensional manifold and M a hyperKähler manifold with holomorphic symplectic form �. Consider 
the symplectic graded manifold M := T ∨0,1[2]T ∨0,1[1]M constructed out of M . It has the following coordinates: Xi , Xī of 
degree 0 parametrizing M , V ī of degree 1 parametrizing the fiber T 0,1 M and dual coordinates P ī, Q ī of degree 2 and 1, 
respectively. The symplectic form is

ωM = dP ī ∧ dXī + dQ ī ∧ dV ī + 1

2
�i jdXi ∧ dX j. (4.3.1)

In order to have a ghost degree 2 symplectic form, the authors assign degree 2 to �. With this setup, in [43,56,57], Källén, 
Qiu and Zabzine construct an AKSZ model

FQZ := Maps(T [1]�3, T ∨0,1[2]T ∨0,1[1]M) (4.3.2)

SQZ =
∫

T [1]�3

d3zd3θ

(
Pī DXī + Qī DVī + 1

2
�i jX

i DX j + PīV
ī
)

(4.3.3)

endowed with a cohomological vector field

Q =
∫

T [1]�3

d3zd3θ

(
DPī

∂

∂Pī
+ DQī

∂

∂Qī
+ DVī ∂

∂Vī
+ DXi ∂

∂Xi
+ DXī ∂

∂Xī
+ Pī

∂

∂Qī
+ Vī ∂

∂Xī

)
, (4.3.4)

where to the source manifold T [1]�3, we assign coordinates {zi} of ghost degree 0 and coordinates {θ i} of degree 1.

Remark 4.3.1. With a suitable gauge-fixing consisting on a particular choice of Lagrangian submanifolds, the action SQZ

reduces to the RW model up to a factor of h̄ (see [56, Section 4]):

SQZ

∣∣∣∣
GF

= 1

2

∫
d3z

(
�i j X i

(1) ∧ d∇ X j
(1) − 1

3
Ri

kk̄ j
Xk

(1) ∧ �li Xl
(1) ∧ X j

(1)V k̄
(0)

)
, (4.3.5)
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with d∇ Xi
(1) = dXi

(1) + �i
jkdX j

(0) Xk
(1) . Note that the only fields left are the even scalar Xi

(0) , the odd 1-form Xi
(1) and the odd 

scalar V k̄
(0) . A quick glance to our expression for the RW model in (3.0.5) (assume again the (2, 0) part of the curvature is 

zero as well as we cut off the perturbative expansion of the (1, 1) part at the Ri
ks j̄

) suggests the association V k̄
(0) ⇔ dxk̄ . We 

will comment more on this later.

By expanding Xi through the geodesic exponential map and by pulling back ωM as well as SQZ through it, the authors 
find

exp∗ ωM = dP ī ∧ dXī + dQ ī ∧ dV ī + 1

2
�i j(x)dyi ∧ dy j − δXīδ�ī (4.3.6)

exp∗ SQZ

∣∣∣∣
P̃

=
∫

T [1]�3

d3zd3θ

(
P̃ī DXī + Qī DVī + 1

2
�i jy

i Dy j − P̃īV
ī + �ī(x;y)Vī

)
(4.3.7)

where �ī is of degree 2 and given by

�ī(x; y) =
∞∑

n=3

1

n!∇l4 . . .∇ln R k
īl1 l3

�kl2(x)yl1 . . . yln (4.3.8)

and P̃ ī := P ī + �ī .
After removing the spectator fields (see [43,57]), the action becomes∫

T [1]�3

d3zd3θ

(
1

2
�i jy

i Dy j + �ī(x;y)Vī
)

, (4.3.9)

which further reduces to∫
T [1]�3

d3zd3θ

(
1

2
�i jy

i Dy j + �ī(x;y)V ī
(0)

)
(4.3.10)

for degree reasons (V ī
(0) is an odd scalar). This action fails the CME by a ∂̄-exact term due to � satisfying the Maurer–Cartan 

equation

∂̄[ī� j̄] = −(�ī,� j̄), (4.3.11)

where ∂̄ is the Dolbeault differential and [ī j̄] denotes antisymmetrization over the indices ī and j̄.
The hyperKähler structure is then relaxed. A new connection which still preserves � (crucial for the perturbative ap-

proach through the exponential map above) is found. However, since the connection is not Hermitian, the curvature of �
exhibits also a (2, 0)-component. This complicates the exponential map which can not be worked out at all orders as in 
(4.3.8). In [43], the authors argue that a solution to this problem should originate from principles related to the global-
ization issues discussed in [13] and the application of Fedosov connection in order to deal with perturbation theory on 
curved manifold [21]. In the realm of this paper, we furnish an affirmative answer to both their ideas. In particular, as we 
have seen in Section 4.1, the Fedosov connection allowed to compute the terms in the L∞-algebra and thus to work out 
the exponential map. In Section 2.2, we have seen the Grothendieck connection to accomplish the same in the context of 
formal geometry.

Remark 4.3.2. We can compare the procedure above with our globalization construction by associating V ī
(0) with dxī . First, 

note that 
(

R�3

)
ī

in Eq. (4.3.8) matches with the second term in Eq. (2.2.1). Second, the action in (4.3.10) coincides with 

our globalized action in (2.2.6) if we “forget” the (2, 0)-part of the curvature. In particular, by associating ∂̄ with dxī ∂

∂xī
, we 

can interpret the failure of (4.3.10) to satisfy the CME due to the term (4.3.11) as a consequence of the action satisfying the 
(1, 1)-part of the dCME (Eq. (2.2.7)).

We reserve the last remark of the section to precise the association between V ī
(0)

and dxī as well as their “meaning” as 
we promised in Remark 4.3.1.

Remark 4.3.3. As we have seen above, V ī
(0) and dxī arise in two different contexts: the first is an odd scalar coordinate 

parametrizing the fibers of T 0,1 M , while the second is introduced through the classical Grothendieck connection as well as 
the perturbative expansion.
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Nevertheless, the association makes sense considering that V ī
(0) is interpreted as an odd harmonic zero mode in [43]. 

In fact, recall from Section 2.1, x is the zero mode obtained from the Euler–Lagrange equation DX = 0. If we enlarge the 
complex (see Eq. (4.1.14)), the space of fields becomes (4.1.17) meaning that dxī ∈ T ∨0,1M , i.e. an odd zero mode. This 
association was pointed out first by Qiu and Zabzine in [59].

The presence of these quantities has been known in the literature since the early days of the RW model and has deep 
consequences. Since they are odd, there can be as many as the dimension of M . As such, the perturbative expansion can not 
be infinite, but it can only stop at a certain order. This is a crucial difference between the CS and the RW theory, which was 
originally spotted in [63] and attributed to the need for the RW theory to saturate the zero modes. According to Kontsevich 
in [49], as a result the RW model can be understood as an AKSZ model with “parameters” (these parameters are V ī

(0) or 

dxī ). In the same article, he presented a different perspective on this subject by pointing out that the RW invariants come 
from characteristic classes of holomorphic connections.

5. B F -like formulation of the Rozansky–Witten model

In order to quantize our globalized version of the RW model in the quantum BV-BFV framework [24], we need to 
formulate the model as a B F -like theory. This can be done by exploiting the similarities between the RW theory and the 
CS theory. These similarities have also been crucial in the construction of [69]. There it was argued that RW could be split 
following a similar approach to the one of Cattaneo, Mnev and Wernli for the CS theory in [25] (see also [73] for a more 
detailed exposition).

As shown in [30] (see Eq. (4.1.3)), we have a pairing on F̃�3,x given by the BV symplectic form which can be defined on 
homogeneous elements Ŷ ⊗ g1 and Ẑ ⊗ g2 as

〈−,−〉 : F̃�3,x ⊗ F̃�3,x → �•,•(M),

〈Ŷ ⊗ g1, Ẑ ⊗ g2〉 := �(g1, g2)︸ ︷︷ ︸
sympl. struct. on M

∫
T [1]�3

μ�3

(
Ŷ ∧ Ẑ

)
. (5.0.1)

By expanding X̂ ∈ F̃�3,x as X̂ = X̂iei , we have

〈X̂, X̂〉 = �(ei, e j)

∫
T [1]�3

μ�3

(
X̂i ∧ X̂ j

)
=

∫
T [1]�3

μ�3

(
�i jX̂

i ∧ X̂ j
)

. (5.0.2)

We can rewrite the globalized action (2.2.6) in the same way as in [30] (see the action in (4.1.6)), we have

S̃�3,x = 1

2

〈
X̂, DX̂

〉
+

〈(
R̂�3

)
j
(x; X̂)dx j, X̂

〉
+

〈(
R̂�3

)
j̄
(x; X̂)dx j̄, X̂

〉
, (5.0.3)

with

(
R̂�3

)
j
(x, X̂) =

∞∑
k=0

1

(k + 1)!
(

R̂k

)
j
(X̂⊗k),

(
R̂�3

)
j̄
(x, X̂) =

∞∑
k=2

1

(k + 1)!
(

R̂k

)
j̄
(X̂⊗k).

(5.0.4)

Now, similarly to the approach in [25], we assume that we can split the L∞-algebra as

g[1] = �•,•(M) ⊗ T ∨1,0M = �•,•(M) ⊗ V ⊕ �•,•(M) ⊗ W , (5.0.5)

with V and W two isotropic subspaces. We identify W ∼= V ∨ via the pairing (in particular thanks to the holomorphic 
symplectic form). Consequently, the superfield splits as X̂ = Â + B̂ = Âiξi + ξ i B̂i with ξi ∈ V and ξ i ∈ W . Concerning the 
assignment of degrees, we make the following choices. Since � has ghost degree 2 (and as such �−1 has ghost degree 
−2), we assign total degree 0 to Ai and ξi , total degree 2 to Bi and total degree −2 to ξ i . We refer to Table 5.0.1 for an 
explanation of the ghost degrees for the components of the superfields Âi and B̂i . Then Âi ⊕ B̂i ∈ �•(�3) ⊕�•(�3)[2], which 
is a B F -like theory.

Remark 5.0.1. As explained in [69, Remark 4.2.2], the splitting of the target T ∨1,0
x M into two transversal holomorphic La-

grangian subbundles is not possible when M is a K3 surface. Instead, it is possible when M = T ∨Y , with Y any complex 
manifold. In this case M with the standard holomorphic symplectic form will have a vertical as well as a horizontal polar-
ization.
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Table 5.0.1
Explanation for the form degree and ghost de-
gree for the components of the superfields Âi

and B̂i .

Form degree Ghost degree

Ai
(0)

0 0
Ai

(1)
1 −1

Ai
(2) 2 −2

Ai
(3) 3 −3

B(0)i 0 2
B(1)i 1 1
B(2)i 2 0
B(3)i 3 −2

To sum up, the space of fields is split as

F̃ s
�3,x = �•(�3) ⊗ �•,•(M) ⊗ V ⊕ �•(�3)[2] ⊗ �•,•(M) ⊗ W . (5.0.6)

Definition 5.0.2 (Globalized split RW action). The globalized split RW action is defined as

S̃ s
�3,x :=

〈
B̂, DÂ

〉
+

〈(
R̂�3

)
j
(x; Â + B̂)dx j, Â + B̂

〉
+

〈(
R̂�3

)
j̄
(x; Â + B̂)dx j̄, Â + B̂

〉

= Ŝ s
�3,x + S s

�3,x,R + S s
�3,x,R̄

.

(5.0.7)

We refer to [64] for an explicit expression of the second and third terms in the action. We call the model associated with 
the action (5.0.7), globalized split RW model.

If �3 is a closed manifold, the globalized split RW action satisfies the dCME:

dM S̃ s
�3,x + 1

2
(S̃ s

�3,x, S̃ s
�3,x) = 0,

with dM = dx + dx̄ the sum of the holomorphic and antiholomorphic Dolbeault differentials on the target manifold M . In 
the presence of boundary, the globalized split action satisfies the mdCME:

ιQ̃ s
�3,x

ω s
�3,x = δS̃ s

�3,x + π∗α s, ∂
∂�3,x, (5.0.8)

with

Q̃ s
�3,x =

∫
T [1]�3

μ�3

(
− dÂi δ

δÂi
− dB̂i

δ

δB̂i
+

∞∑
k=0

1

k!
(

R̂k

)i

j
((Â + B̂)⊗k)dx j δ

δÂi

−
∞∑

k=0

1

k!
(

R̂k

)l

j
((Â + B̂)⊗k)dx j�li

δ

δB̂i
+

∞∑
k=0

1

k!
(

R̂k

)i

j̄
((Â + B̂)⊗k)dx j̄ δ

δÂi
,

−
∞∑

k=0

1

k!
(

R̂k

)l

j̄
((Â + B̂)⊗k)dx j̄�li

δ

δB̂i

)
,

(5.0.9)

ω s
�3,x =

∫
T [1]�3

μ�3

(
δB̂iδÂi

)
, (5.0.10)

α s, ∂
∂�3,x =

∫
T [1]∂�3

μ∂�3

(
B̂iδÂi

)
. (5.0.11)

6. Perturbative quantization of the globalized split Rozansky–Witten model

In the last section, we have formulated our globalized RW model as a B F -like theory. This allows us to quantize perturba-
tively the newly constructed globalized split RW model according to the Quantum BV-BFV framework [24]. The quantization 
of the kinetic part of the action is analogous to the example of section 3 in [24], since the theory reduces to the abelian 
B F theory. Hence we will be rather quick in the exposition referring to [24] for further details. We will focus our attention 
to the interacting part of the action (in our case this is actually just the globalization term), which has a rich, as well as 
complicated, structure. In particular, we will draw some comparison with the PSM, which has been considered in [27].
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6.1. Polarization

The recipe to perturbatively quantize a B F -like theory according to the quantum BV-BFV formalism starts by requiring 
the data of a polarization.

Following the result of Section 5, in the globalized split RW theory, the space of boundary fields splits as

F̃ s, ∂
∂�3,x = �•(∂�3) ⊗ �•,•(M) ⊗ V ⊕ �•(∂�3)[2] ⊗ �•,•(M) ⊗ W . (6.1.1)

Since we split T 1,0 M into isotropic subspaces, by the isotropy condition the subspaces are, in particular, Lagrangian. There-
fore, either of them can be used as a base or fiber of the polarization.

Notation 6.1.1. From now on we will drop the hat from the notation of the “globalized” superfields (e.g. Âi ). Moreover, we 
will denote the coordinates on the base of the polarization by Ai or Bi and refer to this choice as A- or B-representation.

Let us choose a decomposition of the boundary ∂�3 = ∂1�3 � ∂2�3, where ∂1�3 and ∂2�3 are two compact manifolds. 
Here, we can define a polarization P by choosing the A-representation on ∂1�3 and the B-representation on ∂2�3. The 
space of leaves of the associated foliations are B1 := �•(∂1�3) and B2 := �•(∂2�3)[2], respectively. The space of boundary 
fields is BP

∂�3
= B1 × B2 � (Ai, Bi).

The BFV 1-form is

α s, ∂,P
∂�3,x =

∫
∂1�3

BiδAi −
∫

∂2�3

δBiA
i (6.1.2)

and the quadratic part of the action (5.0.7) is

Ŝ s,P
�3,x =

∫
�3

BidAi −
∫

∂2�3

BiA
i . (6.1.3)

6.2. Extraction of boundary fields

We split the space of fields as

F̃ s
�3,x → B̃P

∂�3
⊕ Y

(Ai,Bi) �→ (Ãi, B̃i) ⊕ (Ai,Bi),
(6.2.1)

where B̃P
∂�3

denotes the bulk extension of BP
∂�3

to F̃ s
�3,x with Ãi and B̃i the extensions of the boundary fields Ai and B

to the bulk space of fields F̃ s
�3,x; Ai and Bi are the bulk fields, which are required to restrict to zero on ∂1�3 and ∂2�3, 

respectively. Here, the extensions are chosen to be singular: Ãi and B̃i are required to restrict to zero outside the boundary 
(a choice pointed out first in [24]). The action reduces to

Ŝ s,P
�3,x =

∫
�3

BidAi −
( ∫

∂2�3

BiA
i −

∫
∂1�3

BiA
i
)

. (6.2.2)

6.3. Construction of �0

At this point, we can construct the coboundary operator �0 by canonical quantization: we consider the boundary action 
and we replace any Bi by (−ih̄ δ

δAi ) on ∂1�3, any Ai by (−ih̄ δ
δB i

) on ∂2�3. We obtain

�0 = −ih̄

( ∫
∂2�3

dBi
δ

δBi
+

∫
∂1�3

dAi δ

δAi

)
. (6.3.1)

6.4. Choice of residual fields

The bulk contribution in the space of fields Y is further split into the space of residual fields V�3 and a complement, 
the space of fluctuations fields Y ′ , namely

Y → V�3 ⊕ Y ′ (6.4.1)

(Ai,Bi) �→ (ai,bi) ⊕ (αi, βi), (6.4.2)
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where ai and bi are the residual fields, whereas αi and βi are the fluctuations. Note that the fluctuation αi is required to 
restrict to zero on ∂1�3 while βi is required to restrict to zero on ∂2�3. In our case, the minimal space of residual fields is

V�3 = H•(�3, ∂1�3)[0] ⊕ H•(�3, ∂2�3)[2] � (ai,bi). (6.4.3)

Here we can also define the BV Laplacian. To do it, pick a basis {[χi]} of H•(�3, ∂1�3) and its dual basis {[χ i]} of 
H•(�3, ∂2�3) with representatives χi in �•(�3, ∂1�3) and χ i in �•(�3, ∂2�3), with 

∫
�3

χiχ
j = δ

j
i . We can write the 

residual fields in a basis as

ai =
∑

k

(zkχk)
i,

bi =
∑

k

(z+
k χk)i,

(6.4.4)

where {zk, z+
k } are canonical coordinates on V�3 with BV symplectic form

ωV�3
=

∑
i

(−1)deg zk
δz+

k δzk. (6.4.5)

Finally, the BV Laplacian on V�3 is

�V�3
=

∑
i

(−1)deg zk ∂

∂zk

∂

∂z+
k

. (6.4.6)

6.5. Gauge-fixing and propagator

We now have to fix a Lagrangian subspace L of Y ′ . In the case of abelian BF theory, in [24], the authors proved that 
such Lagrangian can be obtained from a contracting triple (ι, p, K ) for the complex �•

D(�3).
In particular, the integral kernel of K is the propagator, which we call η. Since K is actually the inverse of an elliptic 

operator (as shown in [24]), the propagator is singular on the diagonal of �3 × �3. Hence, we will define it as follows. Let

Conf2(�3) = {(x1, x2) ∈ �3 | x1 �= x2}, (6.5.1)

and let ιD be the inclusion of

D := {x1 × x2 ∈ (∂1�3 × �3) ∪ (�3 × ∂2�3) | x1 �= x2} (6.5.2)

into Conf2(�3). Then the propagator is the 2-form η ∈ �2(Conf2(�3), D), where

�•(Conf2(�3),D) = {γ ∈ �•(Conf2(�3)) | ι∗Dγ = 0}. (6.5.3)

Explicitly,

η(x1, x2) = 1

T�3

1

ih̄

∫
L

e
i
h̄ Ŝ s,P

�3,xπ∗
1 αi(x1)π

∗
2 βi(x2), (6.5.4)

with π1, π2 the projections from M × M to its first and second factor. The coefficient T�3 is related to the Reidemeister 
torsion on �3 as shown in [24]. However, its precise nature is irrelevant for the purposes of the present paper.

6.6. The quantum state

We can sum up the splittings we have made so far as

F̃ s
�3,x → BP

∂�3
× VP

�3
× Y ′

(Ai,Bi) �→ (Ai,Bi) + (ai,bi) + (αi, βi).
(6.6.1)

Remark 6.6.1. As a result of the procedure detailed in [24], this is referred to as good splitting.

According to the splitting of the space of fields, the action decomposes as

S s,P
�3,x = Ŝ s,P

�3,x + Ŝ pert + S res + S source, (6.6.2)
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where

Ŝ s,P
�3,x =

∫
�3

βidαi, (6.6.3)

Ŝ pert =
∫
�3

V(A,B), (6.6.4)

S res = −
( ∫

∂2�3

Bia
i −

∫
∂1�3

biA
i
)

, (6.6.5)

S source = −
( ∫

∂2�3

Biα
i −

∫
∂1�3

βiA
i
)

, (6.6.6)

where Ŝ pert is an interacting term made up by a density-valued function V which depends on the fields but not on their 
derivatives (by assumption).

The state is given by:

ψ̂�3(A,B,a,b) =
∫

(α,β)∈L

e
i
h̄ S s,P

�3,x(A+a+α,B+b+β)
D[α]D[β]

= e
i
h̄ S res

∫
L

e
i
h̄ Ŝ s,P

�3,x e
i
h̄ Ŝ pert

e
i
h̄ Ssource

,

(6.6.7)

where we denote by D a formal measure on L. The idea here is to compute the integral through a perturbative expansion, 
hence let us expand the exponentials as

ψ̂�3(A,B,a,b) =
∑
k,l,m

1

k!l!m! (−1)k+m
( ∫

∂2�3

Bia
i −

∫
∂1�3

biA
i
)k

×

×
∫
L

e
i
h̄ Ŝ s,P

�3,x

(∫
�3

V(A,B)

)l( ∫
∂2�3

Biα
i −

∫
∂1�3

βiA
i
)m

.

(6.6.8)

In the globalized split RW model, the interaction term is actually given by the globalization terms (the second and third 
terms in the action (5.0.7)). After having expanded the globalization terms in residual fields and in fluctuations, the integra-
tion over L can be solved by using the Wick theorem.

6.7. Feynman rules

In this section, we are going to introduce the Feynman rules needed to define precisely the quantum state of our theory. 
Before going into details, we take a short detour and we introduce the composite fields.

Since our aim is to prove the mdQME for the globalized split RW model, we will need to take care of the quantum 
Grothendieck BFV operator. This is a coboundary operator in which higher functional derivatives may appear (and as we 
will see they will indeed be present). As explained in [24], higher functional derivatives requires a sort of “regularization”. 
This is provided by the composite fields, which we denote by square brackets [ ] (e.g. for the boundary field B, we will 
write [Bi1 . . .Bik ]). The regularization works as follow: a higher functional δk

δBi1 ...δBik
is replaced by a first order functional 

derivative δk

[δBi1 ...δBik
] . For further details see [24].

Definition 6.7.1 (Globalized split RW Feynman graph). A globalized split RW Feynman graph is an oriented graph with three types 
of vertices V (�) = V bulk(�) � V ∂1 � V ∂2 , called bulk vertices and type 1 and 2 boundary vertices, such that

• bulk vertices can have any valence,
• type 1 boundary vertices carry any number of incoming half-edges (and no outgoing half-edges),
• type 2 boundary vertices carry any number of outgoing half-edges (and no incoming half-edges),
• multiple edges and loose half-edges (leaves) are allowed.

A labeling of a Feynman graph is a function from the set of half-edges to {1, . . . , dim V }.
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In our case our source manifold �3 has boundary ∂�3 = ∂1�3 � ∂2�3, let � be a Feynman graph and define

Conf�(�3) := ConfV bulk(�3) × ConfV∂1
(∂1�3) × ConfV∂2

(∂2�3). (6.7.1)

The Feynman rules are given by a map associating to a Feynman graph � a differential form ω� ∈ �•(Conf�(�3)).

Definition 6.7.2 (Globalized split RW Feynman rules). Let � be a labeled Feynman graph. We choose a configuration ι : V (�) →
Conf(�), such that decompositions are respected. Then, we decorate the graph according to the following rules, namely, the 
Feynman rules:

• Bulk vertices in �3 decorated by “globalized vertex tensors”

(
R̂k

)i1...is

j; j1... jt
dx j := ∂ s+t

∂Ai1 . . . ∂Ais∂B j1
. . . ∂B jt

∣∣∣∣
A=B=0

(
R̂k

)i

j
((A + B)⊗k)(�ilA

l + Bi)dx j

(
R̂k

)i1...is

j̄; j1... jt
dx j̄ := ∂ s+t

∂Ai1 . . . ∂Ais∂B j1
. . . ∂B jt

∣∣∣∣
A=B=0

(
R̂k

)i

j̄
((A + B)⊗k)(�ilA

l + Bi)dx j̄

(6.7.2)

where s, t are the out- and in-valencies of the vertex and i1, . . . , is and j1, . . . , jt are the labels of the out (respectively 
in-)oriented half-edges.

• Boundary vertices v ∈ V ∂1 (�) with incoming half-edges labeled i1, . . . , ik and no out-going half-edges are decorated by 
a composite field [Ai1 . . .Aik ] evaluated at the point (vertex location) ι(v) on ∂1�3.

• Boundary vertices v ∈ V ∂2 on ∂2M with outgoing half-edges labeled j1, . . . , jl are decorated by [B j1 . . .B jl ] evaluated 
at the point on ∂2�3.

• Edges between vertices v1, v2 are decorated with the propagator η(ι(v1), ι(v2)) · δi
j , with η the propagator induced by 

L ⊂ Y ′ , the gauge-fixing Lagrangian.
• Loose half-edges (leaves) attached to a vertex v and labeled i are decorated with the residual fields ai (for out-

orientation), bi (for in-orientation) evaluated at the point ι(v).

The Feynman Rules are represented in Figs. 6.7.1, 6.7.2 and 6.7.3.

a

x

i

= ai(x)

(a)

b

x

i

= bi(x)

(b)

x y
i j = δi

jη(x, y)

(c)

Fig. 6.7.1. Feynman rules for residual fields and propagator.

B
∂2�3

(a)

A
∂1�3

(b)

=
(

R̂k

)i1...is

j; j1... jt
dx j

. . .j1

j2

jt

i1

i2

is

(c)

=
(

R̂k

)i1...is

j̄; j1... jt
dx j̄

. . .j1

j2

jt

i1

i2

is

(d)

Fig. 6.7.2. Feynman rules for boundary fields and interaction vertices: we denote with a black dot the vertices arising from the (2, 0) part of the curvature 
(i.e. the terms corresponding to the term SR in the action) and with a red dot the ones coming from the (1, 1) part (i.e. the terms corresponding to the 
term SR̄ in the action). Informally, we will call the first type of vertices “black” vertex and the second one “red” vertex. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)
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[Ai1 . . .Aik ]∂1�3

. . .ik

i2 i1

(a)

[B j1 . . .B jl ]
∂2�3

. . .jl

j2 j1

(b)

Fig. 6.7.3. Feynman rules for the composite fields.

The full covariant quantum state for globalized split RW theory is defined analogously as in [24].

Definition 6.7.3 (Full quantum state for the globalized split RW theory). Let �3 be a 3-dimensional manifold with boundary. 
Consider the data of a globalized split RW theory which consists of the globalized split space of fields F̃ s

�3 ,x as in (5.0.6), 
the globalized split space of boundary fields F̃ s, ∂

∂�3,x as in (6.1.1), a polarization P on F̃ s, ∂
∂�3,x a good splitting F̃ s

�3,x =
BP

∂�3
× VP

�3
× Y ′ and L ⊂ Y ′ , the gauge-fixing Lagrangian. We can define the full quantum state for the globalized split RW 

theory by the formal power series

ψ̂�3,x,R(A,B;a,b) = T�3 exp

(
i

h̄

∑
�

(−ih̄)loops(�)

|Aut(�)|
∫

C�(�3)

ω�(A,B;a,b)

)
. (6.7.3)

7. Proof of the modified differential Quantum Master Equation

In the BV-BFV formalism on manifolds with boundary we expect the mQME to hold. This is a condition which requires 
the quantum state to be closed under a certain coboundary operator (see [24]). However, in the context of a globalized AKSZ 
theory, this condition becomes more complicated. The new condition is called modified differential Quantum Master Equation
(mdQME). We refer to [15,23] for a discussion of the classical and quantum aspects of this condition. An extension for this 
discussion for manifolds with boundary was provided in [26]. Finally, in [27] the mdQME for anomaly-free, unimodular split 
AKSZ theories was proven, and later on in [28] for the globalized PSM.

Our aim in this section is to prove the mdQME for the globalized split RW model, namely

∇Gψ̂�3,x,R = 0, (7.0.1)

where ∇G is the quantum Grothendieck BFV (qGBFV) operator and ψ̂�3,x,R is the full covariant quantum state for the globalized 
split RW theory. As we will see, the proof follows almost verbatim from the proof of the mdQME in [27]. Before addressing 
the proof, we focus on the qGBFV operator and we discuss the construction of the full BFV boundary operator.

7.1. The quantum Grothendieck BFV operator

Definition 7.1.1 (qGBFV operator for the globalized split RW model). Inspired by [27], we define the qGBFV operator for the global-
ized split RW model as

∇G :=
(

dx + dx̄ − ih̄�V�3,x + i

h̄
�∂�3

)
, (7.1.1)

with �∂�3 the full BFV boundary operator

�∂�3 = �A
∂�3

+ �B
∂�3

= �A
0 + �A

pert + �B
0 + �B

pert, (7.1.2)

where

�A
0 = −ih̄

∫
∂1�3

dAi δ

δAi
,

�B
0 = −ih̄

∫
∂2�3

dBi
δ

δBi
.

(7.1.3)

and �A
pert and �B

pert are given by Feynman diagrams collapsing to the boundary in the A-representation and B-
representation, respectively.
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Remark 7.1.2. Note that ∇G and �∂�3 are inhomogeneous forms on the holomorphic symplectic manifold M since the 
globalized term in the action is a 1-form on M . Explicitly, for example in the B-representation, we can decompose the 
�B

pert as

�B
pert = �B

1,0 + �B
0,1︸ ︷︷ ︸

:=�B
(1)

+�B
2,0 + �B

1,1 + �B
0,2︸ ︷︷ ︸

:=�B
(2)

+ . . . . (7.1.4)

and similarly in the A-representation.

In the next section, we proceed to give an explicit expression for the BFV boundary operator in the B and A represen-
tation. We start with the former.

7.2. BFV boundary operator in the B-representation

Let us remind the reader about the general form of the BFV boundary operator in the B-representation for a split AKSZ 
theory [27]:

�B
pert :=

∑
n,k≥0

∑
�

(ih̄)loops(�)

| Aut(�) |
∫

∂2 M

(
σ�

)I1...In

J1... Jk

∧BI1 ∧ · · · ∧BIn

(
(−1)kd(ih̄)k δ| J1|+···+| Jk|

δ[B J1 . . .B Jk ]
)

(7.2.1)

In order to find an explicit expression for the BFV boundary operator, we adopt the strategy in [28] to find the BFV boundary 
operator in the E-representation for the PSM. Their idea was to use the degree counting. Indeed, in general, the form σ� is 
obtained as the integral over the compactification C̃�(Hd) of the open configuration space modulo scaling and translation, 
with Hd the d-dimensional upper half-space:

σ� =
∫

C̃
�(Hd)

ω�, (7.2.2)

where ω� is the product of limiting propagators at the point p of collapse and vertex tensors. Note that in order for the 
integral (7.2.2) not to vanish the form degree of ω� has to be the same as the dimension of C̃�(Hd). This gives constraints to 
the number of points in the bulk as well as points in the boundary admitted. We will apply this degree counting to our case, 
where, since we have d = 3, the dimension of the compactified configuration space C̃�(H3) is dim C̃�(H3) = 3n + 2m − 3, 
with n the number of bulk vertices and m the number of boundary vertices in �.

By using this procedure, in [28] it was possible to find an explicit expression for the BFV boundary operator in the 
E-representation for the PSM. As we will see, for us this is not possible. One could say that the cause is the nature of the 
RW model reflected in a dramatic increment in the number of Feynman rules as we go on in the k-index for the globalized 
terms in the action (see Eq. (5.0.4)). To see this in practice, let us show explicitly the Feynman rules for the globalization 
terms in (5.0.7), which we sum up in Table 7.2.1. Notice how the structure of the Feynman rules repeats similarly at each 
order (e.g. for R0 we have 2 Feynman rules with degrees 0 and 2, respectively, while for R1 we have 3 graphs with degrees 
0, 2, 4). Hence, it is easy to understand how this works for higher order terms. From there, one can notice that we have 
two types of vertices:

• vertices which are 1-forms in dxi : we will denote them by a black dot (•) and refer to them as black vertices;
• vertices which are 1-forms in dxī : we will denote them by a red dot (•) and refer to them as red vertices.

In our computations, we will limit ourselves to the Feynman rules in Table 7.2.1, these are already enough to get a feeling 
about what is going on and even understand the behavior of higher order terms, when possible. By using the names in the 
Table, since n = I + II + III + IV + V + VI + VII + VIII + IX + X + XI + XII + XIII is the sum of the vertices, the degree counting 
produces the following equation

I + II + III + IV + V + VI + VII + VIII + IX + X + XI + XII + XIII + 2m − 3 =
2II + 2IV + 4V + 2VII + 4VIII + 6IX + 2XI + 4XII + 6XIII,

(7.2.3)

where on the right hand side we are taking into account that in the B-representation, the arrows leaving the globalization 
vertex have to stay inside the collapsing subgraph. If this is not the case, by the boundary conditions on the propagator 
[24], the result would be zero.

First, let us focus on the black vertices (i.e. vertices I–IX). The equation reduces to

3I + II + 3III + IV − V + 3VI + VII − VIII − 3IX + 2m − 3 = 0. (7.2.4)
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Table 7.2.1
Feynman rules for the globalization terms in the action (5.0.7).

Vertex Feynman rule Total degree Name

(R̂0
)i

j 0 I

(R̂0
)i

j 2 II

(
R̂1

)i

j;s
0 III

(
R̂1

)si

j
2 IV

(
R̂1

)is

j
4 V

(
R̂2

)i

j;sm
0 VI

(
R̂2

)mi

j;s
2 VII

Vertex Feynman rule Total degree Name

(
R̂2

)sim

j
4 VIII

(
R̂2

)ism

j
6 IX

(
R̂2

)i

j̄;sm
0 X

(
R̂2

)mi

j̄;s
2 XI

(
R̂2

)smi

j̄
4 XII

(
R̂2

)ism

j̄
6 XIII

The Feynman diagrams contributing to the BFV boundary operator are those whose vertices solve the equation (7.2.4). 
Hence, let us solve the equation case-by-case. Up to one bulk vertex, with the Feynman rules I–IX we have one diagram 
(see Fig. 7.2.1).

∂2�3

Fig. 7.2.1. First graph with a single black vertex contributing to the BFV boundary operator.

From Fig. 7.2.1, we notice that in order to have a degree 1 operator which satisfies the degree counting for higher order 
terms we need vertices with an even number of heads and tails. We show the first higher order contributions in Fig. 7.2.2, 
while a general diagram contributing to the BFV operator is exhibited in Fig. 7.2.3.

∂2�3

(a)

∂2�3∂2�3

(b)

Fig. 7.2.2. Second and third graph with a single black vertex contributing to the BFV boundary operator.
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∂2�3∂2�3

. . .

. . .

Fig. 7.2.3. A general Feynman diagram contributing to the BFV operator in the B-representation up to one black bulk vertex.

Concerning the red vertices, the graphs contributing to the BFV operator up to one bulk vertex will start to appear from 
the vertices associated to the term (R3) j̄dx j̄ (coming from the third term in the action (5.0.7)). Taking this into account, the 
general term of the diagrams with a red vertex is shown in Fig. 7.2.4.

∂2�3∂2�3

. . .

. . .

Fig. 7.2.4. A general Feynman diagram contributing to the BFV operator in the B-representation up to one red bulk vertex. In particular, the graph with a 
total number of 4 arrows (2 entering and 2 leaving the red vertex) is the first non-zero contribution.

These considerations prove the following proposition.

Proposition 7.2.1. Consider the globalized split RW model, in the B-representation, the first contribution to �B
pert is given by �B

(1) =
�B

1,0 + �B
0,1 with

�B
1,0 =

∑
k≥1,S1,...Sk

i1,...,ik, j1,..., jk

(−ih̄)k

(k + S1 + · · · + Sk)!
∫

∂2�3

(
R̂2k−1

)i1...ik

j; j1... jk

dx j[Bi1BS1 ] . . .

× [BikBSk ]
δ| j1+···+ jk|+|S1|+···+|Sk|

δ[B j1 . . .B jk ][δBS1 ] . . . [δBSk ]

�B
0,1 =

∑
k≥2,S1,...Sk

i1,...,ik, j1,..., jk

(−ih̄)k

(k + S1 + · · · + Sk)!
∫

∂2�3

(
R̂2k−1

)i1...ik

j̄; j1... jk

dx j̄[Bi1BS1 ] . . .

× [BikBSk ]
δ| j1+···+ jk|+|S1|+···+|Sk|

δ[B j1 . . .B jk ][δBS1 ] . . . [δBSk ]
.

(7.2.5)

For n > 1, the situation gets more complicated. We solve equation (7.2.4) numerically. Empirically, for an even number 
of bulk vertices, we witness the absence of solutions. This implies immediately �B

(2) = 0.
In the case n = 3, the number of Feynman diagrams for the vertices I–IX increases dramatically with respect to the n = 1

case. This increment is tamed since the necessity of having a degree 1 operator will decrease their number. However, we 
are not able to provide an explicit as well as general form for the BFV operator along the same lines as in Proposition 7.2.1. 
We rely on examples which we show in [64].

Remark 7.2.2. Here we are assuming that the dimension of our target manifold M is at least 4, if this would not be the case, 
then we would not have the 3 bulk vertices contribution to the BFV boundary operator. Hence, the number of bulk vertices 
allowed is bounded by the dimension of M . This was already noticed in [28]. The difference here is that this reflects the 
“odd Grassmanian nature” of the RW model with respect to CS theory (see Remark 4.3.3).

7.3. BFV boundary operator in the A-representation

In the A-representation, the arrows coming from the globalized vertices are allowed to leave the collapsing subgraph. 
Therefore, our arguments about the degree counting are not valid here. However since the coboundary operator has a total 
degree 1, while Ai has total degree 0, we can have at most 1 bulk vertex, i.e. �A

pert = �A
1,0 + �A

0,1 with
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�A
1,0 =

∑
k≥0

∫
∂1�3

∑
J1,..., Jr ,I1,...,Is

(−ih̄)|I1|+···+|Is |

(|I1| + · · · + |Is|)!
(

R̂k

)I1...Is

j; J1... Jr
dx j

r+s=k+1∏
r=1,s=1

[A Jr ] δ|Is|

δ[AIs ] ,

�A
0,1 =

∑
k≥3

∫
∂1�3

∑
J1,..., Jr ,I1,...,Is

(−ih̄)|I1|+···+|Is |

(|I1| + · · · + |Is|)!
(

R̂k

)I1...Is

j̄; J1... Jr
dx j̄

r+s=k+1∏
r=1,s=1

[A Jr ] δ|Is|

δ[AIs ] ,
(7.3.1)

where we label by the multiindex Jr the arrows emanating from a boundary vertex towards the globalized vertex, by the 
multiindex Is the leaves emanating from the bulk vertex. The sum of r and s has to be k + 1 since these are the total 
number of arrows leaving and arriving at a globalized vertex (Rk) jdx j (or (Rk) j̄dx j̄ ).

7.4. Flatness of the qGBFV operator for the globalized split RW model

In this section, we prove that the qGBFV operator for the globalized split RW model squares to zero. The proof follows 
along the same lines as in [27], we will remark where there are differences and refer to their work when the procedure is 
identical. Before entering into the details of the proof, we should mention that their proof (and the proof of the mdQME) 
depends on two assumptions: unimodularity and absence of hidden faces (anomaly-free condition). The first means that tad-
poles are not allowed. In the case of the globalized split RW model, we notice that this assumption is not needed since 
tadpoles vanish [63].

Assumption 7.4.1. We assume that the globalized split RW model is anomaly-free, i.e. for every graph �, we have that∫
F≥3

ω� = 0, (7.4.1)

where by F≥3, we denote the union of the faces where at least three bulk vertices collapse in the bulk (also called hidden 
faces [17]).

Remark 7.4.2. It is well known that Chern–Simons theory is not an anomaly-free theory [4,5]. The construction of the 
quantum theory there depends on the choice of gauge-fixing. The appearance of anomalies can be resolve by choosing a 
framing and framing-dependent counter terms for the gauge-fixing. A famous example of an anomaly-free theory is given 
by the Poisson sigma model [20] since by the result of Kontsevich [50] any 2-dimensional theory is actually anomaly-free. 
A general method for dealing with theories that do have anomalies is to add counter terms to the action. If the differential 
form ω� , which is integrated over the hidden faces, is exact, one can use the primitive form to cancel the anomalies by the 
additional vertices that appear.

Since the integrals we will consider are fiber integrals, we will apply of Stokes’ theorem for integration along a compact 
fiber with corners, i.e.

dπ∗ = π∗d − π∂∗ , (7.4.2)

where π∗ denotes the fiber integration. In particular, the application of Stokes’ theorem to a fiber integral yields

(dx + dx̄)

∫
C�

ω� =
∫
C�

(d + dx̄)ω� −
∫

∂C�

ω�, (7.4.3)

where d is the differential on M × C� .

Theorem 7.4.3 (Flatness of the qGBFV operator). The qGBFV operator ∇G for the anomaly-free globalized split RW model squares to 
zero, i.e.

(∇G)2 ≡ 0, (7.4.4)

where

∇G = dM − ih̄�V�3,x + i

h̄
�∂�3 = dx + dx̄ − ih̄�V�3,x + i

h̄
�∂�3 . (7.4.5)

Proof. According to [27], the flatness of ∇G is equivalent to the equation

ih̄dM�∂�3 − 1

2

[
�∂�3 ,�∂�3

]
= 0. (7.4.6)
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This equation was proven for a globalized split AKSZ theory in [27], in which the dM is just the de Rham differential on 
the body of the target manifold. However, in our case, dM is the sum of the holomorphic and antiholomorphic Dolbeault 
differentials on M .

We prove Eq. (7.4.6) for �B . For �A , the proof is analogous as discussed in [27]. Suppose we apply dM to a term of the 
form

�B
� =

∫
∂2�3

σ�

((
R̂k

)
j
dx j;

(
R̂k

)
j̄
dx j̄

)I

J1... J s

[B J1 ] . . . [B J s ] δ

δ[B I ] , (7.4.7)

where k could be any number greater than 0. Here, we chose the easiest term to express with more clarity what is going 
on. As in [27], we apply Stokes’ theorem. However, this is different to the corresponding situation in [27] since in our theory 
we have also red vertices,6 which is portrayed by the fact that σ� depends also on 

(
R̂k

)
j̄
dx j̄ . We obtain

(dx + dx̄)�
B
� =

∫
∂2�3

{
(dx + dx̄)σ�

((
R̂k

)
j
dx j;

(
R̂k

)
j̄
dx j̄

)}I

J1... J s

[B J1 ] . . . [B J s ] δ

δ[B I ] + [�B
0 ,�B

� ], (7.4.8)

where the second term is produced when dx acts on the B fields (we do not have a corresponding term for dx̄ since we do 
not have fields Bī terms to act on). By applying again Stokes’ theorem, we have:

(dx + dx̄)σ�

((
R̂k

)
j
dx j;

(
R̂k

)
j̄
dx j̄

)
= (dx + dx̄)

∫
C̃�

ω�

((
R̂k

)
j
dx j;

(
R̂k

)
j̄
dx j̄

)

=
∫
C̃�

(d + dx̄)ω�

((
R̂k

)
j
dx j;

(
R̂k

)
j̄
dx j̄

)

±
∫

∂C̃�

ω�

((
R̂k

)
j
dx j;

(
R̂k

)
j̄
dx j̄

)
.

(7.4.9)

Remark 7.4.4. In principle, d is the differential on M × C� , hence it can be decomposed as d = dx + d1 + d2, where d1
denotes the part of the differential acting on the propagator and d2 the part acting on B fields (and, more generally, on A
fields). We do not have a corresponding antiholomorphic differential on M × C� since the propagators and the fields are all 
holomorphic. This is different with respect to the case considered in [27].

As in [27], we have dω� = dxω� and in the boundary integral we have three classes of faces. The first two types of faces, 
where more than two bulk points collapse and where a subgraph � collapse at the boundary, can be proved as in [27]. In 
particular, the former vanishes by our assumptions that the theory is anomaly-free (see Assumption 7.4.1), while the second 

produces exactly the term 1
2

[
�B

pert, �B
pert

]
by [27, Lemma 4.9]. On the other hand, the third case, when two bulk vertices 

collapse, has some differences with respect to the analogous situation in [27] due to the already mentioned further presence 
of red vertices. Here we distinguish four cases:

• when a red vertex collapses with a black vertex, then these faces cancel out with

dxω�

((
R̂k

)
j̄
dx j̄

)
by the dCME (2.2.12);

• when a black vertex collapses with a red vertex, then these faces cancel out with

dx̄ω�

((
R̂k

)
j
dx j

)
by the dCME (2.2.14);

• when two black vertices collapse, then these faces cancel out with dxω�

((
R̂k

)
j
dx j

)
by the dCME (2.2.11);

• when two red vertices collapse, then these faces cancel out with dx̄ω�

((
R̂k

)
j̄
dx j̄

)
by the dCME (2.2.13).

By ω�

((
R̂k

)
j̄
dx j̄

)
or ω�

((
R̂k

)
j
dx j

)
, we mean the part of the subgraph �′ , which contains a red or black vertex.

This proves (7.4.6), thus (∇G)2 ≡ 0. �

6 For the sake of clarity, we stress again that in [27], the vertices are only “black” since dM is the de Rham differential on the body of the target manifold.
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7.5. Proof of the mdQME for the globalized split RW model

In this section, we are going to prove the mdQME for the globalized split RW model. The proof follows similarly as in 
[27]. As before, we will refer to their work when the situation is identical and point out eventual differences.

Theorem 7.5.1 (mdQME for anomaly-free globalized split RW model). Consider the full covariant perturbative state ψ̂�3,x as a quan-
tization of the anomaly-free globalized split RW model. Then

(
dM − ih̄�V�3,x + i

h̄
�∂�3

)
ψ̂�3,x,R = 0. (7.5.1)

Proof. Let G denote the set of Feynman graphs of the theory. Then, we can write the full covariant quantum state for the 
globalized split RW model as

ψ̂�3,x,R = T�3

∑
�∈G

∫
C�

ω�

(
R̂ jdx j; R̂ j̄dx j̄

)
, (7.5.2)

where the combinatorial prefactor (−ih̄)loops(�)

| Aut(�)| is included in ω� (by loops we denote the number of loops of a graph �) and 
we denote the configuration space C�(�3) by C� for simplicity. We note that ω� is a (V�3,x-dependent) differential form 
on C� × M . Again, following [27], we can apply Stokes’ theorem (7.4.3) and we get

dM

∫
C�

ω�

(
R̂ jdx j; R̂ j̄dx j̄

)
=

∫
C�

(d + dx̄)ω�

(
R̂ jdx j; R̂ j̄dx j̄

)
−

∫
∂C�

ω�

(
R̂ jdx j; R̂ j̄dx j̄

)
. (7.5.3)

As mentioned in Remark 7.4.4, the d inside the integral is the total differential on C�(�3) × M , and thus we can split it 
as

d = dx + d1 + d2, (7.5.4)

where d1 denotes the part of the differential acting on the propagators in ω� and d2 is the part acting on B and A fields.
With this setup, which is basically analogous to the one in [27], except for the presence of the red vertices and dx̄ already 

extensively discussed, Eq. (7.5.1) is verified by proving three relations

• a relation between the application of d1 and of �V�3,x to the quantum state,
• a relation between the application of d2 and of �0 to the quantum state,
• a relation between the application of dM and of the boundary contributions to the quantum state.

The proofs of these relations can be carried from [27] over to the globalized split RW model without any problem. The only 
difference is when they prove that the contributions in ∂C� consisting of diagrams with two bulk vertices collapsing vanish 
(which is needed for the third relation). In our case one should consider again three contributions: when two bulk black 
vertices collapse, when two bulk red vertices collapse, when a red vertex and a black one collapse. The vanishing of these 
terms follows from Eqs. (2.2.11), (2.2.12), (2.2.13), (2.2.14). The rest of the procedure is identical to [27]. �

8. Outlook and future direction

Our globalization construction leads to an interesting extension of some aspects in the program presented in [29] for 
manifolds with boundary and cutting-gluing techniques. In particular, it would be of interest to understand some relations 
to the deformation quantization of Kähler manifolds in the guise of [61], especially using the constructions of [28], and 
Berezin–Toeplitz quantization as presented in [68] (possibly for the noncompact case). It also leads to a more general 
globalization construction of an algebraic index theory formulation by using the BV formalism together with Fedosov’s 
globalization approach as presented in [38]. Moreover, it might also be related to a case of twisted topological field theories, 
known as Chern–Simons–Rozansky–Witten TFTs, constructed by Kapustin and Saulina in [45]. In particular, they use the 
BRST formalism to produce interesting observables as Wilson loops and thus one might be able to combine it with ideas 
of [1,54]. Another direction would be the study of the RW invariants through our construction for hyperKähler manifolds. 
We guess that this would require studying observables of RW theory in the BV-BFV formulation, but the globalization 
procedure should tell something about these 3-manifold invariants. We hope that this might also be compatible with some 
generalizations of RW invariants in the non-hyperKähler case as discussed in [62].
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algebras. We provide various examples arising from the group algebra of a
group G and a given normal subgroup H . We also give conditions for the
existence of a Haar system of measures on a relational groupoid compatible
with the convolution, and we prove a reduction theorem that recovers the
usual convolution of a Lie groupoid.

1. Introduction 75
2. Background material 78
3. Relational groupoids 81
4. Relational convolution algebras 89
5. Future directions 96
Appendix: Some results on relational groupoids 98
Acknowledgements 99
References 100

1. Introduction

Motivation. Symplectic groupoids are fundamental objects in Poisson geometry.
Every symplectic groupoid G ⇒ M induces a Poisson structure on M [Coste
et al. 1987]. Such Poisson manifolds are called integrable, and G is also called a
symplectic realization of M . It is a well-known fact that not all Poisson manifolds are
integrable and that there are explicit obstructions to the integration [Crainic and Fer-
nandes 2004]. However, one can associate to every Poisson manifold M a relational
symplectic groupoid [Contreras 2013; Cattaneo and Contreras 2015], which is an
infinite-dimensional symplectic manifold equipped with Lagrangian submanifolds
that model the structure maps of a symplectic groupoid. Hawkins [2008] showed
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that a Poisson manifold can be quantized1 via a twisted polarized convolution
C∗-algebra of a symplectic groupoid integrating that Poisson manifold.

The first main idea behind this paper is to generalize Hawkins’ approach to
arbitrary Poisson manifolds (integrable or not) by generalizing this construction to
relational symplectic groupoids. In order to achieve this objective, we introduce
the notion of relational groupoids and their corresponding relational convolution
algebras, which is an analogue of the convolution algebra in the partial category
Rel of sets and relations.

We study various examples of relational convolution algebras that arise from
extending Haar systems of measures to relational groupoids, and we prove our
main result: a reduction theorem for relational convolution algebras, which re-
covers the usual groupoid convolution algebra. This is also the first step towards
proving the “quantization commutes with reduction” conjecture by Guillemin and
Sternberg [1982] in the setting of groupoid quantization.

In particular, this result serves as the first step towards reduction of its quantization
(convolution algebras for relational groupoids). The next step is to construct the
polarized algebra for relational symplectic groupoids. In addition to this, we hope
to use relational convolution algebras to recover the C*-algebra quantization of
Poisson pencils via reduction, recovering the results obtained in [Bonechi et al.
2014] regarding the Bohr–Sommerfeld groupoid.

The second main idea in this paper is that the relational symplectic groupoids
could be used to study the relation between groupoid quantization and deformation
quantization in a field-theoretic way, as follows. Relational symplectic groupoids
were introduced in [Contreras 2013; Cattaneo and Contreras 2015] in order to
describe the groupoid structure of the phase space of a 2-dimensional topological
field theory, the Poisson Sigma Model (PSM) [Ikeda 1994; Schaller and Strobl 1994;
Cattaneo and Felder 2001a], before gauge reduction [Cattaneo and Felder 2001b].
Cattaneo and Felder [2000] have shown that the perturbative quantization of the PSM
using the Batalin–Vilkovisky (BV) formalism [Batalin and Vilkovisky 1977; Batalin
and Vilkovisky 1981; Batalin and Vilkovisky 1983] yields Kontsevich’s star product
[Kontsevich 2003], a deformation quantization associated to any Poisson manifold.

It was shown by Cattaneo, Mnev and Reshetikhin [Cattaneo et al. 2018] that
the BV formalism can be extended to deal with the perturbative quantization of
gauge theories on manifolds with boundary by coupling the Lagrangian approach
of the Batalin–Vilkovisky construction [Batalin and Vilkovisky 1977; Batalin and
Vilkovisky 1981; Batalin and Vilkovisky 1983] in the bulk to the Hamiltonian
approach of the Batalin–Fradkin–Vilkovisky construction [Fradkin and Vilkovisky

1Loosely speaking, a “quantization” of a Poisson manifold is a noncommutative deformation of
the algebra of functions, or a Lie subalgebra of it, subject to a subset of certain axioms put forward by
Dirac [1930].
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1975; Batalin and Fradkin 1983; Stasheff 1997] on the boundary. This is known
today as the BV-BFV formalism [Cattaneo and Moshayedi 2020]. Recently, this
formalism has been applied to the relational symplectic groupoid for constant
Poisson structures, linking the BV-BFV perturbative quantization of the relational
symplectic groupoid and Kontsevich’s star product in this case by methods of cutting
and gluing for Lagrangian evolution relations [Cattaneo et al. 2017].

These constructions have been partially extended to a wider class of Poisson
structures and source manifolds in [Cattaneo et al. 2020] and more general AKSZ
theories [Alexandrov et al. 1997] in [Cattaneo et al. 2019]. We expect these results to
be generalized to yield a BV-BFV description of a global deformation quantization
for general Poisson manifolds, not necessarily Kontsevich’s star product, which
might produce some interesting algebraic structures.

A clear and explicit connection between geometric quantization (in terms of
C∗-algebras) of the reduced phase space and deformation quantization of Poisson
manifolds, via the PSM [Cattaneo and Felder 2000], remains an open question. By
constructing relational convolution algebras for the PSM, in the future we hope to
connect Kontsevich’s and Hawkins’ approaches via BV-BFV quantization of the
relational symplectic groupoid. Eventually, these techniques might also help to
generalize Kontsevich’s star product to higher genera. In particular, the convolution
algebra of a relational symplectic groupoid is the first step towards prescribing a
field-theoretic interpretation of the C∗-algebra quantization of Poisson manifolds
in terms of the nonperturbative PSM [Bonechi et al. 2006].

Further motivation for this paper stems from the connection between groupoids
and Frobenius objects in a dagger monoidal category. For instance, a representative
example of a relational convolution algebra is the relational group algebra, a version
up to equivalence, of the group algebra of a group G. Group algebras are particular
cases of Frobenius algebras, so relational convolution algebras provide a new class
of examples of Frobenius objects in the category of sets and relations, which are
also in correspondence with groupoids [Heunen et al. 2013; Mehta and Zhang
2020]. In a recent work [Contreras et al. ≥ 2021], Frobenius objects in the category
of spans are considered. A prominent class of examples comes from groupoids, via
simplicial sets.

Notation and conventions. We will denote groups or groupoids by usual letters
G, H, K and relational groups or relational groupoids by calligraphic letters G,H,K.
Moreover, we will use Greek letters to denote elements in the set of morphisms
of a groupoid. Latin letters g, h, k (or g1, g2, . . . ) will be used for elements of a
relational groupoid (G, L , I ). We will put an underline for a (relational) group(oid)
to express the corresponding space observed after reduction. Underlined Latin letters
g, h, k (or g

1
, g

2
, . . . ) will denote that the given object is obtained by reduction.
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A slashed arrow between two sets A 9 B denotes a relation from A to B, i.e., a
subset of A× B. In this manuscript we treat relations as subsets of the Cartesian
product, and the domain and codomain of the relation are prescribed in case it is
ambiguous. Latin letters x, y, z (or x1, x2, . . . ) will denote elements in the space of
objects (base) of a (relational) groupoid. Functions will be denoted by f1, f2, . . .

to avoid confusion with elements of a (relational) group(oid).

2. Background material

Groupoids. Recall that a groupoid is a small category whose morphisms are in-
vertible. We denote a groupoid by G ⇒ M , endowed with source map s : G→ M
and target map t : G→ M , where G is the set of morphisms and M is the set of
objects. We denote by G(k)

⊂ G×k the subset of k-composable morphisms, that is,

(2-1) G(k)
= {(α1, . . . , αk) ∈ G×k

| t (αi+1)= s(αi ), i = 1, . . . , k− 1}

= G×(s,t)× · · ·×(s,t) G︸ ︷︷ ︸
k

.

We denote by m : G(k)
→ G the multiplication (composition of morphisms).

Definition 2.1. A Lie groupoid is a groupoid where M and G are smooth manifolds
and all structure maps are smooth. The source and target maps are surjective
submersions, which guarantees that the spaces of k-composable morphisms are
smooth manifolds.

A particular case of interest is Lie groupoids with a symplectic structure [Wein-
stein 1987].

Definition 2.2. A symplectic groupoid is a Lie groupoid G ⇒ M , where the space
of morphisms is endowed with a symplectic form ω ∈�2(G) such that the graph
of the multiplication m : G × G → G is a Lagrangian submanifold of (G, ω)×
(G, ω)× (G,−ω).

The definition above is equivalent to saying that the symplectic form ω is multi-
plicative, i.e.,

(2-2) m∗(ω)= π∗1 (ω)+π
∗

2 (ω),

where π1 and π2 are projections of G(2)
= G×(s,t) G onto its first and second com-

ponent, respectively. Definition 2.2 is restrictive, e.g., one can show that there are
no symplectic groups. Furthermore, the next theorem [Weinstein 1987] holds:

Theorem 2.3. Let (G, ω)⇒ M be a symplectic groupoid.

(i) There is a unique Poisson structure 5 on M such that the source map s is a
Poisson map.

(ii) If ε denotes the unit map, then ε(M) is a Lagrangian submanifold of G.
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(iii) If ι denotes the inverse map, then the graph of ι is a Lagrangian submanifold
of G×G.

Groupoid convolution algebras. There are several equivalent ways to define a
convolution algebra on groupoids. They differ on the choice of the spaces in which
the measures are defined. We first recall the construction of a Haar system on source
fibers [Connes 1994; Higson 2004], and then we describe an equivalent system
of measures on (s× t)-fibers. The latter is more suitable for the generalization to
relational groupoids. In the sequel, Cc(G) denotes the space of continuous functions
on G with compact support.

Definition 2.4. A right Haar system on a Lie groupoid G ⇒ M is a smooth family
of smooth measures (µx)x∈M on the source fibers Gx := s−1(x) such that:

(i) For all f ∈Cc(G), s∗ f (x)=
∫

Gx
f dµx defines a smooth function s∗ f ∈Cc(M).

(ii) For γ : x → y, the right-multiplication diffeomorphism Rγ : G y → Gx is
measure-preserving, i.e., (Rγ )∗µy = µx .

Definition 2.5. Let G ⇒ M be a Lie groupoid with a right Haar system (µx)x∈M .
Then its groupoid convolution algebra is (Cc(G,C), ?), continuous functions with
compact support on G with values in C, equipped with the groupoid convolution
product

(2-3) ? : Cc(G,C)×Cc(G,C)→ Cc(G,C)

defined by

(2-4) ( f1 ? f2)(γ )=
∫

Gs(γ )

f1(γ ◦ η
−1) f2(η) dµs(γ )(η).

Proposition 2.6. The convolution product ?, defined as in (2-4), is associative.

Proof. Let f1, f2, f3 ∈ Cc(G,C) and consider, on the one hand,

(( f1? f2)? f3)(γ )=
∫

Gs(γ )

( f1 ? f2)(γ ◦ η
−1) f3(η) dµs(γ )(η)

=

∫
Gs(γ )

∫
Gs(γ ◦η−1)

f1(γ ◦η
−1
◦β−1) f2(β) dµs(γ )(β) f3(η) dµs(γ )(η).

Now set τ = β ◦ η. We have Rη : Gs(γ ◦η−1)→ Gs(γ ), and using right-invariance of
the measure, it follows that the above expression equals

(2-5)
∫

Gs(γ )

∫
Gs(γ )

f1(γ ◦η
−1
◦(τ◦η−1)−1) f2(τ◦η

−1) dµs(γ ◦η−1)(β) f3(η)dµs(γ )(η)

=

∫
Gs(γ )

∫
Gs(γ )

f1(γ ◦ τ
−1) f2(τ ◦ η

−1) dµs(γ )(τ ) f3(η) dµs(γ )(η)
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On the other hand,

( f1 ? ( f2 ? f3))(γ )=
∫

Gs(γ )

f1(γ ◦ η
−1)( f2 ? f3)(η) dµs(γ )(η)

=

∫
Gs(γ )

∫
Gs(η)

f1(γ ◦ η
−1) f2(η ◦ τ

−1) f3(τ ) dµs(η)(τ ) dµs(γ )(η).

This expression equals (2-5) upon exchanging η and τ . �

The following equivalent definition of groupoid Haar system can be found in
[Westman 1968]:

Definition 2.7. Let

G(x,y) = {g ∈ G | s(g)= x, t (g)= y}.

A Haar system on these fibers is defined similarly as in Definition 2.4, with the
requirement that, for f ∈ Cc(G(x,y),C), if

µxy( f )=
∫

G
f (gx,y) dµ(gx,y),

the function
µ( f ) : M ×M→ C, (x, y) 7→ µx,y( f |Gx,y )

is in Cc(M ×M) whenever f ∈ Cc(G).

Example 2.8. Let G be a locally compact group acting continuously on a locally
compact Hausdorff space X , then G× X (as an action groupoid) admits a (right)
Haar system {δx , µ}, where µ is a Haar measure on G and δx is the Dirac measure
at x ∈ X .

Remark 2.9. The groupoid convolution algebra has an involutive ∗-operation
given by

(2-6) f ∗(γ )= f (γ−1).

In order to obtain groupoid C∗-algebras, we need to use completion with respect to
a certain norm and a given convolution algebra representation.

Definition 2.10. The left regular representation of the groupoid convolution algebra
is a map, for all x ∈ M ,

λx : Cc(G)→ B(L2(Gx)),

which for f ∈ Cc(G), h ∈ L2(Gx) and γ ∈ Gx is given by

(λx( f )h)(γ )= ( f ? h)(γ )

=

∫
Gs(γ )

f (γ ◦ η−1)h(η) dµs(γ )(η).
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Definition 2.11. The reduced groupoid C∗-algebra of G is the completion of a
groupoid convolution algebra Cc(G) with respect to the norm

‖ f ‖ = sup
x
‖λx( f )‖B(L2(Gx )).

3. Relational groupoids

The category of relational groupoids.

Definition 3.1. A relational groupoid is a triple (G, L , I ) such that:

(1) G is a set,

(2) L is a subset of G×G×G,

(3) I : G→ G is a function,

satisfying the following axioms:

A.1: L is cyclically symmetric, i.e., if (g, h, k) ∈ L , then (h, k, g) ∈ L .

A.2: I is an involution (i.e., I 2
= id).

A.3: Let T denote the transposition map

T : G×G→ G×G, (g, h) 7→ (h, g).

Then
(3-1) I ◦ L = L ◦ T ◦ (I × I ).

A.4: Let L3 := I ◦ L : G×G 9 G. Then the following equality holds:

(3-2) L3 ◦ (L3× id)= L3 ◦ (id× L3).

A.5: Denoting by L1 the morphism L1 := L3 ◦ I : ∗9 G, then

(3-3) L3 ◦ (L1× L1)= L1.

A.6: If we define the morphism

L2 := L3 ◦ (L1× id) : G 9 G,

then the following equations hold:

(3-4) L2 = L3 ◦ (id× L1).

(3-5) L2 ◦ L1 = L1,

(3-6) L2 ◦ L2 = L2,

(3-7) L2 ◦ L3 = L3 ◦ (L2× L2)= L3,

(3-8) I ◦ L2 = L2 ◦ I,

where (3-5)–(3-7) shows that L2 leaves L1, L2 and L3 invariant and (3-8)
shows that L2 is a symmetric relation.
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Definition 3.2. A relational Lie groupoid is a relational groupoid (G, L , I ) such
that G, L and I are smooth manifolds and smooth relations, respectively.

The next proposition says we can equally well define a relational groupoid
through the relations L1, L2, L3 defined in Definition 3.1 above.

Proposition 3.3. The data (G, L , I ) and (G, I, L1, L2, L3) are equivalent.

Proof. Clearly we are able to obtain the relations L i from (G, L , I ). Now, assume
that (G, I, L1, L2, L3) is given. Then L is recovered using that L = I ◦ L3, and
therefore Axioms A.1–A.6 can be written just in terms of L i and I . �
Definition 3.4. Let (G, L , I ) be a relational groupoid. A relational groupoid
(H, LH, IH) is a relational subgroupoid of G, L , I if H⊆ G, LH ⊆ L and IH ⊆ I .

Definition 3.5. Let (G1, L1, I1) and (G2, L2, I2) be two relational groupoids. A
morphism F : G1→ G2 is a relational subgroupoid of G1×G2.

We can extend the category of groupoids Grpd to the category of relational
groupoids RelGrpd.

Remark 3.6. The category RelGrpd is endowed with an involution

† : (RelGrpd)op
→ RelGrpd

that is the identity on objects and is the relational converse of morphisms, i.e., for
f : A 9 B, we get f †

:= {(b, a) ∈ B× A | (a, b) ∈ f }.

Graphical interpretation of the axioms.
• The cyclicity axiom, Axiom A.1, encodes the cyclic behavior of the multi-

plication and inversion maps for groups, namely, if g, h, k are elements of a
group G with unit e such that ghk = e, then gh = k−1, hk = g−1, kg = h−1.

• Axiom A.2 encodes the involutivity property of the inversion map of a group,
i.e., (g−1)−1

= g,∀g ∈ G.

• Axiom A.3 encodes the compatibility between multiplication and inversion:

(gh)−1
= h−1g−1, ∀g, h ∈ G.

• Axiom A.4 encodes the associativity of the product: g(hk)=(gh)k, ∀g,h,k∈G.

• Axiom A.5 encodes the property of the unit of a group being idempotent: ee= e.

• Axiom A.6 states an important difference between the construction of relational
groupoids and usual groupoids. The compatibility between the multiplication
and the unit is defined up to an equivalence relation, denoted by L2, whereas
for groupoids such compatibility is strict; more precisely, for groupoids such
an equivalence relation is the identity. In addition, the multiplication and the
unit are equivalent with respect to L2.
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L I T id

Figure 1. The special relations L , I , T and id.

L3 L1
L2

Figure 2. The structure relations L1, L2 and L3.

A.4 A.5

A.6

k

g h k g h k

h g

id

A.1 A.2 A.3

Figure 3. The axioms A.1–A.6.

Figures 1–3 illustrates the diagrammatics of the relational groupoid axioms.

Relational groups as relational groupoids. The next example is representative of
relational groupoids: it is given by a group G and a normal subgroup H of G.

Example 3.7. Let G be a group with multiplication defined by m : G × G → G
and H G G a normal subgroup. Denote by ∼H⊂ G × G the equivalence relation
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g1 ∼H g2⇔∃h ∈H such that m(h, g1)= g2. Moreover, define

L3 := {(g1, g2,m(m(g1, g2), h)) | g1, g2 ∈ G, h ∈H} ⊂ G×G×G,(3-9)

L2 :=∼H⊂ G×G,(3-10)

L1 :=H GG,(3-11)

I := g 7→ g−1.(3-12)

Then the quintuple (G, I, L1, L2, L3) defines a relational groupoid.

Proof. We need to check the axioms of a relational groupoid as in Definition 3.1
explicitly. We will not always write the multiplication map by m but instead g1g2 :=

m(g1, g2). To see Axiom A.1, let (g1, g2, g3)∈ L , we want to show (g3, g1, g2)∈ L
or (g3, g1, g−1

2 ) ∈ L3 Then g3 = (g1g2h)−1 for some h ∈ H and g3g1 = h−1g−1
2 .

By normality, h−1g−1
2 = g−1

2 h′, with h′ ∈H, and so (g3, g1, g−1
2 ) ∈ L3. Clearly I

is an involution, hence Axiom A.2 holds. Axiom A.3 follows from the fact that
L = I ◦ L3 and that for group elements g1, g2, we have I (g1g2) = (g1g2)

−1
=

g−1
2 g−1

1 = I (g2)I (g1) and normality. Next we want to show Axiom A.4. Consider
an element (g1, g2, g1g2h)∈ L3 for some h ∈H. Consider the diagram of relations

(3-13)

G×G

G×G×G G

G×G

/ L3/
L3×id

/
id×L3

/
L3◦(id×L3)

/

L3◦(L3×id)

/L3

Let us first look at the relation L3 ◦ (L3 × id). It follows that (g1, g2, g3) ∼

(g1g2h1, g3) ∼ g1g2h1g3h2, with h1, h2 ∈ H and g1, g2, g3 ∈ G. Now using nor-
mality of H we get h1g3 = g3h′1, for some h′1 ∈H, and setting h̄ := h′1h2, we get
g1g2h1g3h2 = g1g2g3h̄ ∈ g1g2g3H.

If we look at the relation L3 ◦ (id× L3), we get (g1, g2, g3) ∼ (g1, g2g3h3) ∼

g1g2g3h3h4 ∈ g1g2g3H. Next we show Axiom A.5. Consider the relations

(3-14) ∗ G×G G/
L1×L1

/
L3◦(L1×L1)

/
L1

/
L3

where we have ∗ ∼ (h1, h2) with h1, h2 ∈H and then (h1, h2)∼ h1h2h3 =: h̃ ∈H.
On the other hand, we have a relation L1 for ∗ ∼ h for any element h of H. Next
we show (3-4) of Axiom A.6. Let us look at
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(3-15) G×∗ G×G G/
id×L1

/
L3◦(id×L1)

/
L2

/
L3

and consider first the relation L3 ◦ (id× L1). Take g ∈ G, then we get g ∼ (g, h1)

for h1 ∈ H and (g, h1) ∼ gh̄ ∈ gH with h̄ = h1h2 ∈ H. On the other hand, if we
consider the relation L2 we get for g ∈ G and h ∈H that g ∼ gh ∈ gH. Next we
show (3-5) of Axiom A.6. Consider the relations

(3-16) ∗ G G/
L1

/
L2◦L1

/
L1

/
L2

and let us look at the relation L2◦L1. The relation L1 is ∗∼ h for any element h ∈H.
Then by L2 we get ∗∼ h∼ h̃ := hh̄ ∈H. Since H is a subgroup, ∗∼ h for any h ∈H,
which is L1. Finally, we show (3-6) of Axiom A.6. Then we have the relations

(3-17) G G G/
L2

/
L2◦L2

/
L2

/
L2

and we have that L2 gives for an element g ∈ G that g ∼ gh1 for h1 ∈H; and then
gh1∼gh1h2= gh̄∈gH with h̄= h1h2∈H, which gives the same relation as just L2.
Similarly, we can show for (3-7) of Axiom A.6 that the last diagram also commutes:

(3-18)

G×G

G×G G G

/

L3

/
L3

/
L2◦L3

/
L3/

L2×L2

/
L2

which completes the proof. �
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For later use we record some simple examples of relational groups below.

Example 3.8 (a finite example). One can check that G = Z4 with normal subgroup
H= Z2 GZ4, together with the canonical relations as in Example 3.7, is a relational
group and, hence, a relational groupoid.

Example 3.9 (discrete example: integers modulo n). We want to consider the
example of Z/nZ for some n ≥ 2. Hence, let G = Z, L1 = nZ, L2 = {(a, b) ∈
Z×Z | a− b ∈ nZ} and L3 = {(a, b, c) ∈ Z×Z×Z | ∃k ∈ Z : a+ b+ nk = c}.

Example 3.10 (a continuous example). Let G = S1
:= {z ∈ C | |z| = 1}, and let

L1 = {ζ ∈C | ζ n
= 1}G S1 be the normal subgroup of n-th roots of unity. We define

the relation

L2=

{
(z, w)∈ S1

×S1
| ∃k ∈ {0, 1, . . . , n−1} such that arg(w)−arg(z)= 2πk

n

}
.

In particular, z ∼ w if and only if ∃ζ ∈ L1 such that z · ζ = w for z, w ∈ S1. We
define L3 = {(z, w, z ·w · ζ ) ∈ S1

× S1
× S1

| z, w ∈ S1, ζ ∈ L1} ⊂ S1
× S1
× S1.

Moreover, we define the map I by complex conjugation z 7→ z̄. Then one can check
that this is indeed a relational group as in Example 3.7 and, hence, a relational
groupoid.

Additional examples. Here are some other simple examples of relational groupoids
that are not relational groups.

Example 3.11. We can further extend Example 3.7 to a parametrized family of
relational groups. The local model in this example is G×Rk , where at each point
p in Rk there is a fiber that we identify with G. For instance, Example 3.10 can be
extended to the relational bundle S1

×R→ R, where each fiber is isomorphic to
the relational group G = S1 and at each fiber, the normal subgroup of n-th roots of
unity is chosen.

Example 3.12. Of course, groupoids are also examples of relational groupoids. If
(G,m) is a groupoid, then L :=Graph(I ◦m), I (g)= g−1 makes G into a relational
groupoid. In this case, the special relations are given as follows: L1 ⊂ G is the unit
section, L2 = diagG ⊂ G×G is the diagonal and L3 = Graph(m).

Relational symplectic groupoids.

Definition 3.13. A relational symplectic groupoid is a relational groupoid (G, L , I )
such that:

(1) G is a weak symplectic manifold,2

2In the infinite-dimensional setting we restrict to the case of Banach manifolds (when the regularity
type of fields is fixed) G endowed with a closed 2-form ω, such that the induced map ω] : TG→ T ∗G
is injective. The result also holds for smooth fields and Fréchet manifolds.
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(2) L is an immersed Lagrangian submanifold of G×G×G, where G denotes G
equipped with the negative of the given symplectic form,

(3) I is an antisymplectomorphism of G.

Example 3.14. In [Contreras 2013; Cattaneo and Contreras 2015] it is proven
that the phase space of the Poisson Sigma Model (PSM)3 is an example of a
infinite-dimensional relational symplectic groupoid.

Reduction of relational groupoids. One of the important properties of a relational
groupoid is the fact that L2 encodes the information of an equivalence relation. In
general L2 is not necessarily an equivalence relation on the whole of G, but on a
subset C, called the constraint set.

Proposition 3.15. Define
C := L2 ◦G,

where G is considered as the relation ∗9G. Then L2 is an equivalence relation on C.

Proof. The fact that L2 is transitive and symmetric follows from Axiom A.6
(L2 ◦ L2 = L2 and L†

2 = L2). Reflexivity follows from the definition of C. �
Theorem 3.16. Let (G, I, L1, L2, L3) be a relational groupoid. Then G = C/L2 is
a groupoid, and the quotient map q is a morphism of relational groupoids.

Proof. First, let us consider the following relations, that are the relational analogues
of the source and target maps:

S := {(c, `) ∈ C× L1 | ∃g ∈ G s.t. (`, c, g) ∈ L3}

and
T := {(c, `) ∈ C× L1 | ∃g ∈ G s.t. (c, `, g) ∈ L3}.

It follows from the definition that T = I ◦S, and furthermore, if M := L1/L2:

s := S : G→ M

is a surjective map, where S = q ◦S is the reduction of S. �
Example 3.17. Following Example 3.7, the reduction of a relational group is a (set
theoretical) group. If, in addition, we impose the condition that G is a Lie group
and H is closed subgroup, then the quotient is a Lie group.

Example 3.18. Let G be a set. Then one can define its pair groupoid by G×G ⇒G,
where s and t are given by projection to the first and second factor, respectively. For
two elements (g, h) and (h, k), composition is given by (g, h)(h, k)= (g, k). The
inverse is defined by (g, h)−1

= (h, g). We can define a relational pair groupoid
in a similar way. For a relational version of this example, let G be a set and R

3Here, the source space is a disk, and the target space is a Poisson manifold.
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be an equivalence relation. We then define the relational groupoid G× G, where
L1 = G, L2 = R × R and L3 is given by composition of relations. In the case
that the equivalence relation R is the identity, we recover the pair groupoid after
L2-reduction.

Example 3.19. If M is an integrable Poisson manifold, then the reduction of the
infinite-dimensional relational symplectic groupoid of Example 3.14 is a finite-
dimensional symplectic groupoid integrating the Poisson manifold M . See [Contr-
eras 2013; Cattaneo and Contreras 2015] for the details of the reduction procedure
and how it coincides with the gauge reduction of the Poisson Sigma Model.

The previous results and examples allow us to connect different constructions
on relational groupoids with standard notions on groupoids, via reduction. For
instance, in the next subsection we introduce actions of relational groupoids that
are necessary to describe the compatibility of measures (relational Haar systems)
and the structure relations in Section 4.

Relational groupoid actions. First, following the characterization of the Haar mea-
sure on groups via right-invariance, we introduce the notion of relational right
action. Right, left and adjoint group actions are natural examples of relational
group actions, and Haar measures (on groups and relational groups) are invariant
with respect to the right relational group action. Also, the conditions (i) and (ii)
of a relational Haar system in Definition 4.2 encode the invariance with respect to
relational right actions.

Definition 3.20. Let (G, L , I ) be a relational groupoid, and let Z be a set with
an equivalence relation L Z . A relational right action of G on Z is a relation
ρ : Z ×G 9 Z such that:

(1) We have
ρ ◦ (ρ× idG)= ρ ◦ (idZ × L3),

as relations Z ×G×G 9 Z .

(2) The relation ρL1 : Z 9 Z given by

ρL1 = {(x, y) ∈ Z × Z | ∃g ∈ L1, (x, g, y) ∈ ρ}

coincides with the equivalence relation L Z on Z , i.e., ρL1 = L Z .

We also say that (G, L , I ) acts on (Z , L Z ) by relations from the right. Sometimes
we drop L Z notation.

An obvious example is the action of a relational groupoid on itself from the right.

Example 3.21. Let G be a relational groupoid. Then setting ρ = L3 defines a
relational right action of G on (G, L1).
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Proof. This follows directly from Axiom A.4 (associativity) and Axiom A.6 (unital-
ity) of Definition 3.1. �

Of course, there is an analogous definition of left relational action, and relational
groupoids also act on themselves from the left. We can generalize the relation ρL1

defined above to an arbitrary subset of G.

Definition 3.22 (relational action). Let (G, L , I ) be a relational groupoid and sup-
pose that G acts on Z by relations, and let S ⊂ G be any subset of G. Then we
define the relation RS : Z 9 Z by

(3-19) RS := {(z1, z2) ∈ Z × Z | ∃g ∈ S, (z1, g, z2) ∈ ρ}.

For S = {g} ⊂ G, we write RS = Rg.

For g, h ∈ G, we denote gh := {x ∈ G | (g, h, x) ∈ L3}. With this notation, we
have the following proposition:

Proposition 3.23. Let (G, L , I ) be a relational groupoid, and let g, h ∈ G, which
acts on a set Z from the right. Then

(3-20) Rh ◦ Rg = Rgh .

4. Relational convolution algebras

Relational Haar systems. Let (G, L , I ) be a relational groupoid. As for a usual
groupoid, we denote by

(4-1) G(2) := {(g, h) ∈ G×G | ∃k ∈ G s.t. (g, h, k) ∈ L3}

the set of composable pairs in G. For k ∈ G, we denote by G(2)k the set of pairs that
compose to k, i.e., we have

(4-2) G(2)k := {(g, h) ∈ G×G | (g, h, k) ∈ L3}.

Recall that we have the quotient groupoid G :=C/L2, and there is a relation q : G9G
which, restricted to C×G, is the graph of a surjective map that we will also denote q .
It is clear from the definitions that for every g ∈ C we have G(2)g /(L2× L2)= G(2)q(g),
and we denote4 the quotient map qg : G(2)g → G(2)g , where q(g)=: g.

We will need the following terminology from measure theory (see, e.g., [Chang
and Pollard 1997; Ambrosio et al. 2005]).

Definition 4.1 (disintegrating measure). Let µ be a measure on a set Y , and let
q : Y → X be a map. Moreover, let ν = q∗µ be the pushforward measure on X .
We say that µ disintegrates with respect to q if there exists a family of probability
measures (µx)x∈X such that:

4We are slightly abusing notation here, qg is actually the restriction of q × q to G(2)g .



90 IVAN CONTRERAS, NIMA MOSHAYEDI AND KONSTANTIN WERNLI

• For all µ-measurable sets E ⊂ Y , the function x→ µx(E) is ν-measurable.

• µx(Y \ q−1(x))= 0 for ν-almost every x ∈ X .

• For all µ-measurable functions f : Y → R, we have∫
Y

f dµ=
∫

X

∫
q−1(x)

f (y) dµx(y) dν(x).

A measure µ disintegrates under fairly general assumptions, e.g., when X, Y are
Radon spaces and q is Borel-measurable. The family µx is uniquely determined
ν-almost everywhere (and, in turn, determines the measure µ). See [Pachl 1978]
for a detailed account.

We now define a relational Haar system as follows:

Definition 4.2. Let G be a relational groupoid, G its quotient groupoid and q : C→G
the quotient map. A relational Haar system on G is a system of measures µg on
G(2)g , with g ∈ G, such that µg = 0 for g ∈ G \ C and for g ∈ C we have:

(i) If q(g)= q(g′), then (qg)∗µg = (qg′)∗µg′ .

(ii) The system of measures νg := (qg)∗µg on G(2)g defines a right Haar system on
the quotient groupoid G (recall that g = q(g)).

(iii) µg disintegrates with respect to qg.

Equivalently, a relational Haar system on G is determined by a right Haar system
(νg)g ∈ G on the quotient groupoid G and a family of probability measures (µg)g

1
g

2
on the fibers q−1

g (g
1
, g

2
) for g

1
g

2
= g.

Remark 4.3. A relational Haar system is invariant under the relational right action
of the relational groupoid on itself, in the following sense. Let A ⊂ G(2)g be an
L2-saturated set, i.e., (L2× L2) ◦ A = A. Then, if we have (g, h, k) ∈ L3, we have
µg(A)= µk((id× Rh) ◦ A).

Notice also that the condition that µg vanishes for g /∈ C is automatic, because
in this case G(2)g = ∅ (see also Proposition App.1). In some sense, the axioms
presented above are the weakest possible set of axioms that ensure existence of a
well-defined Haar system on the quotient. However, these measures can have extra
properties with regard to the structure relations that define a relational groupoid.

Definition 4.4 (L2-invariant measure). We say that a relational Haar system µg is
L2-invariant if µg = µh whenever (g, h) ∈ L2.

Notice that this condition is stronger than condition (i) of Definition 4.2, which
merely demands that the pushforwards be the same.

Definition 4.5 (split relational Haar system). We say that a relational Haar system
µg splits if, for all g ∈ C, there is a family of probability measures (τ g

g
1
)g

1
∈G on G
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with τ g
g

1
supported on q−1(g

1
) such that for all g

1
, g

2
∈ G, with g

1
g

2
= q(g),

(4-3) (µg)g
1
g

2
= τ g

g
1
× τ g

g
2
.

Definition 4.6 (strongly split relational Haar system). We say that a relational Haar
system µg splits strongly if there is a family of probability measures (τg

1
)g

1
∈G

on G with τg
1

supported on q−1(g
1
) such that for all g ∈ G and g

1
, g

2
∈ G, with

g
1
g

2
= q(g),

(4-4) (µg)g
1
g

2
= τg

1
× τg

2
.

In particular, a strongly split relational Haar system is split and L2-invariant.

Example 4.7. Consider the relational group G = Z4 with normal subgroup H =
Z2 GZ4, as in Example 3.8. The sets G(2)g are given by

G(2)0 = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 2), (2, 0), (1, 3), (3, 1)} = G(2)2 ,

G(2)1 = {(1, 0), (0, 1), (1, 2), (2, 1), (3, 0), (0, 3), (2, 3), (3, 2)} = G(2)3 ,

and in the quotient we have

G(2)0 = {(0, 0), (1, 1)} and G(2)1 = {(1, 0), (0, 1)}.

Let µcount denote the counting measure, µcount(A)= #A. The unique Haar system
(up to normalization) on the quotient is given by letting ν0 = ν1 =

1
2µcount, and of

course, this corresponds to the natural Haar measure µcount on Z2. A relational Haar
system can now be given by assigning, for g

1
g

2
= q(g) ∈ G, probability measures

(µg)g
1
g

2
on the fibers

q−1
g (g

1
, g

2
)= {g

1
, g

1
+ 2}× {g

2
, g

2
+ 2}

for g
1
g

2
= q(g). An obvious choice is to assign (µg)g

1
g

2
=

1
4µcount. This yields

the family of measures (µg =
1
8µcount)g∈Z4 , which is strongly split, with τ0 = τ1 =

1
2µcount. But other choices are possible: For instance, we can define a split, but
not L2-invariant measure by setting τ g

g
1
= δg, the Dirac measure at g ∈ q−1(g

1
),

whenever q(g)= g
1

and τ g
g

1
=

1
2µcount otherwise. Concretely, we have

τ 0
0 = δ0, τ 0

1 =
1
2µcount, τ 2

0 = δ2, τ 2
1 =

1
2µcount,

and similarly for τ 1
g

1
and τ 3

g
1
. Moreover, we can define an L2-invariant system which

is not split by letting (µ0)g
1
g

2
= (µ2)g

1
g

2
any probability measure on q−1(g

1
, g

2
)

which is not a product measure, for instance

(µ0)00(0, 0)= (µ0)00(2, 0)= (µ0)00(0, 2)= 1
3 and (µ0)00(2, 2)= 0;

and similarly for the other probability measures.
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Example 4.8. Consider, again, the example of the relational group G corresponding
to nZ GZ as in Example 3.9. In this case, assigning for l ∈ Z the counting measure
µcount on G(2)l does not provide an example of a relational Haar system, since it
does not disintegrate in the sense of Definition 4.1. The point is that the fibers
are infinite, and thus the “measures along the fibers” (µl)l1l2

are not probability
measures. One possibility to define a (strongly split) relational Haar system is to
define probability measures τl on l+nZ, for l ∈ Zn (for instance the Dirac measure
supported at some representative). However, these measures will necessarily fail to
be translation-invariant.

The relational convolution algebra. Given the definition of a relational Haar sys-
tem, we now define a generalization of the convolution algebra to the case of
relational groupoids. To define a set of functions on which the convolution product
is well-defined, we will from now on assume that our relational groupoids are
equipped with a topology. A relational Haar systems is assumed to be continuous5

and given by Radon measures with respect to this topology. The following subspace
of functions is a convenient one:

Definition 4.9. Let G be a topological relational groupoid and µ= (µg)g∈G a Haar
system given by Radon measures. Denote by G the quotient groupoid of G equipped
with the quotient topology. Then a continuous function f is admissible if it is
bounded and there is a compact set K ⊂ G such that supp( f )∩ C ⊂ q−1(K). The
set of admissible functions is denoted by A(G).

The point about admissible functions is that they have a well-defined convolution
product which is again an admissible function.

Proposition 4.10. Let f1, f2 ∈A(G). Then the convolution product defined by

(4-5) ( f1 ? f2)(g)=
∫
G(2)g

f1(h) f2(k) dµg(h, k)

converges for all g ∈ G and g 7→ ( f1 ? f2)(g) ∈A)(G).
Proof. First, notice that ( f1 ? f2)(g)= 0 if g /∈ C. This follows from the fact that
G(2)g =∅ in this case (see Proposition App.1). Otherwise, we use the axiom that
the Haar measure µg disintegrates to write

(4-6) ( f1? f2)(g)=
∫
(g

1
,g

2
)∈G(2)q(g)

∫
q−1((g

1
,g

2
))

f1(h) f2(k) dµgg
1
g

2
(h, k)︸ ︷︷ ︸

=: f̃ (g
1
,g

2
)

dνg(g1
, g

2
).

Since f1 and f2 are bounded, integrating f1 · f2 along the fibers results in a bounded
continuous function f̃ on the base G(2)q(g) and | f̃ | ≤ | f1|| f2|. Let Ki denote compact

5One way to phrase this is that for every continuous function f on G(3) the function k 7→∫
(g,h)∈G(2) f (g, h, k) dµk is continuous
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sets containing q(supp( fi )). The support of f̃ is contained in K1 × K2, which
is compact. Since µq(g) is also a Radon measure, the integral is finite and in
fact |( f1 ? f2)(g)| ≤ νg(K1 ×K2)| f1 × f2|. Hence, f1 ? f2 is defined pointwise.
By continuity of the Haar system, it follows that f1 ? f2 is also continuous. It
remains to check that f1 ? f2 is admissible. Let m denote the multiplication in
the quotient groupoid, and denote by K the set m((K1 ×K2)∩ G(2)). Then K is
compact since the multiplication is continuous. The arguments above imply that
supp( f1 ? f2)⊂ q−1(K), and hence in the preimage of a compact set. To see that
f1 ? f2 is bounded, note that |( f1 ? f2)| ≤ | f1|| f2| supg∈K νg(K). By compactness,
the supremum is obtained and f1 ? f2 is bounded, and hence admissible. �

The definition of the convolution algebra is now straightforward.

Definition 4.11. Let (G, L , I ) be a relational groupoid with a relational Haar sys-
tem (µg)g∈G . Denote by A(G) the space of admissible functions. The relational
convolution algebra is then (A(G), ?), with the convolution product defined in (4-5).

Remark 4.12. Another possible domain for the convolution product is given by
continuous functions which are just compactly supported. This is a subspace of the
space of admissible functions. However, below we want to consider L2-invariant
functions, to recover the algebra of functions on the quotient. If the L2-fibers are
not compact (for instance, this happens for the relational group associated to G = Z,
H= kZ), then such functions will never be compactly supported. This motivates
our choice of space of admissible functions. Of course, for compact relational
groupoids the spaces of admissible, compactly supported and continuous functions
all coincide.

Associativity. A natural question when defining an algebra is whether or not it
is associative. This is the question we investigate in this subsection. It turns out
that in general, the convolution is associative only when restricted to L2-invariant
functions, or when the Haar system satisfies some restrictive condition.

Proposition 4.13. The space of L2-invariant functions is an associative subalgebra
of (A(G), ?).

Notice that for an L2-invariant function f there is a well-defined continuous
function f̃ on the quotient groupoid G, defined by f̃ (g)= f (g). By Axiom (ii) of
Definition 4.2, to a Haar system µ on G there is an associated Haar system ν on G.
Let us denote its convolution product on compactly supported functions by ?G . The
proof of Proposition 4.13 is a direct corollary of the following Lemma:

Lemma 4.14. For L2-invariant functions f1, f2 ∈A(G), the convolution is given by

(4-7) f1 ? f2 =

{
q∗( f̃1 ?G f̃2) on C,
0 on G \ C.
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Proof. First, we recall that by definition the support of the convolution of any two
admissible functions is contained in C, since G(2)g =∅ for g ∈ G. Notice further that
if f1, f2 ∈A(G) are L2-invariant, then by definition their associated functions on G
are compactly supported; hence, the right-hand side of (4-7) is defined. Now, we
use again the fact that the Haar system disintegrates to write

( f1 ? f2)(g)=
∫
(g

1
,g

2
)∈G(2)q(g)

∫
q−1((g

1
,g

2
))

f1(h) f2(k) dµgg
1
g

2
(h, k) dνg(g1

, g
2
)

=

∫
(g

1
,g

2
)∈G(2)q(g)

f̃1(g1
) f̃2(g2

) dνg(g1
, g

2
)

= ( f̃1 ?G f̃2)(g).

Here, the second equation follows from normalization of the disintegrating mea-
sures and the fact that L2-invariance is equivalent to being constant on fibers of q .
Integrating a constant function against a probability measure, we simply obtain that
constant. �

By associativity of the convolution in the quotient groupoid, Proposition 4.13
holds. Next, we give a sufficient criterion on the Haar system for the convolution
algebra to be associative.

Proposition 4.15. Suppose that the relational Haar system µ is strongly split as in
Definition 4.6. Then the convolution algebra A(G) is associative.

Proof. Another way to write formula (4-7) is

(4-8) f1 ? f2 = q∗(q∗ f1 ?G q∗ f2),

where we denoted by f̃ =: q∗ f the pushforward of L2-invariant functions. Asso-
ciativity of the convolution restricted to L2-invariant functions follows from the
property

(4-9) q∗ ◦ q∗ = id,

i.e., q∗ is defined as the left inverse of the injective map q∗ : Cc(G)→ A(G) on
its image. Thus, the convolution is associative on all functions if we can find an
extension of the map q∗ to all of A(G) in such a way that property (4-8) is still true.
In this case, there is a family of probability measures τg on G, and we can extend q∗
by setting

q∗ f (g)=
∫

q−1(g)
f (g) dτg(g);

and again, we have properties (4-8) and (4-9). Thus, associativity follows from
associativity of the convolution algebra of the quotient. �
Remark 4.16. In the two examples above, we were able to infer associativity
from the fact that the convolution algebra on the quotient is associative. However,
both of these examples are “well behaved” with respect to the quotient, since they
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satisfy the strongly split condition. Already on the simplest relational groupoid with
nontrivial L2 relation, one can find examples of (split, invariant) relational Haar
systems such that the convolution algebra is not associative, see Example 4.17 below.
However, since the L3 relation in the relational groupoid is strictly associative, and
L2-invariant, one might ask whether there is a remnant of this fact that is visible
at the level of the convolution algebra, i.e., whether the algebra is “associative up
to homotopy” in general. This is an interesting question that the authors plan to
address in a future paper.

The relational convolution algebra associated to a split L2-invariant relational
Haar system which is not strongly split is not necessarily associative, which follows
from the counterexample below:

Example 4.17. We consider again the relational group given by G = Z4, H= Z2.
Denote by δg the function with δg(g)= 1 and δg(h)= 0 for h 6= g. Unraveling the
definitions, we can compute

δ0 ? δ0 = µ0(0, 0)δ0+µ2(0, 0)δ2,

δ0 ? δ1 = µ1(0, 1)δ1+µ3(0, 1)δ3,

δ2 ? δ1 = µ1(2, 1)δ1+µ3(2, 1)δ3,

δ0 ? δ3 = µ1(0, 3)δ1+µ3(0, 3)δ3,

δ0 ? (δ0 ? δ1)

= (µ1(0, 1)2+µ3(0, 1)µ1(0, 3)︸ ︷︷ ︸
A

) · δ1+ (µ1(0, 1)µ3(0, 1)+µ3(0, 1)µ3(0, 3)︸ ︷︷ ︸
B

) · δ3,

(δ0 ? δ0) ? δ1

= (µ0(0,0)µ1(0,1)+µ2(0,0)µ1(2,1)︸ ︷︷ ︸
C

)·δ1+(µ0(0,0)µ3(0,1)+µ2(0,0)µ3(2,1)︸ ︷︷ ︸
D

)·δ3.

The condition for µ being a relational Haar system implies that

µg(g1, g2)= νg(µg)g
1
g

2
(g1, g2)=

1
2(µg)g

1
g

2
(g1, g2),

where (µg)g
1
g

2
(g1, g2) is some probability measure on q−1(g

1
, g

2
). It is clear

that, in general, A, B,C, D are pairwise different. If we suppose the measure is
L2-invariant, we obtain

A = B = µ1(0, 1)2+µ1(0, 1)µ1(0, 3),

C = D = µ0(0, 0)µ1(0, 1)+µ1(2, 1).

Furthermore, if we suppose that µ is split, we obtain µ0(0, 0)= 1
4τ

0
0 (0)

2. Letting τ 0
0

be the measure on {0, 2} supported at 2, we see that C = D = 0 (in fact, in this case
δ0 ? δ0 = 0). On the other hand, A = B depends only on τ 1

0 and τ 1
1 . Thus, this is an

example of a split L2-invariant Haar system with nonassociative convolution algebra.
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Reduction of the algebra of admissible functions. In this subsection, we show that
the reduction of the relational convolution algebra is isomorphic to the convolution
algebra of the groupoid which is the reduction of the relational groupoid. We
will obtain this result via a two-step reduction: one reduction with respect to the
constraint set, followed by a reduction with respect to the L2 relation. Let (G, L , I )
be a relational groupoid, and let C be its constraint set. We denote by IC the subset
of functions in Cc(G) that vanish on C. The set IC is usually called the vanishing
ideal, since it is an ideal inside Cc(G) with the standard (commutative) product.
Furthermore we obtain the following isomorphism of convolution algebras:

Proposition 4.18. IC is also an ideal in A(G), and

A(G)/IC ∼=A(C).

Proof. The fact that IC is an ideal of A(G) follows from the fact that if f1 ∈ IC , then
f1 vanishes on C; and hence, f1 ? f2|C = 0, for all f2 ∈A(G). �
Definition 4.19. Denote by (A(C))L2 ⊂A(C) the subspace of admissible functions
on C that are constant along L2, i.e., the subspace of functions f ∈A(C) satisfying
(h, k) ∈ L2⇒ f (h)= f (k).

Proposition 4.20. (A(C)L2, ?) is a subalgebra of (A(C), ?).
Proof. It follows directly from Lemma 4.14. �
Definition 4.21. Let G be a relational groupoid. Its reduced convolution algebra
(with respect to L2) is

(4-10) A(G)= (A(G)/IC)L2 ∼=A(C)L2 .

We are now ready to state our main result.

Theorem 4.22. The reduced convolution algebra of a relational groupoid is iso-
morphic to the (groupoid) convolution algebra of its reduction:

(4-11) A(G)∼=A(G).

Proof. Since G = C/L2, it follows that the sets A(G) and A(G) are in bijection. The
fact that the map

8 :A(G)→A(G), f 7→ f̃

is an isomorphism of convolution algebras follows from L2-invariance of functions
in A(G) and Proposition 4.20. �

5. Future directions

Relational C∗-algebras and higher structures. A natural next step is to introduce
the C∗-completion of the relational convolution algebra. In particular, we will study
the relational analogue of the algebra M(n,C) of complex valued n× n-matrices
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and the algebra B(H) of bounded linear operators on a complex Hilbert space H .
We will also study the representations of relational convolution algebras and how
this construction relates to C∗-algebras for 2-groups and higher-categorical versions
of relational groupoids.

Field theory. In a follow-up work, we intend to describe the groupoid convolution
algebra for the relational symplectic groupoid obtained via the Poisson Sigma Model.
This would provide a positive answer for the Guillemin–Sternberg conjecture for
this particular 2-dimensional TFT. In particular, we will use Hawkins’ approach to
C∗-algebra quantization of symplectic groupoids [Hawkins 2008], in the context of
relational groupoids.

More precisely, Hawkins developed a C∗-algebra quantization procedure that
is compatible with the groupoid structure maps, as well as with the multiplicative
symplectic structure on the space of morphisms. The construction is based on
prescribing the following data (each built based on the previous ones):

(1) a symplectic groupoid G ⇒ M integrating a Poisson manifold M ,

(2) a prequantum line bundle (L ,∇) over G,

(3) a symplectic groupoid polarization P of G,

(4) a “half-form” bundle �1/2
P ,

(5) A twisted, polarized convolution algebra C∗P(G, σ ) (where σ encodes the
twisting data).

Our construction serves as a first step towards a field theoretic interpretation of
the geometric quantization procedure introduced by Hawkins. In particular, we
conjecture that the final object in step (5) can be obtained via transgression in
the AKSZ formulation of the Poisson Sigma Model. A natural candidate for
the relational Haar system comes from the path space construction, analogous
to the Wiener measure on loop groups. This interpretation will help connect the
perturbative quantization of the Poisson Sigma Model via relational symplectic
groupoids [Cattaneo et al. 2017] and nonperturbative approaches, i.e., geometric
quantization [Bonechi et al. 2006]. Such interpretation will be independent of the
integrability of the Poisson manifold.

Relational convolution and split relations. In [Cattaneo and Contreras 2021], split
relations were studied in the context of relational symplectic groupoids. A relation
is called split if it is isotropic and it has a closed isotropic complement. It turns
out that the structure relations of every finite-dimensional symplectic groupoid is
split, as well as the infinite-dimensional relational symplectic groupoid obtained via
the PSM. We will study the relationship between split relations and the convolution
algebra for split relational groupoids.
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Relational convolution and Frobenius algebras. In [Heunen et al. 2013], it has
been proven that special dagger Frobenius objects in Rel (the category of sets and
relations) are in one-to-one correspondence with groupoids. Recently in [Mehta and
Zhang 2020], this result has been generalized using a characterization of Frobenius
objects in Rel using simplicial sets. Relational convolution algebras are natural
examples of Frobenius objects in Rel, in the same way that group algebras are a
special class of Frobenius algebras. We expect to have a simplicial interpretation of
these extension in the future [Contreras et al. ≥ 2021].

Appendix: Some results on relational groupoids

We will prove some results about the structure of the sets

G(2)g = {(h, k) ∈ G(2) | (h, k, g) ∈ L3}.

Moreover, let C be defined as in Proposition 3.15. Then we have:

Proposition App.1. If G(2)g is nonempty, then g ∈ C.

Proof. Let (h, k) ∈ G(2)g . Then (h, k, g) ∈ L3 = L2 ◦ L3 by L2-invariance (3-7). It
follows that there is g′ such that (g′, g) ∈ L2. In particular, g ∈ L2 ◦G = C. �

For a usual groupoid G ⇒ M , these sets are the fibers of the fibration G(2)
→ G.

In a relational groupoid, this is no longer true. Instead we have the following
statement:

Proposition App.2. For two distinct elements g, g′ ∈ G, the sets G(2)g and G(2)g′ are
equal if and only if (g, g′) ∈ L2 and disjoint otherwise.

Proof. First, suppose that (g, g′) ∈ L2, and let (h, k, g) ∈ L3. Then (h, k, g′) ∈
L2 ◦ L3 = L3. Hence, G(2)g ⊆ G(2)g′ , and symmetry of L2 implies the other direction.
Now, assume that (h, k) ∈ G(2)g ∩G(2)g′ . It suffices to show that (g, g′) ∈ L2. Axiom
A.1 and Axiom A.3 imply that (h, k, g)∈ L3 if and only if (g, I (k), h)∈ L3. Hence,
(g, I (k), k, g′) ∈ L3 ◦ (L3 × id) = L3 ◦ (id× L3). Thus, there is e ∈ G such that
(I (k), k, e) ∈ L3 and (g, e, g′) ∈ L3. By definition of L1 and L2, we conclude that
e ∈ L1, and hence (g, g′) ∈ L2. �

An immediate corollary is the following:

Corollary App.3. Let (h, k) ∈ G(2)g , then the set hk := {g′ ∈ G | (h, k, g′) ∈ L3}

satisfies hk = L2(g). In particular, we have

(App-1) G(2)hk =
⋃

g′∈hk

G(2)g′ = G(2)g .

Analogous to the right relational action, we can define left relational actions. In
particular, a relational groupoid acts on itself by left and right multiplication, and
the sets G(2)g behave nicely under this action.
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Proposition App.4. Let (G, L , I ) be a relational groupoid, and let (g, h) ∈ G(2).
Then, we have

(App-2) (id× Rh) ◦G(2)g = G(2)gh ,

and similarly

(App-3) (Lg × id) ◦G(2)h = G(2)gh ,

Proof. For the first equation, we have

(id× Rh) ◦G(2)g = {(g1, g2) | ∃k, (g1, k) ∈ G(2)
g , (k, g2) ∈ Rh}

= {(g1, g2) | ∃k, (g1, k) ∈ G(2)g , (g2, k) ∈ (Rh)
T
= RI (h)}

= {(g1, g2) | ∃k, (g1, k, g) ∈ L3, (g2, I (h), k) ∈ L3}

= {(g1, g2) | (g1, g2, I (h), g) ∈ L3 ◦ (id× L3)}

= {(g1, g2) | (g1, g2, I (h), g) ∈ L3 ◦ (L3× id)}

= {(g1, g2) | ∃k ∈ G : (g1, g2, k) ∈ L3, (k, I (h), g) ∈ L3}

= {(g1, g2) | ∃k ∈ G : (g1, g2, k) ∈ L3, (k, I (h), I (g)) ∈ L}

= {(g1, g2) | ∃k ∈ G : (g1, g2, k) ∈ L3, (I (h), I (g), k) ∈ L}

= {(g1, g2) | ∃k ∈ G : (g1, g2, k) ∈ L3, (I (h), I (g), I (k)) ∈ L3}

= {(g1, g2) | ∃k ∈ G : (g1, g2, k) ∈ L3, (g, h, k) ∈ L3}

= G(2)gh

The other equation is proven similarly. �
In particular, we have the following.

Corollary App.5. Let (G, L , I ) be a relational groupoid, and let (g, h) ∈ G(2).
Then, we have

(App-4) (L I (g)× Rh) ◦G(2)g = G(2)h .

Proof. By Proposition App.4, we have (L I (g)× Rh) ◦G(2)g = G(2)I (g)gh . By definition
of L2, this can be rewritten as G(2)I (g)gh = G(2)L2(h). We conclude the proof using
Proposition App.4. �
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Using the quantum construction of the BV-BFV method for perturbative gauge theories, we show that the 
obstruction for quantizing a codimension 1 theory is given by the second cohomology group with respect 
to the boundary BRST charge. Moreover, we give an idea for the algebraic construction of codimension 
k quantizations in terms of Ek-algebras and higher shifted Poisson structures by formulating a higher 
version of the quantum master equation.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Batalin–Vilkovisky formalism [11–13] is a powerful method to deal with perturbative quantizations of local gauge theories. The 
extension of this formalism to manifolds with boundary combines the Lagrangian approach of the Batalin–Vilkovisky (BV) formalism in 
the bulk with the Hamiltonian approach of the Batalin–Fradkin–Vilkovisky (BFV) formalism [10,33] on the boundary of the underlying 
source (spacetime) manifold. This construction is known as the BV-BFV formalism [23,24,26]. In particular, it describes a codimension 1 
quantum gauge formalism. Within a classical gauge theory one is interested in describing the obstructions for it to be quantizable. The 
cohomological symplectic formulation suggests an operator quantization for the boundary action. To get a well-defined and consistent 
cohomology theory, one has to require that this induced operator squares to zero. This will lead to obstruction spaces for boundary 
theories by considering a deformation quantization of the boundary action in order to formulate a boundary version of the quantum 
master equation as the gauge-independence condition. We will show that the obstruction for the quantization of manifolds with boundary 
is controlled by the second cohomology group with respect to the cohomological vector field on the boundary fields. Moreover, we 
formulate a classical extension of higher codimension k theories as in [23] which we call BFkV theories. The coupling for each stratum, in 
fact, is easily extended in the classical setting (BV-BFkV theories), whereas for the quantum setting it might be rather involved. In order to 
formulate a fully extended topological quantum field theory in the sense of Baez–Dolan [8] or Lurie [48], the coupling is indeed necessary. 
Since one layer of the quantum picture, namely the quantum master equation, is described in terms of deformation quantization, we can 
formulate an algebraic approach for the higher codimension extension in terms of Ek- and Pk-algebras [49,61]. Here Ek denotes the ∞-
operad of little k-dimensional disks [35,44,49]. Moving to one codimension higher corresponds to the shift of the Poisson structure by −1
since the symplectic form is shifted by +1 (see [55] for the shifted symplectic setting). This is controlled by the operad Pk on codimension 
k which corresponds to (1 − k)-shifted Poisson structures [17,60]. Using this notion, we give some ideas for the quantization in higher 
codimension. Moreover, if one uses the notion of Beilinson–Drinfeld (BD) algebras [15,29], in particular BD0- and BD1-algebras, one 
can try to consider the action of P0 ∼= BD0/h̄ (for h̄� 0) on P1 ∼= BD1/h̄ (for h̄� 0) in order to capture the algebraic structure of the 
classical bulk-boundary coupling (see also [60, Section 5]). Here ∼= denotes an isomorphism of operads. In general, one can define the 

E-mail address: nima.moshayedi@math.uzh.ch.
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BDk operads to provide a certain interpolation between the Pk and Ek operads in the sense that they are graded Hopf [47] differential 
graded (dg) operads over K�h̄�, where h̄ is of weight +1 and K a field of characteristic zero, together with the equivalences

BDk/h̄ ∼= Pk, BDk�h̄−1� ∼= Ek((h̄)).

The formality of the Ek operad [35,44,69] implies the equivalence BDk
∼= Pk�h̄�. There is a formulation of a BD2-algebra in terms of 

brace algebras [18,61] and one can show that there is in fact a quasi-isomorphism P2 ∼= BD2/h̄ (for h̄� 0). However, the notion of a 
BDk-algebra for k ≥ 3 in terms of braces is currently not defined, but there should not be any obstruction to do this. Using these operads, 
one can define a deformation quantization of a Pk+1-algebra A to be a BDk+1-algebra Ah̄ together with an equivalence of Pk+1-algebras 
Ah̄/h̄ ∼= A (see [17,53] for a detailed discussion).

Notation and conventions. We will denote functions on a manifold M by O(M). Vector fields on M will be denoted by X(M) and the 
space of differential k-forms on M by �k(M). We denote by A�t� the space of formal power series in a formal parameter t with coefficients 
in some algebra A. The imaginary unit is denoted by i := √−1. If the manifolds are infinite-dimensional, they are usually Banach or Fréchet
manifolds. The ring of integers will be denoted by Z. Real and complex numbers will be denoted by R and C respectively. A general field 
of characteristic zero will be denoted by K.

2. Obstruction spaces for quantization on manifolds with boundary

2.1. Classical BV theories

We start with the BV approach for the bulk theory. A BV manifold is a triple

(F,S,ω)

such that F is a Z-graded supermanifold, S ∈ O(F) is an even function of degree 0, and ω ∈ �2(F) an odd symplectic form of degree 
−1. The Z-grading corresponds to the ghost number which we will denote by “gh”. The BV space of fields F is usually given as the 
(−1)-shifted cotangent bundle of the BRST space of fields, i.e. FBV := T ∗[−1]FBRST. In many cases, F is an infinite-dimensional Fréchet 
manifold. Denote by Q the Hamiltonian vector field of S of degree +1, i.e. ιQ ω = δS , where δ denotes the de Rham differential on F . If 
we denote by ( , ) the odd Poisson bracket induced by the odd symplectic form ω (also called the anti bracket, or BV bracket), we get

Q = (S, ).

Note that, by definition, Q is cohomological, i.e. Q 2 = 0. Moreover, Q is a symplectic vector field, i.e. L Q ω = 0, where L denotes the Lie 
derivative. For a BV theory we require the classical master equation (CME)

Q (S) = (S,S) = 0 (2.1)

to hold. The assignment � �� (F�, S�, ω�) of a (usually, closed compact oriented) manifold � to a BV manifold is called a BV theory. By 
the physical property of locality, given a BV theory, we usually want to work over local functions on F� , which we denote by Oloc(F�) ⊂
O(F�). These are defined by functions on F� of the form

� ��

∫
x∈�

L
(
x,�(x), ∂�(x), ∂2�(x), . . . , ∂N�(x)

)
,

where � ∈ F� denotes some field configuration and L denotes the Lagrangian density of the given theory which depends on � and 
higher derivatives for N ∈ Z>0.

2.2. Examples of classical BV theories

We want to give some examples of non-reduced classical BV theories. For the reduced case see [23].

2.2.1. Electrodynamics
We want to consider the (minimal) BV extension of classical Euclidean electrodynamics for a trivial U (1)-bundle. Let � be a smooth 

oriented n-dimensional Riemannian manifold. Denote by ∗: � j(�) ��n− j(�) the Hodge star induced by the metric on �. The BV space 
of fields is then given by the shifted cotangent bundle T ∗[−1]E� , where

E� := �1(�) ⊕ �n−2(�) ⊕ �0(�)[1].
The first term of E� denotes the space of connections A of a trivial U (1)-bundle over �, the second term denotes the space of the 
Hamiltonian counterpart of those connections (i.e. the momentum), which we denote by B , and the third term denotes the space of ghost 
fields c. Hence, we have

F� := T ∗[−1]E� = �1(�) ⊕ �n−2(�) ⊕ �0(�)[1] ⊕ �n−1(�)[−1] ⊕ �2(�)[−1] ⊕ �n(�)[−2]
We denote a field in F� by (A, B, c, A+, B+, c+). Then the BV symplectic form is given by

ω� =
∫
�

(
δA ∧ δA+ + δB ∧ δB+ + δc ∧ δc+) .

2
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The BV action is given by

S� =
∫
�

(
B ∧ F A + 1

2
B ∧ ∗B + A+ ∧ dc

)
,

where F A := dA, denotes the curvature of the connection A. The cohomological vector field is given by

Q � =
∫
�

(
dc ∧ δ

δA
+ dB ∧ δ

δA+ + (∗B + dA) ∧ δ

δB+ + dA+ ∧ δ

δc+

)
.

In particular, we have the following symmetries:

Q �(A) = dc,

Q �(A+) = dB,

Q �(B+) = ∗B + dA,

Q �(c+) = dA+,

and Q �(B) = Q �(c) = 0. It is easy to show that Q 2 = 0 and that the CME is indeed satisfied, i.e. Q �(S�) = 0.

2.2.2. Yang–Mills theory
Consider an n-dimensional closed oriented compact smooth Riemannian manifold �. Let g be the Lie algebra of a finite-dimensional 

simply connected Lie group G endowed with a g-invariant inner product given by 〈g, h〉 := Tr(gh). Moreover, let P be principal G-bundle 
over � and assume for simplicity that P is trivial. The BV space of fields is given by

F� := �1(�) ⊗ g ⊕ �n−2(�) ⊗ g ⊕ �0(�)g[1] ⊕ �n−1(�) ⊗ g[−1] ⊕ �2(�) ⊗ g[−1] ⊕ �n(�) ⊗ g[−2]
We denote a field in F� by components (A, B, c, A+, B+, c+). The BV symplectic form is given by

ω� =
∫
�

Tr
(
δA ∧ δA+ + δB ∧ δB+ + δc ∧ δc+)

and the BV action by

S� =
∫
�

Tr

(
B ∧ F A + 1

2
B ∧ ∗B + A+ ∧ dAc + B+ ∧ [B, c] + 1

2
c+ ∧ [c, c]

)
,

where F A := dA + 1
2 [A, A] denotes the curvature of the connection A and dA is the covariant derivative for A. The cohomological vector 

field is given by

Q � =
∫
�

(
dAc ∧ δ

δA
+ [B, c] ∧ δ

δB
+ 1

2
[c, c] ∧ δ

δc
+ (dA B + [A+, c]) ∧ δ

δA+ + (F A + ∗B + [B+, c]) ∧ δ

δB+ +

+ (dA A+ + [B, B+] + [c, c+]) ∧ δ

δc+

)
.

In particular, we have the following symmetries:

Q �(A) = dAc,

Q �(B) = [B, c],
Q �(c) = 1

2
[c, c],

Q �(A+) = dA B + [A+, c],
Q �(B+) = F A + ∗B + [B+, c],
Q �(c+) = dA A+ + [B, B+] + [c, c+].

2.2.3. Chern–Simons theory
Let � be a 3-dimensional closed compact oriented smooth manifold and let g be the Lie algebra of a Lie group G endowed with an 

invariant inner product (e.g. a simple Lie algebra). Denote by Tr(gh) the Killing form for two elements g, h ∈ g. The space of fields is given 
by graded connections on a principal G-bundle. For simplicity, we assume that the bundle is trivial. Then the BV space of fields is given 
by

F� := �•(�) ⊗ g[1] =
3⊕

j=0

� j(�) ⊗ g[1].

3
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A field in F� will be denoted by the tuple (c, A, A+, c+). Note that the ghost numbers are 1, 0, −1, −2 respectively. Consider the superfield
A := c + A + A+ + c+ . Then the BV symplectic form is given by

ω� = 1

2

∫
�

Tr(δA ∧ δA) =
∫
�

Tr(δc ∧ δc+ + δA ∧ δA+).

The cohomological vector field is given by

Q � =
∫
�

Tr

((
dA + 1

2
[A,A]
)

∧ δ

δA

)
=
∫
�

Tr

(
dAc ∧ δ

δA
+ (F A + [c, A+]) ∧ δ

δA+ + (dA A+ + [c, c+]) ∧ δ

δc+ + 1

2
[c, c] ∧ δ

δc

)
.

In particular, we have the following symmetries:

Q �(A) = dAc,

Q �(c) = 1

2
[c, c],

Q �(A+) = F A + [c, A+],
Q �(c+) = dA A+ + [c, c+].

The BV action is given by

S� =
∫
�

Tr

(
1

2
A ∧ dA + 1

6
A ∧ [A,A]

)
=
∫
�

Tr

(
1

2
A ∧ dA + 1

6
A ∧ [A, A] + 1

2
A+ ∧ dAc + 1

2
c ∧ dA A+ + 1

2
c+ ∧ [c, c]

)

2.2.4. (Abelian) B F theory
Let us first consider abelian B F theory. Let � be an n-dimensional closed compact oriented smooth manifold. The space of fields is 

given by

F� := �•(�)[1] ⊕ �•(�)[n − 2].
We denote the superfields by A ∈ �•(�)[1] and B ∈ �•(�)[n − 2]. The BV symplectic form is then given by

ω� =
∫
�

δA ∧ δB.

The BV action is given by

S� =
∫
�

B ∧ dA.

The cohomological vector field is given by

Q � =
∫
�

(
dA ∧ δ

δA
+ dB ∧ δ

δB

)
.

Note that Q �(A) = dA and Q �(B) = dB. Now let us consider the case of non-abelian B F theory, i.e. we consider a finite-dimensional Lie 
algebra g with invariant inner product. The BV space of fields is then given by

F� := �•(�) ⊗ g[1] ⊕ �•(�) ⊗ g[n − 2] � (A,B).

The BV symplectic form is given by

ω� =
∫
�

Tr(δB ∧ δA).

The cohomological vector field is given by

Q � =
∫
�

Tr

((
dA + 1

2
[A,A]
)

∧ δ

δA
+ dAB ∧ δ

δB

)
.

In particular, we have the following symmetries:

Q �(A) = dA + 1

2
[A,A],

Q �(B) = dAB.

The BV action is given by

4
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S� =
∫
�

Tr

(
B ∧
(

dA + 1

2
[A,A]
))

.

Remark 2.1. Note that non-abelian B F theory reduces to the abelian one when g = R. In fact, abelian B F theory is given by two copies 
of abelian Chern–Simons theory (i.e. the theory described in 2.2.3 when g = R). Moreover, (abelian) B F theory and Chern–Simons theory 
are examples of a more general type of theory, called AKSZ theory [1], which forms a subclass for BV theories. Other examples of AKSZ 
theories include the Poisson sigma model [21,22,39,63], Witten’s A- and B-model [1,77], Rozansky–Witten theory [56,59], Donaldson–Witten 
theory [40,78], the Courant sigma model [28,58], and 2D Yang–Mills theory [24,41],

2.3. Obstruction space in the bulk

It is well known that the obstruction space for quantization in the BV formalism is given by the first cohomology group with respect 
to Q . See e.g. [9] and references therein.

Theorem 2.2. The obstruction space for a BV theory to be quantizable is given by

H1
Q (Oloc(F)). (2.2)

Proof. Consider a deformation of the BV action S , denoted by Sh̄ , depending on h̄ and consider its expansion as a formal power series

Sh̄ := S0 + h̄S1 + h̄2S2 + O (h̄3) =
∑
k≥0

h̄kSk ∈ Oloc(F)�h̄�, (2.3)

where each Sk ∈ Oloc(F) for all k ≥ 0 and limh̄�0 Sh̄ = S , i.e. S0 := S . Note that ghSk = 0 for all k ≥ 0 since gh S = 0. For the quantum 
BV picture (see e.g. [57,64]) one should note that there is a canonical second order differential operator 	 on Oloc(F) such that 	2 = 0. 
It is called BV Laplacian (see [42,76] for a mathematical exposure). In particular, if �i and �+

i denote field and anti-field respectively, one 
can define 	 as

	 f =
∑

i

(−1)gh �i+1 f

〈 �−
δ

δ�i
,

�−
δ

δ�+
i

〉
, f ∈ Oloc(F).

We have denoted by 
�−
δ

δ�i and 
−�
δ

δ�i the left and right derivatives with respect to �i . An analogous version also holds for the anti-fields �+
i . 

In fact, we have
−�
δ

δ�i
f = (−1)gh �i(gh f +1) f

�−
δ

δ�i
, (2.4)

−�
δ

δ�+
i

f = (−1)(gh �i+1)(gh f +1) f

�−
δ

δ�+
i

. (2.5)

Remark 2.3. To be precise, for our constructions we want to consider a (global) BV Laplacian on half-densities on F . It can be shown that 
for any odd symplectic supermanifold F there exists a supermanifold M such that F ∼= T ∗[1]M. Then O(F) ∼= O(T ∗[1]M) = 
(

∧• T M). 
The Berezinian bundle on F is given by

Ber(F) ∼=
top∧

T ∗M ⊗
top∧

T ∗M.

The half-densities on F are defined by

Dens
1
2 (F) := 


(
Ber(F)

1
2

)
.

One can then show that there is a canonical operator 	
1
2
F on Dens

1
2 (F) such that it squares to zero [42]. At this point one should 

mention that this is only canonical in the finite-dimensional setting. For the infinite-dimensional case this only holds after a suitable 
renormalization. We can define a Laplacian by

	σ f := 1

σ
	

1
2
F ( f σ), f ∈ O(F),

where σ is a non-vanishing reference half-density on F which is 	
1
2
F -closed. Note that (	σ )2 = 0. We usually just write 	 ≡ 	σ without 

mentioning σ .

To observe gauge-independence in the BV formalism, one requires the quantum master equation (QME)

	exp (Sh̄/h̄) = 0 ⇐⇒ (Sh̄,Sh̄) + 2h̄	Sh̄ = 0 (2.6)

to hold. Here we denote by 	 the BV Laplacian. Solving (2.6) for each order in h̄, we get the system of equations

5
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(S0,S0) = 0, (2.7)

	S0 = (S0,S1), (2.8)

	S1 = (S0,S2) + 1

2
(S1,S1) (2.9)

... (2.10)

Note that Equation (2.7) is the CME which we assume to hold. Then, using the CME and the formula

	( f , g) = ( f ,	g) − (−1)gh g(	 f , g), ∀ f , g ∈ Oloc(F),

we get

0 = 	(S0,S0) = (S0,	S0) = Q (	S0).

Hence 	S0 is closed with respect to the coboundary operator Q = (S0, ). Moreover, if we assume that it is also Q -exact, we get that 
there is some S1 ∈ Oloc(F) such that 	S0 = Q (S1) = (S0, S1), which is exactly the statement of Equation (2.8). This will automatically 
imply that all the higher order equations hold. Indeed, if 	S1 = (S0, S1) for some S1 ∈ Oloc(F), we get

0 = 	(S0,S1)︸ ︷︷ ︸
	S0

= (	S0,S1) − (−1)gh S0(S0,	S1) = ((S0,S1),S1) − (S0,	S1), (2.11)

where we used 	2 = 0. Using the graded Jacobi formula for the BV bracket, we get

((S0,S1),S1) = (S0, (S1,S1)) − (−1)(gh S0−1)(ghS1−1)(S1, (S0,S1)). (2.12)

Furthermore, by graded commutativity of the BV bracket we have

((S0,S1),S1) = −(−1)(gh(S0,S1)−1)(ghS1−1)(S1, (S0,S1)). (2.13)

Now since

gh(S0,S1) = gh S0 + gh S1 + gh( , )

we get

2((S0,S1),S1) = (S0, (S1,S1)).

Hence, using Equation (2.11), we get

(S0,	S1) =
(

S0,
1

2
(S1,S1)

)
.

This will give us

	S1 = 1

2
(S1,S1) + Q -exact term,

so we can find some S2 ∈ Oloc(F) such that the Q -exact term is given by Q (S2) = (S0, S2). This implies that Equation (2.9) holds. The 
higher order equations hold in a similar iterative computation. �

2.4. Classical BV-BFV theories

Let us describe the BFV approach for the space of boundary fields. A BFV manifold is a triple(
F∂ ,ω∂ , Q ∂

)
,

where F∂ is a Z-graded supermanifold, ω∂ ∈ �2(F∂ ) an even symplectic form of ghost number 0 and Q ∂ cohomological and symplectic 
vector field of degree +1 with odd Hamiltonian function S∂ ∈ Oloc(F∂ ) of ghost number +1, i.e. ιQ ∂ ω∂ = δS∂ , where δ denotes the de 
Rham differential on F∂ . Moreover, we want

Q ∂ (S∂ ) = {S∂ ,S∂ } = 0.

We say that a BFV manifold is exact, if there exists a primitive 1-form α∂ , such that ω∂ = δα∂ . A BV-BFV manifold over an exact BFV 
manifold (F∂ , ω∂ = δα∂, Q ∂ ) is a quintuple

(F,ω,S, Q ,π),

where π : F�F∂ is a surjective submersion such that

6
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• δπ Q = Q ∂ ,
• ιQ ω = δS + π∗α∂ .

A consequence of this definition is

Q (S) = π∗ (2S∂ − ιQ ∂ α∂
)

(2.14)

which is called the modified classical master equation (mCME). The assignment � ��
(
F�, S�, Q �, π� : F�� F∂

∂�

)
of a manifold � with 

boundary ∂� to a BV-BFV manifold is called a BV-BFV theory.

2.5. Examples of classical BV-BFV theories

2.5.1. Electrodynamics
Let everything be as in 2.2.1 with the difference that � now has non-vanishing boundary ∂�. The boundary BFV space of fields is then 

given by

F∂
∂� := �1(∂�) ⊕ �n−2(∂�) ⊕ �0(∂�)[1] ⊕ �n−1(∂�)[−1].

A field in F∂� will be denoted by (A, B, c, A+). If we denote by i : ∂� ↪� � the inclusion of the boundary, the surjective submersion 
π : F��F∂� acts on the component fields as

π�(A) = i∗(A) := A,

π�(B) = i∗(B) := B,

π�(c) = i∗(c) := c,

π�(A+) = i∗(A+) := A+,

and B+ := π�(B+) = 0 = π�(c+) =: c+ . The BFV symplectic form is given by

ω∂
∂� = δα∂

∂� =
∫
∂�

(
δB ∧ δA+ δA+ ∧ δc

)
,

where

α∂
∂� =
∫
∂�

(
B ∧ δA+A+ ∧ δc

)
.

The BFV charge Q ∂
∂� = δπ� Q � is given by

Q ∂
∂� =
∫
∂�

(
dB ∧ δ

δA+ + dc∧ δ

δA

)
.

It is easy to check that the boundary action is given by

S∂
∂� =
∫
∂�

c∧ dB.

Then the mCME is indeed satisfied, since we have

ιQ �ω� =
∫
�

(
dc ∧ δA+ + δA ∧ dB + δB ∧ (∗B + dA) + dA+ ∧ δc

)
and

δS� =
∫
�

(
δB ∧ dA + B ∧ dδA + δB ∧ ∗B + δA+ ∧ dc + A+ ∧ dδc

)
.

Putting everything together and using Stokes’ theorem, we get the claim.

2.5.2. Yang–Mills theory
Let everything be as in 2.2.2 with the difference that � has non-vanishing boundary ∂�. Let us denote the pullback of the forms 

A, B, A+, c with respect to the inclusion i : ∂� ↪�� by A, B, A+, c respectively. Note that here we have π� := i∗ : F�� F∂
∂� . The BFV 

space of fields is then given by

F∂
∂� = �1(∂�) ⊗ g[1] ⊕ �n−2(∂�) ⊗ g[n − 2] ⊕ �0(∂�) ⊗ g ⊕ �n−1(∂�) ⊗ g[n − 2].

The BFV symplectic form is given by

7
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ω∂
∂� = δα∂

∂� =
∫
∂�

Tr
(
δB ∧ δA+ δA+ ∧ δc

)
,

where

α∂
∂� =
∫
∂�

Tr
(
B ∧ δA+A+ ∧ δc

)
.

The cohomological vector field is given by

Q ∂
∂� =
∫
∂�

Tr

(
dAc∧ δ

δA
+ [B,c] ∧ δ

δB
+ (dAB + [A+,c]) ∧ δ

δA+ + 1

2
[c,c] ∧ δ

δc

)
and the BFV action by

S∂
∂� =
∫
∂�

Tr

(
B ∧ dAc+ 1

2
A+ ∧ [c,c]

)
.

2.5.3. Chern–Simons theory
Let everything be as in 2.2.3 with the difference that � has non-vanishing boundary ∂�. Let us denote the pullback of the forms 

A, A+, c with respect to the inclusion i : ∂� ↪�� by A, A+, c respectively. Note that here we have π� := i∗ : F��F∂
∂� . We will denote 

the superfield on the boundary by A := c +A +A+ . The BFV space of boundary fields is then given by

F∂
∂� := �•(∂�) ⊗ g[1] =

2⊕
j=0

� j(∂�) ⊗ g[1] � A.

The BFV symplectic form is then given by

ω∂
∂� = δα∂

∂� = 1

2

∫
∂�

Tr(δA ∧ δA) =
∫
∂�

Tr

(
1

2
δA∧ δA+ δc∧ δA+

)
,

where

α∂
∂� = 1

2

∫
∂�

Tr(A ∧ δA) = 1

2

∫
∂�

Tr
(
A∧ δA+ c∧ δA+ +A+ ∧ δc

)
.

The cohomological vector field is given by

Q ∂
∂� =
∫
∂�

Tr

((
1

2
dA + 1

2
[A,A]

)
∧ δ

δA

)
=
∫
∂�

Tr

(
dAc∧ δ

δA
+ (FA + [c,A+]) ∧ δ

δA+ + 1

2
[c,c] ∧ δ

δc

)
The BFV action is given by

S∂
∂� =
∫
∂�

Tr

(
1

2
A ∧ dA + 1

6
A ∧ [A,A]

)
=
∫
∂�

Tr

(
c∧ FA + 1

2
[c,c] ∧A+

)
.

2.5.4. (Abelian) B F theory
Let everything be as in 2.2.4 with the difference that � has non-vanishing boundary ∂�. Let i : ∂� ↪�� be the inclusion and denote 

the pullback of the superfields to the boundary by A := i∗(A) and B := i∗(B). Note that here we have π� := i∗ : F�� F∂
∂� . Let us first 

look at the boundary theory for abelian B F theory. The BFV space of fields is given by

F∂
∂� := �•(∂�)[1] ⊕ �•(∂�)[n − 2] � (A,B).

The BFV symplectic form is given by

ω∂
∂� = δα∂

∂� =
∫
∂�

δA ∧ δB,

where

α∂
∂� =
∫
∂�

A ∧ δB.

The cohomological vector field is given by

Q ∂
∂� =
∫
∂�

(
dA ∧ δ

δA
+ dB ∧ δ

δB

)
.

8
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The BFV action is given by

S∂
∂� =
∫
∂�

B ∧ dA.

For the non-abelian case we have the BFV space of fields

F∂
∂� := �•(∂�) ⊗ g[1] ⊕ �•(∂�) ⊗ g[n − 2] � (A,B).

The BFV symplectic form is given by

ω∂
∂� = δα∂

∂� =
∫
∂�

Tr
(
δA ∧ δB

)
,

where

α∂
∂� =
∫
∂�

Tr
(
A ∧ δB

)
.

The cohomological vector field is given by

Q ∂
∂� =
∫
∂�

Tr

((
dA + 1

2
[A,A]

)
∧ δ

δA
+ dAB ∧ δ

δB

)
.

The BFV action is given by

S∂
∂� =
∫
∂�

Tr

(
B ∧
(

dA + 1

2
[A,A]

))
.

2.6. Obstruction space on the boundary

Similarly as for BV theories one can ask about the quantization obstruction for a BV-BFV theory, i.e. for a codimension 1 theory. In fact, 
we get the following theorem.

Theorem 2.4. Let 
(
F , ω, S, Q , π : F � F∂

)
be a BV-BFV manifold over an exact BFV manifold 

(
F∂ , ω∂ = δα∂ , Q ∂

)
. The obstruction space for 

quantization on the underlying boundary BFV manifold F∂ is given by

H2
Q ∂ (Oloc(F∂ )), (2.15)

where

Q ∂ = {S∂ , }
with { , } the Poisson bracket induced by the symplectic form ω∂ .

Proof. Consider a deformation of the BFV action S∂ , denoted by S∂
h̄ , depending on h̄ and consider its expansion as a formal power series

S∂
h̄ := S∂

0 + h̄S∂
1 + h̄2S∂

2 + O (h̄3) =
∑
k≥0

h̄kS∂
k ∈ Oloc(F∂ )�h̄�, (2.16)

where S∂
k ∈ Oloc(F∂ ) for all k ≥ 0 such that S∂

0 := S∂ . Note that ghS∂
k = +1 since ghS∂ = +1 and the corresponding symplectic form ω∂

is even of ghost number 0. In the BV-BFV construction one assumes a symplectic splitting of the BV space of fields

F = B × Y (2.17)

where the BV symplectic form ω is constant on B. One should think of B as the boundary part and Y as the bulk part of the fields. In 
fact, the space B is constructed as the leaf space for a chosen polarization on the space of boundary fields F ∂ (i.e. a Lagrangian subbundle 
of T F∂ closed under the Lie bracket) and Y is just a symplectic complement. Using this splitting, we can write the mCME

δYS = ιQ Y ω, (2.18)

δBS = −α∂, (2.19)

where Q Y denotes the part of the cohomological vector field Q on Y , δY and δB denote the corresponding parts of the de Rham 
differential δ on the BV space of fields F according to the splitting (2.17). Note that we have dropped the pullback π∗ . These two 
equations together with (2.14) imply

1

2
(S,S)Y = 1

2
ιQ Y ιQ Y ω = S∂ . (2.20)

9
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Choose Darboux coordinates (bi, pi) on F∂ such that bi denotes the coordinates on the base B and pi on the leaves. In the case of an 
infinite-dimensional Banach manifold, locally one has Darboux’s theorem by using Moser’s trick, whenever the tangent spaces are split, 
i.e. there are two Lagrangian subspaces L1, L2 ⊂ TβF∂ such that TβF∂ = L1 ⊕L2 for some β ∈ F∂ . This is in general not true for Fréchet 
manifolds, even if the tangent spaces are split. Note that such a splitting is guaranteed if each fiber is a Hilbert space (see [20] for similar 
discussions). However, for the quantization we want to perturb around each critical point, thus we only have to use the linear structure. 
Additionally, we have to assume that the tangent spaces are split and that there is Darboux’s theorem if we work in the Fréchet setting 
(see [31] for discussions about Darboux’s theorem on infinite-dimensional Fréchet manifolds). This allows us to write

α∂ = −
∑

i

piδbi .

Using Equation (2.19), we get

−�
δ

δbi
S = pi, ∀i.

Denote by 	Y the BV Laplacian restricted to Y . We will assume that 	YS = 0. For the closed case this means that we assume that S
solves both, the CME and the QME. For the case with boundary, the BV Laplacian anyway only makes sense on Y , so 	 = 	Y . Next, we 
can obtain

	Y exp (iS/h̄) =
(

i

h̄

)2 1

2
(S,S)Y exp (iS/h̄)

and by Equation (2.20), we get

−h̄2	Y exp (iS/h̄) = S∂ exp (iS/h̄) . (2.21)

Now consider the standard quantization p̂i := −ih̄
−�
δ

δbi . If p̂i acts on a function S on B parametrized by Y , we get

p̂iS = −ih̄pi, pi ∈ Y.

Finally, considering the ordered standard quantization of S∂ given by

Ŝ∂ := S∂

(
bi,−ih̄

−�
δ

δbi

)
,

where all the derivatives are placed to the right, and using Equation (2.21), we get the modified quantum master equation (mQME) [24](
h̄2	Y + Ŝ∂

)
exp (iS/h̄) = 0. (2.22)

In order to get a well-defined cohomology theory, we require that(
h̄2	 + Ŝ∂

)2 = 0.

Since 	2 = 0 and obviously the commutator 
[
	, Ŝ∂
]

vanishes, we have to assume that 
(
Ŝ∂
)2 = 0. This clearly follows if

S∂
h̄ � S∂

h̄ = 0, (2.23)

where

� : O(F∂ )�h̄� × O(F∂ )�h̄��O(F∂ )�h̄�
denotes the star product (deformation quantization) induced by the BFV form ω∂ and the standard ordering as mentioned above. Actually, 
the construction with the star product does not require the notion of a BV-BFV manifold and thus can be also considered independently 
for the BFV case. Moreover, the deformed boundary action S∂

h̄ satisfying (2.23) might spoil the mQME (2.22). Note that we can endow the 
deformed algebra Oloc(F∂ )�h̄� with a dg structure by considering the differential given by

Q ∂
h̄ := S∂

h̄ � −. (2.24)

Then we have

Q ∂
h̄ (S∂

h̄ ) = S∂
h̄ � S∂

h̄ = S∂
h̄ S∂

h̄ +
∑
k≥1

h̄k Bk(S∂
h̄ ,S∂

h̄ ) = S∂
h̄ S∂

h̄ + h̄{S∂
h̄ ,S∂

h̄ } + h̄2 B2(S∂
h̄ ,S∂

h̄ ) + O (h̄3), (2.25)

where Bk denotes some bidifferential operator for all k ≥ 1 with B1 := { , }. Moreover, note that we have

{S∂
h̄ ,S∂

h̄ } = {S∂
0 ,S∂

0 } + h̄{S∂
0 ,S∂

1 } + h̄{S∂
1 ,S∂

0 } + h̄2{S∂
1 ,S∂

1 } + h̄2{S∂
0 ,S∂

2 } + O (h̄3) (2.26)

Using (2.16) and (2.26), we get

10
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S∂
h̄ � S∂

h̄ = (S∂
0 + h̄S∂

1 + h̄2S∂
2 + O (h̄3)) × (S∂

0 + h̄S∂
1 + h̄2S∂

2 + O (h̄3)) + h̄({S∂
0 ,S∂

0 } + h̄{S∂
0 ,S∂

1 } + h̄{S∂
1 ,S∂

0 }+
+ h̄2{S∂

1 ,S∂
1 } + h̄2{S∂

0 ,S∂
2 } + O (h̄3)) + h̄2 B2(S∂

0 ,S∂
0 ) + O (h̄3)

= S∂
0 S∂

0 + h̄(S∂
1 S∂

0 + S∂
0 S∂

1 + {S∂
0 ,S∂

0 }) + h̄2(S∂
0 S∂

2 + S∂
2 S∂

0 + S∂
1 S∂

1 + {S∂
0 ,S∂

1 } + B2(S∂
0 ,S∂

0 )) + O (h̄3)

= h̄{S∂
0 ,S∂

0 } + h̄2({S∂
0 ,S∂

1 } + B2(S∂
0 ,S∂

0 )) + O (h̄3), (2.27)

where we have used the graded commutativity relation

{ f , g} = −(−1)(gh f +1)(gh g+1){g, f },
the fact that { , } is even of ghost number 0 and that each S∂

k is odd of ghost number +1 for all k ≥ 0. Note that by the CME for S∂
0 the 

first term in (2.27) vanishes. Moreover, by the associativity of the star product we get

{S∂
0 , B2(S∂

0 ,S∂
0 )} = Q ∂ (B2(S∂

0 ,S∂
0 )) = 0,

and thus B2(S∂
0 , S∂

0 ) is closed under the coboundary operator Q ∂ = {S∂ , }. If we assume that B2(S∂
0 , S∂

0 ) is also Q ∂ -exact, there exists 
some S∂

1 ∈ Oloc(F∂ ), such that

B2(S∂
0 ,S∂

0 ) = −{S∂
0 ,S∂

1 } = −Q ∂ (S∂
1 ).

Thus the coefficients in degree +2 vanish and one can check that by the construction of the star product all the higher coefficients will 
also vanish using a similar iterative procedure as we have seen before. �

More generally, in the quantum BV-BFV construction [24] one can construct a geometric quantization [14,43,79] on the space of 
boundary fields F∂ using the symplectic form ω∂ and the chosen polarization. This will give a vector space H (actually a chain complex (
H, ̂S∂
)

associated to the source boundary. In fact, we can construct H as the space of half-densities Dens
1
2 (B) on B. We call Ĥ :=

H⊗̂Dens
1
2 (V) the space of states. We have denoted by ⊗̂ a certain completion of the tensor product in order to deal with the infinite-

dimensional case. Moreover, we have denoted by Dens
1
2 (V) the space of half-densities on V . In order to deal with high energy terms for 

a functional integral quantization, we assume another splitting

Y = V × Y ′, (2.28)

where V denotes the space of classical solutions (critical points) of the quadratic part of the action modulo gauge symmetry and Y ′ is a 
complement. In fact, we assume that the BV Laplacian and the BV symplectic form split accordingly as

	 = 	V + 	Y ′ , (2.29)

ω = ωV + ωY ′ . (2.30)

Such a splitting is guaranteed for many important theories, such as (perturbations of) abelian B F theories, by methods of Hodge decom-
position [24]. In that special case, B is in fact given by the fields restricted to the boundary. The elements of V are given by the zero 
modes of the bulk fields and the elements of Y are given by the high energy parts of the bulk fields. Choosing a gauge-fixing Lagrangian 
submanifold L ⊂ Y ′ , a boundary state is given by

�̂ :=
∫

L⊂Y ′
exp (iS/h̄) ∈ Ĥ, (2.31)

where the functional integral is defined by its perturbative expansion. One can then extend (2.22) to elements of Ĥ(
h̄2	V + Ŝ∂

)
�̂ = 0. (2.32)

Note that a state �̂ depends on leaves in B and zero modes in V . One can show that the space of zero modes is given by a finite-
dimensional BV manifold (V, 	V , ωV ) if we consider B F -like theories [24]. Note that in this case it makes sense to define 	V . As it was 
argued in [24], there is a way of integrating out the zero modes. Using cutting and gluing techniques on the source, motivated by the 
constructions of [2,65], we will obtain a number which corresponds to the value of the partition function for a closed manifold. Moreover, 
in [24] it was shown that there is always a quantization Ŝ∂ of S∂ that squares to zero and satisfies (2.32). It is fully described by integrals 
over the boundary of suitable configuration spaces determined by the underlying Feynman graphs.

2.7. Examples of quantum BV-BFV theories

One can extract the axiomatics for a quantum BV-BFV theory out of the computations we have seen before. A quantum BV-BFV theory
consists of the following data:

(i) A graded vector space H�̃ associated to each (n − 1)-dimensional manifold �̃ with a choice of polarization on F∂
�̃

. It is constructed 
by geometric quantization of the symplectic manifold (F∂

�̃
, ω∂

�̃
). The space H�̃ is called space of states.

(ii) A coboundary operator ��̃ on H�̃ which is a quantization of the BFV action S∂
�̃

. The operator ��̃ is called quantum BFV operator.

11
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(iii) A finite-dimensional manifold V� associated to each n-dimensional manifold �, which is endowed with a degree −1 symplectic form 
ωV�

and a polarization on F∂
∂� . It is called the space of residual fields. Moreover, the space

Ĥ� := H∂�⊗̂Dens
1
2 (V�)

is endowed with two commuting coboundary operators �̂∂� := �∂� ⊗ id and 	̂� := id ⊗ 	V�
, where 	V�

denotes the canonical BV 
Laplacian on half-densities on residual fields V� .

(iv) A state �̂� ∈ Ĥ� which satisfies the modified QME(
h̄2	̂� + �̂∂�

)
�̂� = 0.

2.7.1. Example: (perturbations of) abelian B F theory
Consider the abelian version of the classical BV theory as in 2.2.4 and its classical BV-BFV extension. Moreover, we want to consider 

a source manifold � whose boundary ∂� splits into the disjoint union of two boundary components ∂1� and ∂2� representing the 
incoming and outgoing boundary components respectively. On ∂1� we choose the δ

δB -polarization such that the quotient (leaf space) 
may be identified with B1 := �•(∂1�)[1] � A and on ∂2� we choose the δ

δA -polarization such that the quotient may be identified with 
B2 := �•(∂2�)[n − 2] � B. The whole leaf space is given by the product B∂� = B1 × B2. The space of residual fields is given by the 
finite-dimensional BV manifold

V� := H•
D1(�)[1] ⊕ H•

D2(�)[n − 2],
where H•

D j(�) denotes the de Rham cohomology of the space �•
D j(�) := {γ ∈ �•(�) | i∗jγ = 0}, where i j denotes the inclusion map 

∂ j� ↪� �. Here D stands for Dirichlet. Note that by Poincaré duality we get V� = T ∗[−1](H•
D1(�)[1]) = T ∗[−1](H•

D2(�)[n − 2]). The 
BV Laplacian 	V�

can be defined by using a basis ([χi])i of H•
D1(�) and its dual basis ([χ i])i of H•

D2(�) with chosen representatives 
χi ∈ �•

D1(�) and χ i ∈ �•
D2(�). Note that we have∫

�

χ i ∧ χ j = δi
j,

and we can write the residual fields in V� by

a =
∑

i

ziχi, b =
∑

j

z+
j χ j,

with (zi, z+
j ) being canonical coordinates on V� . The BV symplectic form on V� is then given by

ωV� =
∑

i

(−1)1+(n−1) gh zi
δz+

i ∧ δzi .

The BV Laplacian on V� is then given by

	V� =
∑

i

(−1)1+(n−1) gh zi ∂

∂zi

∂

∂z+
i

.

The quantum BFV operator �̂∂� , acting on B∂� × V� , is given by the ordered standard quantization of S∂
∂� relative to the chosen polar-

ization:

�̂∂� = ih̄(−1)n

⎛⎜⎝ ∫
∂2�

dB ∧ δ

δB
+
∫

∂1�

dA ∧ δ

δA

⎞⎟⎠ .

Using the effective action given by

Seff
� := (−1)n−1

⎛⎜⎝ ∫
∂2�

B ∧ a −
∫

∂1�

b ∧ A

⎞⎟⎠− (−1)2n
∫

∂2�×∂1�

π∗
1 Bηπ∗

2 A,

where η ∈ �n−1(C2(�)) is a chosen propagator on the compactified configuration space

C2(�) := {(x1, x2) ∈ �2 | x1 �= x2}FMAS

(here FMAS stands for the Fulton–MacPherson/Axelrod–Singer compactification of configuration spaces [4,36]), we get the state

�̂� = T� exp
(

iSeff
� /h̄
)

.

Here T� ∈ C denotes a coefficient expressed in terms of the Reidemeister torsion. Indeed, one can then immediately check that the mQME 
is satisfied where 	̂� := 	V�

acts on the fibers of B∂� × V� . We can construct the state space to be
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Ĥ� =
⎛⎝ ∏

j1, j2≥0

H j2,n−2
∂2� ⊗̂H j1,1

∂1�

⎞⎠ ⊗̂Dens
1
2 (V�),

where H j,�
∂� is the vector space of j-linear functionals on �•(∂�)[�] of the form

�•(∂�)[�] � D ��

∫
(∂�) j

γπ∗
1 D ∧ · · · ∧ π∗

j D

times some prefactor (given in terms of the Reidemeister torsion), where γ is some distributional form on (∂�) j and πi denotes the 
projection to the i-th component. Considering perturbations, we asymptotically get that states are of the form

�̂� ∼ T� exp
(

iSeff
� /h̄
)

×
∑
k≥0

h̄k
∑

j1, j2≥0

∫
(∂1�) j1 ×(∂2�) j2

Rk
j1 j2

(a,b)π∗
1,1A ∧ · · · ∧ π∗

1, j1
A ∧ π∗

2,1B ∧ · · · ∧ π∗
2, j2

B,

where πi, j denotes the j-th projection of (∂i�) ji and Rk
j1 j2

denotes distributional forms on (∂1�) j1 × (∂2�) j2 with values in Dens
1
2 (V�). 

Note that here Seff
� is replaced by the corresponding zero-loop effective action. We refer the reader to [24] for more examples and a 

detailed discussion of perturbative quantizations on manifolds with boundary.
An important version of a perturbation of abelian B F theory is given by split Chern–Simons theory [25]. Consider Chern–Simons theory 

as in 2.2.3 for a Lie algebra g endowed with an invariant pairing 〈 , 〉. Moreover, consider a suitable 3-manifold �. As we have seen, for 
A ∈ �•(�) ⊗ g[1], the BV action is given by

S� =
∫
�

(
1

2
〈A,dA〉 + 1

6
〈A, [A,A]〉

)
.

Assume that the Lie algebra splits as g = V ⊕ W into maximally isotropic subspaces with respect to 〈 , 〉, i.e. the pairing restricts to zero 
on V and W and dim V = dim W = 1

2 dimg. Then one can identify W ∼= V ∗ by using the pairing and consider a decomposition A = V + W
with V ∈ �•(�) ⊗ V [1] and W ∈ �•(�) ⊗ W [1]. Then we can decompose the action S� = Skin

� + S int
� into a kinetic and interaction part:

Skin
� = 1

2

∫
�

〈A,dA〉 =
∫
�

〈W,dV〉,

S int
� = 1

6

∫
�

〈A, [A,A]〉

= 1

6

∫
�

〈V + W, [V + W,V + W]〉.

An important assumption on the theory is that (g, V , W ) is in fact a Manin triple, i.e. V and W are actually Lie subalgebras of g. The 
quantum picture is then similar to the one of abelian B F theory (see [25] for a detailed construction). More general perturbations of 
abelian B F theory are given by AKSZ theories [1] as mentioned in Remark 2.1 (see also [23,24,27] for a detailed treatment of such theories 
in the BV-BFV formalism).

3. Higher codimension

3.1. Higher codimension gauge theories: BV-BFkV theories

Since the BV-BFV construction is a codimension 1 formulation, we have an action of a dg algebra of observables, coming from the 
deformation quantization construction, to a chain complex (or vector space) associated to the boundary via geometric quantization with 
respect to the symplectic manifold (F∂ , ω∂). This corresponds to the action of the operator Ŝ∂ ∈ End(H) on �̂ ∈ Ĥ. Classical BV-BFV 
theories can be extended to higher codimension manifolds [23]. One can define an exact BFkV manifold to be a triple 

(
F∂k

, ω∂k =
δα∂k

, Q ∂k )
where F∂k

is a Z-graded supermanifold, ω∂k ∈ �2(F∂k
) is an exact symplectic form of ghost number k − 1 with primitive 

1-form α∂k
, and Q ∂k ∈ X(F∂k

) is a cohomological, symplectic vector field with Hamiltonian function S∂k
of ghost number k. A BV-BFkV 

manifold over an exact BFkV manifold 
(
F∂k

, ω∂k = δα∂k
, Q ∂k )

is a quintuple(
F∂k−1

,ω∂k−1
,S∂k−1

, Q ∂k−1
,π : F∂k−1

�F∂k)
such that π is a surjective submersion and

• δπ Q ∂k−1 = Q ∂k
,

• ι
Q ∂k−1 ω∂k−1 = δS∂k−1 + π∗α∂k

.

Again, this will lead to a higher codimension version of the mCME

Q ∂k−1
(
S∂k−1
)

= π∗ (2S∂k − ι
Q ∂k α∂k

)
. (3.1)

13
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3.1.1. Example: classical codimension 2 theory
Consider Yang–Mills theory as in 2.2.2. Let �2 ⊂ � be a codimension 2 stratum. The BV-BFV theory on � and ∂� induces the following 

data associated on �2: The space of fields

F∂2

�2
= �n−2(�2) ⊗ g[n − 2] ⊕ �0(�2) ⊗ g[1] � (B2,c2),

with ghB2 = 0 and ghc2 = 1. The BF2V symplectic form is given by

ω∂2

�2
= δα∂2

�2
=
∫
�2

Tr
(
δB2 ∧ δc2

)
,

with

α∂2

�2
=
∫
�2

Tr
(
B2 ∧ δc2

)
.

The cohomological vector field is given by

Q ∂2

�2
=
∫
�2

Tr

(
[B2,c2] ∧ δ

δB2
+ 1

2
[c2,c2] ∧ δ

δc2

)
.

The BF2V action (which one can obtain from Q ∂2

�2
by using the construction of [58]) is given by

S∂2

�2
=
∫
�2

Tr

(
1

2
B2 ∧ [c2,c2]

)
.

Remark 3.1. The quantum extension is more difficult and requires certain algebraic constructions. Following the codimension 1 construc-
tion, one can try to formulate a similar procedure by considering a deformation quantization of Poisson structures with higher shifts. 
However, we will not consider a general coupling of higher codimension theories here, but rather describe the idea for quantization of the 
according BFkV theory for a codimension k stratum. It is expected that a coupling on each codimension for general geometric situations 
is possible.

3.2. Algebraic and geometric structure for the quantization in higher codimension

3.2.1. Deformation quantization picture
Let us denote by Ek the topological operad of little k-dimensional disks and let Pk denote the operad controlling (1 − k)-shifted 

(unbounded) Poisson dg algebras [49]. It is known that deformation quantization of P1-algebras corresponds to E1-algebras [44], which 
is the same as an A∞-algebra (associative algebra). The higher codimension picture for deformation quantization is related to the higher 
version of the Deligne conjecture [44]. The Deligne conjecture, which is related to usual deformation quantization, states that there is a 
natural action of an E2-algebra over the category of chains complexes to the Hochschild cohomology generated by an arbitrary associative 
algebra (see e.g. [45,51] for a proof). This can be generalized to the Ek operad. Using the fact that the Ek operad is formal in the category 
of chain complexes, i.e. equivalent to its homology and that its homology is given by the Pk operad, there is an equivalence between the 
Ek and the Pk operad [35,44,68,69]. Thus for all k ≥ 2, there exists a deformation quantization for a Pk-algebra and there is a canonical 
Lie bracket [ , ]Ek

on an Ek-algebra which corresponds to a (1 −k)-shifted Poisson structure through the equivalence. One can then view 
Oloc(F∂k

)�h̄� as an Ek-algebra endowed with a dg structure induced by the differential

Q ∂k

h̄ :=
[
S∂k

h̄ ,
]
Ek

. (3.2)

The higher shifted analog of the quantum master equation is then given by[
S∂k

h̄ ,S∂k

h̄

]
Ek

= 0. (3.3)

Note that for k = 0, we obtain a +1-shifted Poisson structure ( , ) := [ , ]E0 as in the construction of a BV algebra, so there is an 
equivalence of the operad BV , which controls the BV algebra structure, to the homology of the framed E0-operad. Note the difference of 
having a framing, i.e. we also allow rotations of little disks. The rotations indeed correspond to the BV Laplacian 	 in the homology of the 
operad over chain complexes.

In the category of chain complexes we can observe a chain complex of observables Oloc(F) with differential Q = (S, ). In fact, we 
will have the operations given by the differential Q (degree +1), usual multiplication of functions (degree 0), the Poisson structure ( , )

(degree +1) and the BV Laplacian 	 (degree +1) such that for all f , g ∈ Oloc(F) we have

	( f g) = 	 f g + (−1)gh f f 	g + (−1)gh f ( f , g).

Deforming this operad will lead to the BD0 operad which is basically the same as the BV operad without emphasizing the BV Laplacian 
	 but, for the purpose of QFT, include it into the differential and where everything is now over chain complexes of K�h̄�-modules, i.e. we 

14
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consider the algebra of deformed observables Oloc(F)�h̄� together with the bracket h̄( , ) and a differential D of degree +1 such that for 
all f , g ∈ Oloc(F)�h̄� we have

D( f g) = D f g + (−1)gh f f Dg + (−1)gh f h̄( f , g).

In application to QFT we have D = Q + h̄	 and one can check that we indeed have D2 = 0 (see also [29] for the construction of Beilinson–
Drinfeld algebras in connection to QFT and factorization algebras).

Remark 3.2. It is important to mention that the usual convention for the degrees in the definition of a BV algebra is the one where the 
Poisson bracket ( , ) is of degree −1 and hence 	 is also of degree −1. In this case the BV operad is equivalent to the homology of 
the framed E2 operad (little 2-disks) [37]. However, for BD0-algebras one still requires that the bracket is of degree +1, so one assigns 
a weight of +1 to h̄.

For k = 1, this corresponds to usual deformation quantization [29]. In particular, for a P1-algebra (A, { , }), the lift to a BD1-algebra, 
which is flat over K�h̄�, is the same as a deformation quantization of A in the usual sense. Indeed, to describe BD1-structures on A�h̄�
compatible with the given P1-structure we can give an associative product on A�h̄�, linear over K�h̄�, and which modulo h̄ is given by 
the commutative product on A. The relations in the BD1 operad imply that the P1-structure on A is related to the associative product 
on A�h̄� by

1

h̄
( f � g − g � f ) = { f , g} mod h̄.

The higher codimension k version of the quantum master equation follows the picture of BDk-algebras.
This construction is also consistent with the k-dimensional version of the Swiss-Cheese operad [44,75] SCk,k−1 which couples the Ek

operad to the Ek−1 operad [44,50,71] by an action of Ek-algebras on Ek−1-algebras. Describe it as an operad of sets. This colored operad 
has two colors: points may be in the bulk or on the boundary. The set of colors is a poset, that is a category, rather than a set, and there 
are only operations compatible with this structure. The Swiss-Cheese operad is important when dealing with the coupling in contiguous 
codimension. A Swiss-Cheese algebra (i.e. an algebra over the Swiss-Cheese operad SCk,k−1) consists of a triple (A, B, ρ) such that A is a(n) 
(framed) Ek-algebra, B a(n) (framed) Ek−1-algebra and ρ : A � HC•

Diskfr
k−1

(B) the coupling action. Here HC•
Diskfr

k−1
(B) denotes the Hochschild 

cochain object of the Ek−1-algebra B . In fact, HC•
Diskfr

k−1
(B) carries the structure of an Ek-algebra. Thus, ρ is a map of (framed) Ek-algebras.

Unfortunately, it can be shown that the Swiss-Cheese operad is not formal [46] (still, one can show that there is a higher codimension 
version of the Swiss-Cheese operad which in fact is indeed formal [38]). However, there is an equivalence of SCk,k−1 to a classical 
notion for coupling contiguous codimensions by the Pk,k−1 operad (see [52] for the definition of Pk,k−1 and detailed discussions). Let 
us briefly discuss the coupling in each codimension from the point of view of factorization homology for stratified spaces as in [6]. A very 
good introduction to factorization homology in the topological field theory setting is [70]. Similarly, as the contiguous codimensions can 
be coupled together by the Swiss-Cheese operad through the coupling action ρ , we can extend this to a generalization for the coupling 
in each codimension. Denote by Diskfr

d the ∞-category with objects given by finite disjoint unions of framed d-dimensional disks and 
morphisms being smooth embeddings equipped with a compatibility of framings. A Diskfr

d -algebra (or equivalently framed Ed-algebra) A

in a monoidal symmetric ∞-category C⊗ is a symmetric monoidal functor A : (Diskfr
d

)∐
� C⊗ , where 

∐
denotes the symmetric monoidal 

structure given by disjoint union of topological spaces. Denote by Mnfldfr
d the ∞-category whose objects are smooth framed d-dimensional 

manifolds and whose morphisms consist of all smooth embeddings equipped with a compatibility of framings.
Let C⊗ be a symmetric monoidal ∞-category admitting all sifted colimits. Fix an Ed-algebra in C⊗ , which we will denote by A. Then 

factorization homology with coefficients in A is the left Kan extension,

Diskfr
d C⊗

Mnfldfr
d

A

∫
A

and for a framed d-manifold X ∈ Mnfldfr
d , we denote by∫

X

A

the factorization homology of X with coefficients in A. It is called homology since it satisfies the Eilenberg–Steenrod axioms [32] for a homology 
theory. Note that we can also fix a manifold Y ∈ Mnfldfr

n−d−1 and consider a map∫
Y

: AlgDiskfr
n
(C⊗)� AlgDiskfr

d+1
(C⊗).

More general, for a symmetric monoidal ∞-category C⊗ and an ∞-category B of basics, one can define the absolute factorization homology
to be the left adjoint to
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A Aop

B

A

B

Fig. 1. Difference between the defect situation and the boundary situation.

S1

B

Fig. 2. Example of a 1-dimensional defect B sitting in R3. The orthogonal sphere is given by S1 through homotopy equivalence of the tubular neighborhood around it.

∫
: AlgDisk(B)(C⊗) Fun⊗(Mnfld(B),C⊗).

The basics for our construction are given by framed disks of a given dimension. Moreover, for our purpose we want to consider the cate-
gory C⊗ to be given by chain complexes. For the situation where B = Diskfr

d⊂n is defined such that B-manifolds are framed n-dimensional 
manifolds with a framed d-dimensional properly embedded submanifold such that the framing splits along this submanifold we have the 
following:

For an En-algebra A and an Ed-algebra B , we can observe an action [6, Proposition 4.8]

ρ :
∫

Sn−d−1

A� HC•
Diskfr

d
(B),

where Sn−d−1 denotes the (n − d − 1)-sphere. Here we are considering a d-dimensional defect sitting inside an n-manifold as locally 
described by the basics category Diskfr

d⊂n . Note that ρ has to be a map of Ed+1-algebras. This can be regarded as a higher version of 
Deligne’s conjecture. In particular, for d = n − 1, we can obtain the action given by

ρ :
∫
S0

A = A ⊗ Aop� HC•
Diskfr

n−1
(B).

Note that this is not exactly the Swiss-Cheese case since here the domain is given by A ⊗ Aop where as in the Swiss-Cheese case it is 
given by A. Intuitively, this is because the opposite half of the bulk is missing (see Fig. 1).

A nice interpretation for the integration was also given in [19,34]. The integral 
∫

Sn−d−1 A is by definition given by 
∫

Sn−d−1×Rd+1 A, hence 
an Ed+1-algebra since Sn−d−1 ×Rd+1 is an Ed+1-algebra by considering the space of embeddings∐

I

Sn−d−1 ×Rd+1� Sn−d−1 ×Rd+1.

This is in fact true for any (n − d − 1)-manifold not just for Sn−d−1. Thus, one may think of the action of A on the defect B to be given 
by a 
∫

Sn−d−1 A-module structure. Consider the local situation when there is a defect B ⊂ Rd sitting in Rn . We can think of Sn−d−1 as 
the orthogonal sphere and Sn−d−1 × Rd+1 as some tubular neighborhood around Rd without Rd . Then 

∫
Sn−d−1 A is the global algebra 

of observables on this neighborhood. In this interpretation, the action by 
∫

Sn−d−1 A is equivalent to restricting the bulk algebra to an 
infinitesimal neighborhood of B where it acts (see Fig. 2 for an illustration).

For d = n − 2 we get an action

ρ :
∫
S1

A = A ⊗A⊗Aop A� HC•
Diskfr

n−2
(B).
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∂2

∂1

∂1∂0

Fig. 3. A corner situation.

Fig. 4. Situation of defects sitting inside some n-manifold for which the mentioned construction applies.

In fact, in [5,34] it has been proven that for any symmetric monoidal category C⊗ there is an equivalence

Mod
Diskfr

n−d
A (C⊗) ∼= Mod∫

Sn−d−1 A(C⊗),

which is used in the proof of [6, Proposition 4.8]. Note that in this picture, the d in Ed denotes the dimension of the corresponding 
submanifold (defect). For a classical theory on an n-manifold, the codimension k submanifolds of dimension d = n − k, give rise to Ed-
algebras, and are endowed with an additional Pk-structure. In this case (i.e. with additional structure) all of the previous constructions 
hold but there will be extra constrains due to the Pk-structure. In particular, it is not clear how the action is expressed in presence of 
additional structure.

Remark 3.3. An important remark at this point is to emphasize that above mentioned construction for the action of a different codimen-
sion is in fact just pairwise. In order to describe the coupling action in each codimension (i.e. not just pairwise) some modification has to 
be made. This means that a geometric situation as e.g. in Fig. 3 is not directly covered by the constructions of [6]. Note that the coupling 
depends on the given geometry and how the defects are relative to each other. There has to be some compatibility of the action of the ∂0

part to the ∂1 parts where these have to have again a coupling to the ∂2 part. This has to be compatible with the action of the ∂0 to the 
∂2 part. However, the extension to a situation as in Fig. 3 is known and a coupling on a general stratified space is expected to be possible 
[19]. (See Fig. 4.)

3.2.2. Geometric quantization picture
The phase space of an n-dimensional classical field theory associated to a closed d-dimensional submanifold is endowed with a (n −d −

1)-shifted symplectic structure [55]. This also makes sense for the case when d = n, i.e. for the case of a (−1)-shifted symplectic structure 
which corresponds to the case of the BV formalism. Let us briefly consider the example of 3-dimensional classical Chern–Simons theory 
as in 2.2.3 [62]. For a compact Lie group G we associate the phase space which is given by the moduli space of flat G-connections. If � is 
a closed oriented 3-manifold, the phase space is given by the critical locus of the Chern–Simons functional, so it carries the induced BV 
symplectic structure. If � is a closed oriented 2-manifold, the phase space is endowed with the Atiyah–Bott symplectic structure [3]. If 
� = S1 (1-dimensional closed compact oriented manifold), the phase space is the stack of conjugacy classes [G/G] and the corresponding 
1-shifted symplectic structure is given in terms of the canonical 3-form on G . If � = pt (0-dimensional case), the phase space is given 
by the classifying stack BG = [pt/G] and the corresponding 2-shifted symplectic structure is given in terms of the invariant symmetric 
bilinear form on the Lie algebra g := Lie(G) used in the definition of Chern–Simons theory (Killing form).

The analog of geometric quantization for k-shifted symplectic structures uses the notion of higher categories [49] and derived algebraic 
geometry [55,73]. It was recently shown that it corresponds to the notion of an (∞, k)-category [62]. Let us give a bit more insights on this 
construction. Recall that the data for geometric quantization of a symplectic manifold (M, ω), is given by a prequantization, i.e. a line bun-
dle (usually called prequantum line bundle) (L , ∇) together with a connection on M with curvature ω, and a polarization, i.e. a Lagrangian 
foliation F ⊂ T M which is a subbundle closed with respect to the Lie bracket of vector fields which is Lagrangian with respect to ω [43,54,
79]. The constructed vector space is then given by the space of ∇-flat sections 
flat(M, L ) ⊂ 
(M, L ) of L along the foliation F . In the 
k-shifted case, one defines the analog of a prequantum line bundle, called a prequantum k-shifted Lagrangian fibration, to be given by a k-
gerbe G on the base manifold together with an extension of the natural relative flat connection on the pullback of G to the fiber to a con-
nective structure ∇ . The polarization is encoded in a k-shifted Lagrangian foliation (see [16,74]). For a 1-shifted symplectic structure we get 
the ∞-category QCohG of twisted quasi-coherent sheaves on the base and for the 2-shifted case the ∞-category of quasi-coherent sheaves 
on a certain category and so on, such that the output for k-shifted structures gives an (∞, k)-category (see [62] for a detailed construction).

Note that this indeed is compatible with the quantum BV-BFV construction which assigns a chain complex (H, �) to the 0-shifted 
case on the boundary (rather than a vector space). It is also compatible with the BV construction in the bulk, i.e. for a (−1)-shifted 
symplectic structure. Namely, the constructions as in [64] give rise to a “geometric quantization”. The expectation value, assigning to an 
observable a value in the ground field through a path integral of a half-density (usually exp(iS/h̄)σ where σ is some 	-closed reference 
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half-density) over a chosen Lagrangian submanifold (gauge-fixing), is considered as some analog for the polarization. This can be seen by 
an extension of the result in [76]. The original form states that for an odd symplectic supermanifold (F , ω) there is a quasi-isomorphism 
between the complex (�•(F), ω∧), consisting of differential forms on F endowed with the differential given by wedging with ω, and the 
complex (Dens

1
2 (F), 	), consisting of half-densities on F endowed with the BV Laplacian (this is obviously related to the BV theorem 

as in [64]). Moreover, it states that the de Rham differential vanishes on the cohomology of (�•(F), ω∧) and that the BV Laplacian is 
given by 	 = (d ◦ (ω∧)−1 ◦ d). In fact, it is the third differential in the spectral sequence of the bicomplex (�•(F), ω∧, d) and all higher 
differentials are zero. The shifted analog states a similar quasi-isomorphism [62, Proposition 2.34]. Hence, we want to extend the outcome 
to “dg (∞, k)-categories”. Let us first talk about the 1-categorical picture and give an informal construction for it. One can regard a dg 
k-category to be a k-category C [7] for which each set of morphisms Hom(X, Y ) between two objects X, Y ∈ C forms a dg module, i.e. it 
is given by a direct sum

Hom(X, Y ) =
⊕
n∈Z

Homn(X, Y ),

endowed with a differential

d(X,Y )
C : Homn(X, Y )� Homn+1(X, Y ).

Composition of morphisms is given by maps of dg modules

Hom(X, Y ) ⊗ Hom(Y , Z)� Hom(X, Z), ∀X, Y , Z ∈ C
satisfying some additional relations [30,72]. One should think of Hom as the space of 1-morphisms. Denote by Hom(k) the space of k-
morphisms, which again forms a dg module. Below an illustration of a 2-morphism α between morphisms f , g ∈ Hom(1)(X, Y ) and a 
3-morphism 
 between two 2-morphisms α, β .

X Y

f

g

α X Y

f

g

α β



We require that they satisfy the same conditions as Hom = Hom(1) , i.e. for two (k − 1)-morphisms f , g , we want that the space of 
k-morphisms between them is given by a direct sum

Hom(k)( f , g) =
⊕
n∈Z

Hom(k)
n ( f , g)

endowed with a differential

d( f ,g)
C : Hom(k)

n ( f , g)� Hom(k)
n+1( f , g).

The composition of k-morphisms should then, similarly as for higher categories, satisfy some Stasheff pentagon identity [66,67]. Formally, 
one can construct a strict dg k-category as an iteration (similarly as for defining higher categories) of enrichments over the category of 
chain complexes. That is, one defines a dg k-category as a category enriched over dg (k −1)-categories. This is more or less straightforward 
since the category of chain complexes can be endowed with a symmetric monoidal structure. The more interesting notion in this setting 
is the non-strict version. There one has to start with an ∞-category for the enrichment instead of just chain complexes. Although there 
should not be any obstacles in the construction, this will be rather involved. The diagram below illustrates the quantization for higher 
codimensions where we denote by Ch the category of chain complexes, by AlgEd

Pk
(Ch) := AlgPk

(AlgEd
(Ch)) the category of Pk-algebras 

over Ed-algebras in Ch and by dgCat(∞,k) the category of dg (∞, k)-categories. One should think of the horizontal arrows as passing 
to higher codimension and not as a functor in particular. The quantum picture on the level of deformation quantization focuses on the 
algebraic structure (shifted Poisson structure) on the space of (higher codimension) observables, whereas the picture on the level of 
geometric quantization focuses on the geometric structure induced by the space of (higher codimension) boundary fields, namely its 
(shifted) symplectic manifold structure.

. . . ∂k . . . ∂2 ∂1 ∂0

DefQuant . . . Alg
En−k
BDk

(Ch) . . . Alg
En−2
BD2

(Ch) Alg
En−1
BD1

(Ch) AlgEn
BD0

(Ch)

GeomQuant . . . dgCat(∞,k−1) . . . dgCat(∞,1) Ch K
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3.3. Obstruction spaces

Recall that for codimension 0 theories the quantum obstruction space was given by the first cohomology group with respect to the 
cohomological vector field in the bulk (Theorem 2.2) and for coboundary 1 theories it was given by the second cohomology group with 
respect to the cohomological vector field on the boundary (Theorem 2.4). A natural question is whether the obstruction space for the 
quantization of codimension k theories is given by

Hk+1

Q ∂k (Oloc(F∂k
)).

This is not clear at the moment. We plan to consider this more carefully in the future.
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Abstract. We consider a construction of observables by using methods
of supersymmetric field theories. In particular, we give an extension of
AKSZ-type observables constructed in Mnev (Lett Math Phys 105:1735–
1783, 2015) using the Batalin–Vilkovisky structure of AKSZ theories to a
formal global version with methods of formal geometry. We will consider
the case where the AKSZ theory is “split” which will give an explicit
construction for formal vector fields on base and fiber within the formal
global action. Moreover, we consider the example of formal global general-
ized Wilson surface observables whose expectation values are invariants of
higher-dimensional knots by using BF field theory. These constructions
give rise to interesting global gauge conditions such as the differential
quantum master equation and further extensions.
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1. Introduction

Observables play a fundamental role in theoretical and mathematical physics.
They are used in several constructions, e.g., deformation quantization and
factorization algebras. In [46], a method for constructing observables in the
setting of AKSZ theories was introduced, where several examples, including
Wilson-loop-type observables for different theories, have been addressed.

These constructions were given using the approach of supersymmetric
field theory and methods of functional integrals. In particular, the focus lies
within a special formalism dealing with gauge theories which is called the
Batalin–Vilkovisky (BV) formalism. This formalism was developed by Batalin
and Vilkovisky in a series of papers [5,7,8] during the 1970s and 1980s in
order to deal with the functional integral quantization approach where the La-
grangian is invariant under certain symmetries and the integral is ill-defined.
They have shown (later also formulated in a more mathematical language by
Schwarz) that these issues can be resolved by replacing the ill-defined integral
by a well-defined (after some regularization is also introduced) one without
changing the final value. The mathematical structures of this powerful formal-
ism have been studied since then by many different people.



Vol. 21 (2020) Formal Global AKSZ Gauge Observables 2953

AKSZ theories [1] (named after Alexandrov, Kontsevich, Schwarz and
Zaboronsky) are a particular type of field theories where the space of fields
is given by a mapping space between manifolds. It can be shown that these
theories, regarded in a special setting, will give rise to field theories as formu-
lated in the BV setting. Many interesting theories are in fact of AKSZ-type,
e.g., Chern–Simons theory [3,4,18,22,58], the Poisson sigma model [16,35,51],
Rozansky–Witten theory [50], the Courant sigma model [49], BF theory [20,
47], Witten’s A- and B-twisted sigma models [59] and 2D Yang–Mills theory
[36].

The globalization idea originates from a field-theoretic approach to glob-
alization of Kontsevich’s star product [39] in deformation quantization. The
associated field theory is given by the Poisson sigma model. The Poisson sigma
model is a two-dimensional bosonic string theory with target a Poisson man-
ifold which was first considered by Ikeda [35] and Schaller–Strobl [51] by the
attempt of studying 2D gravity theories and combine them to a common form
with Yang–Mills theories. Using the Poisson sigma model on the disk, Catta-
neo and Felder have proven that Kontsevich’s star product is exactly given by
the perturbative expansion of its functional integral quantization [15]. Regard-
ing the fact that the Poisson sigma model is a gauge theory, it is interesting
to note that it is a fundamental non-trivial theory where the BRST gauge
formalism [9–11,56] does not work if the Poisson structure is not linear. In
fact, to treat the Poisson sigma model and its quantization, one has to use the
BV formalism. However, the field-theoretic construction of Kontsevich’s star
product was only considered locally since Kontsevich’s formula was only given
for the local picture on the upper half-plane. Later on, using techniques of
formal geometry, developed by, e.g., Gelfand–Fuks [32,33], Gelfand–Kazhdan
[34] or Bott [13], it was possible to construct a globalization, similar to the
approach of Fedosov for symplectic manifolds which only covers the case of
constant (symplectic) Poisson structures [30].

In [12,17], this approach was first extended to the field theoretic BV con-
struction of the Poisson sigma model for closed source manifolds. In recent
work [25] this construction was extended to the case of source manifolds with
boundary. There one has to extend the BV formalism to the BV-BFV for-
malism which couples the boundary BFV theory to the bulk BV theory such
that everything is consistent in the cohomological formalism. Here BFV stands
for Batalin–Fradkin–Vilkovisky which formulated a Hamiltonian version of the
BV construction in [6,31]. The bulk-boundary coupling (the BV-BFV formal-
ism) was first introduced classically in [19,20] and extended to the quantum
version in [21]. The globalization construction for the Poisson sigma model on
manifolds with boundary was more generally extended in [24] to a special class
of AKSZ theories which are called “split” where the case of the Poisson sigma
model is an example.

The aim of this paper is to extend the constructions of [46] to a formal
global construction. In fact, we will construct formal global observables by
using the notion of a Hamiltonian Q-bundle [41] together with notions of formal
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geometry, and we will study the formal global extension of Wilson loop type
observables for the Poisson sigma model.

Additionally, we discuss the formal global extension of Wilson surface
observables which have been studied in [27] by using the AKSZ formulation of
BF theories. We will show that these constructions lead to interesting gauge
conditions such as the differential quantum master equation (and further ex-
tensions).

These constructions are expected to extend to manifolds with boundary
by using the BV-BFV formalism as the globalization constructions have been
studied for nonlinear split AKSZ theories on manifolds with boundary [24].

2. The Batalin–Vilkovisky (BV) Formalism

In this section, we will recall some aspects of the Batalin–Vilkovisky formalism
as in [21,48]. An introductory reference for learning about the formalism is [23],
which also covers the most important concepts of supergeometry and the case
of manifolds with boundary (BV-BFV).

2.1. Classical BV Picture

Let us start with the classical setting of the BV formalism.

Definition 2.1 (BV manifold). A BV manifold is a triple

(F ,S, ω)

such that F is a Z-graded supermanifold1, S is an even function on F of degree
0 and ω is an odd symplectic form on F of degree −1. Moreover, we want that
S satisfies the Classical Master Equation (CME)

{S,S}ω = 0, (1)

where { , }ω denotes the odd Poisson bracket induced by the odd symplectic
form ω. This odd Poisson bracket is also called BV bracket and, according to
Batalin and Vilkovisky, is often denoted by round brackets ( , ). We will call
F the BV space of fields2, S the BV action (sometimes also called the master
action) and ω the BV symplectic form.

Remark 2.2. In physics, the Z-grading is called the ghost number. We will
denote the ghost number by gh and the form degree by deg.

Remark 2.3. The data of a BV manifold induces a symplectic cohomological
vector field Q of degree +1 which is given by the Hamiltonian vector field of
S, i.e.,

ιQω = δS, (2)

1Typically, this is an infinite-dimensional manifold. However, there are certain cases where

this is a finite-dimensional manifold, e.g., if we consider the moduli of flat connections on

a compact, oriented 2-manifold with holonomies on the boundary according to Atiyah and
Bott [2] which is of importance regarding BF theory.
2Usually, the BV space of fields is given by the (−1)-shifted cotangent bundle of the BRST

space of fields, i.e., FBV = T ∗[−1]FBRST.
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wher δ denotes the de Rham differential on F . The cohomological property
means that [Q,Q] = 0 and the symplectic property means LQω = 0, where L
denotes the Lie derivative. Moreover, note that by definition

Q = {S, }ω.

Definition 2.4 (Exact BV manifold). A BV manifold is called exact if ω = δα
for some primitive 1-form α.

In what will follow, we will mostly consider exact BV manifolds. Accord-
ing to the use of sigma models we want to consider space-time manifolds as
the source manifolds for our theory. Moreover, in this paper, we will restrict
ourself to topological theories.

Definition 2.5 (BV theory). A BV theory is an assignment of a manifold Σ to
a BV manifold

Σ �→ (FΣ,SΣ, ωΣ, QΣ). (3)

2.2. Quantum BV Picture

We continue with the quantum setting of the BV formalism.

Definition 2.6 (Quantum BV manifold). A quantum BV manifold is a quadru-
ple (F , ω, μ,S) such that F is a Z-graded supermanifold, ω a symplectic form
on F of degree −1, μ a volume element3 of F which is compatible with ω in
the sense that the associated BV Laplacian

Δ: f �→ 1

2
divμ{f, }ω (4)

satisfies

Δ2 = 0, (5)

and S is a degree 0 function on F such that it satisfies the QME (8).

Remark 2.7. The BV Laplacian satisfies a generalized BV Leibniz rule. For
two functions f, g on F , we have

Δ(fg) = Δ(f)g ± fΔ(g) ± {f, g}ω.

see also [38,53] for a mathematical exposure to the origin of the BV Laplacian.

Moreover, define δBV to be the degree +1 operator given by

δBV := Q − i�Δ (6)

which satisfies

δ2
BV = 0. (7)

The following theorem is one of the main statements in the formalism
developed by Batalin and Vilkovisky. In its present form, it was stated by
Schwarz on general manifolds [52].

Theorem 2.8 (Batalin–Vilkovisky). For any half-density f on F , we have:

3We want the space of fields F to be endowed with a natural measure.
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(1) If f = Δg, then ∫

L
f = 0,

for a Lagrangian submanifold L ⊂ F ,
(2) If Δf = 0, then

d

dt

∫

Lt

f = 0,

for any continuous family (Lt) of Lagrangian submanifolds of F .

Remark 2.9. The choice of Lagrangian submanifold is in fact equivalent to
fixing a gauge. The second part of Theorem 2.8 tells us that if we have an
integral over a Lagrangian submanifold which is ill-defined, but on the other
hand Δf = 0, then we can deform the Lagrangian submanifold L continuously
to a Lagrangian submanifold L′ (choosing a different gauge) where the integral

is well-defined. In application to quantum field theory, we have f = e
i
�S. Hence,

for gauge independence, we need to impose

Δe
i
�S = 0 ⇐⇒ {S,S}ω − 2i�ΔS = 0. (8)

The condition (8) is called the Quantum Master Equation (QME). If we
let S depend on �, we can see that in order zero we get the CME {S,S}ω = 0.
One can then solve (8) order by order.

2.3. L∞-Structure

Recall that a Q-manifold with trivial body induces an L∞-algebra structure
(see, e.g., [45]). More generally, a Q-manifold with non-trivial body induces an
L∞-algebroid structure. Similarly, a BV manifold endowed with its Q-structure
induces an L∞-algebra structure on F [55]. This L∞-algebra encodes all the
relevant classical information of the field theory. Hence, at the classical level,
Lagrangian field theories can be equivalently described in terms of the un-
derlying (cyclic4) L∞-algebra structure. Moreover, equivalent theories induce
quasi-isomorphic L∞-algebras. The unary operation �1 is in fact encoded in
the linear part of the action Q = {S, }ω on the field corresponding to the im-
age of �1. The higher brackets then make the linearized expressions covariant
and to allow for higher interaction terms. The operator δBV in fact induces a
quantum L∞-algebra (or loop homotopy algebra) on the same graded space. In
particular, by a direct application of the homological perturbation lemma, one
can prove a similar decomposition theorem and compute its minimal model as
for the classical case, which leads directly to a homotopy between a quantum
L∞-algebra and its minimal model in which the non-triviality of the action

4A cyclic L∞-algebra [40] is an L∞-algebra g endowed with a non-degenerate, symmetric,

bilinear pairing 〈 , 〉g : g ⊕ g → R such that

〈X1, �n+1(X2, . . . , Xn+1)〉g = (−1)n+n(deg(X1)+deg(Xn+1))+deg(Xn+1)
∑n

j=1 deg(Xj)

〈Xn+1, �n(X1, . . . , Xn)〉g,

for X1, . . . , Xn+1 ∈ g and where (�n) denote the n-ary brackets on g. In the case of a

Q-manifold the cyclic inner product corresponds to a symplectic structure.
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is fully absorbed in the higher brackets. Moreover, the homotopy Maurer–
Cartan theory5 implies that for an arbitrary L∞-algebra the BV complex of
fields, ghosts and anti fields is just the L∞-algebra itself. See, e.g., [37,54,55]
for a more detailed discussion of L∞-structures for BV field theories.

3. AKSZ Theories

3.1. Preliminaries

In [1], Alexandrov, Kontsevich, Schwarz, and Zaboronsky have proposed a
class of local field theories which are compatibel with the Batalin–Vilkovisky
gauge formalism construction, in the sense that the constructed local actions
are solutions to the Classical Master Equation. Hence, these theories give a
subclass of BV theories. In this section we want to recall the most important
notions of AKSZ sigma models. We start with defining the ingredients.

Definition 3.1 (Differential graded symplectic manifold). A differential graded
symplectic manifold of degree k is a triple

(M,ΘM, ωM = dMαM)

such that M is a Z-graded manifold, ΘM ∈ C∞(M) is a function on M of
degree k + 1, and ωM ∈ Ω2(M) is an exact symplectic form of degree k with
primitive 1-form αM ∈ Ω1(M), such that

{ΘM,ΘM}ωM = 0, (9)

where { , }ωM is the odd Poisson bracket induced by ωM. We have denoted
by dM the de Rham differential on M.

Remark 3.2. We denote by QM ∈ X(M) the Hamiltonian vector field of ΘM,
defined by the equation

ιQMωM = dMΘM

with the properties [QM, QM] = 0 (cohomological) and LQMωM = 0 (symplec-
tic). Note that QM is of degree +1. A quadruple (M, QM,ΘM, ωM = dMαM)
as in Definition 3.1 is also called a Hamiltonian Q-manifold.

5This is the theory induced by the action term SMC(Ψ) =
∑

j≥1
1

(j+1)!
〈Ψ, �j(Ψ, . . . , Ψ)〉g

for a cyclic L∞-algebra g endowed with an inner product 〈 , 〉g. Here (�j) denotes the

family of j-ary brackets on g. The stationary locus of this action is given by solutions of

the homotopy Maurer–Cartan equation
∑

j≥1
1
j!

�j(Ψ, . . . , Ψ) = 0. In fact, the deformed

Lagrangian (still classical)

S(Ψ) =
1

2
〈Ψ, Q(Ψ)〉g +

∑

j≥1

1

(j + 1)!
〈Ψ, �j(Ψ, . . . , Ψ)〉g

satisfies the CME.
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3.2. AKSZ Sigma Models

Let Σd be a d-dimensional compact, oriented manifold (possibly with bound-
ary) and consider its shifted tangent bundle T [1]Σd. Moreover, fix a Hamil-
tonian Q-manifold

(M, QM,ΘM, ωM = dMαM)

of degree d − 1 for d ≥ 0. We can consider the mapping space of graded
manifolds from T [1]Σd to M to be our space of fields:

FMΣd
:= MapGrMnf(T [1]Σd,M), (10)

where MapGrMnf denotes the mapping space between graded manifolds.6 We
would like to endow FMΣd

with a Q-manifold structure. This can be done by
considering the lifts of the de Rham differential dΣd

on Σd and the cohomo-
logical vector field QM on the target M to the mapping space. Hence, we get
a cohomological vector field

QΣd
:= d̂Σd

+ Q̂M ∈ X
(FMΣd

)
, (11)

where d̂Σd
and Q̂M denote the corresponding lifts to the mapping space. Note

that we can regard dΣd
as a cohomological vector field on T [1]Σd. Consider

the following push-pull diagram

FMΣd

p←− FMΣd
× T [1]Σd

ev−→M, (12)

where p denotes the projection onto FMΣd
and ev is the evaluation map. We

can construct a transgression map

TΣd
:= p∗ev

∗ : Ω•(M) → Ω• (FMΣd

)
. (13)

Note that the map p∗ is given by fiber integration on T [1]Σd. Now we
can endow the space of fields FMΣd

with a symplectic structure ωΣd
by setting

ωΣd
:= (−1)dTΣd

(ωM) ∈ Ω2
(FMΣd

)
. (14)

Moreover, we will get a solution SΣd
to the CME, the BV action func-

tional, by

SΣd
:= ιd̂Σd

TΣd
(αM)

︸ ︷︷ ︸
=:Skin

Σd

+TΣd
(ΘM)︸ ︷︷ ︸

=:Starget
Σd

∈ C∞ (FMΣd

)
. (15)

Indeed, one can check that

{SΣd
,SΣd

}ωΣd
= 0. (16)

Note that the symplectic form ωΣd
is of degree (d − 1) − d = −1 as

expected. Moreover, the action SΣd
is of degree 0. Thus this setting does

indeed induce a BV manifold
(FMΣd

,SΣd
, ωΣd

)
. Consider local coordinates (xμ)

on M and let (ui) be local coordinates on Σd for 1 ≤ i ≤ d. Denote the odd

6More precisely, MapGrMnf denotes the right adjoint functor to the Cartesian product

in the category of graded manifolds with a fixed factor. On objects X, Y, Z we have
Hom(X, MapGrMnf (Y, Z)) = Hom(X ×Y, Z), where Hom denotes the set of graded manifold

morphisms.
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fiber coordinates of degree +1 on T [1]Σd by θi = dΣd
ui. Then, for a field

A ∈ FMΣd
, we have the local expression

Aμ(u, θ) =
d∑

�=0

∑

1≤i1<···<i�≤d

Aμ
i1...i�

(u)θi1 ∧ · · · ∧ θi�

︸ ︷︷ ︸
Aμ

(�)(u,θ)

∈
d⊕

�=0

C∞(Σd) ⊗
�∧

T ∗Σd. (17)

The functions Aμ
i1...i�

∈ C∞(Σd) are of degree deg(xμ) − � on FMΣd
. The

local expression of the symplectic form ωM and its primitive 1-form αM onM
are given by

αM = αμ(x)dMxμ ∈ Ω1(M), (18)

ωM =
1

2
ωμ1μ2

(x)dMxμ1 ∧ dMxμ2 ∈ Ω2(M). (19)

Locally, using the expressions above, we get the following expression for
the BV symplectic form, its primitive 1-form and the BV action functional:

αΣd
=

∫

Σd

αμ(A)δAμ ∈ Ω1
(FMΣd

)
, (20)

ωΣd
= (−1)d 1

2

∫

Σd

ωμ1μ2
(A)δAμ1 ∧ δAμ2 ∈ Ω2

(FMΣd

)
, (21)

SΣd
=

∫

Σd

αμ(A)dΣd
Aμ +

∫

Σd

ΘM(A) ∈ C∞ (FMΣd

)
. (22)

Note that we have denoted by δ the de Rham differential on FMΣd
. If we

consider Darboux coordinates on M, we get that

ωM =
1

2
ωμ1μ2

dMxμ1 ∧ dMxμ2 ,

where the ωμ1μ2
are constant implying that αM = 1

2xμ1ωμ1μ2
dMxμ2 . Hence we

get the BV symplectic form

ωΣd
=

1

2

∫

T [1]Σd

μΣd
(ωμ1μ2

δAμ1 ∧ δAμ2)

=
1

2

∫

Σd

(ωμ1μ2
δAμ1 ∧ δAμ2)

top
(23)

and the master action

SΣd
=

∫

T [1]Σd

μΣd

(
1

2
Aμωμ1μ2

DΣd
Aμ2

)
+ (−1)d

∫

T [1]Σd

μΣd
A∗ΘM, (24)

where μΣd
is a canonical measure on T [1]Σd and DΣd

= θj ∂
∂uj

the superdif-

ferential on T [1]Σd.
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4. Hamiltonian Q-Bundles

We want to construct a combination of the notion of Q-manifolds and the
concept of Hamiltonian vector fields together with the notion of vector bundles,
where we want to extend most of our constructions on the fiber (see also [41]).
We will see that the fiber will represent the target of an AKSZ theory for an
embedded source manifold when lifted to an AKSZ-BV theory. We will call
the fiber theory auxiliary. In this section we will give the main definitions as
in [46]. Let us start with the definition of the trivial case.

Definition 4.1 (Trivial Q-bundle). Let N be a graded manifold and (M, QM)
a graded Q-manifold. A trivial Q-bundle is a trivial bundle

π : E :=M×N →M (25)

such that dπ(QE) = QM, where QE denotes the Q-structure on the total space
E.
Remark 4.2. Note that this implies that

QE = QM +V,

where V ∈ ker dπ ∼= C∞(M)⊗̂X(N) denotes the vertical part of QE. The fact
that [QE, QE] = 0 can be translated to

[QM, QM]︸ ︷︷ ︸
=0

+[QM,V] +
1

2
[V,V] = 0. (26)

Definition 4.3 (Trivial Hamiltonian Q-bundle). A trivial Hamiltonian Q-bundle
of degree n ∈ Z is a trivial Q-bundle

π : E :=M×N →M
as in Definition 4.1 with QE = QM+V such that the fiberN is endowed with an
exact symplectic structure ωN = dNαN ∈ Ω2(N) of degree n with αN ∈ Ω1(N)
and a Hamiltonian function ΘE ∈ C∞(E) of degree n + 1 satisfying

V = {ΘE, }ωN (27)

QM(ΘE) +
1

2
{ΘE,ΘE}ωN = 0. (28)

We can now give the definition of a general Hamiltonian Q-bundle.

Definition 4.4. (Hamiltonian Q-bundle) A Hamiltonian Q-bundle is a Q-bundle
π : E → M where the total space E is endowed with a degree n exact pre-
symplectic form ωE = dEαE such that ker ωE ⊂ TE is transversal to the vertical
distribution T vertE and hence kerωE defines a flat Ehresmann connection ∇ωE .
Moreover, there is a Hamiltonian function ΘE ∈ C∞(E) with

ιQEωE = dvert
E ΘE,

where dvert
E denotes the vertical part of the de Rham differential on E as a

pullback by the natural inclusion T vertE ↪→ TE. Finally, we also want that(
Qhor
E +

1

2
Qvert
E

)
(ΘE) = 0, (29)
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where we split QE = Qhor
E +Qvert

E into its horizontal and vertical parts by using
the Ehresmann connection ∇ωE defined by ωE.

5. Observables in the BV Formalism

We want to define certain classes of observables arising within the BV con-
struction which are compatible with the structure of an underlying Q-bundle.
We will start with the classical setting.

5.1. Observables for Classical BV Manifolds

Definition 5.1 (BV classical observable) A classical observable for a BV man-
ifold (F ,S, Q, ω) is defined as a function O ∈ C∞(F ) of degree 0 such that

Q(O) = 0. (30)

Definition 5.2 (Equivalence of BV classical observables). Two BV classical ob-

servables O and Õ are said to be equivalent if

Õ− O = Q(Ψ), Ψ ∈ C∞(F ), (31)

or equivalently, O and Õ have the same Q-cohomology class.

Definition 5.3 (BV classical pre-observable). For a classical BV theory

(F ,S, Q, ω)

we define a pre-observable to be a Hamiltonian Q-bundle over F of degree −1.
We denote the fiber by F aux and call them the space of auxiliary fields, which
itself is endowed with a symplectic structure ωaux of degree −1 and an action
functional Saux ∈ C∞(F × F aux) of degree 0 such that

Q(Saux) +
1

2
{Saux,Saux}ωaux = 0. (32)

Using the notions of quantum BV manifolds as in Definition 2.6, we can
define a fiber auxiliary version which is compatible with the Hamiltonian Q-
bundle construction as in Definition 4.4.

Definition 5.4 (BV semi-quantum pre-observable). For a classical BV theory
(F ,S, Q, ω) we define a BV semi-quantum pre-observable to be a quadruple

(F aux,Saux, ωaux, μaux)

such that μaux is a volume form on F aux compatible with ωaux, i.e., the asso-
ciated BV Laplacian on C∞(F aux) given by

Δaux : f �→ 1

2
divμaux{f, }ωaux (33)

satisfies (Δaux)2 = 0. Moreover, the action functional Saux satisfies

Q(Saux) +
1

2
{Saux,Saux}ωaux − i�ΔauxSaux = 0, (34)

which is equivalent to

δaux
BV e

i
�Saux

:= (Q − i�Δaux)e
i
�Saux

= 0. (35)
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Remark 5.5. The name “semi-quantum” is chosen since it is not a quantum
observable yet, but rather the theory whose functional integral quantization
will lead to a quantum observable in the sense that it is closed with respect to
the infinitesimal symmetries.

We also want to extend the notion of equivalent pre-observables to the
case of semi-quantum pre-observables.

Definition 5.6 (Equivalent BV semi-quantum pre-observables). Two BV semi-
quantum pre-observables

(F aux,Saux, ωaux, μaux) and (F aux, S̃aux, ωaux, μaux)

are said to be equivalent if there exists a function faux ∈ C∞(F ×F aux) such
that

e
i
� S̃aux − e

i
�Saux

= (Q − i�Δaux)
(
e

i
�Saux

faux
)

. (36)

Proposition 5.7 ([27,46]). Let (F aux,Saux, ωaux, μaux) be a BV semi-quantum
pre-observable. Define

OL :=

∫

L⊂F aux

e
i
�Saux√

μaux|L ∈ C∞(F ), (37)

where L ⊂ F aux is a Lagrangian submanifold. Then OL is an observable, i.e.,

Q(OL) = 0. Moreover, if for two Lagrangian submanifolds L and L̃ there exists
a homotopy between them, then the observables OL and OL̃ are equivalent.

Also for two equivalent BV semi-quantum pre-observables Saux and S̃aux, the

corresponding observables OL and ÕL are equivalent.

Definition 5.8 (Good auxiliary splitting). We say that a semi-quantum pre-
observable (F aux,Saux, ωaux, μaux) has a good splitting if there is a decompo-
sition

F aux = Faux × F aux

such that

ωaux = ωaux
1 + ωaux

2 , (38)

μaux = μaux
1 ⊗ μaux

2 , (39)

where ωaux
1 is a symplectic form on Faux, ωaux

2 is a symplectic form on F aux,
μaux

1 is a volume form on Faux and μaux
2 is a volume form on F aux.

Remark 5.9. This is in fact the trivial case. The general version, called hedge-
hog, is discussed in [21].

Remark 5.10. We split the auxiliary fields into high energy modes F aux and
low energy modes Faux. This splitting can be done by using Hodge decomposi-
tion of differential forms into exact, coexact and harmonic forms (see Appendix
A of [21]). Note that, in addition, we might also have background fields7. If
Σd would have boundary, one can in general split the space of fields into three

7These are background choices for classical fields that are not fixed by the boundary condi-

tions and the Euler–Lagrange equations.
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parts, the low energy fields, the high energy fields and the boundary fields.
The boundary fields are generally given by techniques of symplectic reduction
as the leaves of a chosen polarization on the boundary. This is the content of
the BV-BFV formalism [20,21,23].

Proposition 5.11 ([46]). Let (F aux,Saux, ωaux, μaux) be a semi-quantum pre-
observable with a good splitting. Define Saux ∈ C∞(F × Faux) by

Saux = −i� log

∫

L ⊂F aux

e
i
�Saux√

μaux
2

∣∣
L

, (40)

where L is a Lagrangian submanifold of F aux. Then (Faux,Saux, ωaux
1 , μaux

1 )
defines a semi-quantum pre-observable for the same BV theory. Moreover, the
observable for the BV theory induced by Saux using Equation (37) with a La-
grangian submanifold L ⊂ Faux is equivalent to the one induced by Saux using
the Lagrangian submanifold L ⊂ F aux, if there exists a homotopy between L
and L × L in F aux.

Remark 5.12. Note that Equation (40) means that Saux is the low energy ef-
fective action (zero modes).

5.2. Observables for Quantum BV Manifolds

Definition 5.13 (BV quantum observable). A BV quantum observable for a
quantum BV manifold is a function O on F of degree 0 such that

δBVO = 0 ⇐⇒ Δ
(
Oe

i
�S

)
= 0. (41)

Definition 5.14 (Equivalent BV quantum observables). Two BV quantum ob-

servables O and Õ are said to be equivalent if

Õ− O = δBVΨ, Ψ ∈ C∞(F ), (42)

or equivalently, O and Õ have the same δBV-cohomology class.

Definition 5.15 (BV quantum pre-observable). A BV quantum pre-observable
for a BV manifold is a BV semi-quantum pre-observable

(F aux, ωaux, μaux,Saux)

where S+ Saux satisfies the QME

(Δ + Δaux)e
i
� (S+Saux) = 0. (43)

Proposition 5.16 ([46]). Let (F aux, ωaux, μaux,Saux) be a BV quantum pre-
observable. Define

OL :=

∫

L⊂F aux

e
i
�Saux√

μaux|L ∈ C∞(F ), (44)

where L ⊂ F aux is a Lagrangian submanifold. Then OL is an observable, i.e.,

δBVOL = 0. Moreover, if for two Lagrangian submanifolds L and L̃ there exists
a homotopy between them, then the observables OL and OL̃ are equivalent.
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6. Formal Global Split AKSZ Sigma Models

The formal global construction for ASKZ sigma models is given by using meth-
ods of formal geometry (see [13,34] for the formal geometry part, and [24] for
a detailed discussion of the formal global split AKSZ construction and its
quantization) where one constructs a BV action that depends on a choice of
classical background by adding an additional term to the AKSZ-BV action.
This construction leads to modifications in the usual BV gauge-fixing condi-
tion if we apply the BV construction to this new formal global action. The
globalization arises in an equivalent way as for the constructions involving the
underlying curved8 L∞-structure for the space of fields (see, e.g., [42] for an
exposition on curved ∞-structures and [29] for the field-theoretic concept).

In this section we want to recall some notions of formal geometry and
describe the extension of AKSZ sigma models to a formal global version.

6.1. Notions of Formal Geometry

Let us introduce the main players.

Definition 6.1 (Generalized exponential map). Let M be a manifold and let
U ⊂ TM be an open neighborhood of the zero section of the tangent bundle.
A generalized exponential map is a map φ : U → M such that φ : (x, p) �→ φx(p)
with φx(0) = x and dφx(0) = idTxM . Locally, we have

φi
x(p) = xi + pi +

1

2
φi

x,jkpjpk +
1

3!
φi

x,jk�p
jpkp� + · · · (45)

where (xi) are coordinates on the base and (pi) are coordinates on the fiber.

Definition 6.2 (Formal exponential map). A formal exponential map is an equiv-
alence class of generalized exponential maps, where we identify two generalized
exponential maps if their jets agree to all orders.

One can define a flat connection D on Ŝym(T ∗M), where Ŝym denotes
the completed symmetric algebra. Such a flat connection D is called classical
Grothendieck connection [17] and it is locally given by D = dM + R, where

R ∈ Ω1
(
M,Der

(
Ŝym(T ∗M)

))

is a 1-form with values in derivations of the completed symmetric algebra of

the cotangent bundle. Here R acts on sections σ ∈ Γ
(
Ŝym(T ∗M)

)
by Lie

derivative, that is R(σ) = LRσ. Note that we have denoted by dM the de
Rham differential on M . In local coordinates we have R = R�dMx�, where
R� = Rj

�(x, p) ∂
∂pj and

Rj
�(x, p) = −∂φk

∂x�

((
∂φ

∂p

)−1
)j

k

= −δj
� + O(p). (46)

8An L∞-algebra g is called curved if there exists an operation �0 : R → g of degree 0. In

particular, the strong homotopy Jacobi identity implies that �1 ◦ �1 = ±�2(�0, ), meaning

that the unary bracket �1 does not square to zero anymore, as it is the case for usual L∞-

algebras. In this case we say that �1 has non-vanishing curvature, thus the name “curved”.
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Hence, for σ ∈ Γ
(
Ŝym(T ∗M)

)
we have

R(σ) := LR(σ) = R�(σ)dMx� = − ∂σ

∂pj

∂φk

∂x�

((
∂φ

∂p

)−1
)j

k

dMx�. (47)

Note that we can extend the connection D to the complex

Γ

( •∧
T ∗M ⊗ Ŝym(T ∗M)

)

of Ŝym(T ∗M)-valued differential forms9. The following proposition tells us
that the D-closed sections are exactly given by smooth functions.

Proposition 6.3. A section σ ∈ Γ
(
Ŝym(T ∗M)

)
is D-closed if and only if σ =

Tφ∗f for some f ∈ C∞(M), where T denotes the Taylor expansion around the
fiber coordinates at zero. Moreover, the D-cohomology

H•
D

(
Ŝym(T ∗M)

)

is concentrated in degree 0 and

H0
D

(
Ŝym(T ∗M)

)
= Tφ∗C∞(M) ∼= C∞(M). (48)

Remark 6.4. Note that we use any representative of φ to define the pullback.

Proof of Proposition 6.3. If we use (45) and (47), We can see that R = δ + R′

where δ = dxi ∂
∂pi and R′ is a 1-form with values in vector fields vanishing at

p = 0. Then we have D = δ + D′ with

D′ = dxi ∂

∂xi
+ R′. (49)

One should note that δ is itself a differential and that it decreases the
polynomial degree in p, whereas D′ does not decrease the degree. We can show
that the cohomology of δ consists of 0-forms which are constant in p. To show
this, let

δ∗ = piι ∂
∂xi

and note that

(δδ∗ + δ∗δ)σ = kσ, (50)

where σ is an r-form of degree s in p such that r + s = k. By cohomological
perturbation theory the cohomology of D is isomorphic to the cohomology of
δ. �

9Since Γ
(∧• T ∗M ⊗ Ŝym(T ∗M)

)
is the algebra of functions on the formal graded manifold

T [1]M ⊕ T [0]M , the differential D turns this graded manifold into a differential graded

manifold. In particular, since D vanishes on the body of the graded manifold, we can linearize

at each x ∈ M and obtain an L∞-structure on TxM [1] ⊕ TxM .
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Note that in local coordinates we get for f ∈ C∞(M)

Tφ∗
xf = f(x) + pi∂if(x) +

1

2
pjpk(∂j∂kf(x) + φi

x,jk∂if(x)) + · · · (51)

An interesting question is how the Grothendieck connection depends on
the choice of formal exponential map. Let I ⊂ R be an open interval and let φ
be a family of formal exponential maps depending on a parameter t ∈ I. This
family may be associated to a family of formal exponential maps ψ on M × I
by

ψ(x, t, p, τ) = (φx,t(p), t + τ), (52)

where τ denotes the tangent coordinate to t. The associated connection R̃ is
defined by

R̃ (σ̃) = −(dpσ̃,dτ σ̃) ◦
(

(dpφ)−1 0
0 1

)
◦
(

dxφ φ̇
0 1

)
,

σ̃ ∈ Γ
(
Ŝym(T ∗(M × I)

)
. (53)

Thus we can write R̃ = R + Cdt + T with R defined as before with the
difference that it now depends on t, C is given by

C(σ̃) = −dpσ̃ ◦ (dpφ)−1 ◦ φ̇, (54)

and T = −dt ∂
∂τ . Note that dxT = 0, dtT = 0 and [T,R] = 0, [T,C] = 0. Thus,

using the Maurer–Cartan equation for R̃ and for R, we get

Ṙ = dxC + [R,C], (55)

which shows that under a change of formal exponential map, R changes by
a gauge transformation with generator C. Moreover, if σ = Tφ∗

xf for some
f ∈ C∞(M × I), we get

σ̇ = −LCσ. (56)

This can be thought of as an associated gauge transformation for sections.

6.2. Formal Global AKSZ Sigma Models

Let Σd be a closed, oriented, compact d-manifold and consider a Hamiltonian
Q-manifold

(M, ωM = dMαM,ΘM, QM)

of degree d − 1. As described in Sect. 3.2, we can consider its induced AKSZ
theory with the space of fields

FMΣd
= MapGrMnf(T [1]Σd,M). (57)

Consider now a formal exponential map φ : TM →M. Then we can lift
the space of fields by φ. For x ∈M we denote the lifted space of fields by

F̂ MΣd
:= MapGrMnf(T [1]Σd, TxM) ∼= Ω•(Σd) ⊗ TxM. (58)

Note that we have used the fact that

C∞(T [1]Σd) ∼= Ω•(Σd). (59)
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This construction gives us a linear space for the target and thus we can
identify the fields with differential forms on Σd with values in the vector space
TxM for x ∈M. Consider the map

φ̃x : F̂ MΣd,x → FMΣd
, (60)

which is given by composition with φ−1
x , i.e., F̂ MΣd,x = φ−1

x ◦ FMΣd
. We can lift

the BV symplectic 2-form ωΣd
, the primitive 1-form αΣd

and the BV action
SΣd

to the lifted space of fields. We will denote the lifts by

α̂Σd,x = φ̃∗
xαΣd

∈ Ω1
(
F̂ MΣd,x

)
, (61)

ω̂Σd,x = φ̃∗
xωΣd

∈ Ω2
(
F̂ MΣd,x

)
, (62)

ŜAKSZ
Σd,x = ιd̂Σd

φ̃∗
xTΣd

(αM) + Tφ̃∗
xTΣd

(ΘM) ∈ C∞
(
F̂ MΣd,x

)
. (63)

Note that we can regard a constant map x : T [1]Σd → M in FMΣd
as an

element of M, hence there is a natural inclusion M ↪→ FMΣd
. For a constant

field x and A ∈ FMΣd
We can construct a 1-form

RΣd
= (RΣd

)μ(x,A)dMxμ (64)

on M with values in differential operators on FMΣd
. Moreover, we can lift this

1-form to F̂ MΣd
and we denote the lift by R̂Σd

. Locally, we write

R̂Σd
=

(
R̂Σd

)
μ

(
x, Â

)
dMxμ. (65)

It is important to recall that classical solutions for AKSZ sigma models,
i.e., solutions of δSΣd

= 0, are given by differential graded maps

(T [1]Σd,dΣd
) → (M, QM).

Hence we can consider the moduli space of classical solutions Mcl for AKSZ
theories which is given by constant maps x : T [1]Σd → M and thus we get
an isomorphism Mcl

∼= M. We will refer to this constant solutions as being
background fields. Choosing a background field x ∈M, we can define a formal
global AKSZ action.

Definition 6.5 (Formal global AKSZ action). The formal global AKSZ action
is given by

Ŝglobal
Σd,x = ιd̂Σd

φ̃∗
xTΣd

(αM) + Tφ̃∗
xTΣd

(ΘM) + ŜΣd,R,x, (66)

where ŜΣd,R,x is constructed locally such that

ŜΣd,R,x

(
Â
)

=

∫

Σd

(
R̂Σd

)
μ

(
x, Â

)
dMxμ. (67)

Hence locally we get we get

Ŝglobal
Σd,x =

∫

Σd

α̂μ

(
Â
)

dΣd
Âμ +

∫

Σd

Θ̂M,x

(
Â
)

+

∫

Σd

(
R̂Σd

)
μ

(
x, Â

)
dMxμ, (68)
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where α̂μ are the coefficients of α̂Σd,x := φ̃∗
xαΣd

and Θ̂M,x := Tφ̃∗
xΘM.

Remark 6.6. This construction has to be understood in a formal way. The
geometric meaning and the relation to a global construction is clear when
using the relation of RΣd

to the Grothendieck connection D. This can be done
if we start with a theory called split which we will introduce now.

6.3. Formal Global Split AKSZ Sigma Models

AKSZ theories can generally be more difficult to work with depending on
the target differential graded symplectic manifold M. Recall that, using the
isomorphism (59), if the target is linear, we have an isomorphism

MapGrMnf(T [1]Σd,M) ∼= Ω•(Σd) ⊗M. (69)

Moreover, we can split the space of fields by considering M to be the
shifted cotangent bundle of a linear space. At first, however, we only want M
to be the shifted cotangent bundle of any graded manifold M . This leads to
the following definition of AKSZ theories.

Definition 6.7 (Linear split AKSZ sigma model). We call a d-dimensional AKSZ
sigma model linear split if the target is of the form

M = V ⊕ V ∗

for some vector space V .

Definition 6.8 (Split AKSZ sigma model). We call a d-dimensional AKSZ sigma
model split if the target is of the form

M = T ∗[d − 1]M

for some graded manifold M .

This space can be lifted to a formal construction using methods of formal
geometry as in Sect. 6.1 to the shifted cotangent bundle of the tangent space of
M at some constant background in M . Consider a d-dimensional split AKSZ
sigma model with space of fields given by

FMΣd
= MapGrMnf(T [1]Σd, T

∗[d − 1]M), (70)

for some graded manifold M , with its corresponding AKSZ-BV theory
(FMΣd

,SΣd
, ωΣd

)
.

Note that, similarly as for general AKSZ theories, one type of classical solutions
to the Euler–Lagrange equations for split AKSZ theories are given by fields of
the form (x, 0) where x : Σd → M is a constant background field. Note that
the classical space of fields FΣd

is given by vector bundle maps TΣd → T ∗M ,
i.e.,

FΣd
= MapVecBun(TΣd, T

∗M).

Then the BV space of fields is given by (70). Thus, for the classical space
of fields FΣd

, we have a moduli space of classical solutions

Mcl = {(A,B) ∈ Map(TΣd, T
∗M) | A = x = const,B = 0} ∼= M. (71)
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Moreover, for a chosen formal exponential map φ : TM → M and a
constant background field x : Σd → M regarded as an element of the moduli
space of classical solutions Mcl, one can consider the lifted space of fields

F̂ MΣd,x = MapGrMnf(T [1]Σd, T
∗[d − 1]TxM), (72)

which gives a linearization (or also coordinatization) of the space of fields in
the target as we have seen before. Let (A,B) ∈ FMΣd

, where A : T [1]Σd → M

denotes the base superfield and B ∈ Γ(Σd, T
∗Σd ⊗ A∗T ∗[d − 1]M) the fiber

superfield. Consider the corresponding lifts by φ where the superfields are given
by

Â := φ−1
x (A), B̂ := (dφx)∗B (73)

The BV action functional SΣd
then lifts to a formal global action.

Definition 6.9 (Formal global split AKSZ action). The formal global action for
the split AKSZ sigma model is given by

Ŝglobal
Σd,x :=

∫

Σd

B̂ � ∧ dΣd
Â

�
+

∫

Σd

Θ̂M,x

(
Â , B̂

)
+

∫

Σd

Rj
�

(
x, Â

)
B̂ j ∧ dMx�.

(74)

Remark 6.10. Note that in this case we get a lift of R as defined in Sect. 6.1
to the space of fields which splits into base and fiber fields by

F̂ MΣd,x
∼= Ω•(Σd) ⊗ TxM ⊕ Ω•(Σd) ⊗ T ∗

x M [d − 1]. (75)

Hence the induced 1-form R̂Σd
is indeed given by

R̂Σd
= Rj

�

(
x, Â

)
B̂j ∧ dMx�, (76)

where Rj
� are the components of R ∈ Ω1

(
M,Der

(
Ŝym(T ∗M)

))
.

The Q-structure is given by the Hamiltonian vector field of Ŝglobal
Σd,x . In-

deed, let R̂Σd
denote the lift of the vector field RΣd

to F̂ MΣd,x and let

ŜAKSZ
Σd,x :=

∫

Σd

B̂� ∧ dΣd
Â

�
+

∫

Σd

Θ̂M,x

(
Â, B̂

)
(77)

ŜΣd,R,x :=

∫

Σd

Rj
�

(
x, Â

)
B̂j ∧ dMx�, (78)

such that

Ŝglobal
Σd,x = ŜAKSZ

Σd,x + ŜΣd,R,x. (79)

Denote by ω̂Σd,x = φ̃∗
xωΣd

the lift of the symplectic form on FMΣd
to a

symplectic form on F̂ MΣd,x. Then we can define a cohomological vector field

Q̂Σd,x on F̂ MΣd,x by

Q̂Σd,x = Q̂AKSZ
Σd,x + R̂Σd

, (80)
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where Q̂AKSZ
Σd,x is the Hamiltonian vector field of

BackŜAKSZ
Σd

: x �→ ŜAKSZ
Σd,x , (81)

and hence we have

ιQ̂Σd,x
ω̂Σd,x = δŜglobal

Σd,x . (82)

This is in fact true if the source manifold is closed, i.e., ∂Σd = ∅. We have
denoted the map by “Back” to indicate the variation of the “background”.

Proposition 6.11. If ∂Σd = ∅, then

dxBackŜAKSZ
Σd

=
{
ŜΣd,R,x,BackŜAKSZ

Σd

}
ω̂Σd,x

, (83)

where dM denotes the de Rham differential on the moduli space space of clas-
sical solutions Mcl

∼= M .

Using the formal global action, we get the following Proposition (see also
Proposition 8.4 for the quantum version)

Proposition 6.12 (dCME). The differential Classical Master Equation for the
formal global split AKSZ action holds:

dxŜglobal
Σd,x +

1

2

{
Ŝglobal

Σd,x , Ŝglobal
Σd,x

}
ω̂Σd,x

= 0. (84)

Definition 6.13 (Formal global split AKSZ sigma model). The formal global
split AKSZ sigma model is given by the AKSZ-BV theory for the quadruple

(
F̂ MΣd,x, Ŝglobal

Σd,x , ω̂Σd,x, Q̂Σd,x

)
. (85)

Remark 6.14. Note that the CME has to be replaced by the dCME as in (84)
in the formal global setting.

7. Pre-observables for AKSZ Theories

7.1. AKSZ Pre-observables

Let Σd be a closed and oriented source d-manifold and for some differential
graded symplectic manifold (N , ωN = dNαN) let

π : E =M×N →M
be a trivial Hamiltonian Q-bundle of degree n over some Hamiltonian Q-
manifold (M, ωM = dMα,QM,ΘM) of degree d − 1. Denote by ΘE ∈ C∞(E)
the Hamiltonian on the total space E and by VE ∈ ker dπ the vertical part of
QE, such that

QE = QM +VE.
Consider the corresponding AKSZ-BV theory with BV manifold given by

(FMΣd
,SΣd

, ωΣd
, QΣd

)



Vol. 21 (2020) Formal Global AKSZ Gauge Observables 2971

as it was constructed in Sect. 3. Let i : Σk ↪→ Σd be the embedding of a closed
oriented submanifold of dimension k ≤ d and let the auxiliary space of fields
be given by

FNΣk
:= MapGrMnf(T [1]Σk,N). (86)

Moreover, consider the transgression maps

TΣk
: Ω•(N) → Ω• (FNΣk

)
, (87)

T E
Σk

: Ω•(E) → Ω• (MapGrMnf(T [1]Σk,E)) (88)

corresponding to the fiber N and the total space E. Define10

p := i∗ : MapGrMnf(T [1]Σd,M)︸ ︷︷ ︸
=:FMΣd

→ MapGrMnf(T [1]Σk,M)︸ ︷︷ ︸
=:FMΣk

.

Furthermore, let d̂Σk
∈ X

(FNΣk

)
⊂ Xvert

(FMΣd
× FNΣk

)
, where Xvert denotes the

space of vertical vector fields, and let

V̂E ∈ Xvert (MapGrMnf(T [1]Σk,E))
be the lift of VE ∈ Xvert(E) such that p∗V̂E ∈ Xvert

(FMΣd
× FNΣk

)
, where

p∗ : C∞ (FMΣk

)
→ C∞ (FMΣd

)
.

Proposition 7.1 ([46]). Consider the data given by

SNΣk
= ιd̂Σk

TΣk
(αN) + p∗T E

Σk
(ΘE), (89)

ωNΣk
= (−1)kTΣk

(ωN), (90)

VEΣk
= d̂Σk

+ p∗V̂E. (91)

Then the quadruple
(FNΣk

,SNΣk
, ωNΣk

,VEΣk

)
(92)

defines a pre-observable for the AKSZ-BV theory as in (85), that is we have

QΣd

(SNΣk

)
+

1

2

{SNΣk
,SNΣk

}
ωNΣk

= 0. (93)

Remark 7.2. This pre-observable is invariant under reparamterizations of Σk

and under diffeomorphism of the ambient manifold Σd. In fact, for (A,B) ∈
FMΣd

×FNΣk
, ϕd ∈ Diff(Σd) and ϕk ∈ Diff(Σk), one can immediately show that

SNΣk
(A,B;ϕd ◦ i ◦ ϕk) = SNΣk

(
ϕ∗

dA, (ϕk)−1B; i
)

(94)

10Note that extending to the case with auxiliary fields F ×F aux, we can extend π to a map

πN = π × idFNΣk

: FMΣd
× FNΣk

→ MapGrMnf (T [1]Σk,E).
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7.2. Formal Global AKSZ Pre-observables

We want to extend the constructions above to a formal global lift by using
methods of formal geometry as in Sect. 6. It turns out that the formal global lift
of the pre-observable constructed in the previous section is not automatically
a pre-observable. In particular, it is spoilt by an obstruction which can be
phrased as an equation that has to be satisfied. Hence we get the following
theorem.

Theorem 7.3. Let
(FMΣd

,SΣd
, ωΣd

, QΣd

)
be the AKSZ-BV theory constructed

as before and let i : Σk ↪→ Σd be a submanifold of Σd. Moreover, consider
constant background fields x ∈ M and y ∈ N. Then its formal global AKSZ
construction

(
F̂ MΣd,x, Ŝglobal

Σd,x , ω̂Σd,x, Q̂Σd,x

)
, (95)

constructed by using a formal exponential map TM → M, together with the
formal global fiber

(
F̂ NΣk,y, Ŝglobal

Σk,y , ω̂NΣk,y = dN α̂NΣk,y, Q̂NΣk,y

)
, (96)

constructed using a formal exponential map TN → N, defines a pre-observable
if and only if

dyŜAKSZ
Σk,y +

1

2

{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂Σk,y

= 0. (97)

Remark 7.4. Moreover, for an exponential map φ : TN → N , we set

ŜAKSZ
Σk,y = φ̃∗

yιd̂Σk
TΣk

(αN)
︸ ︷︷ ︸

=:Ŝkin
Σk,y

+Tφ̃∗
yp∗T E

Σk
(ΘE)︸ ︷︷ ︸

=:Ŝtarget
Σk,y

, (98)

and thus we have a decomposition, similarly as in (79), of the formal global
action as

Ŝglobal
Σk,y = ŜAKSZ

Σk,y + ŜΣk,R,y. (99)

The following Lemma is going to be useful for the proof of Theorem 7.3.

Lemma 7.5. Let Σ be a compact, connected manifold and letM be a differential
graded symplectic manifold. Moreover, let X ∈ X(T [1]Σ), Y ∈ X(M), Ξ ∈
Ω•(M) and denote the lifts of X and Y to the mapping space by X̂ and Ŷ
respectively. Then

L
X̂

TΣ(Ξ) = 0, (100)

LŶ TΣ(Ξ) = (−1)gh(Ŷ ) dim ΣTΣ(LY Ξ). (101)

Proof of Theorem 7.3. First we note that the lift

V̂EΣk,y = d̂Σk
+ φ̃∗

yp∗V̂E (102)
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ofVEΣk
to Xvert

(
F̂ MΣd,x × F̂ NΣk,y

)
, the space of vertical vector fields on the lifted

mapping spaces, is the Hamiltonian vector field for ŜAKSZ
Σk,y , i.e., we have

V̂EΣk,y =
{
ŜAKSZ

Σk,y ,
}

ω̂NΣk,y

. (103)

Indeed, we have

ιd̂Σk
ω̂Σk,y = ιd̂Σk

(−1)kφ̃∗
yTΣk

(ωN) = φ̃∗
yιd̂Σk

δTΣk
(αN)

= φ̃∗
y Ld̂Σk

TΣk
(αN)

︸ ︷︷ ︸
=0

+φ̃∗
yδιd̂Σk

TΣk
(αN) = δŜkin

Σk,y

= δvertŜkin
Σk,y, (104)

where we have used Cartan’s magic formula L = dι + ιd, Lemma 7.5 and the

fact that φ̃∗
yd̂Σk

= d̂Σk
. We have denoted by δvert the vertical part of the de

Rham differential δ on the lifted total mapping space F̂ MΣd,x × F̂ NΣk,y, i.e., in

the fiber direction F̂ NΣk,y. The last equality holds since Ŝkin
Σk,y is constant in the

F̂ MΣd,x direction. Similarly, we have

ιφ̃∗
yp∗V̂E ω̂Σk,y = Tφ̃∗

yp∗ιV̂E(−1)kT E
Σk

(ωN)

= (−1)kTφ̃∗
yp∗T E

Σk
( ιVEωN︸ ︷︷ ︸
=δvertΘE

)

= δvertTφ̃∗
yp∗T E

Σk
(ΘE) = δvertŜtarget

Σk,y . (105)

Moreover, we have

Q̂Σd,x

(
Ŝglobal

Σk,y

)
+

1

2

{
Ŝglobal

Σk,y , Ŝglobal
Σk,y

}
ω̂NΣk,y

= Q̂Σd,x

(
ŜAKSZ

Σk,y

)
+ Q̂Σd,x

(
ŜΣk,R,y

)
+

1

2

{
ŜAKSZ

Σk,y , ŜAKSZ
Σk,y

}
ω̂NΣk,y

+
{
ŜΣk,R,y, ŜAKSZ

Σk,y

}
ω̂NΣk,y︸ ︷︷ ︸

=dyŜAKSZ
Σk,y

+
1

2

{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂NΣk,y

. (106)

The first two terms of the left hand side of (106) are given by

Q̂Σd,x

(
ŜAKSZ

Σk,y

)
= Q̂AKSZ

Σd,x

(
ŜAKSZ

Σk,y

)
+ R̂Σd

(
ŜAKSZ

Σk,y

)

= d̂Σd

(
ŜAKSZ

Σk,y

)
+ φ̃∗

yQ̂M
(
ŜAKSZ

Σk,y

)
+ R̂Σd

(
ŜAKSZ

Σk,y

)
, (107)

Q̂Σd,x

(
ŜΣk,R,y

)
= Q̂AKSZ

Σd,x

(
ŜΣk,R,y

)
+ R̂Σd

(
ŜΣk,R,y

)

= d̂Σd

(
ŜΣk,R,y

)
+ φ̃∗

yQ̂M
(
ŜΣk,R,y

)
+ R̂Σd

(
ŜΣk,R,y

)
.

(108)
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Since Ŝkin
Σk,y and ŜΣk,R,y are constant in direction of F̂ MΣd,x, we get

Q̂Σd,x

(
ŜAKSZ

Σk,y

)
= d̂Σd

(
Ŝtarget

Σk,y

)

︸ ︷︷ ︸
=0

+φ̃∗
yQ̂M

(
Ŝtarget

Σk,y

)
+ R̂Σd

(
Ŝtarget

Σk,y

)
, (109)

Q̂Σd,x

(
ŜΣk,R,y

)
= 0. (110)

Using (107), (108), (109) and (110) we get

Q̂Σd,x

(
Ŝglobal

Σk,y

)
+

1

2

{
Ŝglobal

Σk,y , Ŝglobal
Σk,y

}
ω̂NΣk,y

= dyŜAKSZ
Σk,y +

1

2

{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂NΣk,y

+ φ̃∗
yQ̂M

(
Ŝtarget

Σk,y

)
+ R̂Σd

(
ŜΣk,R,y

)

+
1

2

{
Ŝkin

Σk,y, Ŝkin
Σk,y

}
ω̂NΣk,y

+
{
Ŝkin

Σk,y, Ŝtarget
Σk,y

}
ω̂NΣk,y

+
1

2

{
Ŝtarget

Σk,y , Ŝtarget
Σk,y

}
ω̂NΣk,y

= dyŜAKSZ
Σk,y +

1

2

{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂NΣk,y

+ R̂Σd

(
ŜΣk,R,y

)

+
1

2

{
Ŝkin

Σk,y, Ŝkin
Σk,y

}
ω̂NΣk,y

+ d̂Σk Ŝtarget
Σk,y︸ ︷︷ ︸

=0

+φ̃∗
y

(
Q̂M +

1

2
p∗V̂E

)(
Ŝtarget

Σk,y

)

= dyŜAKSZ
Σk,y +

1

2

{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂NΣk,y

+ R̂Σd

(
ŜΣk,R,y

)

+ (−1)kφ̃∗
yp∗T E

Σk

(
QM(ΘE) +

1

2
VE(ΘE)

)

︸ ︷︷ ︸
=(−1)kφ̃∗

yp∗T E
Σk

(QM(ΘE)+ 1
2

{ΘE,ΘE}ωN )=0 (by definition of Hamiltonian Q-bundle)

= dyŜAKSZ
Σk,y +

1

2

{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂NΣk,y

+ R̂Σd

(
ŜΣk,R,y

)
(111)

Note that R̂Σd
is a vector field on the lifted space F̂ MΣd,x which implies

that R̂Σd

(
ŜΣk,R,y

)
= 0 because ŜΣk,R,y ∈ C∞

(
F̂ MΣd,x × F̂ NΣk,y

)
is constant in

the direction of F̂ MΣd,x and the claim follows. �

Corollary 7.6. An equivalent condition for the formal global AKSZ-BV theory
as in Theorem 7.3 to be a pre-observable is given by

V̂EΣk,y

(
ŜΣk,R,y

)
= ŜΣk,dyR,y. (112)

Proof. Note that we have

dyŜAKSZ
Σk,y +

1

2

{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂NΣk,y

=
{
ŜΣk,R,y, ŜΣkx

}
ω̂NΣk,y

+
1

2

{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂NΣk,y

= V̂EΣk,y

(
ŜΣk,R,y

)
+

1

2
ŜΣk,[R,R],x

︸ ︷︷ ︸
=ŜΣk,dyR,y

, (113)
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where we have used that V̂EΣk,y is the Hamiltonian vector field of ŜAKSZ
Σk,y and

the fact that [12]
{
ŜΣk,R,y, ŜΣk,R,y

}
ω̂NΣk,y

= ŜΣk,[R,R],y. (114)

the last equality (under the braces) follows from the fact that D is a flat

connection on Ŝym(T ∗N) which can be translated into

dyR +
1

2
[R,R] = 0. (115)

Moreover, it is easy to see that ŜΣk,�R,y = �ŜΣk,R,y for any � ∈ R. �

7.3. Formal Global Auxiliary Construction in Coordinates

We want to describe the auxiliary theory as well as its formal global extension
in terms of coordinates. The description follows similarly from the descrip-
tion of the ambient theory as in Sect. 3.2 and its formal global extension as
in Sect. 6.2. Let (vj) be even local coordinates on Σk and consider the cor-
responding odd local coordinates ξj = dΣk

vj for 1 ≤ j ≤ k. Then we can
construct superfield coordinates

Bν(v, ξ) =

k∑

�=1

∑

1≤j1<···<j�≤k

Bν
j1...j�

(v)ξj1 ∧ · · · ∧ ξj�

︸ ︷︷ ︸
=Bν

(�)(v,ξ)

∈
k⊕

�=0

C∞(Σk) ⊗
�∧

T ∗Σk. (116)

associated to local homogeneous coordinates (yν) of N . Note that locally we
have

αN = αNν (y)dNyν ∈ Ω1(N), (117)

ωN =
1

2
ωNν1ν2

(y)dNyν1 ∧ dNyν2 ∈ Ω2(N). (118)

Hence we get

αNΣk
=

∫

Σk

αNν (B)δBν ∈ Ω1
(FNΣk

)
, (119)

ωNΣk
= (−1)k 1

2

∫

Σk

ωNν1ν2
(B)δBν1 ∧ δBν2 ∈ Ω2

(FNΣk

)
, (120)

and thus we get an action for the auxiliary fields as

SNΣk
(A,B; i) =

∫

Σk

αNν (B)dΣk
Bν

+

∫

Σk

ΘE(i∗A,B) ∈ C∞ (FMΣd
× FNΣk

)
, (121)

These expressions can be lifted to the formal global construction. Indeed,

consider a formal exponential map φ : TN → N . Let Â = φ−1
x (A) be the lift
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of A to F̂ MΣd,x and B̂ = φ−1
y (B) be the lift of B to F̂ NΣk,y for x ∈M and y ∈ N .

Then we get

α̂NΣk,y =

∫

Σk

α̂ν

(
B̂
)

δB̂ν ∈ Ω1
(
F̂ NΣk,y

)
, (122)

ω̂NΣk,y = (−1)k 1

2

∫

Σk

ω̂ν1ν2

(
B̂
)

δB̂ν1 ∧ δB̂ν2 ∈ Ω2
(
F̂ NΣk,y

)
, (123)

where α̂Nν and ω̂Nν1ν2
are the coefficients of α̂N ∈ Ω1(TN) and ω̂N ∈ Ω2(TN)

respectively. If we set Θ̂E,y := Tφ̃∗
yΘE, the auxiliary formal global AKSZ action

is then given by

Ŝglobal
Σk,y

(
Â, B̂; i

)
=

∫

Σk

α̂Nν
(
B̂
)

dΣk
B̂ν +

∫

Σk

Θ̂E,y
(
i∗Â, B̂

)

︸ ︷︷ ︸
=ŜAKSZ

Σk,y

+

∫

Σk

(R̂Σk
)ν

(
y, B̂

)
dNyν

︸ ︷︷ ︸
=ŜΣk,R,y

. (124)

7.4. Formal Global Split Auxiliary Construction in Coordinates

If we consider a split AKSZ model with target M = T ∗[d − 1]M , for some
graded manifold M , for the ambient theory associated to Σd, we can consider a
split construction for the auxiliary theory associated to the embedding i : Σk ↪→
Σd. We set N = T ∗[k − 1]N for some graded manifold N . The description is
analogously given by the one of the ambient theory as in Sect. 6.3. Hence we
have

FNΣk
= Map(T [1]Σk, T ∗[k − 1]N), (125)

and choosing a formal exponential map φ : TN → N together with y ∈ N we
get

F̂ NΣk,y = Map(T [1]Σk, T ∗[k − 1]TyN)

∼= Ω•(Σk) ⊗ TyN ⊕ Ω•(Σk) ⊗ T ∗
y N [k − 1].

(126)

Then we can write Â =
(
Â, B̂

)
∈ F̂ MΣd,x and B̂ =

(
α̂, β̂

)
∈ F̂ NΣk,y, thus

we have an auxiliary formal global split AKSZ action given by

Ŝglobal
Σk,y

(
Â, B̂, α̂, β̂; i

)
=

∫

Σk

β̂� ∧ dΣk
α̂� +

∫

Σk

Θ̂E,y
(
i∗Â, i∗B̂, α̂, β̂

)

+

∫

Σk

Rj
� (y, α̂) β̂j ∧ dNy�, (127)

where R ∈ Ω1
(
N,Der

(
Ŝym(T ∗N)

))
.
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8. From Pre-observables to Observables

8.1. AKSZ-Observables

We want to construct the observables for the AKSZ theories out of pre-
obsrvables by integrating out means of auxiliary fields similarly as in Proposi-
tion 5.7. For a submanifold i : Σk ↪→ Σd we set

OΣk
(A,B; i) =

∫

L⊂FΣk

D [B]e
i
�SNΣk

(A,B;i) ∈ C∞ (FMΣd

)
. (128)

There are several things to note. First, OΣk
depends only on the fields in

FMΣd
via the pullback of i : Σk ↪→ Σd, hence QΣd

(OΣk
) = 0 which is consistent

with the definition of an observable. Moreover, the QΣk
-cohomology class of

OΣk
does not depend on deformations of the Lagrangian submanifold L ⊂ FΣk

and is invariant under isotopies of Σk. We get the following Proposition.

Proposition 8.1. Let Diff0(Σk) ⊂ Diff(Σk) be diffeomorphisms on Σk which
are connected to the identity. Then for ϕk ∈ Diff(Σk) we have

OΣk
(A,B; i ◦ ϕk) = OΣk

(A,B; i) + QΣk
-exact. (129)

Proof. Indeed, we have

OΣk
(A,B; i ◦ ϕk) =

∫

L⊂FΣk

D [B]e
i
�SNΣk

(A,B;i◦ϕk)

=

∫

L
D [B]e

i
�SNΣk

(A,(ϕ−1
k )∗B;i)

=

∫

(ϕ−1
k )∗L

(ϕ−1
k )∗D [B]e

i
�SNΣk

(A,B;i)

=

∫

(ϕ−1
k )∗L

D [B]e
i
�SNΣk

(A,B;i)

=

∫

L
D [B]e

i
�SNΣk

(A,B;i) + QΣk
-exact

= OΣk
(A,B; i) + QΣk

-exact, (130)

where we think of
∫
LD [B] to be in fact given by

∫
L

√
μ|L, with μ being the

functional integral measure on FNΣk
. Moreover, we have used the isotopy prop-

erty of ϕk to make sure that L and (ϕ−1
k )∗L are indeed homotopic. �

There is a similar invariance result for diffeomorphisms of the ambient
manifold Σd which is the content of the following Proposition.

Proposition 8.2. For a diffeomorphism ϕd ∈ Diff(Σd) we get

OΣk
(A,B;ϕd ◦ i) = OΣk

(ϕ∗
dA,B; i). (131)

This is indeed true since OΣk
only depends of the ambient field A via the

pullback by i.
Another important property is that the correlator of an observable should

be invariant under ambient isotopies.



2978 N. Moshayedi Ann. Henri Poincaré

Proposition 8.3. For ϕd ∈ Diff0(Σd) we have

〈OΣk
(A,B;ϕd ◦ i)〉 = 〈OΣk

(A,B; i)〉. (132)

Proof. Indeed, we have

〈OΣk
(A,B;ϕd ◦ i)〉 =

∫

L⊂FΣk

D [A]OΣk
(A,B;ϕd ◦ i)e

i
�SΣd

(A)

=

∫

L
D [A]OΣk

(ϕ∗
dA,B; i)e

i
�SΣd

(A)

=

∫

ϕ∗
dL

(ϕ∗
d)∗D [A]OΣk

(A,B; i)e
i
�SΣd

((ϕ−1)∗A)

=

∫

ϕ∗
dL

D [A]OΣk
(A,B; i)e

i
�SΣd

(A)

=

∫

L
D [A]OΣk

(A,B; i)e
i
�SΣd

(A)

= 〈OΣk
(A,B; i)〉, (133)

where we have used Proposition 8.2 and that the AKSZ action SΣd
(see Re-

mark 7.2) and the functional integral measure D [A] are invariant under dif-
feomorphisms for our theory is topological. �

8.2. Formal Global AKSZ-Observables

The construction above can be extended to a formal global one if we start with
a formal global pre-observable. Then we have

ÔΣk,y

(
Â, B̂; i

)
=

∫

L̂⊂F̂ NΣk,y

D
[
B̂
]
e

i
� Ŝglobal

Σk,y (Â,B̂;i) ∈ C∞
(
F̂ MΣd

)
. (134)

If we start with a split AKSZ theory we get

ÔΣk,y

(
Â, B̂; i

)

=

∫

L̂⊂F̂ NΣk,y

D [α̂]D
[
β̂
]
e

i
� Ŝglobal

Σk,y (Â ,B̂ ,α̂ ,β̂ ;i) ∈ C∞
(
F̂ MΣd

)
. (135)

We have the following proposition (quantum version of (84)).

Proposition 8.4 (dQME). The differential quantum master equation (dQME)
for the formal global split AKSZ-observable holds:

dyÔΣk,y − (−1)di�ΔÔΣk,y = 0. (136)

Proof. Note that we have

dyÔΣk,y = − i

�

∫

L̂⊂F̂ NΣk,y

D [α̂]D
[
β̂
]

e
i
� Ŝglobal

Σk,y (Â ,B̂ ,α̂ ,β̂ ;i)
{
ŜΣk,R,y, ŜAKSZ

Σk,y

}
ωNΣk,y

, (137)
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which we can write as

− i

�

∫

L̂⊂F̂ NΣk,y

D [α̂]D
[
β̂
]
e

i
� Ŝglobal

Σk,y (Â ,B̂ ,α̂ ,β̂ ;i)
{
ŜΣk,R,y, ŜAKSZ

Σk,y

}
ωNΣk,y

= −Δ

∫

L̂⊂F̂ NΣk,y

D [α̂]D
[
β̂
]
e

i
� Ŝglobal

Σk,y (Â ,B̂ ,α̂ ,β̂ ;i)ŜΣk,R,y (138)

if we assume that ΔŜΣk,R,y = 0, which is true, e.g., if the Euler characteristic
of Σk is zero or if divTφ∗μ R = 0, where μ is some volume form on N . Note
that dyTφ∗μ = −LRTφ∗μ which means that divTφ∗μ R = 0 if and only if
dyTφ∗μ = 0. For any volume element μ it is always possible to find a formal
exponential map φ such that the latter condition is satisfied. Note that this is
then also translated into the differential quantum master equation

dyŜglobal
Σk,y +

1

2

{
Ŝglobal

Σk,y , Ŝglobal
Σk,y

}
ω̂Σk,y

− i�ΔŜglobal
Σk,y = 0, (139)

and by the assumption ΔŜglobal
Σk,y = 0, we obtain the differential CME as in

(84). Hence the claim follows. �

Remark 8.5. One can check that Q̂Σd,x

(
ÔΣk,y

)
= 0 and that Proposition 8.1

and 8.2 also hold for the formal global extension if we indeed start with a formal
global pre-observable, i.e., that the assumption of Theorem 7.3 is satisfied.

Remark 8.6. The dQME as in (136) can be thought of as a descent equation
for different form degrees. In fact we have

δ̂BVÔΣk,y = (−1)ddyÔΣk,y (140)

since ÔΣk,y is a formal global observable. We have set δ̂BV = Q̂Σd,x − i�Δ.

Remark 8.7. Note that if N is a point, we have VE = 0, ωNΣk
= 0 and ΘE ∈

C∞(M). The associated pre-observable is then given by

FNΣk
= pt, VEΣk

= 0, ωNΣk
= 0, SNΣk

(A) =

∫

Σk

ΘE(i∗A). (141)

Hence, since there are no auxiliary fields B, the constructed observable
is given by

OΣk
(A; i) = e

i
�
∫
Σk

ΘE(i∗A)
. (142)

This can be easily lifted to a formal global pre-observable by

F̂ NΣk,y = pt, V̂EΣk,y = 0, ω̂NΣk,y = 0,

Ŝglobal
Σk,y

(
Â
)

=

∫

Σk

Θ̂E,y
(
i∗Â

)
, (143)

Thus, we get a formal global observable by

ÔΣk,y

(
Â; i

)
= e

i
�
∫
Σk

Θ̂E,y(i∗Â). (144)
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8.3. Loop Observables

Let us consider the case where S1 is embedded into Σd, i.e., i : Σ1 := S1 ↪→ Σd

and assume thatN is given by an ordinary symplectic manifold with symplectic
structure ωN = dNαN , which means that N is concentrated in degree zero. Let
σ denote the coordinate on Σ1. Then we can write the auxiliary field as

Bν(σ,dΣ1
σ) = Bν

(0)(σ) + Bν
(1)dΣ1

σ, (145)

and hence we get a pre-observable by

FNΣ1
= MapGrMnf(T [1]Σ1,N), (146)

ωNΣ1
= −

∮

Σ1

ωNν1ν2

(B(0)

)
δBν1

(0) ∧ δBν2

(1)

+

∮

Σ1

1

2
Bν3

(1)∂ν3
ωNν1ν2

(B(0)

)
δBν1

(0) ∧ δBν2

(0), (147)

SNΣ1
=

∮

Σ1

αNν
(B(0)

)
dΣ1
Bν

(0) +

∮

Σ1

ΘE(i∗A,B), (148)

where ωNν1ν2
are the coefficients of ωN and αNν are the coefficients of αN . Note

that in this setting we have

FNΣ1
=

{(B(0),B(1)

) ∣∣∣B(0) : Σ1 → N , B(1) ∈ Γ
(
Σ1, T

∗Σ1 ⊗ B∗
(0)T

∗N
)

[−1]
}

.

(149)

Hence we can construct the observable as

OΣ1
(A; i) =

∫

L
D

[B(0)

]
e

i
�
∮
Σ1

αNν (B(0))dΣ1
B(0)+

i
�
∮
Σ1

ΘE(i∗A,B(0)), (150)

where we have chosen the natural Lagrangian submanifold

L = MapMnf(Σ1,N) ⊂ FNΣ1
, (151)

which is obtained by setting all odd variables B(1) to zero.

Remark 8.8 (Bohr–Sommerfeld). If N is a differential graded symplectic man-
ifold of degree different from zero, we know that the symplectic form ωN is
always exact since we can write it as

ωN = dN(ιEωN),

(see [49]) where E is the Euler vector field. For the degree zero case, the
symplectic form does not automatically have a primitive 1-form and hence
one can not immediately define Skin

Σ1
. However, one can also assume that ωN

satisfies the Bohr–Sommerfeld condition, which says that
ωN
2π

∈ H2(N , Z).

Then the primitive 1-form can be understood as a Hermitian line bundle
over N endowed with a U(1)-connection ∇N such that its curvature is given
by (∇N)2 = ωN . Thus we can define

e
i
�Skin

Σ1
(B)
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to be given by the holonomy of
(B(0)

)∗ ∇N around Σ1. Using Stokes’ theorem
we get

Skin
Σ1

(B) =

∫

D

(
Bext

(0)

)∗
ωN , (152)

where D is a disk with ∂D = Σ1 and Bext
(0) is any extension of B(0) to D.

Remark 8.9. This construction can be obviously extended to the formal global
case. The case of a dimension 1 submanifold gives the same auxiliary theory
as for the case when our theory is split.

8.4. Formal Global Loop Observables

The following proposition is an extension of Proposition 5 in [46] to the formal
global case.

Proposition 8.10. Let (N , ωN) be a symplectic manifold and assume that it
can be geometrically quantized to a complex vector space H, the state space,
and that the Hamiltonian ΘE ∈ C∞(E) can be quantized to an operator valued
function ΘE ∈ C∞(M) ⊗ End(H). Moreover, for a formal exponential map

φ : TM→M, let Θ̂E,x := Tφ̃∗
xΘE and assume that

Q̂M
(
Θ̂E,x

)
+ R̂Σd

(
Θ̂E,x

)
+ i�

(
Θ̂E,x

)2

= 0 (153)

for x ∈M. Then for Σ1 := S1 we get that

ÔΣ1,x = TrH P exp

(
i

�

∮

Σ1

Θ̂E,x
(
i∗Â

))
(154)

is a formal global observable, where we have denoted by TrH the trace map on
H and P exp denotes the path-ordered exponential.

Remark 8.11. Note that (153) is the formal global quantum version of (28).

Proof of Proposition 8.10. Let γ : Σ1 := [0, 1] → Σd be a path in Σd which is
parametrized by t ∈ [0, 1]. Denote by

ψ̂ := Θ̂E,x
(
γ∗Â

)
∈ Ω•([0, 1]) ⊗ C∞

(
F̂ MΣd,x

)
⊗ End(H).

Moreover denote by ψ̂(0)(t) and ψ̂(1)(t,dt) the 0- and 1-form part of ψ̂. Then,
for the 1-form part, we get

Ŵ γ
Σ1,x = P exp

(
i

�

∫ 1

0

ψ̂(1)

)

= lim
N→∞

←−−−−∏

0≤r≤N

(
idH +

i

�
ι 1

N
∂
∂t

ψ̂(1)

( r

N
,dt

))
∈ C∞

(
F̂Σd,x

)
⊗ End(H)

(155)
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Then we get

Q̂Σd,x

(
Ŵ γ

Σ1,x

)
= −i�

∫ 1

0

P exp

(
i

�

∫ 1

t

ψ̂ (1)

)
Q̂Σd,x

(
ψ̂ (t, dt)

)
P exp

(
i

�

∫ t

0

ψ (1)

)

= −i�
∫ 1

0

P exp

(
i

�

∫ 1

t

ψ̂ (1)

)

(
dt

∂

∂t
ψ̂ (0)(t) − i�

[
ψ̂ (0)(t), ψ̂ (1)(t, dt)

])
P exp

(
i

�

∫ t

0

ψ̂ (1)

)

= −i� lim
N→∞

N−1∑

�=0

←−−−−∏

�<r<N

(
idH +

i

� ι 1
N

∂
∂t

ψ̂ (1)

( r

N
, dt

))

×
(

ψ̂ (0)

(
� + 1

N

)(
idH +

i

� ι 1
N

∂
∂t

ψ̂ (1)

(
�

N
, dt

))

−
(

idH +
i

� ι 1
N

∂
∂t

ψ̂ (1)

(
�

N
, dt

))
ψ̂ (0)

(
�

N

))

×
←−−−∏

0≤r<�

(
idH +

i

� ι 1
N

∂
∂t

ψ̂ (1)

( r

N
, dt

))

= −i�
(
ψ̂ (0)(1)Ŵ γ

Σ1,x − Ŵ γ
Σ1,xψ̂ (0)(0)

)
. (156)

We have used (154), which gives us

Q̂Σd,x

(
ψ̂
)

= dΣ1
ψ̂ − i�

[
ψ̂, ψ̂

]
, (157)

where [ , ] denotes the commutator of operators. Now if Σ1 := S1 we have
γ(0) = γ(1), and thus we get

Q̂Σd,x

(
ÔΣ1,x

)
= TrH Q̂Σd,x

(
Ŵ γ

Σ1,x

)

= −i� TrH
[
Θ̂E,x

(
Â(0)(γ(0))

)
, Ŵ γ

Σ1,x

]
= 0, (158)

where Â(0) denotes the degree zero component of Â. �

Remark 8.12. The construction in Proposition 8.10 does not require ωN to be
exact. It is in fact enough to require that ωN satisfies the Bohr–Sommerfeld
condition as discussed in Remark 8.8. This is necessary for the assumption
that N can be geometrically quantized.

8.5. Formal Global Loop Observables for the Poisson Sigma Model

The Poisson sigma model is an example of a 2-dimensional AKSZ theory which
is split as in Definition 6.8. Let M be a Poisson manifold with Poisson bivector

π ∈ Γ
(∧2

TM
)
. Moreover, consider a 2-dimensional source Σ2. Let (x, p) be

base and fiber coordinates on T ∗[1]M . Then we can define a differential graded
symplectic manifold as the target of the AKSZ theory by the data
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M = T ∗[1]M, (159)

QM =

〈
π(x), p

∂

∂x

〉
+

1

2

〈
∂

∂x
π(x), (p ∧ p) ⊗ ∂

∂p

〉
, (160)

ωM = 〈δp, δx〉, (161)

αM = 〈p, δx〉, (162)

ΘM =
1

2
〈π(x), p ∧ p〉. (163)

The corresponding 2-dimensional AKSZ-BV theory is given by the data

FΣ2
= MapGrMnf(T [1]Σ2, T

∗[1]M)

∼= Ω•(Σ2) ⊗ TxM ⊕ Ω•(Σ2) ⊗ T ∗
x M [1] � (X,η), (164)

ωΣ2
=

∫

Σ2

〈δη, δX〉, (165)

SΣ2
=

∫

Σ2

〈η,dΣ2
X〉 +

1

2

∫

Σ2

〈π(X),η ∧ η〉. (166)

Choosing a formal exponential map φ : TM → M together with a back-
ground field x : T [1]Σ2 → M , the formal global action for the Poisson sigma
model is given by

Ŝglobal
Σ2,x

(
X̂, η̂

)
=

∫

Σ2

η̂� ∧ dΣ2
X̂

�
+

1

2

∫

Σ2

(
Tφ̃∗

xπ
)ij (

X̂
)

η̂i ∧ η̂j

+

∫

Σ2

Rj
�

(
x, X̂

)
η̂j ∧ dMx�. (167)

We want to construct a formal global Wilson loop like observables using
the Poisson sigma model toegtehr with an auxiliary theory for an embedding
i : Σ1 := S1 ↪→ Σ2. Consider an exact symplectic manifold (N , ωN = dNαN).
We can construct a vertical vector field V on the trivial bundle N × M → N
which can be viewed as a map N → X(M) with the property

1

2
{V,V}ωN + [π,V]SN + R ∧V = 0,

where [ , ]SN denotes the Schouten–Nijenhuis bracket defined on polyvector
fields on M . We have a degree 0 Hamiltonian Q-bundle structure on

T ∗[1]M ×N → T ∗[1]M

with fiber N endowed with the structure

VE = 〈p, {V, }ωN 〉, (168)

ΘE = 〈p,V〉, (169)

where E = T ∗[1]M ×N . If we use the notation of Sect. 8.3, we can associate a
pre-observable to the Poisson sigma model given by the data (146) and (147)
together with the auxiliary action

SNΣ1
(X,η,B; i) =

∮

Σ1

αNν (B)dΣ1
Bν +

∮

Σ1

〈i∗η,V(i∗X,B)〉. (170)
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Choosing a formal exponential map φ : TN → N together with local
coordinates we can lift this to a formal global auxiliary action

Ŝglobal
Σ1,y

(
X̂, η̂, B̂; i

)
=

∮

Σ1

αNν
(
B̂
)

dΣ1
B̂ν +

∮

Σ1

Tφ̃∗
y〈i∗η,V(i∗X,B)〉

+

∮

Σ1

(R̂Σ1
)ν

(
y, B̂

)
dNyν . (171)

The corresponding auxiliary formal global observable is given by

ÔΣ1,y

(
X̂, η̂; i

)
=

∫

L̂
D

[
B̂(0)

]
e

i
� Ŝglobal

Σ1,y (X̂ ,η̂ ,B̂(0);i), (172)

where we use the gauge-fixing Lagrangian

L̂ = MapMnf(Σ1, TyN) ⊂ MapGrMnf(T [1]Σ1, TyN) ∼= Ω•(Σ1) ⊗ TyN .(173)

If we assume that (N , ωN) can be geometrically quantized to a space of
states H and V is quantized to an operator-valued vector fieldV ∈ End(H)⊗
X(M) such that [π,V]SN + R ∧V + i�V ∧V = 0, then we get that

ÔΣ1,x

(
X̂, η̂; i

)
= TrH P exp

(
i

�

∮

Σ1

̂〈i∗η,V(i∗X)〉
)

, (174)

which is, by Proposition 8.10, indeed a formal global observable. Here we have
chosen an exponential map for the base of the target of the Poisson sigma
model TM → M with background field x ∈ M .

9. Wilson Surfaces and Their Formal Global Extension

9.1. BF Theory and Wilson Surfaces

Let G be a Lie group and denote by g its Lie algebra. Moreover, consider
a principal G-bundle P over some d-manifold Σd and construct the adjoint
bundle of P , denoted by adP , given as the frame bundle P ×Ad g with re-
spect to the adjoint representation Ad: G → Aut(g) and let ad∗P denote its
coadjoint bundle. Let A be the affine space of connection 1-forms on P and
G the group of gauge transformations. For a connection A ∈ A , let dA be
the covariant derivative on Ω•(Σd, adP ) and Ω•(Σd, ad∗P ). Let A ∈ A and
B ∈ Ωd−2(M, ad∗P ) and define the BF action by

S(A,B) :=

∫

Σd

〈B,FA〉, (175)

where 〈 , 〉 denotes the extension of the adjoint and coadjoint type for the
canonical pairing between g and g∗ to differential forms.

Remark 9.1 (Abelian BF theory). The abelian BF action, i.e., the action for
the case where g = R, in fact arises as the unperturbed part of many different
AKSZ theories such as the Poisson sigma model or Chern–Simons theory. In
fact, for the abelian case we have (A,B) ∈ Ω•(Σd)[1]⊕Ω•(Σd)[d−1] such that
FA = dA and thus we get an action S =

∫
Σd

B ∧ dA.
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The solutions to the Euler–Lagrange equations δS = 0 for S defined as
in (226) are given by

Mcl =
{
(A,B) ∈ A × Ωd−2(Σd, ad∗P )

∣∣FA = 0,dAB = 0
}

(176)

Remark 9.2. One can check that the BF action is invariant under the action
of

G̃ := G � Ωd−3(Σd, ad∗ P ), (177)

where G acts on Ωd−3(Σd, ad∗ P ) by the coadjoint action. For (g, σ) ∈ G̃ and
(A,B) ∈ A × Ωd−2(Σd, ad∗ P ) we have an action

A �→ Ag, B �→ B(g,σ) = Ad∗
g−1 B + dAgσ. (178)

It is then easy to check that S(Ag, B(g,σ)) = S(A,B).

Consider an embedded submanifold i : Σd−2 ↪→ Σd and consider the pull-
back bundle of P by i according to the diagram

i∗P P

Σd−2 Σd
i

We can now formulate an important type of classical action which is
important for the study of higher-dimensional knots [27].

Definition 9.3 (Wilson surface action). The Wilson surface action is given by

W (α, β,A,B; i) :=

∫

Σd−2

〈α,di∗Aβ + i∗B〉, (179)

where α ∈ Ω0(Σd−2, ad i∗P ) and β ∈ Ωd−3(Σd−2, ad∗ i∗P ).

Definition 9.4 (Wilson surface observable). The Wilson surface observable is
given by

WΣd−2
(A,B; i) :=

∫
D [α]D [β]e

i
� W (α,β,A,B;i) (180)

Remark 9.5. The expectation values of Wilson surface observables in fact give
certain higher-dimensional knot invariants [26]. These invariants are based on
the construction of invariants by Bott [14] giving the generalization to a family
of isotopy invariants for long knots Rn ↪→ Rn+2 for odd n ≥ 3, which are based
on constructions involving combinations of configuration space integrals. In
[57] it was proven that these invariants are of finite type for the case of long
ribbon knots and that they are related to the Alexander polynomial for these
type of knots. Further generalizations based on this construction, in particular
for rectifiable knots, have been given in [43,44].
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9.2. BV Formulation of BF Theory

We can consider BF theory in terms of its BV extension. The BV space of
fields is given by

FΣd
= Ω•(Σd, ad P )[1] ⊕ Ω•(Σd, ad∗ P )[d − 2], (181)

where A = Ω1(Σd, ad P ). We will denote the superfields in FΣd
by (A,B).

Note that there is an induced Lie bracket [[ , ]] on Ω•(Σd, ad P )[1] which is
induced by the Lie bracket on g.

Remark 9.6. If we consider local coordinates on g with corresponding basis
(ei), we have

[[a, b]] = (−1)gh(a) deg(b)aibjfk
ijek, (182)

where fk
ij denotes the structure constants of g.

Moreover, for A ∈ Ω•(Σd, ad P )[1] we get the curvature

F A = FA0
+ dA0

a +
1

2
[[a,a]], (183)

where A0 is any reference connection and a := A − A0 ∈ Ω•(Σd, ad P )[1].

Definition 9.7 (BV action for BF theory). The BV action for BF theory is
defined by

SΣd
(A,B) =

∫

Σd

〈〈B,F A 〉〉, (184)

where 〈〈 , 〉〉 is the extension to forms of the adjoint and coadjoint type of the
canonical pairing between g and g∗. For two forms a, b we have

〈〈a, b〉〉 = (−1)gh(a) deg(b)〈a, b〉, (185)

We can see that

FΣd
= T ∗[−1]Ω•(Σd, ad P )[1], (186)

hence we have a canonical symplectic structure ωΣd
on FΣd

. Similarly as before,
let us denote the odd Poisson bracket induced by ωΣd

by { , }ωΣd
and note

that SΣd
satisfies the CME

{SΣd
,SΣd

}ωΣd
= 0. (187)

The cohomological vector field QΣd
is given as the Hamiltonian vector

field of SΣd
, thus QΣd

= {SΣd
, }ωΣd

. Note that

QΣd
(A) = (−1)dF A , QΣd

(B) = (−1)ddAB. (188)

If we choose a volume element μ which is compatible with ωΣd
, we can

define the BV Laplacian by

Δ: f �→ 1

2
divμ{f, }ωΣd

. (189)

Then we can show that the QME holds:

δBVSΣd
= {SΣd

,SΣd
}ωΣd

− 2i�ΔSΣd
= 0. (190)
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This is in fact true since ΔSΣd
= 0. Moreover, as expected, we have

δ2
BV = 0.

9.3. Formal Global BF Theory from the AKSZ Construction

Let us consider the case of abelian BF theory. Note that in this case the Wilson
surface action is given by

W (α, β,A,B; i) :=

∫

Σd−2

α(dβ + i∗B), (191)

where d is the de Rham differential on R. Solving the Euler–Lagrange equations
for δW = 0, we get that the ciritical points are solutions to

dα = 0, (192)

dβ + i∗B = 0. (193)

We want to deal with B perturbatively, that means we can consider
solutions to dα = dβ = 0 instead and hence we look at solutions of the form
α = const and β = 0. This means that the constant field α is going to take
the place of the background field. The Wilson surface observable is then given
by

WΣd−2
(A,B; i) =

∫
D [α]D [β]e

i
�
∫
Σd−2

αdβ
∫

x∈R
μ(x)e

i
� x

∫
Σd−2

i∗B
, (194)

where μ is a volume element on the moduli space of classical solutions for the
auxiliary theory which is given by

Mcl =
{
(α, β) ∈ Ω0(Σd−2) ⊕ Ωd−3(Σd−2)

∣∣α = const, β = 0
} ∼= R. (195)

By abbuse of notation we will also denote the perturbation of α around
x ∈ R by α. Moreover, if we assume that P is a trivial bundle, not for the
abelian case, we get

FΣd
∼= Ω•(Σd) ⊗ g[1] ⊕ Ω•(Σd) ⊗ g∗[d − 2] (196)

∼= MapGrMnf(T [1]Σd, g[1] ⊕ g∗[d − 2]). (197)

Remark 9.8. The assumption that P is trivial is similar to a formal lift, whereas
the background field is given by a constant critical point of the form (x, 0) with
constant background field x : T [1]Σd → g[1] ⊕ g∗[d − 2]. In fact, it induces a
linear split theory as in Definition 6.7.

Remark 9.9 (CE complex and L∞-structure). Let g be a Lie algebra and con-
sider the differential graded algebra

CE(g) :=

( •∧
g∗,dCE

)
∼= (C∞(g[1]), Q) . (198)

This is called the Chevalley–Eilenberg algebra of g [28]. The real valued
Chevalley–Eilenberg complex is given by

0 → Hom

(
0∧

g, R
)

dCE−−−→ Hom

(
1∧

g, R
)

dCE−−−→ Hom

(
2∧

g, R
)

dCE−−−→ · · · (199)
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endowed with the Chevalley–Eilenberg differential

dCE : Hom

(
n∧

g, R

)
→ Hom

(
n+1∧

g, R

)

given by

(dCEF )(X1, . . . , Xn+1)

:=
n+1∑

j=1

(−1)j+1XiF (X1, . . . , X̂j , . . . , Xn+1)

+
∑

1≤j<k≤n+1

(−1)j+kF ([Xj ,Xk],X1, . . . , X̂j , . . . , X̂k, . . . , Xn+1), (200)

where the hat means that these elements are omitted. Denote by (ξi) the
coordinates on g[1] of degree +1. Then Q has to be of the form

Q = −1

2
fk

ijξ
iξj ∂

∂ξk
,

where fk
ij are the structure constants of g. Note that a function F ∈

Hom (
∧n

g, R) corresponds to an element in C∞
n (g[1]) such that the Chevalley–

Eilenberg differential is indeed mapped to Q under the isomorphism

F (Xj1 ∧ . . . ∧ Xjn
) =: Fj1...jn

←→ 1

n!
ξj1 · · · ξjnFj1...jn

.

In fact, for a graded vector space g =
⊕

k∈Z gk, the differential graded
algebra (C∞(g), Q) corresponds to an L∞-algebra which is actually given by
the Chevalley–Eilenberg algebra CE(g[−1]) of the L∞-algebra g[−1]. The dual
of the cohomological vector field Q is given by a codifferential D of homogenous

degree +1 on Ŝym(g) ∼= Ŝym(g[−1]). The isomorphism is induced by the shift

isomorphism s : g
∼−→ g[1]. The codifferential D decomposes into a sum D =∑

j≥1 D̄j such that the restrictions

Dj := D̄j

∣∣
Ŝym

j
(g)

: Ŝym
j
(g) → g

satisfy

�j = (−1)
1
2 j(j−1)+1s−1 ◦ Dj ◦ s⊗j , ∀j ≥ 1.

Note that since Q2 = 0, we get D2 = 0. Such a codifferential induces a
classical Grothendieck connection as in Sect. 6.1.

Remark 9.10 (L∞-structure on Ω•). If g is endowed with a (curved) L∞-
structure, we can view

Ω•(Σd, g) =
⊕

r+j=k
0≤r≤d

j∈Z

Ωr(Σd) ⊗ gj
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as a (curved) L∞-algebra. The L∞-structure arises as the linear extension of
the higher brackets

�̂1(α1 ⊗ X1) := dΣd
α1 ⊗ X1 + (−1)deg(α1)α1 ⊗ �1(X1) (201)

�̂n(α1 ⊗ X1, . . . , αn ⊗ Xn) := (−1)n
∑n

j=1 deg(αj)+
∑n−2

j=0 deg(αn−j)
∑n−j−1

k=1 deg(Xk)

× (α1 ∧ · · · ∧ αn) ⊗ �n(X1, . . . , Xn) (202)

for n ≥ 2, α1, . . . , αn ∈ Ω•(Σd) and X1, . . . , Xn ∈ g. If g is cyclic, and Σd is
compact, oriented without boundary, there is a natural cyclic inner product
on Ω•(Σd, g) given by

〈α1 ⊗ X1, α2 ⊗ X2〉Ω•(Σd,g)

= (−1)deg(α2) deg(X1)

∫

Σd

α1 ∧ α2〈X1,X2〉g (203)

for α1, α2 ∈ Ω•(Σd) and X1,X2 ∈ g.

9.4. BV Extension of Wilson Surfaces

We will now construct the BV extended observable for the auxiliary codimen-
sion 2 theory in the case where P is a trivial bundle. Let

FΣd−2
∼= Ω•(Σd−2) ⊗ g[1] ⊕ Ω•(Σd−2) ⊗ g∗[d − 2] (204)

endowed with the symplectic form ωΣd−2
which induces the corresponding

BV bracket { , }ωΣd−2
. For auxiliary superfields (α,β) ∈ FΣd−2

and ambient

superfields (A,B) ∈ FΣd
we have the following definition:

Definition 9.11 (BV extended Wilson surface action). The BV extended Wilson
surface action is given by

W 0
Σd−2

(α,β,A,B; i) =

∫

Σd−2

〈〈α,di∗Aβ + i∗B〉〉. (205)

Remark 9.12. As it was shown in [27], we can extend W 0
Σd−2

, regarded as a
function on embeddings i : Σd−2 ↪→ Σd, to a form-valued function W Σd−2

on
these embeddings by setting

W Σd−2
(α,β,A,B; i) := π∗〈〈α,dev∗Aβ + ev∗B〉〉, (206)

where ev denotes the evaluation map of embeddings Σd−2 ↪→ Σd and π∗ de-
notes the integration along the fiber Σd−2.

Proposition 9.13 ([27]). The Wilson surface action satisfies a modified version
of the dCME, i.e., we have

dW Σd−2
− (−1)d

{
W Σd−2

,W Σd−2

}
ωΣd

− 1

2

{
W Σd−2

,W Σd−2

}
ωΣd−2

= 0

(207)

Remark 9.14. Proposition 9.13 is a consequense of the fact that

d

∫

Σd−2

= (−1)d

∫

Σd−2

d

and (188).
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Denote by ΔΣd−2
the BV Laplacian for the auxiliary theory. Then we get

the following proposition.

Proposition 9.15 ([27]). Define the vector field

QΣd−2
=

{
W Σd−2

,
}

ωΣd−2

, (208)

which acts on generators by

QΣd−2
(α) = (−1)ddev∗Aα, QΣd−2

(β) = (−1)d(dev∗Aβ + ev∗B).

(209)

Assume that the formal measure D [α]D [β] is invariant with respect to
the vector fields (209). Then we have

dW Σd−2
− (−1)d

(
δBVW Σd−2

+
1

2

{
W Σd−2

,W Σd−2

}
ωΣd

)

+
1

2

({
W Σd−2

,W Σd−2

}
ωΣd−2

− 2i�ΔΣd−2
W Σd−2

)
= 0 (210)

Remark 9.16. Note that the assumption of invariance of the formal measure
implies that ΔΣd−2

W Σd−2
= 0.

Definition 9.17 (BV extended Wilson surface observable). We define the BV
extended Wilson surface observable as

WΣd−2
(A,B; i) =

∫
D [α]D [β]e

i
� W Σd−2

(α ,β ,A ,B ;i) (211)

9.5. Formulation by Hamiltonian Q-Bundles

LetM = g[1]⊕g∗[d−2]. Denote by x : g[1] → g the degree 1 g-valued coordinate
on g[1] and let x∗ : g∗[d − 2] → g∗ be the g∗-valued coordinate on g∗[d − 2] of
degree d − 2.

Then we can consider a trivial Hamiltonian Q-bundle over M given by
the fiber data

N = g ⊕ g∗[d − 3], (212)

VE =

〈
[x, y],

∂

∂y

〉
+

〈
ad∗

x y∗,
∂

∂y∗

〉
+ (−1)d

〈
x∗,

∂

∂y∗

〉
, (213)

ωN = 〈δy∗, δy〉 , (214)

αN = 〈y∗, δy〉, (215)

ΘE = 〈y∗, [x, y]〉 + 〈x∗, y〉, (216)

where y is the g-valued coordinate of degree 0 on g and y∗ is the g∗-valued
coordinate of degree d − 3 on g∗[d − 3]. For an embedding i : Σd−2 ↪→ Σd we
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get the auxiliary theory

FNΣd−2
= Ω•(Σd−2) ⊗ g ⊕ Ω•(Σd−2) ⊗ g∗[d − 3], (217)

ωNΣd−2
= (−1)d

∫

Σd−2

〈δy∗, δy〉, (218)

SNΣd−2
=

∫

Σd−2

〈y∗,dΣd−2
y〉 +

∫

Σd−2

〈y∗, [i∗A,y]〉 +

∫

Σd−2

〈i∗B,y〉. (219)

Note thatM is a differential graded symplectic manifold with the follow-
ing data:

QM =

〈
1

2
[x, x],

∂

∂x

〉
+

〈
ad∗

x x∗,
∂

∂x∗

〉
, (220)

ωM = 〈δx∗, δx〉, (221)

αM = 〈x∗, δx〉, (222)

ΘM =
1

2
〈x∗, [x, x]〉 . (223)

Hence the ambient theory is given by

FMΣd
= Ω•(Σd) ⊗ g[1] ⊕ Ω•(Σd) ⊗ g∗[d − 2] � (A,B), (224)

ωΣd
=

∫

Σd

〈δB, δA〉, (225)

SΣd
=

∫

Σd

〈B,F A 〉 =

∫

Σd

〈
B,dΣd

A +
1

2
[A,A]

〉
. (226)

Note that (226) is exactly the BF action as in Definition 9.7. In the case
of abelian BF theory, i.e., when g = R, we get that QM = 0, ΘM = 0 and the
ambient theory

FMΣd
= Ω•(Σd)[1] ⊕ Ω•(Σd)[d − 2], (227)

ωΣd
=

∫

Σd

δB ∧ δA, (228)

SΣd
=

∫

Σd

B ∧ dΣd
A. (229)

Remark 9.18. The constructions presented in this paper are expected to ex-
tend to manifolds with boundary. Using the constructions as in [25] together
with the quantum BV-BFV formalism [21,23], one can show how the formal
global observables for split AKSZ sigma models on the boundary induce a
more general gauge condition as the dQME which is called modified differ-
ential Quantum Master Equation (mdQME). This condition also handles the
boundary part which arises as the ordered standard quantization Ω of the
boundary action S∂ of dgeree +1, induced by the underlying BFV manifold,
plus some higher degree terms. The mdQME is then given as some annihi-
lation condition for the formal global boundary observable O∂ . In fact, it is
annihilated by the quantum Grothendieck BFV operator ∇G := d − i�Δ + i

�Ω

(see [24,25]), which means that ∇GO∂ = 0.
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We give a detailed explicit computation of weights of Kontsevich
graphs which arise from connection and curvature terms within
the globalization picture as in [12] for the special case of sym-
plectic manifolds. We will show how the weights for the curvature
graphs can be explicitly expressed in terms of the hypergeometric
function as well as by a much simpler formula combining it with
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1. Introduction

1.1. Motivation

In [17] Kontsevich proved that the differential graded Lie algebra (DGLA)1

of multivector fields on an open subset M ⊂ Rd is L∞-quasi-isomorphic to
the DGLA2 of multidifferential operators on functions on M , i.e. there exists
an L∞-quasi-isomorphism

(1) U : Tpoly(M) ! Dpoly(M),

such that its zeroth Taylor component U(0) is given by the Hochschild–
Kostant–Rosenberg map. This result is known as the formality theorem. If
one restricts to the case of bivector fields and bidifferential operators, one
can recover deformation quantization for Poisson manifolds. The resulting
star product was also constructed in [17] by an explicit formula. In [5, 7, 12]
a globalization picture was presented for this star product on any Poisson
manifold M , including the construction of the local star product by using
techniques of field theory, in particular the Poisson Sigma Model [4, 16, 20].
In [12] this construction was extended to manifolds with boundary as in
the BV-BFV formalism [8–10] which is a perturbative quantum gauge for-
malism compatible with cutting and gluing. A similar approach, as the one
presented by Fedosov in [13] for symplectic manifolds, was used, by con-
sidering notions of formal geometry. In particular, one starts with a formal
exponential map ϕ on the manifold M and constructs a flat connection DG,
called the classical Grothendieck connection, on the completed symmetric
algebra of the cotangent bundle Ŝym(T ∗M). This construction can be de-

formed to the Weyl bundle Ŝym(T ∗M)[[ℏ]] and, as it was shown in [5, 6, 12],
it induces a similar equation as the one in Fedosov’s construction. In [12] it
was shown that the different terms of this equation are given by a certain
class of graphs. We want to give an explicit computation of the weights for
these graphs. Let Gn,m denote the set of all admissible graphs as in [17] with
n vertices in the bulk of the upper half-plane H := {z ∈ C| Im(z) > 0} and
m vertices on R. Define a map

(2) UΓ :

n∧
Tpoly(M) ! Dpoly(M)[1 − n]

1Endowed with the zero differential and the Schouten–Nijenhuis bracket.
2Endowed with the Hochschild differential and the Gerstenhaber bracket.
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using the L∞-morphism U. Let π be a Poisson structure on Rd and let ξ, ζ
be any two vector fields on Rd. Let us define

P (π) :=
∑

n≥0

∑

Γ∈Gn,2

ℏn

n!
wΓUΓ(π ∧ · · · ∧ π),(3)

A(ξ, π) :=
∑

n≥0

∑

Γ∈Gn+1,1

ℏn

n!
wΓUΓ(ξ ∧ π ∧ · · · ∧ π),(4)

F (ξ, ζ, π) :=
∑

n≥0

∑

Γ∈Gn+2,0

ℏn

n!
wΓUΓ(ξ ∧ ζ ∧ π ∧ · · · ∧ π),(5)

where wΓ ∈ R denotes the Kontsevich weight of the graph Γ. The term (3)
represents Kontsevich’s star product, (4) represents the deformed
Grothendieck connection DG := DG + O(ℏ) (see construction below) and (5)
its curvature. Let us emphasize a bit more on the formal geometry construc-
tion.

1.2. Notions of formal geometry

Let M be a smooth manifold and let ϕ : U ! M be a map where U ⊂ TM
is an open neighbourhood of the zero section. For x ∈ M, y ∈ TxM ∩ U we
write ϕx(y) := ϕ(x, y). We say that ϕ is a generalized exponential map if for
all x ∈ M we have that ϕx(0) = x, and dϕx(0) = idTxM . In local coordinates
we can write

(6) ϕi
x(y) = xi + yi +

1

2
ϕi

x,jky
jyk +

1

3!
ϕi

x,jkℓy
jykyℓ + · · ·

where the xi are coordinates on the base and the yi are coordinates on the
fibers. We identify two generalized exponential maps if their jets agree to
all orders. A formal exponential map is an equivalence class of generalized
exponential maps. It is completely specified by the sequence of functions(
ϕi

x,i1...ik

)∞

k=0
. By abuse of notation, we will denote equivalence classes and

their representatives by ϕ. From a formal exponential map ϕ and a function
f ∈ C∞(M), we can produce a section σ ∈ Γ(Ŝym(T ∗M)) by defining σx =
Tϕ∗

xf , where T denotes the Taylor expansion in the fiber coordinates around
y = 0 and we use any representative of ϕ to define the pullback. We denote
this section by Tϕ∗f , it is independent of the choice of representative, since
it only depends on the jets of the representative.

As it was shown [3, 5, 11], one can define a flat connection DG on

Ŝym(T ∗M) with the property that DGσ = 0 if and only if σ = Tϕ∗f for
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some f ∈ C∞(M). As already mentioned before, this connection is called
the classical Grothendieck connection. In fact, DG = dx + LR where R ∈
Ω1(M, Der(Ŝym(T ∗M))) is a 1-form with values in derivations of Ŝym(T ∗M),

which we identify with Γ(TM ⊗ Ŝym(T ∗M)). We have denoted by dx the
de Rham differential on M and by L the Lie derivative. In coordinates we
have

(7) R(σ)ℓ = − ∂σ

∂yj

((
∂ϕ

∂y

)−1
)j

k

∂ϕk

∂xℓ
.

Define R(x, y) := Rℓ(x, y)dxℓ, Rℓ(x, y) := Rj
ℓ(x, y) ∂

∂yj , Rj(x, y) := Rj
ℓ(x, y)dxℓ,

and

(8) Rj
ℓ = −

((
∂ϕ

∂y

)−1
)j

k

∂ϕk

∂xℓ
= −δj

ℓ + O(y).

For σ ∈ Γ(Ŝym(T ∗M)), LRσ is given by the Taylor expansion (in the y
coordinates) of

−dyσ ◦ (dyϕ)−1 ◦ dxϕ : Γ(TM) ! Γ(Ŝym(T ∗M)),

where we denote by dy the de Rham differential on the fiber. This shows
that R does not depend on the choice of coordinates. One can generalize this
also for any fixed vector ξ = ξi(x) ∂

∂xi ∈ TxM , instead of just considering the
de Rham differential dx, by

(9) Dξ
G = ξ + ξ̂,

where

(10) ξ̂(x, y) = ιξR(x, y) = ξi(x)Rj
ℓ(x, y)

∂

∂yj
.

Here ξi(x) would replace the 1-form part dxi.

This paper is based on the master thesis [19].

Acknowledgements

We would like to thank Alberto Cattaneo and Konstantin Wernli for useful
discussions.
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2. Computation of Kontsevich weights

Let (M, ω) be a symplectic manifold regarded as a Poisson manifold with
Poisson structure π induced by the symplectic form ω. Moreover let ϕ : TM ⊃
U ! M be a formal exponential map and denote by T the Taylor expan-
sion in fiber coordinates around zero. Anticipating the computation of the
star product P (Tϕ∗π), the connection 1-form A(R, Tϕ∗π) and its curvature
2-form F (R, R, Tϕ∗π) as in [12], we will explicitly compute the Kontsevich
weights of three families of graphs in this section. Throughout the paper we
use the harmonic angle function

φ(u, v) = arg

(
v − u

v − ū

)
=

1

2i
log

(
(v − u)(v̄ − u)

(v − ū)(v̄ − ū)

)
(11)

which measures the angle on H ∪ R as depicted in Figure 1.

u

v φ

Figure 1: Illustartion of the angle function φ.

The propagator used in the computation of the Kontsevich weights is
then simply given by dφ(u, v) and is usually called the Kontsevich propaga-
tor. Now let Γ ∈ Gn,m be an admissible graph with n vertices of first type,
m vertices of second type and 2n + m − 2 edges. We use this propagator to
compute the Kontsevich weight [17] wΓ of Γ as

wΓ =

∫

C̄n,m

ωΓ.(12)

Here C̄n,m denotes the Fulton–MacPherson/Axelrod–Singer (FMAS) com-
pactification [1, 15] of the configuration space Cn,m of n points in H and m
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points on R modulo scaling and translation. Let us briefly recall the construc-
tion of the needed configuration spaces. We define the open configuration
space

Confn,m = {(x1, . . . , xn, q1, . . . , qm) ∈ Hn × Rm |(13)

xi ̸= xj , ∀i ̸= j, q1 < . . . < qm}.

The 2-dimensional real Lie group of orientation preserving affine transfor-
mations of the real line

(14) G(1) = {z 7! az + b | a, b ∈ R, a > 0}

acts freely on Confn,m. One can check that the quotient space Cn,m :=
Confn,m/G(1) is in fact a smooth manifold of dimension 2n + m − 2. The
differential form ωΓ on C̄n,m is given by

ωΓ =
1

(2π)2n+m−2

∧

edges e

dφe,(15)

where the wedge product is over all 2n + m − 2 edges e of the graph Γ. Let
n ≥ 2 and define

(16) Confn = {(x1, . . . , xn) ∈ Cn | xi ̸= xj , ∀i ̸= j}.

We have an action on Confn by the 3-dimensional Lie group

(17) G(2) = {z 7! az + b | a ∈ R, b ∈ C, a > 0}.

Again, one can check that the quotient space Cn := Confn/G(2) is a smooth
manifold of dimension 2n − 3. Also here, we will denote its FMAS com-
pactification by C̄n. We refer to [17] for a more detailed construction. To
simplify the notation we will use graphical language, where the figure below
corresponds to a factor of d(φ(u, v)n)/(2π)n in wΓ. If there is no n above
the arrow it simply means that n = 1.

u v
n

We know that the dimension of the configuration space Cn,m is 2n +
m − 2, and since we work on a symplectic manifold M (with Darboux co-
ordinates around each point x ∈ M), a vertex of first type is either a vertex
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representing the tensor Tϕ∗
xπ, which we will call a Tϕ∗

xπ-vertex, with pre-
cisely two outgoing and no incoming edges, or a vertex representing the
1-form R, which we will call an R-vertex, with precisely one outgoing edge
and arbitrarily many incoming edges [12, 18]. So we may write n = p + r,
where p is the number of Tϕ∗

xπ-vertices and r is the number of R-vertices.
We then have that deg(ωΓ) = 2p + r, and in order for the integral (12) not
to vanish, we must have that ωΓ is a top form, i.e. that 2n + m − 2 = 2p + r.
This then implies that

r + m = 2(18)

So we have to distinguish three different cases, namely (r, m) = (2, 0),
(r, m) = (1, 1) and (r, m) = (0, 2), which we will treat separately in what
follows.

Remark 2.1. Actually, we will see below that all the integrals over the
non-compactified configuration spaces Cn,m of the graphs we are consider-
ing converge and are thus finite. So it is not necessary to work with the
compactifications.

2.1. Case 1: No boundary vertices

We will first treat the case (r, m) = (2, 0), i.e. the case where we have no
boundary vertices and exactely two R-vertices. In that case we get a family
of graphs (Γn)n≥0, where Γn is the graph with n wedges as in Figure 2(a)
(stemming from n Tϕ∗

xπ-vertices) attached to the wheel as in Figure 2(b)
(stemming from the two R-vertices).

x y

z

x y

(a) wedge (b) wheel

Figure 2: Graphs in the case (r, m) = (2, 0) consist of: (a) wedges stem-
ming from Tϕ∗

xπ-vertices attached to (b) a wheel stemming from the two
R-vertices.

Examples of the graphs Γn are given in Figure 3 below for n = 0, 1, 2.
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x y

(a) n = 0

z

x y

(b) n = 1

z1

z2

x y

(c) n = 2

Figure 3: Graphs Γn for (a) n = 0, (b) n = 1 and (c) n = 2 wedges attached
to the wheel.

The Kontsevich weight of the graph Γn for n ≥ 0 is given by

wΓn
=

1

(2π)2n+2

∫

Cn+2,0

dφ(x, y)dφ(y, x)dφ(z1, x)(19)

× dφ(z1, y) · · · dφ(zn, x)dφ(zn, y).

Remark 2.2. We will omit the wedge product if it is clear. Moreover,
for n = 0 we simply set dφ(z1, x)dφ(z1, y) · · · dφ(zn, x)dφ(zn, y) = 1 in the
integral above.

Remark 2.3. The sign of the weight ωΓ depends on the ordering of the
edges of the graph Γ (i.e. the ordering of the propagator 1-forms in the
integrand), and thus the ordering must always be specified. Throughout
this whole section, we will stick to the ordering given in (19).

The goal now is to compute (19) explicitly. We will do this in several
steps, mainly using Stokes’ theorem as in [21].

2.1.1. Step 1. In a first step, we want to integrate out the wedges. More
precisely, for a wedge as in Figure 2(a) we want to compute the corresponding
integral

1

(2π)2

∫

z∈H\{x,y}

dφ(z, x)dφ(z, y),(20)

i.e. we want to integrate out z (with x, y ∈ H fixed). To do this we make a
branch cut such that φ(z, x) ∈ (0, 2π) and use Stokes’ theorem

∫

z∈H\{x,y}

dφ(z, x)dφ(z, y) =

∫

∂

φ(z, x)dφ(z, y),(21)
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where ∂ is the boundary of the integration domain depicted in Figure 4
below.

x

C1

B−

H−

C

H+

B+

C2

y

Figure 4: Boundary ∂ of the integration domain: C is the half-circle at
infinity, B+ and B− are infinitesimally close together, the circles C1 and C2

have infinitesimal radius and H+ ∪ H− is the real line.

Now using (11) we can discuss the different boundary components:

• On H+ ∪ H−: z ∈ R and hence dφ(z, y) = darg(1) = 0

• On B+: φ(z, x) = 2π

• On B−: φ(z, x) = 0

• On C1: z = x + εe−iθ for ε ! 0 =⇒ dφ(z, y) = darg
(

y−x
y−x̄

)
= 0

• On C2: z = y + εe−iθ for ε ! 0 and θ ∈ [0, 2π) =⇒ φ(z, x) ! φ(y, x),
dφ(z, y) = −dθ

• On C: z = Reiθ for R ! ∞ and θ ∈ [0, π] =⇒ φ(z, x) = φ(z, y) = 2θ,
dφ(z, y) = 2dθ
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We then finally get

∫

z∈H\{x,y}

dφ(z, x)dφ(z, y) =

∫

∂

φ(z, x)dφ(z, y)

= 2π

∫

B+

dφ(z, y) +

π∫

0

4θdθ − φ(y, x)

2π∫

0

dθ

= 2π
(
φ(x, y) − φ(y, x) + [x; y]π

)
,

(22)

where

[x; y] =

{
+1, if Re(x) > Re(y)

−1, if Re(x) < Re(y)
(23)

Dividing the result (22) by (2π)2 (as in (20)), we get

1

2π

(
φ(x, y) − φ(y, x)

)
± 1

2
,(24)

which agrees with the result given in [2, Lemma 3.3].
Finally, consider the limit (x, y) ! (p, q) for p, q ∈ R with p < q. Using

(24) and the fact that φ(p, q) = 2π and φ(q, p) = 0, we can compute the
Kontsevich weight of the graph below.

p q

z

We get that the integral of the form representing this graph over C1,2 is
equal to 1

2 , which agrees with the result in [17, Section 6.4.3].

2.1.2. Step 2. In a second step we want to compute the weight of the
graph

x y

m

n
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where n, m ≥ 1 and we use the notation introduced above, i.e. we want
to explicitly compute the integral

1

(2π)n+m

∫

C2,0

dφ(x, y)mdφ(y, x)n.(25)

As before we make the branch cut such that φ(x, y) ∈ (0, 2π) and use Stokes’
theorem

∫

y∈H\{x}

dφ(x, y)mdφ(y, x)n =

∫

∂

φ(x, y)mdφ(y, x)n(26)

with boundary ∂ of the integration domain depicted in Figure 5 below.

x

C1

B+C+

H

C−B−

Figure 5: Boundary ∂ of the integration domain: C− ∪ C+ is the half-circle
at infinity, B+ and B− are infinitesimally close together, the circle C1 has
infinitesimal radius and H is the real line.

Again, we discuss the different boundary components:

• On H: y ∈ R =⇒ dφ(y, x) = darg(1) = 0

• On B− ∪ B+: dφ(y, x) = 0

• On C−: y = Reiθ for R ! ∞ =⇒ φ(x, y) = 2π

• On C+: y = Reiθ for R ! ∞ =⇒ φ(x, y) = 0
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• On C1: y = x + εe−iθ for ε ! 0 and θ ∈ (−π
2 , 3π

2 ) =⇒ φ(x, y) = 3π
2 −

θ and

φ(y, x) =

{
π
2 − θ, for θ ∈ (−π

2 , π
2 )

5π
2 − θ, for θ ∈ (π

2 , 3π
2 )

With this, we compute the integral

∫

y∈H\{x}

dφ(x, y)mdφ(y, x)n =

∫

∂

φ(x, y)mdφ(y, x)n

= (2π)m

∫

C−

dφ(y, x)n +

∫

C1

φ(x, y)mdφ(y, x)n

= (2π)mπn − n

π

2∫

− π

2

(
3π

2
− θ

)m (π

2
− θ
)n−1

dθ

− n

3π

2∫

π

2

(
3π

2
− θ

)m(5π

2
− θ

)n−1

dθ.

(27)

Now we use the substitution a = π
2 − θ to compute

π

2∫

− π

2

(
3π

2
− θ

)m (π

2
− θ
)n−1

dθ =

π∫

0

(π + a)man−1da

=

m∑

k=0

(
m

k

)
πk

π∫

0

am+n−k−1da =

m∑

k=0

(
m

k

)
πm+n

m + n − k
.

(28)

Similarly, we use the substitution a = 3π
2 − θ to compute

3π

2∫

π

2

(
3π

2
− θ

)m(5π

2
− θ

)n−1

dθ =

π∫

0

am(π + a)n−1da

=

n−1∑

k=0

(
n − 1

k

)
πk

π∫

0

am+n−k−1da =

n−1∑

k=0

(
n − 1

k

)
πm+n

m + n − k
.

(29)
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Putting everything together we get

(30)

∫

y∈H\{x}

dφ(x, y)mdφ(y, x)n

=

(
2m −

m∑

k=0

(
m

k

)
n

m + n − k
−

n−1∑

l=0

(
n − 1

l

)
n

m + n − l

)
πm+n.

It is not hard to see that for n = 1 the above formula simplifies to

∫

y∈H\{x}

dφ(x, y)mdφ(y, x) = 2m

(
1 − 2

m + 1

)
πm+1,(31)

which agrees with the result in [21, Section 4].

2.1.3. Step 3. In a third step we want to compute an integral similar to
(25), but with an additional factor [x; y] as defined in (23). So we want to
compute the integral

1

(2π)n+m

∫

y∈H\{x}

[x; y]dφ(x, y)mdφ(y, x)n(32)

As usual, we use Stokes’ theorem

∫

y∈H\{x}

[x; y]dφ(x, y)mdφ(y, x)n

=

∫

y∈H\{x}
Re(y)<Re(x)

dφ(x, y)mdφ(y, x)n −
∫

y∈H\{x}
Re(y)>Re(x)

dφ(x, y)mdφ(y, x)n

=

∫

∂+

φ(x, y)mdφ(y, x)n −
∫

∂−

φ(x, y)mdφ(y, x)n

(33)

with boundaries ∂+ and ∂− of the integration domain depicted in Figure 6
below.

As before, we discuss the different boundary components:

• On H+ ∪ H−: dφ(y, x) = 0

• On B± ∪ L±: dφ(y, x) = 0
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x
D+

B+C+

H+

L+

D−

L−

H−

C−B−

Figure 6: Boundaries ∂+ (on the left) and ∂− (on the right) of the integration
domain: C− ∪ C+ is the half-circle at infinity, B+ and B− as well as L+ and
L− are infinitesimally close together, the circle D+ ∪ D− has infinitesimal
radius and H+ ∪ H− is the real line.

• On C−: φ(x, y) = 2π

• On C+: φ(x, y) = 0

• On D−: y = x + εe−iθ for ε ! 0 and θ ∈ (−π
2 , π

2 ) =⇒ φ(x, y) = 3π
2 −

θ, φ(y, x) = π
2 − θ

• On D+: y = x + εe−iθ for ε ! 0 and θ ∈ (π
2 , 3π

2 ) =⇒ φ(x, y) = 3π
2 − θ,

φ(y, x) = 5π
2 − θ

With this we compute the integral

∫

y∈H\{x}

[x; y]dφ(x, y)mdφ(y, x)n

=

∫

∂+

φ(x, y)mdφ(y, x)n −
∫

∂−

φ(x, y)mdφ(y, x)n
(34)
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= −n

3π

2∫

π

2

(
3π

2
− θ

)m(5π

2
− θ

)n−1

dθ − (2π)mπn

+ n

π

2∫

− π

2

(
3π

2
− θ

)m (π

2
− θ
)n−1

dθ

=

(
−2m +

m∑

k=0

(
m

k

)
n

m + n − k
−

n−1∑

l=0

(
n − 1

l

)
n

m + n − l

)
πm+n,

where we used (28) and (29) in the last step.

2.1.4. Putting everything together. Finally, we are able to compute
the Kontsevich weight (19) of the graphs Γn described at the beginning of
Section 2.1. Integrating over zi for i = 1, . . . , n, and applying the result for
(22) obtained in the first step we get

wΓn
=

1

(2π)2n+2

∫

Cn+2,0

dφ(x, y)dφ(y, x)dφ(z1, x)dφ(z1, y) · · ·

× dφ(zn, x)dφ(zn, y)

=
1

(2π)n+2

∫

y∈H\{x}

(
φ(x, y) − φ(y, x) + [x; y]π

)n
dφ(x, y)dφ(y, x)

=
1

(2π)n+2

n∑

k=0

n−k∑

l=0

(
n

k

)(
n − k

l

)

× (−1)l

∫

y∈H\{x}

φ(x, y)n−k−lφ(y, x)l([x; y]π)kdφ(x, y)dφ(y, x)

=
1

2n+2

n∑

k=0

n−k∑

l=0

(
n

k

)(
n − k

l

)
(−1)l

πn−k+2(n − k − l + 1)(l + 1)

×
∫

y∈H\{x}

[x; y]kdφ(x, y)n−k−l+1dφ(y, x)l+1.

(35)
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Note that for even k we have

∫

y∈H\{x}

[x; y]kdφ(x, y)n−k−l+1dφ(y, x)l+1

=

∫

y∈H\{x}

dφ(x, y)n−k−l+1dφ(y, x)l+1

=

(
2n−k−l+1 −

n−k−l+1∑

r=0

(
n − k − l + 1

r

)
l + 1

n − k − r + 2

−
l∑

s=0

(
l

s

)
l + 1

n − k − s + 2

)
πn−k+2,

(36)

where we have used (30). Similarly, for odd k we get

∫

y∈H\{x}

[x; y]kdφ(x, y)n−k−l+1dφ(y, x)l+1

=

∫

y∈H\{x}

[x; y]dφ(x, y)n−k−l+1dφ(y, x)l+1

=

(
−2n−k−l+1 +

n−k−l+1∑

r=0

(
n − k − l + 1

r

)
l + 1

n − k − r + 2

−
l∑

s=0

(
l

s

)
l + 1

n − k − s + 2

)
πn−k+2,

(37)

where we have used (34).
We will now simplify the expressions we got. We start by observing a

few things:
First of all, we clearly have that

dφ(x, y)n−k−l+1dφ(y, x)l+1 = −dφ(y, x)l+1dφ(x, y)n−k−l+1.(38)

Similarly, we also have that

[x; y] = −[y; x].(39)
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Furthermore, we can obviously swap x and y in the integral and get the
same result, i.e.

∫

y∈H\{x}

[x; y]mdφ(x, y)n−k−l+1dφ(y, x)l+1(40)

=

∫

x∈H\{y}

[y; x]mdφ(y, x)n−k−l+1dφ(x, y)l+1.

Now assume that n is even. Applying (38), (39) and (40) to the last line of
(35), it follows that

wΓn
=

1

2n+2

n∑

k=0
k even

(
n

k

)(
n − k
n−k

2

)
(−1)

n−k

2

πn−k+2
(

n−k
2 + 1

)2(41)

×
∫

y∈H\{x}

dφ(x, y)
n−k

2
+1dφ(y, x)

n−k

2
+1.

So most of the terms cancel for n even.
Now using (30) we observe that

1

π2m

∫

y∈H\{x}

dφ(x, y)mdφ(y, x)m

= 2m −
m∑

k=0

(
m

k

)
m

2m − k
−

m−1∑

l=0

(
m − 1

l

)
m

2m − l

= 2m −
m−1∑

k=0

((
m

k

)
+

(
m − 1

k

))
m

2m − k
− 1

= 2m −
m−1∑

k=0

(
m

k

)
− 1 = 2m −

m∑

k=0

(
m

k

)
= 0.

(42)

Plugging this result into (41) with m = n−k
2 we finally get that

wΓn
= 0 for even n ≥ 0.(43)

For n odd the different terms in the last line of (35) do not cancel anymore.
Instead, we will try to write (30) and (34) more compactly. To do this, let us
introduce the so-called hypergeometric function 2F1(a, b; c; z). It is defined
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by the series

2F1(a, b; z; c) :=

∞∑

k=0

(a)k(b)k

(c)k

zk

k!
(44)

for z ∈ C with |z| < 1, where (a)k is the Pochhammer symbol given by

(a)k =

{
1, if k = 0

a(a + 1) · · · (a + k − 1), if k > 0
(45)

It is not hard to see that the series terminates if either a or b is a non-positive
integer. In that case the hypergeometric function reduces to a polynomial
and can therefore also be defined for |z| ≥ 1.

We can now use the hypergeometric function to write

m∑

k=0

(
m

k

)
1

m + n − k
=

2F1(−m, −m − n; 1 − m − n; −1)

m + n
,(46)

and

n−1∑

k=0

(
n − 1

k

)
1

m + n − k
=

2F1(1 − n, −m − n; 1 − m − n; −1)

m + n
.(47)

This allows us to write (30) as

∫

y∈H\{x}

dφ(x, y)mdφ(y, x)n

=
(
2m − n

m + n

(
2F1(−m, −m − n; 1 − m − n; −1)

+ 2F1(1 − n, −m − n; 1 − m − n; −1)
))

πm+n,

(48)

and (34) as

∫

y∈H\{x}

[x; y]dφ(x, y)mdφ(y, x)n

=

(
−2m +

n

m + n

(
2F1(−m, −m − n; 1 − m − n; −1)

− 2F1(1 − n, −m − n; 1 − m − n; −1)
))

πm+n.

(49)
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Plugging those results into (35) we finally get for all n ≥ 0

wΓn
=

1

2n+2

n∑

k=0

n−k∑

l=0

(
n

k

)(
n − k

l

)
(−1)l

(n − k − l + 1)(l + 1)

(
(−1)k2n−k−l+1

− l + 1

n − k + 2

(
2F1(−l, −n + k − 2; −n + k − 1; −1)

+ (−1)k
2F1(−n + k + l − 1, −n + k − 2; −n + k − 1; −1)

))
.

(50)

The Kontsevich weights of the first few graphs are given in Table 1 below.

n 0 1 2 3 4 5 6 7 8 9

wΓn
0 1

24 0 1
320 0 1

2688 0 1
18432 0 1

112640

Table 1: Kontsevich weights of the graphs Γn for n = 0, 1, . . . , 9

As a sanity check we have the following: For n = 0 the graph Γ0 is just
a wheel with two vertices (see Figure 3(a)) and its weight is zero according
to [17, Lemma 7.3]. For n = 1 the graph Γ1 is just a wheel with two spokes
pointing outward (see Figure 3(b)) and its weight is 1

24 according to [21,
Proposition 1.1]. So at least for n = 0, 1 our formula (50) for the Kontsevich
weights wΓn

produces the correct values.

2.2. Case 2: One Boundary vertex

We will now treat the case (r, m) = (1, 1), i.e. the case where we have one
boundary vertex and one R-vertex. In that case we get a family of graphs
(Υn)n≥0, where Υn is the graph with n wedges as in Figure 7(a) (stemming
from n Tϕ∗

xπ-vertices) attached to the graph containing a single edge from
the R-vertex to the boundary vertex as in Figure 7(b) below.

Examples of the graphs Υn are given in Figure 8 below for n = 0, 1, 2.
The Kontsevich weight of the graph Υn for n ≥ 0 is given by

wΥn
=

1

(2π)2n+1

∫

Cn+1,1

dφ(x, q)dφ(z1, x)dφ(z1, q) · · · dφ(zn, x)dφ(zn, q).

(51)
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q

x

z

x

q

(a) wedge (b) single edge

Figure 7: Graphs in the case (r, m) = (1, 1) consist of: (a) wedges stemming
from Tϕ∗

xπ-vertices attached to (b) a single edge from the R-vertex to the
boundary vertex

x

q

(a) n = 0

q

x

z

(b) n = 1

q

x

z1 z2

(c) n = 2

Figure 8: Graphs Υn for (a) n = 0, (b) n = 1 and (c) n = 2 wedges attached
to the single edge from the R-vertex to the boundary vertex

Remark 2.4. As before, the ordering of the edges of the graph Υn specified
in (51) above determines the sign of wΥn

. Throughout this whole section we
will stick to this ordering.

Again, the goal is to compute (51) explicitly. As before, we will do this
in several steps.

2.2.1. Step 1. For a wedge as in Figure 7(a) we want to compute the
corresponding integral

1

(2π)2

∫

z∈H\{x}

dφ(z, x)dφ(z, q),(52)

i.e. we want to integrate out z (with x, q ∈ H fixed). The computation is
almost the same as the one we have already done in Section 2.1.1 above:
Again we make a branch cut such that φ(z, x) ∈ (0, 2π) and use Stokes’



✐
✐

“5-Moshayedi” — 2022/6/3 — 23:50 — page 1345 — #21 ✐
✐

✐
✐

✐
✐

Computation of Kontsevich weights 1345

theorem

∫

z∈H\{x}

dφ(z, x)dφ(z, q) =

∫

∂

φ(z, x)dφ(z, q),(53)

where ∂ is the boundary of the integration domain depicted in Figure 9
below.

x

C1

B−

H−

C

H+,1

C2

H+,2

B+

q

Figure 9: Boundary ∂ of the integration domain: C is the half-circle at
infinity, B+ and B− are infinitesimally close together, the (half-)circles C1

and C2 have infinitesimal radius and H+,1 ∪ H+,2 ∪ H− is the real line.

Let us have a look at the different boundary components:

• On H+,1 ∪ H+,2 ∪ H−: z ∈ R and hence dφ(z, q) = 0

• On B+: φ(z, x) = 2π

• On B−: φ(z, x) = 0

• On C1: z = x + εe−iθ for ε ! 0 =⇒ dφ(z, q) = darg
(

q−x
q−x̄

)
= 0

• On C2: z = q + εe−iθ for ε ! 0 and θ ∈ [−π, 0] =⇒ φ(z, x) ! φ(q, x),
φ(z, q) = −2θ

• On C: z = Reiθ for R ! ∞ and θ ∈ [0, π] =⇒ φ(z, x) = φ(z, q) = 2θ
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We can then compute the integral

∫

z∈H\{x,q}

dφ(z, x)dφ(z, q) =

∫

∂

φ(z, x)dφ(z, q)

= 2π

∫

B+

dφ(z, q) +

π∫

0

4θdθ − 2φ(q, x)

0∫

−π

dθ

= 2π
(
φ(x, q) − φ(q, x) + [x; q]π

)

(54)

where

[x; q] =

{
+1, if Re(x) > q

−1, if Re(x) < q
(55)

Dividing the result (54) by (2π)2 we get

1

2π

(
φ(x, q) − φ(q, x)

)
± 1

2
,(56)

which agrees with the result in [21, Lemma 5.3].
Finally, observe that one obtains (54) by simply taking the limit y !

q ∈ R in (22).

2.2.2. Step 2. In a second step we want to compute the integral

1

(2π)m+n

∫

C1,1

φ(q, x)mdφ(x, q)n(57)

for n ≥ 1 and m ≥ 0.
First note that C1,1, shown in Figure 10 below, is a smooth manifold of

dimension 1 which is homeomorphic to an open interval and C̄1,1 is homeo-
morphic to a closed interval.

Remark 2.5. We work with the standard orientation on C1,1, which is
induced by the standard orientation on the plane R2.

It is not hard to see that the boundary ∂C1,1 is just a two-element
set. More precisely ∂C1,1 = {(q, s), (q, t)} with s < q and t > q (for a more
detailed treatment, see [10, 12, 17]).
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q

Figure 10: The manifold C1,1 is the product of a (fixed) single point q on
the real line and an open half circle

But now we have to make a branch cut such that φ(q, x) ∈ (0, 2π). Then
the boundary ∂ of the integration domain, depicted in Figure 11 below,
contains four points, namely

∂ = {(q, s), (q, t), (q, y+), (q, y−)},(58)

where y is the point on the half circle directly above q, i.e. with Re(y) = q,
and y+ and y− are the limits x ! y on the half circle from the left (i.e.
from the region Re(x) < q of the half-circle) and from the right (i.e. from
the region Re(x) > q) respectively.

s tq

y+ y−

Figure 11: C1,1 with branch cut and its boundary ∂ consisting of four points
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Finally, using Stokes’ theorem and the fact that dφ(q, x) = 0 for q ∈ R,
we get

∫

C1,1

φ(q, x)mdφ(x, q)n =

∫

∂

φ(q, x)mφ(x, q)n

= φ(q, s)mφ(s, q)n − φ(q, y+)mφ(y+, q)n

+ φ(q, y−)mφ(y−, q)n − φ(q, t)mφ(t, q)n

=

{
(2π)n, if m = 0

2mπm+n, if m > 0

(59)

2.2.3. Step 3. Let us start with writing (54) differently as

2π
(
φ(x, q) − φ(q, x) + π[x; q]

)
= 2π

(
φ(x, q) − φ(q, x) − π + 2π(x; q)

)
(60)

where

(x; q) =

{
+1, if Re(x) > q

0, if Re(x) < q
(61)

In this step we then want to compute an integral similar to (57), but with
an additional factor (x; y) as defined above. So we want to compute

1

(2π)m+n

∫

C1,1

(x; q)φ(q, x)mdφ(x, q)n(62)

for n ≥ 1 and m ≥ 0.
As before we use Stokes’ theorem and find that

∫

C1,1

(x; q)φ(q, x)mdφ(x, q)n

=

∫

C1,1

Re(x)>q

φ(q, x)mdφ(x, q)n

= φ(q, y−)mφ(y−, q)n − φ(q, t)mφ(t, q)n = 2mπm+n

(63)

for all m ≥ 0 and all n ≥ 1.

2.2.4. Putting everything together. Now we can use the results from
steps 1-3 to compute the Kontsevich weight (51) of the graphs Υn, n ≥ 0,



✐
✐

“5-Moshayedi” — 2022/6/3 — 23:50 — page 1349 — #25 ✐
✐

✐
✐

✐
✐

Computation of Kontsevich weights 1349

described at the beginning of Section 2.2. Integrating over zi for i = 1, . . . , n,
and applying (60), we get

wΥn
=

1

(2π)2n+1

∫

Cn+1,1

dφ(x, q)dφ(z1, x)dφ(z1, q) · · · dφ(zn, x)dφ(zn, q)

=
1

(2π)n+1

∫

C1,1

(
φ(x, q) − φ(q, x) − π + 2π(x; q)

)n
dφ(x, q)

=
1

(2π)n+1

n∑

k=0

n−k∑

l=0

n−k−l∑

s=0

(
n

k

)(
n − k

l

)(
n − k − l

s

)
(−1)l+s

×
∫

C1,1

φ(x, q)n−k−l−sφ(q, x)sπl(2π(x; q))kdφ(x, q)

=

n∑

k=0

n−k∑

l=0

n−k−l∑

s=0

(
n

k

)(
n − k

l

)(
n − k − l

s

)

× (−1)l+s

2n−k+1πn−k−l+1(n − k − l − s + 1)

×
∫

C1,1

(x; q)kφ(q, x)sdφ(x, q)n−k−l−s+1.

(64)

We note that for k = 0 we have

∫

C1,1

φ(q, x)sdφ(x, q)n−l−s+1 =

{
(2π)n−l+1, if s = 0

2sπn−l+1, if s > 0
(65)

where we have used (59). Similarly, for k ≥ 1 we have

∫

C1,1

(x; q)kφ(q, x)sdφ(x, q)n−k−l−s+1(66)

=

∫

C1,1

(x; q)φ(q, x)sdφ(x, q)n−k−l−s+1 = 2sπn−k−l+1,

where we have used (63).
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Plugging the above two results into the last line of (64) we get

wΥn
=

n∑

k=0

n−k∑

l=0

n−k−l∑

s=0

(
n

k

)(
n − k

l

)(
n − k − l

s

)
(−1)l+s

2n−k−s+1(n − k − l − s + 1)
︸ ︷︷ ︸

=:A(n)

−
n∑

l=0

(
n

l

)
(−1)l

2n+1(n − l + 1)
︸ ︷︷ ︸

=:B(n)

+

n∑

l=0

(
n

l

)
(−1)l

2l(n − l + 1)
︸ ︷︷ ︸

=:C(n)

.

(67)

As shown in Appendix A, we have that

A(n) =
(−1)n

2n+1(n + 1)
,

B(n) =
(−1)n

2n+1(n + 1)
,

C(n) =
1 + (−1)n

2n+1(n + 1)
.

(68)

Hence, we finally have

wΥn
=

1 + (−1)n

2n+1(n + 1)
, n ≥ 0.(69)

In particular, we see that

wΥn
= 0 for odd n ≥ 1.(70)

The Kontsevich weights of the first few graphs are given in Table 2 below.

n 0 1 2 3 4 5 6 7 8 9

wΥn
1 0 1

12 0 1
80 0 1

448 0 1
2304 0

Table 2: Kontsevich weights of the graphs Υn for n = 0, 1, . . . , 9

As a sanity check we have the following: For n = 0 the graph Υ0 is just a
single edge as in Figure 7(b) and its weight is zero according to [17, Section
6.4.3]. For n = 1 the graph Υ1 is just a single edge with one wedge attached
as in Figure 8(b) and its weight is 0 according to [14, Appendix B]. For n = 2
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the graph Υ2 is a single edge with two wedges attached as in Figure 8(c) and
its weight is 1

12 according to [21, Appendix A]. So at least for n = 0, 1, 2 our
formula (69) for the Kontsevich weights wΓn

produces the correct values.

2.3. Case 3: Two Boundary vertices

Finally, we will treat the case (r, m) = (0, 2), i.e. the case where we have two
boundary vertices and no R-vertex. In that case we get a family of graphs
(Λn)n≥0, where Λn is the graph with n wedges as in Figure 12 (stemming
from n Tϕ∗

xπ-vertices) attached to the two boundary vertices.

p q

z

Figure 12: Graphs in the case (r, m) = (0, 2) consist of wedges attached to
the two boundary vertices

Examples of the graphs Λn are given in Figure 13 below for n = 0, 1, 2.

p q

z

p q p q

z1

z2

(a) n = 0 (c) n = 2(b) n = 1

Figure 13: Graphs Λn for (a) n = 0, (b) n = 1 and (c) n = 2 wedges attached
to the two boundary vertices

The Kontsevich weight of the graph Λn for n ≥ 0 is given by

wΛn
=

1

(2π)2n

∫

Cn,2

dφ(z1, p)dφ(z1, q) · · · dφ(zn, p)dφ(zn, q).(71)

Remark 2.6. For n = 0 we simply set

dφ(z1, p)dφ(z1, q) · · · dφ(zn, p)dφ(zn, q) = 1

in the integral above.
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Remark 2.7. As before, the ordering of the edges of the graph Λn specified
in (71) above determines the sign of wΛn

. Throughout this whole section we
will stick to this ordering.

Remark 2.8. Since we work with the configuration space Confn,m as in
(13), and in particular with the quotient Cn,m = Confn,m/G(1), it follows
that C0,2 is a single point (and not a two-element set).

Finally, our goal is to compute (51) explicitly for the given family of
graphs. However, this time the computation is much easier and shorter than
before.

For the boundary vertices p, q, ∈ R with p < q we have already computed
the Kontsevich weight of a wedge as in Figure 12 at the end of Section 2.1.1.
Our result was

1

(2π)2

∫

C1,2

dφ(z, p)dφ(z, q) =
1

2
.(72)

For the sake of completeness and to make sure that we get the same result,
let us nonetheless do a direct computation. For a wedge as in Figure 12, we
compute the corresponding integral

1

(2π)2

∫

z∈H

dφ(z, p)dφ(z, q),(73)

with p, q ∈ R, p < q fixed. As before, we use Stokes’ theorem

∫

z∈H

dφ(z, p)dφ(z, q) =

∫

∂

φ(z, p)dφ(z, q),(74)

where ∂ is the boundary of the integration domain depicted in Figure 14
below.

As usual, let us have a look at the different boundary components:

• On H1 ∪ H2 ∪ H3: z ∈ R and hence dφ(z, q) = 0

• On C1: z = p + εe−iθ for ε ! 0 =⇒ dφ(z, q) = darg(1) = 0

• On C2: z = q + εe−iθ for ε ! 0 =⇒ φ(z, p) ! φ(q, p) = 0

• On C: z = Reiθ for R ! ∞ and θ ∈ [0, π] =⇒ φ(z, p) = φ(z, q) = 2θ
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H1

C1

H2

C2

H3

C

p q

Figure 14: Boundary ∂ of the integration domain: C is the half-circle at
infinity, the half circles C1 and C2 have infinitesimal radius and H1 ∪ H2 ∪
H3 is the real line.

We can then compute the integral

∫

z∈H

dφ(z, p)dφ(z, q) =

∫

∂

φ(z, p)dφ(z, q) =

π∫

0

4θdθ = 2π2,(75)

which indeed agrees with (72) after dividing by (2π)2.
With this result at hand, it is now easy to compute the Kontsevich

weight of the graph Λn for n ≥ 1. We get

wΛn
=

1

(2π)2n

∫

Cn,2

dφ(z1, p)dφ(z1, q) · · · dφ(zn, p)dφ(zn, q)(76)

=
1

(2π)2n
(2π2)n =

1

2n
.

For n = 0 it is not hard to see that

wΛ0
=

∫

C0,2

1 = 1,(77)
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since C0,2 is a single point (cf Remark 2.8). So all in all we finally have

wΛn
=

1

2n
, n ≥ 0.(78)

2.4. Another approach for the explicit computation of
wΓn

and wΥn

We want to give a more fast and explicit approach for the computation of
the weights wΓn

and wΥn
. The following approach has the advantage that

it doesn’t require the use of the hypergeometric function for wΓn
but rather

gives an explicit expression in terms of wΥn
. First note that

(79) dφ(z, x) =
1

4πi
d log

(
(z − x)(z − x̄)

(z̄ − x)(z̄ − x̄)

)
, ∀z, x ∈ H ∪ R.

Moreover, recall from [2, Lemma 5.3] the formula

(80)

∫

z∈H
dφ(z, x) ∧ dφ(z, y) =

1

2πi
log

(
x − ȳ

y − x̄

)
, ∀x, y ∈ H ∪ R.

Integrating out the zi variables in wΥn
using (80), we get

wΥn
=

∫

C1,1

(
1

2πi
log

(
x − p

p − x̄

))n 1

2πi
d log

(
x − p

x̄ − p

)
(81)

=
1

n + 1

∫

C1,1

d

(
1

2πi
d log

(
x − p

p − x̄

))n+1

because d log (x̄ − p) = d log (p − x̄). Now recall that C1,1 = (H × R)/(R>0 ⋉
R) is isomorphic to R; for instance every point in the quotient can be repre-
sented uniquely by a pair (i, p) with i the imaginary unit and p ∈ R. Hence
we get

wΥn
=

1

n + 1

∫ ∞

−∞

d

dp

(
1

2πi
log

(
i − p

p + i

))n+1

dp

=

(
1

2πi
log

(
i − p

p + i

))n+1
∣∣∣∣∣

p=∞

p=−∞

=
1 + (−1)n

2n+1(n + 1)
,

(82)
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where we have used the boundary values

(83) lim
p!±∞

log

(
i − p

p + i

)
= lim

p!±∞
log

(
−1 +

2i

p
+ O(1/p2)

)
= ±iπ.

Now, using (80) and integrating out the zi variables of wΓn
, we get

(84) wΓn
=

∫

C2,0

(
1

2πi
log

(
x − ȳ

z − x̄

))n

dφ(x, y) ∧ dφ(y, x).

Note that dφ(x, y) = dφ(y, x) + 1
2πi log

(
x−ȳ
y−x̄

)
, and thus

wΓn
=

∫

C2,0

(
1

2πi
log

(
x − ȳ

y − x̄

))n 1

2πi
d log

(
x − ȳ

y − x̄

)
∧ dφ(y, x)

=
1

n + 1

∫

C2,0

d

[(
1

2πi
log

(
x − ȳ

y − x̄

))n+1

dφ(y, x)

]
.

(85)

By Stokes’ theorem, the integral is reduced to the boundary of Kontsevich’s
eye C̄2,0 [17, Section 5.2.]. This boundary has three components:

• The iris of the eye which is isomorphic to S1, corresponding to the

collision x ! y. This gives zero contribution, since log
(

x−ȳ
y−x̄

)
= 0 for

x = y.

• The upper eyelid, corresponding to the limit |x| ! ∞. This gives no
contribution, since dφ(y, x) = 0 in the limit.

• The lower eyelid, corresponding to the collision x ! x̄ onto the real
line.

The lower eyelid is isomorphic to C1,1 and by comparison with the integrand
of wΥn+1

in (81) with p := x = x̄, we get

(86) wΓn
=

1

n + 1
wΥn+1

=
1 − (−1)n

2n+2(n + 1)(n + 2)
.

One can easily check that this formula produces the same values as in Table
1.
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3. Including the weights

3.1. The product P (Tφ∗π)

Let σ, τ ∈ Γ(Ŝym(T ∗M)[[ℏ]]) be sections and let x ∈ M . Using the Kontse-
vich weights computed above, we get

P (Tϕ∗
xπ)(σx ⊗ τx)(87)

=

∞∑

n=0

ℏn

22nn!
(Tϕ∗

xπ)i1j1 · · · (Tϕ∗
xπ)injn(σx) ,i1···in

(τx) ,j1···jn

where we sum over all the indices i1, . . . , in, j1, . . . , jn. Moreover, we use the
notation, where the indices on the right of the comma denote derivatives
with respect to the corresponding variable, e.g.

(88) Ri,i1···ik
:= ∂i1 · · · ∂ik

Ri.

3.2. The connection 1-form A(R, Tφ∗π)

In Section 2.2 we have obtained the Kontsevich weights

wΥn
=

1 + (−1)n

2n+1(n + 1)
, n ≥ 0(89)

of the family of graphs (Υn)n≥0. Let σ ∈ Γ(Ŝym(T ∗M)[[ℏ]]) be a section and
fix x ∈ M . For R as in Section 1.2 we set Rx(y) := R(x, y) and (Rx)k

i (y) :=
Rk

i (x, y). Using the Kontsevich weights above, we get

A(Rx, Tϕ∗
xπ)(σx) = dxiA

(
(Rx)k

i

∂

∂yk
, Tϕ∗

xπ

)
(σx)

= dxi
∞∑

n=0

ℏn

2nn!

1 + (−1)n

2n+1(n + 1)

× (Tϕ∗
xπ)i1j1 · · · (Tϕ∗

xπ)injn(Rx)k
i,i1···in

(σx) ,kj1···jn

(90)

where we again sum over all indices i, k, i1, . . . , in, j1, . . . , jn.
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This allows us to write down an explicit expression for the deformed
Grothendieck connection, namely

(DG)x = dx + A(Rx, Tϕ∗
xπ) =

(
∂

∂xi
+ A

(
(Rx)i, Tϕ∗

xπ
))

dxi

=

(
∂

∂xi
+

∞∑

n=0

ℏn

2nn!

1 + (−1)n

2n+1(n + 1)

× (Tϕ∗
xπ)i1j1 · · · (Tϕ∗

xπ)injn(Rx)k
i,i1···in

∂n+1

∂yjn · · · ∂yj1∂yk

)
dxi

(91)

3.3. The curvature 2-form F (R, R, Tφ∗π)

In Section 2.1 we have obtained the Kontsevich weights in terms of the
hypergeometric function and gave a more explicit formula in Section 2.4

(92) wΓn
=

1 − (−1)n

2n+2(n + 1)(n + 2)
, n ≥ 0

for the family of graphs (Γn)n≥0. Using these weights above we then get for
x ∈ M

F (Rx, Rx, Tϕ∗
xπ) = dxi ∧ dxjF

(
(Rx)i, (Rx)j , Tϕ∗

xπ
)

(93)

= dxi ∧ dxj
∞∑

n=0

ℏn

2nn!

1 − (−1)n

2n+2(n + 1)(n + 2)

× (Tϕ∗
xπ)i1j1 · · · (Tϕ∗

xπ)injn(Rx)k
i,li1···in

(Rx)l
j,kj1···jn

where, as usual, we sum over the indices i, j, k, l, i1, . . . , in, j1, . . . , jn.

3.4. A Fedosov-type equation for Poisson manifolds

We can now write down the modified deformed Grothendieck connection as
defined in [5, 12], namely

DG = DG + [γ, ]⋆,(94)

where the deformed Grothendieck connection DG is explicitly given by (91),
the star product is explicitly given by (87), [ , ]⋆ denotes the star commuta-

tor and γ ∈ Ω1(M, Ŝym(T ∗M)[[ℏ]]) is such that the following Fedosov-type
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equation holds:

FM + DGγ + γ ⋆ γ = 0,(95)

with Weyl curvature FM = F (R, R, Tϕ∗π) explicitly given by (93). This
equation appears in the globalization construction for deformation quanti-
zation of Poisson manifolds. The existence of such a γ was given in [5, 6].
Let us emphasize a bit more on this existence result. Since γ takes values in
Ŝym(T ∗M)[[ℏ]] we may write

γ = γ0 + ℏγ1 + ℏ2γ2 + . . .(96)

Similarly, for the deformed Grothendieck connection we may write

DG = DG + ℏ2D2 + ℏ4D4 + . . .(97)

where DG = d + LR is the classical Grothendieck connection and where we
have used that the Kontsevich weights (89) satisfy wΥ0

= 1 and wΥn
= 0 for

all odd n ≥ 1.
Finally, for the curvature we can write

FM = ℏF1 + ℏ3F3 + ℏ5F5 + . . .(98)

where we have used that that the Kontsevich weights (92) satisfy wΓn
= 0

for all even n ≥ 0.
This now allows us to decompose Equation (95) into a system of equa-

tions depending on the order of ℏ.
In order ℏ0 we get the equation

DGγ0 = 0,(99)

which, according to Section 1.2, can be solved by γ0 = Tϕ∗f for some smooth
function f ∈ C∞(M), since the cohomology of the classical Grothendieck

connection H•
DG

(Γ(Ŝym(T ∗M))) is concentrated in degree zero (by the
Poincaré Lemma) and

(100) H0
DG

(Γ(Ŝym(T ∗M))) ∼= Tϕ∗C∞(M) ∼= C∞(M).

In order ℏ1 we get the equation

F1 + DGγ1 + (γ0 ⋆ γ0)1 = 0.(101)
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Using the Bianchi identity we see that DGF1 = 0 and by Equation (99) it also
immidiately follows that DG(γ0 ⋆ γ0)1 = 0. So we get that DGγ1 is equal to
a DG-closed form, but the corresponding cohomology group is trivial. Hence
it follows that DGγ1 is equal to a DG-exact form, and thus it is possible to
find a γ1 that solves Equation (101).

By induction, one can show that in each order ℏk for k ≥ 1, DGγk is
equal to a DG-closed and hence DG-exact form depending on the lower
order coefficients of FM and γ. In particular it follows that there exists a γk

solving the equation for the corresponding order.

Remark 3.1. Note that in order to globalize Kontsevich’s star product
one may be tempted to define a bullet product

(102) (f • g)(x) :=
(
P (Tϕ∗π)(Tϕ∗f ⊗ Tϕ∗g)

)
(x; 0).

This is indeed a well-defined global product on C∞(M)[[ℏ]], but it is in gen-
eral not associative. To make this product associative one has to introduce
a quantization map (see e.g. [5])

(103) ρ : H0
DG

(Γ(Ŝym(T ∗M))) ! H0
DG

(Γ(Ŝym(T ∗M)[[ℏ]]))

which then again leads to the global star product

(104) f ⋆
M

g :=
(
ρ−1
(
ρ(Tϕ∗f) ⋆ ρ(Tϕ∗g)

)) ∣∣∣
y=0

.

Here ⋆ denotes Kontsevich’s star product and ⋆M its global version on M .
Using the weights, we can also get an explicit expression for the bullet prod-
uct (102) by

(105)
(
P (Tϕ∗π)(Tϕ∗f ⊗ Tϕ∗g)

)
(x; 0)

=

( ∞∑

n=0

ℏn

22nn!
(Tϕ∗

xπ)i1j1 · · · (Tϕ∗
xπ)injn(Tϕ∗

xf) ,i1···in
(Tϕ∗

xg) ,j1···jn

)
(0).

3.5. The lifted curvature 2-form F (R, R, Tφ
∗
π)

Let M be a smooth manifold and let ϕ : TM ! M be a formal exponential
map and consider the lift ϕ : TN ! N to the cotangent bundle N = T ∗M .
We set x = (q, p) ∈ N and y = (q̄, p̄) ∈ TxN . Note that this is a particular
case of a canonical symplectic manifold.
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We will consider the lifted vector fields R to the cotangent case, which
induce lifted interaction vertices within the Feynman graphs which appear
in the computation of the connection 1-form and its curvature 2-form and
see how these terms simplify. First we note that A(R, Tϕ

∗
π) is still given by

A(Rx, Tϕ
∗
xπ)(σx) = dxi

∞∑

n=0

ℏn

2nn!

1 + (−1)n

2n+1(n + 1)
(106)

× (Tϕ
∗
xπ)i1j1 · · · (Tϕ

∗
xπ)injn(Rx)k

i,i1···in
(σx) ,kj1···jn

.

The simplification in this case is a small one: All summands containing a
term (Rx)k

i,i1···in
with more than one derivative with respect to p̄ will vanish

[18].
For the case of the curvature 2-form FN the simplification is more in-

teresting. Since for each non-vanishing coefficient (Tϕ
∗
xπ)ij one of the two

outgoing edges is always representing a q̄-derivative and the other corre-
sponding edge representing a p̄-derivative (since we work with Darboux co-
ordinates around x ∈ N), we see that the sum in (93) terminates at n = 2.
Or put differently, we only have to consider the graphs Γn up to n = 2, i.e.
with at most two wedges attached to the wheel consisting of two R-vertices
(cf. Figure 2 in Section 2.1). Moreover, since the Kontsevich weights (92)
are, up to n = 2, given by wΓ0

= 0, wΓ1
= 1

24 and wΓ2
= 0, we get

FN
x = F (Rx, Rx, Tϕ

∗
xπ) =

ℏ
48

(Tϕ
∗
xπ)rs(Rx)k

i,lr(Rx)l
j,ksdxi ∧ dxj ,(107)

where we sum over the indices i, j, r, s, k, l and where again summands con-
taining a term (Rx)k

i,lr with more than one derivative with respect to p̄ van-
ish. So in the case of a cotangent bundle we get a much simpler expression
for the Weyl curvature FN .

Appendix A. Binomial sums

Here we will treat the binomial sums appearing in the expression (67) and
show that we indeed get the results stated in (68).



✐
✐

“5-Moshayedi” — 2022/6/3 — 23:50 — page 1361 — #37 ✐
✐

✐
✐

✐
✐

Computation of Kontsevich weights 1361

A.1. B(n)

Let us start with

B(n) =

n∑

l=0

(
n

l

)
(−1)l

2n+1(n − l + 1)
.(A.1)

Using the well known identity

n∑

l=0

(−1)l

(
n + 1

l

)
=

n∑

l=0

(−1)l

(
n

l

)
n + 1

n − l + 1
= (−1)n(A.2)

it immidiately follows that

B(n) =
(−1)n

2n+1(n + 1)
.(A.3)

A.2. C(n)

Let us continue with

C(n) =

n∑

l=0

(
n

l

)
(−1)l

2l(n − l + 1)
.(A.4)

Using the identity (A.2), we can write

(n + 1)C(n) =

n∑

l=0

(
n + 1

l

)(
−1

2

)l

.(A.5)

Using the Binomial theorem we then find

n∑

l=0

(
n + 1

l

)(
−1

2

)l

=

(
1

2

)n+1

−
(

−1

2

)n+1

,(A.6)

and hence

C(n) =
1 + (−1)n

2n+1(n + 1)
.(A.7)
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A.3. A(n)

Finally, let us treat the case

A(n) =

n∑

k=0

n−k∑

l=0

n−k−l∑

s=0

(
n

k

)(
n − k

l

)(
n − k − l

s

)
(−1)l+s

2n−k−s+1(n − k − l − s + 1)
.

(A.8)

Write

A(n) =

n∑

k=0

n−k∑

l=0

(
n

k

)(
n − k

l

)
(−1)l

2n−k+1

n−k−l∑

s=0

(
n − k − l

s

)
(−2)s

(n − k − l − s + 1)
.

(A.9)

We first treat the innermost sum: Set m = n − k − l. Then

n−k−l∑

s=0

(
n − k − l

s

)
(−2)s

(n − k − l − s + 1)
=

m∑

s=0

(
m

s

)
(−2)s

(m − s + 1)
.(A.10)

Using
(
m+1

s

)
= m+1

m−s+1

(
m
s

)
, we find that

m∑

s=0

(
m

s

)
(−2)s

(m − s + 1)
=

1

m + 1

m∑

s=0

(
m + 1

s

)
(−2)s.(A.11)

Applying the Binomial theorem we get that

m∑

s=0

(
m + 1

s

)
(−2)s = (−1)m+1

(
1 − 2m+1

)
.(A.12)

Plugging all of this into (A.9), we find

A(n) =

n∑

k=0

n−k∑

l=0

(
n

k

)(
n − k

l

)
(−1)l

2n−k+1

(−1)n−k−l+1

n − k − l + 1

(
1 − 2n−k−l+1

)

=

n∑

k=0

(
n

k

)
(−1)n−k+1

2n−k+1

n−k∑

l=0

(
n − k

l

)
1

n − k − l + 1

(
1 − 2n−k−l+1

)
.

(A.13)
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Moreover, we have

n−k∑

l=0

(
n − k

l

)
1

n − k − l + 1
=

1

n − k + 1

n−k∑

l=0

(
n − k + 1

l

)
(A.14)

=
1

n − k + 1

(
2n−k+1 − 1

)
,

and

n−k∑

l=0

(
n − k

l

)
2n−k−l+1

n − k − l + 1
=

1

n − k + 1

n−k∑

l=0

(
n − k + 1

l

)
2n−k−l+1(A.15)

=
1

n − k + 1

(
3n−k+1 − 1

)
.

Hence

A(n) =

n∑

k=0

(
n

k

)
(−1)n−k+1

2n−k+1(n − k + 1)

(
2n−k+1 − 3n−k+1

)

= (−1)n+1
n∑

k=0

(
n

k

)
(−1)k

n − k + 1

(
1 −

(
3

2

)n−k+1
)

.

(A.16)

Now

n∑

k=0

(
n

k

)
(−1)k

n − k + 1
=

1

n + 1

n∑

k=0

(
n + 1

k

)
(−1)k =

(−1)n

n + 1
,(A.17)

and

n∑

k=0

(
n

k

)
(−1)k

n − k + 1

(3

2

)n−k+1
=

(−1)n+1

n + 1

n∑

k=0

(
n + 1

k

)(
−3

2

)n−k+1

=
(−1)n

n + 1
=

1

2n+1(n + 1)
+

(−1)n

n + 1
.

(A.18)

Finally, we get

A(n) = (−1)n+1

(
(−1)n

n + 1
− 1

2n+1(n + 1)
− (−1)n

n + 1

)
=

(−1)n

2n+1(n + 1)
.(A.19)
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