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0 Introduction

In this work we will explore the concepts of factorization algebras and factorization homology
over stratified spaces. These two concepts, which at first sight will looks very different, will turn
out to be closely related. We will try to keep the discussion on the level of stratified spaces,
while pointing out which results have not yet been generalized. The outline of the text is as
follows:

Stratified spaces: The first chapter section 1 deals with setting up the theory of stratified
spaces. Beginning with the fundamentals which have existed since the work of Whitney [Whi92].
The particular version of stratified spaces that we use will be due to Ayala, Francis and Tanaka
[AFT17b]. This is because they can define a notion of conical smoothness, that is the equivalent
to smoothness of unstratified manifolds. We will not go into the full details that this incarnation
of the theory has to offer, but instead we will only focus on the results that we will make use
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of later on. Beyond, conical smoothness, this will include tangential structure and its stratified
generalization, together with the packaging of both of these data into the concept of an ∞-
category of basic singularity types.

Factorization Homology: The second chapter section 2 will present the theory of fac-
torization homology. For this purpose we will need the concept of (structured) disk algebras,
since this will be the algebraic input of the theory. Factorization homology will then return an
invariant of a manifold. We will explore the key example of factorization homology over the
closed, oriented, interval, and see how this gives rise to the algebraic concept of the two-sided
bar construction. More generally, this underpins the theory because it codifies the property of
⊗-excision, and what it means to be a homology theory. Finally, we will also state a classifi-
cation result about a certain type of disk algebras with stratified structure.

Factorization Algebras: The third chapter section 3 introduces the concept of factor-
ization algebras, with its various subtypes, like prefactorization algebras and locally constant
factorization algebras. We will see that, of these, the locally constant ones are those that can
see the possible stratified structure of the underlying space. After introducing the pushforward
of factorization algebras, we will spend some time on finding ways to construct factorization
algebras from fewer data than the original definition requires. This will introduce factorization
homology back into the picture, and we will see the relation between the two. Finally, we will
examine some examples of factorization algebras whose construction is known.

Collar-gluings and Disk Algebras: The fourth chapter section 4 presents a novel result
about the behavior of certain types of disk algebras under the operation of collar-gluing. It
essentially shows that once can reproduce a disk algebra on a stratified manifold if we know it
on some particular pieces of it together with the data of how to glue them. In the smooth case
the result directly extends to locally constant factorization algebras, in which case it gives a
way to calculate the ∞-category of factorization algebras on the spheres 𝑆𝑛 in particular.

Classifying FAlglcs on Defect Manifolds: The fifth chapter section 5 presents a roadmap
towards a classification of locally constant factorization algebras on a particular family of strat-
ified manifolds; the ones with a distinguished, properly, embedded submanifold (defect). While
we cannot reach a full classification, we do make observations that simplify the problem.

Applications to Physical Examples: The final, sixth, chapter section 6 presents a small
sliver of the relationship between factorization algebras and structures that arise in physics,
based on the work [CG16]. In particular, it argues that the factorization algebras are the
natural structure for the observables of a quantum theory.

Acknowledgements: I would like to thank my partner, Rebecca, for your patience and
understanding. This work wouldn’t have been possible without your support. I would like to
thank my supervisors for their guidance during this thesis and beyond. The conversations with
Ödül Tetik, in particular, formed the basis of my understanding of the topic. I am grateful for
the time he put into teaching me and focusing my attention.

0.1 Conventions on ∞-categories

The ∞-categories in this work will use the quasi-category model of ∞-category theory intro-
duced by Joyal in [Joy02], which is based on the simplicial sets introduced by [BV]. The work
by Lurie in [Lur09] and [Lur] greatly builds on this theory, and questions about fundamental
objects or constructions that are in this text will always be answered in those references. This
choice is because a great deal of the theory of factorization homology, as well as factorization
algebras deal with ∞-categories of functors, which are most easily defined for quasi-categories.

It is also important to note that we will not be making a notational distinction between
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topological categories, Kan enriched categories and ∞-categories because of the functors

{Top−categories}
Sing
−−→ {Kan−categories} N−→ Cat∞, (1)

which are both equivalences in appropriate ways. In particular, we will not distinguish the
nerve of an ordinary category from the ordinary category itself.

1 Stratified Spaces

The spaces that this work will be set in will very often be stratified spaces. Thus, we first
need to define what we mean by this concept. There are multiple definitions of stratified spaces
in the literature, all of which have their advantages and disadvantages. For our purposes, we
will follow the account of [AFT17b]. The majority of the work on factorization homology has
so far been elaborated using this particular set of definitions, and similarly the stratified spaces
used in the literature on factorization algebras are usually subsumed too. Here we will only
recap the results that will be of use to us. Further details are, of course, discussed in [AFT17b],
where one can find a great explanation of the definitions that are needed, and detailed proofs
of the theorems that can be proven.

1.1 Fundamentals of Stratified Spaces

Definition 1.1. We will regard posets as topological spaces by declaring that a map 𝑃 → 𝑃 ′

is continuous if, any only if it is a map of posets. This means that we declare a subset 𝑈 ⊂ 𝑃
to be open if for all 𝑎 ∈ 𝑈 , any 𝑏 ≥ 𝑎 is also in 𝑈 . This gives a fully faithful functor

Poset ↪−→ Top. (2)

Definition 1.2 ([Lur]). Let 𝑃 be a poset. A 𝑃 -stratified space is a topological space 𝑋 together
with a map 𝑋 → 𝑃 , which we call the stratification of 𝑋. We will sometimes refer to 𝑋 as
the underlying topological space of a stratified space. Furthermore, we denote the preimage of
𝑝 ∈ 𝑃 as 𝑋𝑝 and call it the 𝑝th stratum of 𝑋.

Example 1.3. Any CW complex 𝑋 can be made into a stratified space 𝑋 → ℕ, which sends all
points in 𝑋≤𝑘 ∖ 𝑋≤𝑘−1 to 𝑘, where 𝑋≤𝑘 is the 𝑘-skeleton of 𝑋.
Example 1.4. Inspired by the previous example, any topological space 𝑋 with a filtration by
closed subsets ∅ ⊂ 𝑋≤0 ⊂ ⋯ ⊂ 𝑋≤𝑛 = 𝑋, is a stratified space, because the filtration induces a
map 𝑋 → ℕ, which sends 𝑋≤𝑖 ∖ 𝑋≤𝑖−1 to 𝑖.

Remark 1.5. Given two stratified spaces 𝑋 𝑠−→ 𝑃 and 𝑋′ 𝑠′
−→ 𝑃 ′, we can form the product

stratified space 𝑋 × 𝑋′ 𝑠×𝑠′
−−⟶ 𝑃 × 𝑃 ′, where the partial order on the product poset is given by

(𝑝, 𝑝′) ≤ (𝑞, 𝑞′) ⟺ (𝑝 ≤ 𝑞) ∧ (𝑝′ ≤ 𝑞′).
Example 1.6. Consider the poset [1] = {0 < 1}, and the topological space ℝ≥0. The standard
stratification that we will give to this space is given by ℝ≥0 → [1], that sends 0 ↦ 0 and
0 ≠ 𝑥 ↦ 1. This space will play an important role for factorization algebras later on.

Definition 1.7. Let 𝑋 → 𝑃 and 𝑋′ → 𝑃 ′ be two stratified spaces. A continuous stratified
map (or map of stratified spaces) is a commutative diagram in Top

𝑋 𝑋′

𝑃 𝑃 ′.
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Example 1.8. Every stratified space (𝑋 → 𝑃) has a continuous stratified map that forgets the
stratification (𝑋 → 𝑃 ) → (𝑋 → ∗), giving data equivalent to an unstratified topological space.

Definition 1.9. A continuous stratified map (𝑓 ∶ 𝑋 → 𝑋′, 𝑔 ∶ 𝑃 → 𝑃 ′) is an open embedding
if 𝑓 ∶ 𝑋 → 𝑋′ is an open embedding of topological spaces.

Remark 1.10. The above definitions give us a natural notion of an open cover {(𝑈𝑖 → 𝑃𝑖) ↪−→
(𝑋 → 𝑃)}𝑖∈𝐼 of a stratified space (𝑋 → 𝑃), namely, whenever both {𝑈𝑖 ↪−→ 𝑋}𝑖∈𝐼 and
{𝑃𝑖 ↪−→ 𝑃}𝑖∈𝐼 are open covers.

Next, we construct the cone of a stratified space. This plays a very important role in the
theory of stratified manifolds, since the neighborhoods of these spaces will always look like a
cone over some space with a possible further thickening by some ℝ𝑘. That is, the cones will be
the model space for singularities.

Definition 1.11. Let 𝑋 → 𝑃 be a stratified space. The cone C(𝑋 → 𝑃) is the stratified space
constructed as follows. At the level of topological spaces we define the pushout in Top

C(𝑋) ∶= ∗ ∐
𝑋×{0}

𝑋 × ℝ≥0. (3)

At the level of posets we define the pushout in Poset

C(𝑃 ) ∶= ∗ ∐
𝑃×{0}

𝑃 × [1]. (4)

The standard stratification of ℝ≥0 together with the obvious map ∗ → ∗ induce a stratification
C(𝑋) → C(𝑃 ) as a map between pushouts.

The equivalent of a topological manifold in the stratified setting is a 𝐶0 stratified space.
We will not be fully precise in the definition of these, since this would stray us from our main
goal. We will however cite theorems that show that the spaces we consider in this work are 𝐶0

stratified spaces. The reason why the below cannot be the actual definition is because it would
partially be a cyclic statement. We cite it because it provides good intuition for the structure
of 𝐶0 stratified spaces.

Definition 1.12. A 𝐶0 basic is a 𝐶0 stratified space of the form ℝ𝑘 × C(𝑍), where 𝑘 ≥ 0, ℝ𝑘

has the trivial stratification, and 𝑍 is a compact 𝐶0 stratified space.

Theorem 1.13 ([AFT17b, lem.2.2.2]). Let 𝑋 be a stratified, second countable, Hausdorff space,
and consider the collection of open embeddings

{𝑈 ↪−→ 𝑋}, (5)

where 𝑈 ranges over the 𝐶0 basics. Then this collection forms a basis for the topology of 𝑋 if
and only if 𝑋 is a 𝐶0 stratified space.

Theorem 1.14 ([AFT17b, cor.2.3.5]). Let 𝑋 → 𝑃 be a 𝐶0 stratified space. For any 𝑝 ∈ 𝑃 , the
stratified spaces 𝑋≤𝑝, 𝑋𝑝 and 𝑋≮𝑝, defined as the relevant preimages, are 𝐶0 stratified spaces.
Furthermore, 𝑋𝑝 is even a topological manifold.

Remark 1.15. Because of the above theorem, 𝐶0 stratified spaces 𝑋 → 𝑃 have a natural
filtration by dimension since there is a map 𝑃 → ℕ, which sends 𝑝 ↦ dim(𝑋𝑝). In our
examples of interest we will always choose dimension as the stratification.
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The smooth version of the above concepts also exists and will be the one that is of main
interest. As was the case for 𝐶0 stratified spaces, we will not give the precise definition of a
conically smooth stratified space (or stratified manifold for short), since the exact definition is
involved. The idea, though, is the same as for smooth manifolds.

A stratified manifold is a 𝐶0 stratified space 𝑀 equipped with an atlas

{ℝ𝑘𝛼 × C(𝑍𝛼) ↪ 𝑀}𝛼, (6)

whose elements we call basics. This atlas has to be a basis for the topology of 𝑋, and the
transitions maps, open embeddings among basics, have to be conically smooth. General maps of
stratified manifolds will then be conically smooth if their representatives in basics are conically
smooth.

The reason why the definition is involved is, because unlike in the smooth case the presence
of the compact spaces 𝑍𝛼 means that we have to use induction to define conical smoothness.

In lieu of a definition we give the following illuminating example:
Example 1.16. Smooth manifolds fall under the definition of stratified manifolds as those that
only have one stratum. A smooth map 𝑓 between compact smooth manifolds gives rise to a
conically smooth map f between the cones of these manifolds. If we also have a smooth map
between Euclidean spaces 𝑔 then the map ℎ×C(𝑓) is also conically smooth. This already allows
us to describe stratified manifolds with two strata.

The next classes of conically smooth maps will be present throughout this work.

Definition 1.17. Let 𝑓 ∶ 𝑀 → 𝑁 be a conically smooth map.
1. 𝑓 is an open embedding if it is an open map that is conically diffeomorphic onto its image.
2. 𝑓 is a refinement if it’s a homeomorphism of underlying topological spaces, and it’s

restriction to each stratum of 𝑀 is an embedding.
3. Let 𝑃𝑁 be the stratifying poset of 𝑁 . 𝑓 is a constructible bundle if, for each 𝑝 ∈ 𝑃𝑁 , the

restriction 𝑓|𝑝 ∶ 𝑀|𝑓−1𝑁𝑝
→ 𝑁𝑝 is a fiber bundle of stratified spaces.

Remark 1.18. We will also on occasion use the concept of weakly constructible bundle, which
is a continuous stratified map 𝑓 ∶ 𝑀 → 𝑁 which is a constructible bundle out of a refinement

of 𝑀 , i.e. there is a diagram 𝑀 𝑟←− 𝑀 ′ 𝑓′

−→ 𝑁 , where there is an equality 𝑓 = 𝑓 ′ ∘ 𝑟 of the
underlying continuous maps. Constructible bundles are obviously also weakly constructible.

For the next definition we notice that all standard simplices are stratified manifolds.

Definition 1.19. Snglr is the ∞-category whose objects are stratified manifolds and whose
morphisms are open embeddings among them. To get the higher categorical structure we
consider a simplicial enrichment over Set-valued presheaves on the unenriched category, so that
given two objects 𝑀 and 𝑁

HomSnglr(𝑀, 𝑁) ∶ [𝑝] ↦ S/Δ𝑝(𝑀 × Δ𝑝, 𝑁 × Δ𝑝), (7)

where Δ𝑝 is the standard 𝑝-simplex and S/Δ𝑝 denotes those stratified maps that commute with
projecting to Δ𝑝. It can be shown that this enrichment factors through a Kan-enrichment,
which gives the appropriate structure.

Remark 1.20. The above definition is not immediately parsable, but it can be shown that
reducing to the case of smooth manifolds this definition gives equivalent data to the topological
enrichment which to morphism spaces assigns the compact-open topology.

Definition 1.21. The ∞-category of basic singularity types Bsc ⊂ Snglr is the full 𝑖𝑛𝑓𝑡𝑦-
subcategory of those objects that are basics.
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1.2 Stratified Manifolds with Tangential Structure

In a lot of cases we will want to add to our stratified manifold the data of tangential
structure. This, for example, will be the geometric input for factorization homology. Thus, we
introduce the concept of tangential structure here, first starting with smooth manifolds and
then continuing to the stratified case.

Definition 1.22. Let Mfld𝑛 be the ∞-category defined as a topological category, whose objects
are smooth, 𝑛-dimensional manifolds and whose morphisms are embeddings between them,
where the morphism spaces have the compact-open topology. This category can be endowed
with a symmetric monoidal structure given by disjoint union.

Given a smooth, 𝑛-dimensional manifold 𝑀 , its tangent bundle is a rank-𝑛 vector bundle
on the manifold, which also makes it a principal GL(𝑛)-bundle. Because of the classification of
principal bundles, the tangent bundle of a manifold 𝑀 can be classified, up to homotopy, by a
map called the tangent classifier

𝑀
𝜏𝑀−−−−→ BO(𝑛) Gram−Schmidt−−−−−−−−−→

≃
BGL(𝑛), (8)

where BO(𝑛) is the classifying space of O(𝑛). Giving the manifold a 𝐺-structure, where 𝐺 is
a Lie group with a group homomorphism to GL(𝑛), is then equivalent to a factorization, up
to homotopy, of the tangent classifier through B𝐺, in other words it is a lift 𝜙 of the tangent
classifier such that the following diagram is homotopy commutative

B𝐺

𝑀 BO(𝑛).

𝜙

𝜏𝑀

It is, in fact, this picture that will generalize to give us tangential structure in the more
general case. As a first step, [AF15, cor.2.13] shows that the tangent classifier can be understood
as a functor

𝜏 ∶ Mfld𝑛
Yoneda−−−−→ PShv(Mfld𝑛)

−|ℝ𝑛⊂Mfld𝑛−−−−−−→ PShv(ℝ𝑛) ≃ Spaces/BO(𝑛), (9)

and in fact a symmetric monoidal one, where the codomain’s symmetric monoidal structure
is given by coproduct. Namely, given a smooth manifold 𝑀 , the functor returns the map of
spaces 𝜏𝑀 ∶ 𝑀 → BO(𝑛).

By fixing a space 𝐵 with a map 𝐵 → BO(𝑛) (the role of which was previously played by
B𝐺), we can define:

Definition 1.23. The symmetric monoidal ∞-category Mfld𝐵
𝑛 of 𝑛-manifolds with 𝐵-structure

is the pullback of ∞-categories

Mfld𝐵
𝑛 Spaces/𝐵

Mfld𝑛 Spaces/BO(𝑛),

⌜
𝜏

where the right vertical arrow is induced by the map 𝐵 → BO(𝑛).
Remark 1.24. Since the tangent classifier 𝜏 is symmetric monoidal, and since the right vertical
map is canonically symmetric monoidal with the coproduct on both Spaces/𝐵 and Spaces/BO(𝑛),
the newly defined ∞-category does indeed come with a canonical symmetric monoidal structure.
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Example 1.25. Classical examples for tangential structure come from principal 𝐺-bundles as
discussed before. Namely, given a Lie group 𝐺 together with a smooth homomorphism 𝐺 →
GL(𝑛) ≃ O(𝑛), we have an induced map of spaces B𝐺 → BO(𝑛), which gives rise to the
following examples:

1. (𝐺 → O(𝑛)) = (O(𝑛) id−→ O(𝑛)) reproduces the case of no tangential structure,
2. (𝐺 → O(𝑛)) = (SO(𝑛) ↪−→ O(𝑛)) is the case of oriented smooth manifolds,
3. (𝐺 → O(𝑛)) = (Spin(𝑛) → SO(𝑛) ↪−→ O(𝑛)) is the case of spin structure,
4. (𝐺 → O(𝑛)) = (∗ → O(𝑛)) is the case of framed smooth manifolds.
Moving on to the stratified setting, we note that the stratified version of the full ∞-

subcategory ℝ𝑛 ⊂ Mfld𝑛 is the ∞-category of basic singularity types Bsc. We can thus
generalize the tangent classifier to this setting as the functor

𝜏 ∶ Snglr Yoneda−−−−→ PShv(Snglr)
−|Bsc⊂Snglr
−−−−−−→ PShv(Bsc). (10)

In this case, as in the previous, given a stratified manifold 𝑀 , 𝜏(𝑀) is the functor that for
each basic 𝑈 ∈ Bsc, assigns the space of stratified smooth open embeddings of 𝑈 into 𝑀 .
Remark 1.26. We can say something more about this situation if we use the unstraightening
construction [Lur09, sec.2.2] which provides an equivalence between Spaces-valued presheaves
on a general ∞-category C and right fibrations 1 over this ∞-category

PShv(C) ≃ RFibC. (11)

More details on this equivalence in our context can be found in [AFT17b, sec.4.2] Appending
this equivalence to the definition of the tangent classifier would say that the value of the tangent
classifier on a stratified manifold 𝑀 is given by the right fibration

𝜏𝑀 ∶ Entr(𝑀) ∶= Bsc/𝑀 → Bsc, (12)

i.e. the forgetful functor from the slice ∞-category. The ∞-category Entr(𝑀) defined here is
called the enter-path ∞-category of the stratified manifold 𝑀2. In fact the statements that we
will make next will take on this perspective for the tangent classifier.

Having generalized the tangent classifier to stratified manifolds we can now think about
adding structure to them. The key realization is that the data which the map of spaces
𝐵 → BO(𝑛) provided before was the data of a presheaf on BO(𝑛), standing in as the ∞-
category of basics with only one object ℝ𝑛. The analogous construction in the stratified case
is to provide a presheaf on Bsc, which by remark 1.26 is given by a right fibration over Bsc.

Definition 1.27. An ∞-category of basics is a right fibration B → Bsc

Definition 1.28. Given an ∞-category of basics B → Bsc, the ∞-category of B-manifolds is
the pullback

1More details can be found in the cited references, but for completeness we include the definition of right
fibration. A right fibration (over C) is a functor 𝑓 ∶ E → C such that the diagram

Λ𝑛
𝑖 E

Δ𝑛 C

can be filled for any 0 < 𝑖 ≤ 𝑛.
2A different version of this ∞-cateogry is defined in [Lur, app.A.6] called the exit-path ∞-category of the

stratified space 𝑀. It is shown in the work [AFR19] that this exit-path ∞-category is equivalent to the opposite
of the enter-path ∞-category as defined above.
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Mfld(B) (RFibBsc)/B

Snglr RFibBsc.

⌜
𝜏

Remark 1.29. Specifying to the objects of Mfld(B), we have that a B-manifold is a stratified
manifold 𝑀 together with a lift 𝜙

B

Entr(𝑀) Bsc,

𝜙

𝜏𝑀

i.e. such that the triangle above is homotopy commutative in the ∞-category of ∞-categories
Cat∞. This is how we can encode the stratification information while keeping the basic idea of
a lift the same.
Remark 1.30. There is an obvious, fully faithful inclusion B ↪−→ Mfld(B), just as there was in
the case without tangential structure.

In the case of smooth manifolds we argued that Mfld𝐵
𝑛 was defined in a way that allowed

it to inherit disjoint union as a symmetric monoidal structure. A similar argument, found in
[AFT17a], can be made for the stratified case too

Proposition 1.31. Disjoint union endows Mfld(B) with a symmetric monoidal structure.

Definition 1.32. A collar-gluing of a stratified manifold 𝑀 is a weakly constructible bundle
𝑀

𝑓
−→ [−1, 1]. We denote collar-gluings as

𝑀 ≅ 𝑀− ∐
𝑀0×ℝ

𝑀+, (13)

where 𝑀− ∶= 𝑓−1 [−1, 1), 𝑀0 ∶= 𝑓−1{0} and 𝑀+ ∶= 𝑓−1 (−1, 1]
Remark 1.33. One should think of collar-gluings as analogous to the case of gluing two manifolds
with boundary along their boundaries after choosing collars. This is exactly the special thing
about them, the overlap region is collared, i.e. looks like a product with ℝ. We also note that
the disjoint union is an example of a collar-gluing.

Theorem 1.34 ([AFT17b]). Mfld(B) is generated by B through iteratively forming collar-
gluings and taking sequential colimits.

Remark 1.35. Theorem 1.34 is the analogous theorem to handle decompositions of smooth
manifolds. Namely, any compact, smooth manifold can be obtained by handle decomposition,
and non-compact smooth manifolds are obtained by sequential colimits of finitary (including
compact) smooth manifolds.

1.3 Useful ∞-categories of Basics

Along with the already familiar ∞-categories of basics D𝐺
𝑛 ∶= B𝐺

{ℝ𝑛}
−−−→ Bsc, which govern

smooth 𝑛-manifolds with 𝐺-structure, we introduce a few more ∞-categories of basics that
will be useful for us. An ∞-category of basics that will play a big role for the development of
factorization homology to come, is the particularly simple one describing oriented 1-manifolds
with boundary.
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Construction 1.36. Consider the ∞-subcategory D𝜕
1 ⊂ Bsc whose objects are ℝ and ℝ≥0.

There is a unique right fibration D𝜕,or
1 → D𝜕

1 , whose fiber over ℝ is a point {ℝ}, and whose
fiber over ℝ≥0 is two points {ℝ≥0, ℝ≤0}. In other words, D𝜕,or

1 has objects ℝ, ℝ≥0 and ℝ≤0 with
their canonical orientations, and the morphisms are orientation preserving embeddings between
them. In this way, D𝜕,or

1 is the ∞-category of basics that describes oriented (or, equivalently in
this case, framed), smooth 1-manifolds with boundary.

Another type of stratified manifold that we will focus on heavily in this work is the case of
a smooth manifold with a distinguished, properly embedded, smooth submanifold, which we
alternatively call a defect. Even though there is a clear picture of what this means we will now
formally describe the ∞-category of basics that will give rise to these kinds of manifolds.

Construction 1.37 ([AFT17b, ex.5.2.10]). Let D𝑑⊂𝑛 ⊂ Bsc be the full ∞-subcategory whose
objects are ℝ𝑛 and ℝ𝑑⊂𝑛 ∶= ℝ𝑛−𝑑 × C(𝑆𝑛−𝑑−1), where 𝑑 < 𝑛. We elaborate that the morphism
spaces are given as follows:

1. HomD𝑑⊂𝑛
(ℝ𝑛, ℝ𝑛) = Emb(ℝ𝑛, ℝ𝑛), the space of smooth embeddings of ℝ𝑛.

2. HomD𝑑⊂𝑛
(ℝ𝑑⊂𝑛, ℝ𝑛) = ∅

3. HomD𝑑⊂𝑛
(ℝ𝑛, ℝ𝑑⊂𝑛) = Emb(ℝ𝑛, ℝ𝑛 ∖ ℝ𝑑), the space of embeddings that miss the defect.

4. HomD𝑑⊂𝑛
(ℝ𝑑⊂𝑛, ℝ𝑑⊂𝑛) ≃ O(𝑑) × O(𝑛 − 𝑑). This final morphism space is given differently

compared to the other ones because of intricacies related to smoothness around the defect.
For more details on the matter there is a discussion in [AFT17b, ex.5.1.7].

That D𝑑⊂𝑛 → Bsc is a right fibration is immediate from the fact that the objects of D𝑑⊂𝑛 have
at most one defect, which means that they don’t receive maps from basics that are not in D𝑑⊂𝑛
already.

Definition 1.38. The ∞-category describing smooth, 𝑛-dimensional manifolds 𝑀 which carry
a properly embedded smooth, 𝑑-dimensional submanifold Σ is given by Mfld(D𝑑⊂𝑛).

For later purposes we will also need to define a framed version of these manifolds.

Definition 1.39. The ∞-category of basics describing framed D𝑑⊂𝑛-manifolds is given by the
pullback of ∞-categories

D∗
𝑑⊂𝑛 D∗

n ≃ ∗

D𝑑⊂𝑛 D𝑛 ≃ BO(𝑛).

⌜

Remark 1.40. To explain what the bottom horizontal functor fully is would initially take us into
the realm of piecewise linear manifolds, and away from our goal. To not get into those details
we note that in fact one can show that D∗

𝑑⊂𝑛 ≃ Δ1 by sending ℝ𝑛 ↦ 0 and ℝ𝑑⊂𝑛 ↦ 1, which is
an extension of the fact that in the case of no defects framings are governed by D∗

𝑛 ≃ Δ0 ≃ ∗.
Explaining what exactly we mean by a framed stratified manifold is done in [AFT17b,

ex.5.2.12]. According to that example, D∗
𝑑⊂𝑛-manifolds are described by the data of a framed

smooth 𝑛-manifold 𝑀 , a properly embedded smooth 𝑑-submanifold Σ together with a null-
homotopy of the Gauss map Σ → Gr𝑑(ℝ𝑛). In more detail, for a general embedded submanifold
Σ ↪−→ 𝑀 the Gauss map gives the tangent (or equivalently normal) subspace to Σ at every point.
That is encoded as a map Σ → Gr𝑑(T𝑀) to the Grassmann bundle of the tangent bundle of
𝑀 . In our case, the framing of 𝑀 provides a preferred trivialization of the tangent bundle to
ℝ𝑛. A null-homotopy of this map is a trivialization of the tangent (and subsequently also the
normal) bundle of Σ in a way that is compatible with the trivialization of T𝑀 .
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2 Factorization Homology

Factorization homology (also topological chiral homology) is a construction that to the
data of a smooth manifold 𝑀 and an algebra 𝐴 valued in a symmetric monoidal ∞-category
C assigns an object

∫
𝑀

𝐴 ∈ C. (14)

In fact this is only the simplest variant of factorization homology. Variants that accommodate
stratified manifolds instead of smooth ones and even (∞, 𝑛)-categories instead of algebras have
also been worked out. Fixing the algebra, the construction is functorial with respect to open
embeddings in the manifold variable, which is the starting point to show that it is a chain level
homology theory in a generalized sense, and giving the name. The initial chiral version was
first introduced in [BD04], and a topological version was introduced by [Lur]. In section 3.4 we
will also see how factorization homology gives examples of factorization algebras. The theory of
factorization homology has been deeply developed in [AF15; AFT17a], especially in the manner
that we introduce it in here. A good introduction, is thus, given by [AF19], which we will be
following.

2.1 Disk Algebras

In the following, and from now on, we let C be a symmetric monoidal ∞-category that is
⊗-presentable [AF15], i.e. it satisfies:

1. C is presentable: it admits colimits, and every object is a filtered colimit of compact
objects3, and

2. the monoidal structure distributes over colimits: for all 𝑐 ∈ C, the functor 𝑐 ⊗ − ∶ C → C

takes colimit diagrams to colimit diagrams.
Remark 2.1. For developing the theory of factorization homology the assumption that C has all
sifted4 colimits, and the monoidal structure commutes with these, is usually enough. However, if
we want the ∞-category of algebras valued in C to inherit the properties of having sifted colimits
that commute with the monoidal structure, then we must require that C has all (small) colimits.
This will similarly be the case for factorization algebras. The stronger requirement also doesn’t
exclude any of the core examples that we are interested in. In fact, in some situations, the full
requirement of presentability makes examples tractable.
Example 2.2. The following are examples of ⊗-presentable categories:

1. chain complexes Ch𝕜 over a commutative ring 𝕜, where equivalences are given by quasi-
isomorphism. The symmetric monoidal structure can be both direct sum ⊕ or tensor
product ⊗.

2. Any cocomplete, Cartesian closed ∞-category together with categorical product. (for
example Spaces or Cat∞).

In particular, (Ch𝕜, ⊗) is the most useful for the purposes of mathematical physics, which is
why it’s the choice for the development in [CG16] and [Gin15].

We also fix an ∞-category of basics B → Bsc.
3For the exact meaning of these terms we refer the reader to [Lur09, sec.5.3]. For us, it will suffice to give

examples of ∞-categories that satisfy these requirements.
4Sifted colimits are colimits over a sifted indexing simplicial set 𝐾, which means that the diagonal functor

of 𝐾 ≠ ∅ is final
colim(𝐾 → 𝐾 × 𝐾 → C) ≃ colim(𝐾 × 𝐾 → C).
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Definition 2.3. The symmetric monoidal ∞-category Disk(B) ⊂ Mfld(B) is the smallest full
symmetric monoidal ∞-subcategory containing B. Namely, the objects of Disk(B) are disjoint
unions of objects of B.

Definition 2.4. The ∞-category of disk algebras valued in C is the ∞-category of symmetric
monoidal functors

Alg
Disk(B)(C) ∶= Fun⊗(Disk(B),C). (15)

Remark 2.5. The exact specification of the above ∞-category is not immediate, but the expla-
nations given in [Lur, def.2.0.0.7], [Lur, rem.2.1.2.19] and [Lur, def.2.1.3.7] clarify the matter.
A succinct explanation is also given around [AFT17a, def.1.11]. Informally, the objects will be
symmetric monoidal functors from Disk(B) to C. These are given by functors 𝐹 ∶ Disk(B) → C

together with maps

𝐹(𝑈 ⊔ 𝑉 ) ≃−−−→ 𝐹(𝑈) ⊗ 𝐹(𝑉 ), (16)

and such that the swap in Disk(B), 𝑈 ⊔ 𝑉 ≃ 𝑉 ⊔ 𝑈 , is sent to the swap in C, 𝐹(𝑈) ⊗
𝐹(𝑉 ) ≃ 𝐹(𝑉 ) ⊗ 𝐹(𝑈), in a way that is compatible with the maps in eq. (16). A good informal
explanation of this and other topics related to disk algebras can be found in the lecture notes
[Tan].

These algebras will be the algebraic input of factorization homology. To convince ourselves
that this is not a huge limitation on the types of algebras that can be evaluated we have

Proposition 2.6 ([AFT17a, prop.2.12]). Let (B → Bsc) = (∗
{ℝ𝑛}
−−−→ Bsc), namely the ∞-

category of basics describing framed smooth 𝑛-manifolds. There is an equivalence of ∞-
categories

Alg
Disk(B)(C) ≃ Alg𝔼𝑛

(C). (17)

Furthermore, if the ∞-category of basics is rather (B → Bsc) = (BO(𝑛)
{ℝ𝑛}
−−−→ Bsc), the one

describing unstructured smooth manifolds, then there is an equivalence of ∞-categories

Alg
Disk(B)(C) ≃ Alg𝔼𝑛

(C)O(𝑛), (18)

with the (homotopy) O(𝑛)-invariants, where the action of O(𝑛) is given by change of framing.

Remark 2.7. For more details on 𝔼𝑛-algebras and why these algebras encompass large portions
of the examples one usually cares about see [Lur, sec.5.1] or alternatively appendix.

Definition 2.8. For 𝑀 ∈ Mfld(B) a B-manifold the slice ∞-category of disks over 𝑀 is defined
by

Disk(B)/𝑀 ∶= Disk(B) ⨉
Mfld(B)

Mfld(B)/𝑀 . (19)

Remark 2.9. Disk(B) is a symmetric monoidal ∞-category, however there is no way to in-
herit this structure to Disk(B)/𝑀 . Intuitively, this is because disjoint union cannot serve as a
monoidal structure now that the disks are equipped with an embedding into a given manifold
𝑀 ; they could be such that they intersect. However, as explained in [AFT17a, not.1.21], we
can equip Disk(B)/𝑀 with the structure of an ∞-operad because the symmetric monoidal unit
∅ of Disk(B) and Mfld(B) is initial. We will refer to algebras over this ∞-operad as

Alg
Disk(B)/𝑀

, (20)
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which are defined as described in [Lur] for a general ∞-operad.
In more details, following [AFT17a, ex.2.5], objects of Disk(B)/𝑀 are finite sets of open

embeddings of disks (𝑈 ↪−→ 𝑀). A morphism between two open embeddings (𝑈 ↪−→ 𝑀) →
(𝑉 ↪−→ 𝑀) is specified by an open embedding 𝑈 ↪−→ 𝑉 together with an isotopy between
𝑈 ↪−→ 𝑀 and 𝑈 ↪−→ 𝑉 ↪−→ 𝑀 . A multi-morphism ((𝑈1 ↪−→ 𝑀), (𝑈2 ↪−→ 𝑀)) → (𝑉 ↪−→ 𝑀)
is given by an open embedding 𝑈1 ⊔ 𝑈2 ↪−→ 𝑉 together with two isotopies from 𝑈1 ↪−→ 𝑀 to
𝑈1 ↪−→ 𝑈1 ⊔ 𝑈2 ↪−→ 𝑀 , and from 𝑈2 ↪−→ 𝑀 to 𝑈2 ↪−→ 𝑈1 ⊔ 𝑈2 ↪−→ 𝑀 .
Remark 2.10. The ∞-operad Disk(B)/𝑀 , so defined, does not actually depend on the B-
structure; there is an equivalence

Disk(B)/𝑀 ≃ Disk(Bsc)/𝑀 , (21)

where 𝑀 on the right-hand side is the underlying stratified manifold of the B-manifold also
called 𝑀 . The same holds for the ∞-operad Mfld(B)/𝑀 . This is essentially because the ∞-
cateogry of basics B → Bsc is defined as a right fibration. Intuitively, those disks that have
an open embedding into 𝑀 admit a B-structure by restriction since 𝑀 admits one. From here
since over ∞-groupoids are contractible, there is an equivalence between the space consisting
of this inherited B-structure and the space of B-structures the disk originally had.

Lemma 2.11 ([AFT17a, lem.2.24]). Let 𝑓 ∶ 𝑀 → 𝑁 be a constructible bundle. There is a
functor of ∞-operads

𝑓−1 ∶ Disk(Bsc)/𝑁 −→ Mfld(Bsc)/𝑀 , (22)

which acts on objects by sending 𝑉 ↪−→ 𝑁 to 𝑓−1𝑉 ↪−→ 𝑀 .

Remark 2.12. Because of remark 2.10, the above construction easily extends to general B-
structure, with no further requirements on the constructible bundle 𝑓 .

2.2 Definition of Factorization Homology

There are multiple ways to define factorization homology, whether through a universal
property as a left adjoint or more computational definitions through colimits. All of these
can be shown to be equivalent, in the cases of interest, as is done in [AF15; AFT17a; AF19].
Namely, the key point for the connection is that if the target category has enough colimits then
left Kan extensions can be computed as colimits. Here we provide the colimit definition:

Definition 2.13. Let 𝑀 be a B-manifold and 𝐴 be a Disk(B)-algebra valued in C. The
factorization homology of 𝑀 with coefficients in 𝐴 is the object of C given by the colimit

∫
𝑀

𝐴 ∶= colim (Disk(B)/𝑀 → Disk(B) 𝐴−→ C) . (23)

2.3 Disk Algebras over Oriented Intervals

We now focus on describing disk algebras over oriented intervals with and without boundary.
Not only is this an important example for what disk algebras look like, but it’s also impor-
tant in defining what it means to say that factorization homology is excisive. The following
constructions can be found in the originals [AF15; AFT17a].

We want to show that disk algebras with D𝜕,or
1 -structure, as defined in construction 1.36,

can be described algebraically. For this we set up two ∞-operads AssocRL and ORL.

14



Construction 2.14. Let AssocRL denote the multicategory5 with three objects 𝑅, 𝐴 and 𝐿.
To describe the multi-morphisms let 𝐼 be an arbitrary finite list of the objects of AssocRL. We
have:

1. AssocRL(𝐼, 𝐴) is empty if either 𝑅 or 𝐿 appear on the list 𝐼 ; otherwise it is given by the
number of total orders of 𝐼 .

2. AssocRL(𝐼, 𝑅) is empty if either 𝐿 appears on the list or 𝑅 appears on the list more
than once; otherwise it is given by the number of total orders of 𝐼 such that the possible
element 𝑅 is a minimum.

3. AssocRL(𝐼, 𝐿) is empty if either 𝑅 appears on the list or 𝐿 appears on the list more than
once; otherwise it is given by the number of total orders of 𝐼 such that the possible
element 𝐿 is a minimum.

Composition of multi-morphisms is given by concatenation.

Remark 2.15. More informally, what the construction 2.14 says is that the only multi-morphism
domains possible are ∅, (𝐴, 𝐴, … , 𝐴), (𝑅, 𝐴, … , 𝐴) or (𝐴, … , 𝐴, 𝐿) and that there is one multi-
morphism for each permutation of the 𝑀 entries. This makes it clear that algebras over this
∞-operad will be unital, (homotopy) associative algebras, together with a unital left and a
unital right module.

Construction 2.16. Let ORL be the (ordinary) category whose objects are totally ordered
finite sets (𝐼, ≤) with two distinguished subsets 𝑅 ⊂ 𝐼 ⊃ 𝐿, such that each element of 𝑅 is
a minimum and each element of 𝐿 is a maximum (consequently, |𝑅| ≤ 1 and |𝐿| ≤ 1). The
morphisms 𝑓 ∶ (𝐼, ≤, 𝑅, 𝐿) → (𝐼′, ≤′, 𝑅′, 𝐿′) are order preserving maps 𝑓 ∶ (𝐼, ≤) → (𝐼 ′, ≤′)
which also preserve the distinguished subsets 𝑓(𝑅) = 𝑅′, 𝑓(𝐿) = 𝐿′. Concatenation of total
orders gives ORL a multicategory structure.

Remark 2.17. The ∞-operads AssocRL and ORL are clearly related, though there are differences.
The major difference is that ORL has objects that have both a distinguished maximal and
distinguished minimal element, while in AssocRL only one of them exists at a time. The following
propositions make it geometrically clear why this is the case.

Proposition 2.18. There is an equivalence between ∞-categories

[−] ∶ D𝜕,or
1

≃−−−→ AssocRL, (24)

which assigns [ℝ≥0] = 𝑅, [ℝ] = 𝐴 and [ℝ≤0] = 𝐿. This equivalence further lift as an equivalence
of symmetric monoidal ∞-categories

[−] ∶ Disk(D𝜕,or
1 ) ≃−−−→ Env(AssocRL), (25)

between the categories of D𝜕,or
1 -structured disks and the symmetric monoidal envelope6 of

AssocRL.

Proposition 2.19. The equivalence of proposition 2.18 lifts to an equivalence of ∞-operads

Disk(D𝜕,or
1 )/[−1,1]

≃−−−→ ORL. (26)
5A multicategory is like an (ordinary) category except that morphisms (now called multi-morphisms) are

allowed to have multiple objects in their domain while still having only a single object in their codomain.
6A full definition of the symmetric monoidal envelope of an ∞-operad can be found in [Lur, sec.2.2.4]. For

our purposes the two important facts about Env are that it is a left adjoint to the forgetful functor 𝑈 ∶ Op∞ →
Cat∞, and that the underlying ∞-category of Env(O) is the full ∞-subcategory of O spanned by the active
morphisms. This last fact means that the symmetric monoidal ∞-category Env(O) is gotten by concatenating
active morphisms [Lur, rem.2.2.4.6].
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Remark 2.20. The idea to keep in mind is that since the boundary of [−1, 1] consists of a left
point and a right point, there can only be oriented embeddings of disks into [−1, 1] with at
most one of each of [−1, 1) and (−1, 1], and these are the objects that map to the respective
modules.

It’s also important to remember that Disk(D𝜕,or
1 )/[−1,1] is not a symmetric monoidal ∞-

category, but rather an ∞-operad. However, in this specific case, Env(Disk(D𝜕,or
1 )/[−1,1]) ≃

Disk(D𝜕,or
1 ), because the spaces of oriented embeddings from any 𝑈 ∈ D𝜕,or

1 to [−1, 1] are
contractible.

Proposition 2.21 ([AFT17a, prop.2.34]). Let 𝐴 be a unital, (homotopy) associative algebra in
C, 𝑅 be a unital right 𝐴-module in C and 𝐿 be a unital left 𝐴-module in C. Using proposition 2.18
regard this data as the data of a symmetric monoidal functor (𝑅, 𝐴, 𝐿) ∶ Disk(D𝜕,or

1 ) → C. Then
there is a canonical equivalence in C between factorization homology over the closed interval
and the two-sided bar construction

∫
[−1,1]

(𝑅, 𝐴, 𝐿) ≃−−−→ 𝑅 ⊗
𝐴

𝐿. (27)

Remark 2.22. The two-sided bar construction here gives the left derived tensor product. We,
however, do not make a notational distinction between this left derived tensor product and
the standard one since we will only ever need the left derived version. It should also be clear
from context, because the left derived version will always appear due to some two-sided bar
construction.

Proof. There is a functor Δop ↪−→ ORL from the opposite of the simplex category, whose essential
image consists of those objects for which the distinguished subsets with a maximal and minimal
element are non-empty. This functor is final7 because adjoining a minimum and maximum gives
a left adjoint to it. We recognize the simplicial object

B•(𝑅, 𝐴, 𝐿) ∶ Δop ↪−→ ORL ≃ Disk(D𝜕,or
1 )/[−1,1] → Disk(D𝜕,or

1 )
(𝑅,𝐴,𝐿)
−−−−−→ C (28)

as the two-sided bar construction. Since C has colimits and Δop ↪−→ ORL is final, the geometric
realization of the above is

𝑅 ⊗
𝐴

𝐿 = |B•(𝑅, 𝐴, 𝐿)| ≃ colim(Disk(D𝜕,or
1 )/[−1,1] → Disk(D𝜕,or

1 )
(𝑅,𝐴,𝐿)
−−−−−→ C) = ∫

[−1,1]
(𝑅, 𝐴, 𝐿).

2.4 Pushforward

The construction of lemma 2.11 gives a functor which allows us to change the stratified
manifold over which we work. This brings about the important operation of pushforward:

Theorem 2.23 ([AFT17a, thm.2.25]). Let 𝑓 ∶ 𝑀 → 𝑁 be a constructible bundle. There is a
pushforward functor

𝑓∗ ∶ Alg
Disk/𝑀

(C) −→ Alg
Disk/𝑁

(C), (29)

7A functor 𝐹 ∶ C → D between ∞-categories is final if precomposition with it preserves colimits

colim(𝐺 ∘ 𝐹) ≃ colim(𝐺).
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which takes a Disk/𝑀-algebra 𝐴 to

𝑓∗𝐴 ∶ Disk/𝑁
𝑓−1

−−→ Mfld/𝑀
∫− 𝐴
−−→ C. (30)

This functor is such that there is a canonical equivalence in C

∫
𝑀

𝐴 ≃ ∫
𝑁

𝑓∗𝐴 (31)

Remark 2.24. In particular, the above applies to disk algebras with any B-structure, since a
Disk(B)-algebra 𝐴 can be viewed as a Disk(B)/𝑀-algebra for any B-manifold 𝑀 by

Disk(B)/𝑀 → Disk(B) 𝐴−→ C. (32)

2.5 ⊗-excision and Homology Theories

Now that we have a pushforward operation, we can finally explicitly state what excision is
in this context. This is because a collar-gluing of a stratified manifold 𝑀 is defined exactly as
a constructible bundle 𝑓 ∶ 𝑀 → [−1, 1].
Definition 2.25. Let 𝐹 ∶ Mfld(B) → C be a symmetric monoidal functor. Also let 𝑀 be a
B-manifold and 𝑓 ∶ 𝑀 → [−1, 1] be a collar-gluing of 𝑀 . This data allows for the construction
of a canonical morphism in C

𝐹(𝑀−) ⨂
𝑓(𝑀0×ℝ)

𝐹(𝑀+) −→ 𝐹(𝑀), (33)

where 𝑀−, 𝑀0 and 𝑀+ are as usual. If this morphism is an equivalence for each collar-gluing
then we say that 𝐹 satisfies ⊗-excision.

Proof. The definition comes with a claim that the canonical morphism in C exists. This we
need to show. The data of a collar-gluing 𝑓 ∶ 𝑀 → [−1, 1] allows us to pushforward 𝐹 to

𝑓∗𝐹 ∶ Disk(D𝜕,or
1 )/[−1,1]

𝑓−1

−−→ Mfld(B)/𝑀 → Mfld(B) 𝐹−→ C. (34)

By proposition 2.18 we know that this data defines an AssocRL-algebra in C whose right module,
algebra and left module are exactly 𝐹(𝑀−), 𝐹(𝑀0 × ℝ) and 𝐹(𝑀+). Further using proposi-
tion 2.21 we have

𝐹(𝑀−) ⨂
𝑓(𝑀0×ℝ)

𝐹(𝑀+) ≃ ∫
[−1,1]

𝑓∗𝐹 −→ 𝐹(𝑓−1[−1, 1]) = 𝐹(𝑀), (35)

where the morphism is given by the fact that factorization homology is a colimit.

Remark 2.26. A functor 𝐹 ∶ Mfld(B) → C that satisfies ⊗-excision and respects sequential
colimits is called a homology theory in the terminology of [AF15]. We will not comment on
this direction of development further except as a justification for the name of factorization
homology. If in the above proof 𝐹 was given by factorization homology, then in the final step
the pushforward would provide the further necessary equivalence so that:

Proposition 2.27 ([AFT17a]). Factorization homology is a homology theory. In particular,
for a collar-gluing of a B-manifold 𝑀 , and a Disk(B)-algebra 𝐴

∫
𝑀−

𝐴 ⨂
∫𝑀0×ℝ 𝐴

∫
𝑀+

𝐴 ≃−−−→ ∫
𝑀

𝐴. (36)
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Remark 2.28. The fact that factorization homology is ⊗-excisive is extremely computationally
useful, and is the way we evaluate factorization homology in practice.
Example 2.29. Checking the definitions we can see that evaluating basics 𝑈 ∈ Disk(B) ↪−→
Mfld(B) is the same as simply evaluating the disk with the disk algebra. This is simply because
factorization homology is a left Kan extension.

The first nontrivial example is then the oriented circle. We know that the algebras that we
will be evaluating with are Disk(D𝜕,or

1 )-algebras (or even simpler the restriction to Disk(Dor
1 )

the ones without boundary). The oriented circle can be presented as a collar-gluing

𝑆1 ≅ ℝ ∐
𝑆0×ℝ

ℝ ≅ ℝ ∐
ℝ̄⊔ℝ

ℝ, (37)

where ℝ̄ denotes ℝ with the opposite orientation to the standard one. Factorization homology
then gives

∫
𝑆1

𝐴 ≃ ∫
ℝ

𝐴 ⨂
∫ℝ 𝐴⊗∫ℝ̄ 𝐴

∫
ℝ

𝐴 ≃ 𝐴 ⨂
𝐴⊗𝐴op

𝐴, (38)

where the result is known in the literature as the Hochschild homology (or more properly chains)
of the associative algebra 𝐴.

2.6 Classification of Disk(D∗
𝑑⊂𝑛)-algebras

All of the above statements about factorization homology and disk algebras did not rely
heavily on the stratified structure which we introduced them with. Namely, had we stuck
to smooth manifolds (possibly with boundary) we could have made similar statements. In
this section we describe a result that clearly uses the stratified structure, and quantifies some
additional information it can encode. It is a classification statement about disk algebras whose
structure D∗

𝑑⊂𝑛 is provided by definition 1.39.

Theorem 2.30 ([AFT17a, prop.4.8]). There is a pullback diagram

Alg
Disk(D∗

d+1) (∫𝑆𝑛−𝑑−1×ℝ𝑑+1 𝐴, Z(𝐵)) Alg
Disk(D∗

𝑑⊂𝑛)

∗ Alg
Disk(D∗𝑛) × Alg

Disk(D∗
𝑑),

{(𝐴,𝐵)}

where we have omitted the target ∞-category C for clarity. In other words, the data of
a Disk(D∗

𝑑⊂𝑛)-algebra is equivalent to giving a triple (𝐴, 𝐵, 𝛼), of a Disk(D∗
𝑛)-algebra 𝐴, a

Disk(D∗
𝑑)-algebra 𝐵 and a map of Disk(D∗

𝑑+1)-algebras

𝛼 ∶ ∫
𝑆𝑛−𝑑−1×ℝ𝑑+1

𝐴 −−−→ Z(𝐵). (39)

Remark 2.31. The above theorem is a slight generalization of, and heavily relies on, the proof
of the higher Deligne conjecture on Hochschild cohomology as in [Lur, sec.5.3]. Thus, from
proposition 2.6, we know that it is very important to the theorem to work with framed disks
since these are the ones that reproduce the 𝔼𝑛-algebras of the higher Deligne conjecture. The
proof of the proposition is not easily generalizable to other tangential structures. The associative
algebra Z(𝐵) is the center of 𝐵 as defined in [Lur, def.5.3.1.6], so that even the statement, which
implies that Z(𝐵) is more than associative, relies on the special structure provided by framing.
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Remark 2.32. By definition, the center Z(𝐵) is the universal object that acts on 𝐵, i.e. all
objects that act on 𝐵 factor through the action of the center Z(𝐵) on 𝐵. Keeping this in mind,
we see that, informally, theorem 2.30 is saying that the structure of coupling the defect algebra
𝐵 to the bulk algebra 𝐴 is by giving 𝐵 a suitable module structure over 𝐴. The complication
then lies in proving what this suitable module structure is.

3 Factorization Algebras

3.1 Definition of Factorization Algebras

Factorization algebras are a rigorous way to capture the idea of assigning an object to each
piece of a space, together with a local-to-global principle that allows one to find out about
larger pieces from smaller ones. The first ideas around factorization algebras were introduced
by [BD04] in the context of vertex algebras in CFTs. These were geometric in nature. The
topological version that we present was then introduced by Lurie and subsequently further
developed in [CG16], especially for the purposes of mathematical physics. Here we will present
these ideas following [CG16] and also [AF19]. A similar exposition can be found in [Gin15].
Remark 3.1. We note that we have fixed a symmetric monoidal ∞-category C that is ⊗-
presentable to serve as the ∞-category that our algebras will be valued in.
Definition 3.2. Let 𝑋 be a topological space. We regard Opns(𝑋) as a multicategory (and
consequently as an ∞-operad) whose objects are the open sets of 𝑋, and through the assignment
of a unique multi-morphism from {𝑈𝑖}𝑖∈𝐼 to 𝑈 if the 𝑈𝑖 are pairwise disjoint and if ⋃𝑖∈𝐼 𝑈𝑖 ⊂ 𝑈 .
A prefactorization algebra 𝐹 on 𝑋 with values in C is an algebra in C over this operad

𝐹 ∈ Alg
Opns(𝑋)(C). (40)

Remark 3.3. Let’s unwind the above definition to understand the underlying data needed to
define a prefactorization algebra. On the level of objects, for every open set 𝑈 we need to assign
an object 𝐹(𝑈) ∈ C. On the level of morphisms, given a pairwise disjoint set of opens {𝑈𝑖}𝑖∈𝐼
and an open 𝑈 , such that the 𝑈𝑖 all lie in 𝑈 we need to assign a morphism in C

⨂
𝑖∈𝐼

𝐹(𝑈𝑖)
𝐹({𝑈𝑖},𝑈)
−−−−−−→ 𝐹(𝑈). (41)

As the notation suggests and the operadic symmetry condition guarantees, the maps 𝐹({𝑈𝑖}, 𝑈)
only depend on the set of 𝑈𝑖 and not on any particular order of the 𝑈𝑖, which is also allowed
on the left-hand side by the symmetric monoidal structure of C. Furthermore, the operadic
associativity condition imposes that given pairwise disjoint {𝑈𝑖}𝑖∈𝐼 that all lie in 𝑈 , and for
each 𝑖 ∈ 𝐼 , pairwise disjoint {𝑉𝑖,𝑗}𝑗∈𝐽𝑖

that all lie in 𝑈𝑖, there is a commutative diagram in C

⨂
(𝑖,𝑗)

𝐹(𝑉𝑖,𝑗) 𝐹(𝑈)

⨂
𝑖

𝐹(𝑈𝑖) ,
⨂
𝑖

𝐹({𝑉𝑖,𝑗},𝑈𝑖)

𝐹({𝑉𝑖,𝑗},𝑈)

𝐹({𝑈𝑖},𝑈)

where the (𝑖, 𝑗) tensor product runs over all possible pairs 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽𝑖. Finally, the operadic
unitarity condition actually tells us that we don’t need to provide the morphisms 𝐹({𝑈}, 𝑈),
because they are equivalent to the identity morphism.

We also get out that an algebra morphism 𝜙 ∶ 𝐹 → 𝐺 is simply a family of maps 𝜙(𝑈) ∶
𝐹(𝑈) → 𝐺(𝑈) for each open set 𝑈 , such that it respects the operations of the algebra. Namely,
for each multi-morphism {𝑈𝑖}𝑖∈𝐼 → 𝑈 there is a commuting square
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⨂
𝑖∈𝐼

𝐹(𝑈𝑖) 𝐹(𝑈)

⨂
𝑖∈𝐼

𝐺(𝑈𝑖) 𝐺(𝑈).

𝐹({𝑈𝑖},𝑈)

⨂
𝑖∈𝐼

𝜙(𝑈𝑖) 𝜙(𝑈)

𝐺({𝑈𝑖},𝑈)

Remark 3.4. There is an obvious embedding functor from the poset Opns(𝑋) of open subsets of
𝑋, ordered by inclusion, to the multicategory Opns(𝑋), namely, the one which hits only those
multi-morphisms {𝑈𝑖}𝑖∈𝐼 → 𝑈 , where the cardinality of the finite set 𝐼 is 1.

A factorization algebra will be a prefactorization algebra that further satisfies a certain
gluing condition that lets us construct its value on ‘larger’ sets if we know it on ‘smaller’ sets.
More formally, this will be a kind of cosheaf condition, that we describe now, following [Wei99;
AF19].

We endow the poset Opns(𝑋) with a Grothendieck topology called the Weiss Grothendieck
topology [Wei99]. In this topology a sieve U ⊂ Opns(𝑋)/𝑈 on 𝑈 is a covering sieve if for each
finite subset 𝑆 ⊂ 𝑈 , there is an object (𝑒 ∶ 𝑉 → 𝑈) ∈ U for which 𝑆 ⊂ 𝑒(𝑉 ). In other
words, a family {𝑉𝑖 → 𝑈}𝑖∈𝐼 is a Weiss cover of 𝑈 if every set of finitely many points in 𝑈 is
contained in some 𝑉𝑖. Contrast this with the standard Grothendieck topology on the poset of
opens Opns(𝑋), in which instead of a finite set we have a one-element set. Thus, every Weiss
cover is a cover in the standard sense, but not necessarily the other way around.

Definition 3.5. The ∞-category of C-valued Weiss (homotopy) cosheaves on 𝑋 is the full
∞-subcategory

cShvW
𝑋(C) ⊂ Fun(Opns(𝑋),C), (42)

of the ∞-category of copresheaves, consisting of those functors 𝐹 ∶ Opns(𝑋) → C for which,
for each Weiss covering sieve U ⊂ Opns(𝑋)/𝑈 , the canonical functor

U⊳ → Opns(𝑋)/𝑈 → Opns(𝑋) 𝐹−→ C, (43)

where U⊳ → Opns(𝑋)/𝑈 is the functor from the colimit cone that assigns 𝑈 to the colimit
object, is a colimit diagram.

Remark 3.6. In other words, 𝐹 is a Weiss cosheaf if it is a functor that sends colimits (which,
in this case, are unions) of Weiss covers {𝑈𝑖 ↪−→ 𝑈}𝑖∈𝐼 to colimits in C

𝐹(𝑈) ≃ 𝐹( ⋃
𝑖∈𝐼

𝑈𝑖) ≃ colim𝑖∈𝐼𝐹(𝑈𝑖). (44)

Definition 3.7. The ∞-category of (C-valued) factorization algebras on 𝑋8 is the full ∞-
subcategory of Alg

Opns(𝑋) as in the pullback

FAlg𝑋(C) Alg
Opns(𝑋)(C)

cShvW
𝑋(C) Fun(Opns(𝑋),C).

⌜

8These are called homotopy factorization algebras in [CG16], however we do not consider the lax version of
factorization algebras that they also present.
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Proof. The previous definition implies that the top horizontal functor is fully faithful, which is
something we need to prove. The bottom horizontal functor is fully faithful, by the definition
of cosheaf, and the right vertical functor forgets the operations with arity higher than 1. The
key observation is that a Weiss cover is pairwise disjoint only when it consists of a single
subset. Thus, the cosheaf condition does not affect the algebra morphisms and an equivalence
of morphism spaces is trivial to find, namely one is given by the identity map.

Remark 3.8. A factorization algebra is a prefactorization algebra whose restriction to Opns(𝑋)
is a Weiss cosheaf. This means that the definition can be rewritten in an equivalent way as
with all cosheaves. Following [nLa23] (which presents the dual case of sheaves) we can express
the condition through the Čech nerve. Let U𝑈 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a (Weiss) cover of an open
set 𝑈 and 𝐹 be a copresheaf, and define the simplicial object

Č•(U𝑈 , 𝐹 ) ∶= ⎛⎜
⎝

∐
𝑖∈𝐼

𝐹(𝑈𝑖) ⇇ ∐
𝑖,𝑗∈𝐼

𝐹(𝑈𝑖 ∩ 𝑈𝑗) ←←← ∐
𝑖,𝑗,𝑘∈𝐼

𝐹(𝑈𝑖 ∩ 𝑈𝑗 ∩ 𝑈𝑘) ←←←← ⋯⎞⎟
⎠

, (45)

where the maps are induced by the value of 𝐹 on the inclusions of opens. There are canonical
maps 𝐹(𝑈𝑖) → 𝐹(𝑈), so that at the level of simplicial objects there is a canonical map

Č•(U𝑈 , 𝐹 ) −→ 𝐹(𝑈)•, (46)

to the constant simplicial complex at 𝐹(𝑈). Since C has (sifted) colimits we can take the
geometric realization to obtain a morphism

Č(U𝑈 , 𝐹 ) −→ 𝐹(𝑈). (47)

𝐹 is a (homotopy) cosheaf if, and only if, this morphism is an equivalence for every open set
𝑈 and every Weiss cover of it U𝑈 .

All of our definitions above are valid for all topological spaces, so in particular, also the
stratified spaces we introduced at the beginning. For the next definition of locally constant
factorization algebras though, it will be important to specify more information about the space.

There is a general definition of locally constant algebra objects in the context of any operad
given in [Lur, def.2.3.3.20], which, of course, applies here. We, however, will only focus, in the
case at hand, on factorization algebras on smooth (or stratified) manifolds. The definitions we
will make will in a lot of cases also hold for any topological manifold (or 𝐶0 stratified space).
The relevant definition of locally constant factorization algebras, with the above assumptions
in mind, greatly simplifies.

Definition 3.9. Let 𝑀 be a stratified B-manifold. A (stratified) disk of 𝑀 is an open subset
which is stratified–homeomorphic to a basic ∈ B. If 𝑀 has a trivial stratification then the
open subset is homeomorphic to the standard Euclidean disk ℝ𝑛, where 𝑛 is the dimension of
the manifold.

Definition 3.10. A (pre)factorization algebra 𝐹 on a conically smooth manifold is locally
constant if it has the property that it takes open embeddings of stratified disks of the same
kind to equivalences, i.e. given an open embedding of disks 𝑉 ↪−→ 𝑈 ,

𝐹(𝑉 ) ≃ 𝐹(𝑈). (48)

Remark 3.11. If we continue with the above development in terms of ∞-categories then the
∞-category of locally constant factorization algebras FAlglc

𝑀 on a stratified manifold 𝑀 , would
again be defined as a pullback with Alg

Opns(𝑀)(C) being replaced by the ∞-category of locally
constant prefactorization algebras Alglc

Opns(𝑀)(C).
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Remark 3.12. We emphasize that in the case of stratified spaces, the disks have to be of the
same kind, i.e. they have to have equivalent stratifications inherited from the stratified space.
In the case of ℝ≥0, for example, open embeddings like (𝑎, 𝑏) → [0, 𝑐), for 0 ≤ 𝑎 < 𝑏 ≤ 𝑐, would
not be taken to equivalences since the disks have different stratifications.
Remark 3.13. The ∞-categories of factorization algebras of all varieties acquire a symmetric
monoidal structure from the symmetric monoidal structure of C pointwise

(𝐹 ⊗ 𝐺)(𝑈) = 𝐹(𝑈) ⊗ 𝐺(𝑈). (49)

The only subtlety is the cosheaf condition, where the symmetric monoidal structure is induced
only if we also take into account that in C colimits commute with its symmetric monoidal
structure.

The existence of colimits is also inherited from C pointwise through the collection of evalu-
ation functors {ev𝑈 ∶ FAlg𝑋(C) → C}, one for each open 𝑈 ⊂ 𝑋.

3.2 Operations on Factorization Algebras

There are a few important operations that we can do with factorization algebras (and the
other mentioned variants) that will be important for our considerations. They allow us to
compare factorization algebras from different spaces and will play a big role in any kind of
classification statement one might make.

Proposition 3.14. Given a continuous map 𝑓 ∶ 𝑋 → 𝑌 between topological spaces, there are
pushforward functors

𝑓∗ ∶ Alg
Opns(𝑋) −→ Alg

Opns(𝑌 ) 𝑓∗ ∶ FAlg𝑋 −→ FAlg𝑌 , (50)

which, on objects, are given by the prescription

𝑓∗𝐹(𝑈) ∶= 𝐹(𝑓−1𝑈). (51)

Proof. By the definition of continuity, the case of prefactorization algebras is trivial. Thus, the
only thing we are left to show is that if 𝐹 satisfies the Weiss cosheaf property then so does 𝑓∗𝐹 .
Given a Weiss cover {𝑈𝑖 ↪−→ 𝑈}𝑖∈𝐼 of 𝑈 , we observe that {𝑓−1𝑈𝑖 ↪−→ 𝑓−1𝑈}𝑖∈𝐼 is a Weiss cover
of 𝑓−1𝑈 . Namely, if 𝑆 ⊂ 𝑓−1𝑈 is a finite subset of 𝑈 , then 𝑓(𝑆) is contained in some 𝑈𝑖 by
the Weiss cover property of {𝑈𝑖 ↪−→ 𝑈}𝑖∈𝐼 . But in that case 𝑆 has to be contained in 𝑓−1𝑈𝑖,
giving it the Weiss cover property too. Thus, by the definition of the pushforward on objects
the Weiss cosheaf property is preserved.

Proposition 3.15 ([Gin15, prop.15]). If 𝑓 ∶ 𝑋 → 𝑌 is a locally trivial fibration between smooth
manifolds then the pushforward functor exists even between the categories of locally constant
factorization algebras

𝑓∗ ∶ FAlglc
𝑋 −→ FAlglc

𝑌 . (52)

Remark 3.16. For stratified manifolds a sufficient requirement is that 𝑓 be a constructible
bundle. Instead of showing this result here we will see that it is a consequence of theorem 2.23
together with theorem 3.30.

Lemma 3.17. Let 𝑢 ∶ 𝑋 → 𝑋̂ be the morphism of example 1.8 that forgets the stratification.
The functor 𝑢∗ ∶ FAlglc

𝑋(C) → FAlglc
𝑋̂(C) has a fully faithful left adjoint.
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Proof. Consider the functor −̂ ∶ FAlg𝑋̂ → FAlg𝑋, which acts as ̂𝐹 (𝑈) ∶= 𝐹(𝑢(𝑈)), namely it
returns algebras that evaluate open subsets by forgetting their stratification first. We claim
this functor is the left adjoint of 𝑢∗. Indeed, given a morphism (𝜙 ∶ ̂𝐹 → 𝐺) ∈ FAlg𝑋, i.e.
a family of morphisms 𝜙(𝑈) ∶ ̂𝐹 (𝑈) → 𝐺(𝑈) for all opens 𝑈 in 𝑋, it is easy to verify that
we can construct a morphism of algebras over 𝑋̂, ̂𝜙(𝑢(𝑈)) ∶ 𝐹 (𝑢(𝑈)) → 𝑢∗𝐺(𝑢(𝑈)), since

̂𝐹 (𝑈) = 𝐹(𝑢(𝑈)) and 𝑢∗𝐺(𝑢(𝑈)) = 𝐺(𝑢−1(𝑢(𝑈))) = 𝐺(𝑈). The last equality holds because 𝑢
is an injective map. In fact, this last observation also proves that the unit of this adjunction is
an isomorphism, granting the full faithfulness.

Remark 3.18. The above proof, of course, applies to factorization algebras of all flavors, however
only locally constant factorization algebras can detect the stratified structure, so in all other
cases that we have considered the above functor is even an equivalence, and not just fully-
faithful.

In the opposite direction, we do not, in general, have a pullback functor. [CG16] provide a
construction of a pullback in the case of open immersions, but we will only focus on the case
of restrictions. Namely, given an open subset 𝑈 ⊂ 𝑋 of a topological space 𝑋, and given a
factorization algebra 𝐹 ∈ FAlg𝑋 we can clearly define a factorization algebra 𝐹|𝑈 ∈ FAlg𝑈
by restricting to those open subsets that are fully contained in 𝑈 . Furthermore, this clearly
holds not only for factorization algebras, but prefactorization algebras and locally constant
factorization algebras too.

In the special case of product spaces 𝑋×𝑌 , we now know that the projections 𝜋1 ∶ 𝑋×𝑌 →
𝑋 and 𝜋2 ∶ 𝑋 × 𝑌 → 𝑌 , give us pushforwards. For 𝜋1, for example, this essentially uses the
fact that if we can evaluate all open sets of 𝑋 ×𝑌 then we can definitely evaluate the open sets
that look like 𝑈 × 𝑌 , with 𝑈 ⊂ 𝑋 an open set. But in this case we can do even more, because
we can even evaluate the more granular open subsets 𝑈 × 𝑉 with 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑌 opens.
More formally, we claim:

Proposition 3.19. Let 𝑋 and 𝑌 be topological spaces. There is a functor from the ∞-category
of prefactorization algebras on the product 𝑋 ×𝑌 to the ∞-category of prefactorization algebras
on 𝑋 valued in the category of prefactorization algebras on 𝑌

̄𝜋 ∶ Alg
Opns(𝑋×𝑌 )(C) −−−→ Alg

Opns(𝑋)(Alg
Opns(𝑌 )(C)). (53)

Proof. Indeed, given opens 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑌 , the values we assign are ( ̄𝜋𝐹)(𝑈)(𝑉 ) = 𝐹(𝑈 ×
𝑉 ). Fixing an open subset 𝑈 ⊂ 𝑋, we obviously get a prefactorization algebra (𝜋2|𝑈)∗(𝐹 |𝑈) ∈
Alg

Opns(𝑌 ) by pushing forward with 𝜋2|𝑈 ∶ 𝑈 × 𝑌 → 𝑌 , which shows that ̄𝜋𝐹 is valued in
Alg

Opns(𝑌 ). The only thing left to show is that ̄𝜋𝐹 has the structure of a prefactorization
algebra on 𝑋. To do this, for each multi-morphism ({𝑈𝑖}𝑖∈𝐼 → 𝑈) ∈ Opns(𝑋) we assign a map

̄𝜋𝐹 ({𝑈𝑖}𝑖∈𝐼, 𝑈) of factorization algebras on 𝑌 . Such an algebra map is specified by giving its
value on all opens of 𝑌 separately. We can thus assign

̄𝜋𝐹 ({𝑈𝑖}𝑖∈𝐼, 𝑈)(𝑉 ) = 𝐹({𝑈𝑖 × 𝑉 }𝑖∈𝐼, 𝑈 × 𝑉 ), (54)

which uses the projections 𝜋1|𝑉 ∶ 𝑋 × 𝑉 → 𝑋 to assign 𝜋1|−1
𝑉 (𝑈) = 𝑈 × 𝑉 .

The conditions we imposed on C allowed us, in remark 3.13, to inherit a symmetric monoidal
structure on the ∞-categories of factorization algebras of all varieties. It also allowed us to
inherit the existence of colimits. This is the reason why the above proposition 3.19 can be
stated even for factorization algebras and locally constant factorization algebras.
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Proposition 3.20 ([Gin15]). Let 𝑋 and 𝑌 be topological spaces. There is a functor of ∞-
categories

̄𝜋 ∶ FAlg𝑋×𝑌 (C) −−−→ FAlg𝑋(FAlg𝑌 (C)). (55)

If 𝑋 and 𝑌 are smooth manifolds then the functor at the level of locally constant factorization
algebras is even an equivalence

̄𝜋 ∶ FAlglc
𝑋×𝑌 (C) ≃−−−→ FAlglc

𝑋(FAlglc
𝑌 (C)). (56)

Remark 3.21. The proof of the above can be found in [Gin15, prop.18]. It also provides a
conjecture that the equivalence in the locally constant case can be extended to all stratified
manifolds, not just the smooth ones, under weak conditions. This can be proven in some simple
cases like, for example,

̄𝜋 ∶ FAlglc
ℝ≥0×𝑋(C) ≃−−−→ FAlglc

ℝ≥0
(FAlglc

𝑋(C)), (57)

where 𝑋 is a smooth manifold and ℝ≥0 is stratified in the standard sense. In the discussion
at remark 3.35 we will see that the above statements are related to the Fubini theorem for
factorization homology [AFT17a, cor.2.29].

3.3 Construction of Factorization Algebras

To define a factorization algebra we need to provide a lot of data. Namely, we have to be
able to evaluate all open subsets and maps between them. In practice, we would like to have a
way to assign a factorization algebra even if we are able to evaluate only some more manageable
collection of open subsets (and maps between them). This can be accomplished in a few ways.

3.3.1 Extension from a Factorizing Basis

For factorization algebras we have the property of extension from a factorizing basis. It is
analogous to the extension from a basis for (co)sheaves, since factorization algebras are a kind
of cosheaf.

Definition 3.22. A factorizing basis of a topological space 𝑋 is a basis {𝑈𝑖 ↪−→ 𝑋}𝑖∈𝐼 for the
topology of 𝑋 which is closed under finite intersections, and which satisfies that for each finite
set 𝑆 ⊂ 𝑋, there exists a finite sub-collection of pairwise disjoint open subsets {𝑈𝑗 ↪−→ 𝑋}𝑗∈𝐽 ,
for which 𝑆 ⊂ ⨆𝑗∈𝐽 𝑈𝑗.

Definition 3.23. We will call factorization algebras defined only on the open subsets of an
open cover U (in particular, for example, a factorizing basis), a U-factorization algebra and the
∞-category of such FAlg

U
(C).

Theorem 3.24 ([CG16]). Given a Hausdorff topological space 𝑋, there is an equivalence of
∞-categories between the ∞-categories of U-factorization algebras defined on a factorizing basis
U and factorization algebras defined on the full topological space 𝑋

FAlg𝑋(C) FAlg
U
(C),

−|U

ext

where the top functor is given by restriction.
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Remark 3.25. The proof of theorem 3.24 can be found in [CG16, ch.7.2], and we will not
reproduce it here. The target category there is the category of chain complexes, but it holds
more generally in C by considering simplicial objects and their geometric realizations (which
exist by the colimit assumption on C) instead.

Looking into this proof we see that the value of the extension on open sets 𝑈 ⊂ 𝑋 is defined
as

ext(𝐹)(𝑈) ∶= Č(U𝑈 , 𝐹 ), (58)

where U𝑈 is a Weiss cover of 𝑈 generated by U. That such a cover exists is already guaranteed
by the Hausdorffness of 𝑋 and the basis property of U. Namely, given any finite set 𝑆 ⊂ 𝑈 ,
Hausdorffness gives us the existence of pairwise disjoint open sets {𝑉𝑠 ∋ 𝑠}𝑠∈𝑆, while the basis
property of U gives us open subsets {𝑈𝑠 ∈ U}𝑠∈𝑆 such that 𝑠 ∈ 𝑈𝑠 ⊂ 𝑉𝑠. ⊔𝑠∈𝑆𝑈𝑠 then gives an
open set that covers 𝑆.

3.3.2 Extension from a Disk Algebra

Remark 3.26. In the definition of locally constant factorization algebras we already have to
specify a special behavior for open subsets that are disks. Disks give the local structure of
manifolds, which means, for one thing, that they are a basis for the topology of a manifold.
In the stratified case, this is guaranteed by theorem 1.13. They are not however a factorizing
basis because they are not closed under intersections.

Since they are a basis though, defining D𝑀 ⊂ Opns(𝑀) to be the sub-multicategory of
disks, we can define D𝑀-prefactorization algebras. In general, we cannot expect to be able
to extend these to unique factorization algebras on 𝑀 , but the following theorem provides a
partial extension.

Parallel to theorem 3.24, in the case of locally constant factorization algebras we have
an easier way to specify the necessary data. Combining results of [GTZ14, thm.6] and [Lur,
thm.5.4.5.9] we can state the following equivalences

Theorem 3.27. Let 𝑀 be a smooth manifold. There are equivalences of ∞-categories

FAlglc
𝑀(C) GTZ−−−→

≃
Alg

Disk/𝑀
(C) Lurie−−−→

≃
Alglc

Disk/𝑀
(C) def−→

≃
Alglc

D𝑀
(C). (59)

In particular, locally constant D𝑀-prefactorization algebras are automatically locally constant
factorization algebras on 𝑀 .

Remark 3.28. Note that in the notation of [Lur], Alg
Disk/𝑀

is denoted as Alg𝔼𝑀
, and AlgDisk/𝑀

is denoted as AlgN(Disk(𝑀)). Additionally, by Disk/𝑀 here we mean the ∞-category that has
the same objects and morphisms as Disk/𝑀 , but its morphism spaces instead have the discrete
topology. Namely, given basics 𝑈𝑖 and 𝑈 , morphisms in Disk/𝑀 are diagrams

∐𝑖∈𝐼 𝑈𝑖 𝑈

𝑀

,

which commute up to a specified isotopy, while in Disk/𝑀 the same diagram commutes on
the nose. Local constancy of these algebras is defined as in definition 3.10. Since all opens
in, for example, D𝑀 are disks this definition implies that all unary morphisms are taken to
equivalences.
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Remark 3.29. In fact the proof of [GTZ14, thm.6] relies on the proof of [Lur, thm.5.4.5.9] to
be able to work directly with the simpler category Alglc

Disk/𝑀
. Theorem 3.27 has been partially

extended to the stratified setting by [AFT17a, prop.2.22] which is an enhancement of [Lur,
thm.5.4.5.9] for stratified manifolds.
Theorem 3.30. Let 𝑀 be a stratified manifold. There are equivalences of ∞-categories

Alg
Disk/𝑀

(C) AFT−−−→
≃

Alglc
Disk/𝑀

(C) def−→
≃

Alglc
D𝑀

(C). (60)

3.3.3 Inheritance from a Covering Space

We can also induce factorization algebras on a space 𝑋 if we know how to describe them on
a covering space of 𝑋. The proofs of the statements below require the full machinery regarding
pullbacks of factorization algebras, so we will omit them. They can be found in [CG16, ch.7.2].
For the extension to the stratified case, see [Gin15].
Definition 3.31. Let 𝐺 be a discrete group that acts on a topological space 𝑋. A 𝐺-equivariant
factorization algebra on 𝑋 is a factorization algebra 𝐹 ∈ FAlg𝑋(C) together with a family of
equivalences

{𝜃𝑔 ∶ 𝑔∗𝐹 ≃−−−→ 𝐹}𝑔∈𝐺, (61)

such that 𝜃𝑒 = id and 𝜃𝑔ℎ = 𝜃ℎ ∘ ℎ∗(𝜃𝑔) ∶ ℎ∗𝑔∗𝐹 ≃−→ 𝐹 . We write (FAlg𝑋(C))𝐺 for the full
∞-subcategory spanned by the 𝐺-equivariant factorization algebras.
Theorem 3.32 ([CG16]). Let 𝑋 be a Hausdorff topological space, and 𝐺 be a discrete group
that has a covering space action on 𝑋. The pullback along the open immersion 𝑞 ∶ 𝑋 → 𝑋/𝐺
is an equivalence of ∞-categories

𝑞∗ ∶ FAlg𝑋/𝐺(C) ≃−−−→ (FAlg𝑋(C))𝐺, (62)

between factorization algebras on the quotient space and 𝐺-equivariant factorization algebras
on the covering space. If 𝑋 is further a stratified manifold the equivalence restricts to an
equivalence of the ∞-categories of locally constant factorization algebras

𝑞∗ ∶ FAlglc
𝑋/𝐺(C) ≃−−−→ (FAlglc

𝑋(C))𝐺. (63)

3.4 Relation between Factorization Homology and Factorization Algebras

Factorization Homology and Factorization Algebras are very closely related concepts. They
take slightly different perspectives on the question of evaluating spaces with a given algebraic
device. Factorization homology specializes to smooth or stratified manifolds as its input while
factorization algebras are more flexible, taking in topological spaces or at the very least topo-
logical manifolds. Here, however, we notice some ways in which they are similar.

We can say a bit more about the equivalence of [GTZ14, thm.6] that appears in theorem 3.27.
This is because the functor in question is actually factorization homology.
Corollary 3.33. Let 𝑀 be a B-manifold. Factorization homology gives rise to a locally constant
factorization algebra on 𝑀

∫ ∶ Alg
Disk(B)/𝑀

(C) −→ FAlglc
𝑀(C)

𝐴 ↦ (𝑈 ↦ ∫
𝑈

𝐴) , (64)

where on the right-hand side 𝑀 denotes the underlying stratified manifold.
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Remark 3.34. Along with the provided proof of the equivalence [GTZ14, thm.6] in the smooth
case, a different proof simply for the existence of the functor can be found in [AF19, prop.3.14],
which works even in the stratified case.
Remark 3.35. Having defined the pushforward functor of factorization algebras we can consider
the map p ∶ 𝑀 → ∗. Given any 𝐴 ∈ Alg

Disk(B)/𝑀
the factorization algebra 𝐹𝐴 generated by 𝐴

satisfies

∫
𝑀

𝐴 = 𝐹𝐴(𝑀) ≃ (p∗𝐹𝐴)(∗). (65)

The one point manifold is a very simple space, which makes the concepts of prefactorization
algebras, factorization algebras and locally constant factorization algebras coincide. All of them
are in fact given by a pointed object of the target category. Evaluation at ∗ simply returns
the underlying object. Thus, in a sense evaluating factorization homology on a space 𝑀 is the
same procedure as pushing-forward by the map p. Versions of factorization homology that can
evaluate lower dimensional manifolds (as compared to the structure of the disk algebra), for
example as in [AFT17a, cor.2.29], can then be seen as relaxing this pushforward from ∗ to a
manifold with more structure.

Another guise of this relation is the fact that factorization algebras can be pushed-forward
with any continuous map, while factorization homology requires the map to be a constructible
bundle. We now see that this is related to the fact that factorization homology gives rise to
locally constant factorization algebras, so that the constructibility requirement is a sufficient
requirement to preserve local constancy. All in all, pushforwards are to factorization homology
what fiberwise integration is to integration.

3.5 Factorization Algebras on Some 1-Dimensional Manifolds

As was the case with factorization homology, so too with factorization algebras we now turn
to a few very important constructions of locally constant factorization algebras on intervals.
Namely, we will consider how we can construct a locally constant factorization algebra on the
spaces ℝ (a.k.a. the open interval) and ℝ≥0 (a.k.a. the half-open interval). These will be a
very important backbone for intuition about locally constant factorization algebras, as well as
a key part of proofs later on. We finish with factorization algebras for the closed interval [−1, 1]
and the circle 𝑆1. Having already done a similar construction in section 2.3 for disk algebras
we could use factorization homology to understand the examples at hand. It will, however, be
instructive to examine them on their own terms.

Construction 3.36. Consider a unital, (homotopy) associative algebra 𝐴 in the category C.
We first check that the disks Dℝ of ℝ form a factorizing basis. This is true since the disks are
always a basis for any manifold, they are factorizing since ℝ is a disk itself, and they are closed
under finite intersections because the disks of ℝ are intervals. Therefore, by theorem 3.24, we
need only assign values to these. Given any disk 𝑈 we assign the same value, 𝐹𝐴(𝑈) ∶= 𝐴.
Similarly, given a multi-morphism ⊔𝑖∈𝐼𝑈𝑖 ↪−→ 𝑈 , with 𝐼 non-empty, we assign the map given by
the multiplication of 𝐴

𝐹𝐴(⊔𝑖∈𝐼𝑈𝑖 ↪−→ 𝑈) ∶= ⊗𝑖∈𝐼𝐴 → 𝐴. (66)

The implicit convention, is that the ordering of the intervals, provided by the standard orien-
tation (or framing) of ℝ, determines the order in which we multiply. Associativity forbids any
other ordering except the completely opposite one, which would yield the opposite multiplica-
tion, and thus the opposite algebra. Finally, in the case of ∅ ↪−→ 𝑈 , we assign the map that
chooses the unit 𝟙 → 𝐴. At this point we have constructed a prefactorization algebra on ℝ.
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To use theorem 3.24 we need to first check the Weiss cosheaf condition. But because intervals
are closed under finite intersections the Čech nerve definition makes this easy; the simplicial
object Č•(Dℝ, 𝐹𝐴) in all degrees will be a coproduct of copies of 𝐴. Thus, 𝐹𝐴 is indeed a
Dℝ-factorization algebra and can be extended to a factorization algebra on ℝ. By definition, it
is also obviously locally constant.

It is immediate that we have constructed a functor Alg𝔼1
(C) → FAlglc

ℝ(C) from the ∞-
category of unital, (homotopy) associative algebras, or 𝔼1-algebras to the ∞-category of locally
constant factorization algebras on ℝ. In fact, we claim that this functor is actually an equiva-
lence, i.e., that every locally constant factorization algebra on ℝ is equivalent to one induced
like in the construction.

Proposition 3.37. There is an equivalence of ∞-categories

Alg𝔼1
(C) ≃−→ FAlglc

ℝ(C). (67)

Proof. What is left to show is the essential surjectivity of the functor. This holds because every
disk in ℝ is diffeomorphic to ℝ itself. So, given 𝐹 ∈ FAlglc

ℝ , we can get an underlying object for
our 𝔼1 algebra as 𝐴 = 𝐹(ℝ). The previous observation and the local constancy then force the
value on each disk to be equivalent to this. The space of embeddings of two disks ℝ ⊔ ℝ ↪−→ ℝ
is, up to homotopy, equivalent to two points, which provide exactly the multiplication map
𝐴 ⊗ 𝐴 → 𝐴 of the algebra and its opposite multiplication. Associativity, up to homotopy,
comes about exactly because all embeddings of any number of disks can, up to homotopy, be
factorized through the embedding of two disks at a time. As before, the unit comes from the
map 𝐹(∅ ↪−→ ℝ) = (𝟙 → 𝐴). Thus, we have constructed an 𝔼1-algebra from the given data, and
the proposition holds.

Construction 3.38. Consider a unital, (homotopy) associative algebra 𝐴 in the category C,
as above, together with a unital right module 𝑀 of 𝐴 in the category C. From this data
we will construct a locally constant factorization algebra 𝐹(𝑀,𝐴) on the stratified space ℝ≥0.
Considering construction 3.36 and the open embedding ℝ ≅ ℝ>0 ↪−→ ℝ≥0, we will choose the
restriction to be 𝐹(𝑀,𝐴)|ℝ = 𝐹𝐴, i.e. any disk that doesn’t include the point 0 ∈ ℝ≥0, we regard
as a disk of ℝ through the given map, and we assign the value 𝐴 to it like in the construction 3.36.
This leaves us only with the stratified disks 𝑈∗ that contain the point 0 ∈ ℝ≥0. To these we
assign the module 𝐹(𝑀,𝐴)(𝑈∗) = 𝑀 . Since there can be at most one stratified disk that includes
the point 0 ∈ ℝ≥0, the maps that we have to assign values to look like 𝑈∗ ⊔ (⊔𝑖∈𝐼𝑈𝑖) ↪−→ 𝑈 ′

∗ ,
but this is exactly what is provided by the right module structure

𝐹(𝑀,𝐴)(𝑈∗ ⊔ (⊔𝑖∈𝐼𝑈𝑖) ↪−→ 𝑈 ′
∗) = 𝑀 ⊗ (⊗𝑖∈𝐼𝐴) → 𝑀. (68)

Of course the pointing of the module comes from 𝐹(𝑀,𝐴)(∅ ↪−→ 𝑈∗) = 𝟙 → 𝑀 . As before, even
more is true:

Proposition 3.39. There is an equivalence of ∞-categories between the ∞-categories of 𝔼1-
algebras together with a right module and locally constant factorization algebras on the half-open
interval

RMod(C) ≃−→ FAlglc
ℝ≥0

(C). (69)

Proof. The proof goes along the same lines as the proof of proposition 3.37. We can find the
module by evaluating on ℝ≥0, and we can find the algebra by evaluating on ℝ≥0 ∖ {0} ≅ ℝ.
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Remark 3.40. The fact that we chose left modules to provide the data in proposition 3.39,
does not play much of a role because a left module is exactly a right module of the opposite
algebra, giving LMod(C) ≃ RMod(C). Where the distinction comes up, is if we want to fix the
𝔼1-algebra away from 0 ∈ ℝ≥0 beforehand. In that case we have to use one of the two possible
conventions on the order of multiplication. If we choose the increasing convention then the
subset containing 0 ∈ ℝ≥0 is on the left making it a right module, while with the opposite
convention it would be a left module of the opposite algebra.

It’s not hard to extend the previous constructions to the closed interval [−1, 1] by hand,
but we can also get a helping hand from corollary 3.33. In this case the constructions we did
for disk algebras, in particular proposition 2.19, together with [AFT17a, cor.2.33] lead us to
propose:

Proposition 3.41. There is an equivalence between the ∞-categories of locally constant fac-
torization algebras on the closed interval and algebras over the ∞-operad AssocRL

FAlglc
[−1,1](C) ≃−−−→ AlgAssocRL(C). (70)

We conclude by simply applying theorem 3.32 to the case of the circle 𝑆1, which has the
covering space ℝ.
Example 3.42. In the case of the circle we have 𝑆1 ≅ ℝ/ℤ. Having classified locally constant
factorization algebras on ℝ we can inherit that to 𝑆1. The conditions on the equivalences of
a ℤ-equivariant factorization algebra make it so that we only need to give the equivalence of
the generator 1 of ℤ. Furthermore, we have an equivalence 1∗𝐹 ≃ 𝐹 , because these are both
locally constant factorization algebras on disks of ℝ. By composing these equivalences the two
facts together say that:

Proposition 3.43. There is an equivalence between the ∞-categories of locally constant fac-
torization algebras on the circle and 𝔼1-algebras together with a self-equivalence

FAlglc
𝑆1(C) ≃−−−→ Aut(Alg𝔼1

(C)). (71)

3.6 Factorization Algebras on Euclidean spaces

In this section we want to describe locally constant factorization algebras on Euclidean
spaces ℝ𝑛. Given the relationship between factorization homology and factorization algebras
explored in section 3.4, we can leverage proposition 2.6 to gain some information. Specifically,
this proposition makes us focus on framed 𝑛-dimensional disk algebras, i.e. ones described by

the ∞-categories of basics D∗
𝑛 ≃ ∗

{ℝ𝑛}
−−−→ Bsc, one for each 𝑛. Since all ℝ𝑛 admit a framing

the restriction to framed disk algebras will not impede us at all. Remembering the canonical
functor Alg

Disk(B) → Alg
Disk(B)/𝑀

for any B-manifold 𝑀 , we can construct a functor

Alg𝔼𝑛
(C) −→ FAlglc

ℝ𝑛(C), (72)

by utilizing factorization homology.

Theorem 3.44 ([Lur]). The functor between the ∞-categories of 𝔼𝑛-algebras and locally con-
stant factorization algebras on ℝ𝑛 is an equivalence.

Remark 3.45. We already encountered the 𝑛 = 1 version of the proposition above when we
discussed locally constant factorization algebras on the open interval in proposition 3.37.
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Remark 3.46 ([Fra13, prop.3.16], [Lur, ex.5.5.4.16]). In the case of Euclidean spaces like ℝ𝑛 a
special thing happens when we restrict away from the origin. That is, we know that given a
locally constant factorization algebra 𝐹 on ℝ𝑛 we can restrict it to any open subset like, for
example, ℝ𝑛 ∖ {0} ≅ 𝑆𝑛−1 × ℝ to get another locally constant factorization algebra 𝐹|𝑆𝑛−1×ℝ.
By proposition 3.20 we know that 𝐹|𝑆𝑛−1×ℝ ∈ FAlglc

ℝ(FAlglc
𝑆𝑛−1(C)), so that in particular it is

an 𝔼1-algebra. If we pushforward to ℝ, by the discussion at remark 3.35 we could denote the
resulting 𝔼1-algebra by

∫
𝑆𝑛−1

𝐹. (73)

What [Fra13, prop.3.16] shows is then:

Proposition 3.47. Given a locally constant factorization algebra 𝐹 on ℝ𝑛, its universal en-
veloping algebra is given by ∫𝑆𝑛−1 𝐹 , i.e. there is an equivalence of ∞-categories

Mod𝔼𝑛
𝐹 (C) ≃−−−→ LMod∫𝑆𝑛−1 𝐹 (C). (74)

Specializing proposition 3.20 to the case of Euclidean spaces gives the famous result of Dunn
additivity [Dun88] which can be found in the following form in [Lur].

Proposition 3.48. There is an equivalence of ∞-categories

Alg𝔼𝑛+𝑚
(C) ≃−−−→ Alg𝔼𝑛

(Alg𝔼𝑚
(C)). (75)

Remark 3.49. The proof of proposition 3.20 given in [Gin15] actually depends on Dunn ad-
ditivity to work, instead of the other way around, however the proof presented in [Lur] is
independent and thus gives rise to both statements.

Another result that is known for Euclidean spaces is the classification of locally constant
factorization algebras on pointed Euclidean spaces ℝ𝑛

∗ , with the obvious stratification. We
saw before, in simple cases, that adding point strata on the manifold side had the effect of
introducing a module on the algebra side. The following result continues that trend.

Theorem 3.50 ([Gin15, cor.8]). Let 𝑛 be bigger than 1. There is an equivalence between the
∞-categories of 𝔼𝑛-modules and the pullback

Mod𝔼𝑛(C) ≃−−−→ FAlglc
ℝ𝑛∗

(C) ⨉
FAlglc

ℝ𝑛∖{0}(C)
FAlglc

ℝ𝑛(C). (76)

Remark 3.51. In the above Mod𝔼𝑛 is the ∞-category of 𝔼𝑛-modules, which is fibered over
Alg𝔼𝑛

the ∞-category of 𝔼𝑛-algebras. Informally speaking, the objects of Mod𝔼𝑛 are pairs
(𝐴, 𝑀) consisting of an 𝔼𝑛-algebra 𝐴 and an 𝐴-module 𝑀 . However, to make things precise
we, as always, use the definitions in [Lur, ch.3].
Remark 3.52. The version of theorem 3.50 cited above is different from the one appearing in the
original reference. [Gin15, cor.8], as stated, requires the homotopy pullback, however examining
its proof and the later [Gin15, cor.9] implies that the correct statement that has been proven
is as written above.
Remark 3.53. The case of 𝑛 = 1 is special because the higher stratum ℝ ∖ {0} is now discon-
nected. Looking back at the construction leading up to proposition 3.39 and at remark 3.40 we
can guess that a statement like the following can hold true:
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Proposition 3.54. There is an equivalence between the ∞-category of locally constant factor-
ization algebras on ℝ∗ and the ∞-category consisting of two 𝔼1-algebras 𝐴 and 𝐵 together with
a pointed, left 𝐴 ⊗ 𝐵op-module 𝑀

FAlglc
ℝ∗

≃ LMod(C) ⨉
C𝟙/

LMod(C), (77)

where the maps LMod → C𝟙/ are the ones giving the underlying (pointed) object of the module.

4 Collar-gluings and Disk Algebras

Given a stratified manifold 𝑀 , we defined the ∞-category of locally constant factorization
algebras on it FAlglc

𝑀 . We want to examine what we can say about the behavior of this ∞-
category under collar-gluings in the manifold variable. Discussion of this are easier when stated
in terms of disk algebras, so we switch our attention to Disk/𝑀-algebras for the proof, using
theorem 3.27. Here we again point out that the manifold 𝑀 can have any B-structure, but
because of remark 2.10 this aspect won’t come into play. This is the reason for the notational
shortening of Disk(B)/𝑀 to simply Disk/𝑀 .

Theorem 4.1. Given a collar-gluing of stratified manifolds 𝑓 ∶ 𝑀 → [−1, 1], the ∞-category
of Disk/𝑀-algebras is equivalent to the pullback of ∞-categories

Alg
Disk/𝑀

≃ Alg
Disk/𝑀−

⨉
Alg

Disk/𝑀0×ℝ

Alg
Disk/𝑀+

. (78)

Proof. The data of a collar-gluing provides open embeddings 𝑀0×ℝ ↪−→ 𝑀− and 𝑀0×ℝ ↪−→ 𝑀+,
where 𝑀−, 𝑀0 and 𝑀+ have the usual meanings as in definition 1.32. This can be used to
construct the cospan of restriction functors Alg

Disk/𝑀−
→ Alg

Disk/𝑀0×ℝ
← Alg

Disk/𝑀+
. Using this

data we can define the pullback ∞-category

P ∶= Alg
Disk/𝑀−

⨉
Alg

Disk/𝑀0×ℝ

Alg
Disk/𝑀+

. (79)

The further open embeddings of 𝑀−, 𝑀0 × ℝ and 𝑀+ into 𝑀 again give rise to restriction
functors that form a commutative square

Alg
Disk/𝑀

Alg
Disk/𝑀+

Alg
Disk/𝑀−

Alg
Disk/𝑀0×ℝ

,

which, by the universal property of the pullback, gives us a canonical functor Alg
Disk/𝑀

→ P.
To show essential surjectivity we construct an object of Alg

Disk/𝑀
given the data of objects

(𝐴−, 𝐴+) ∈ Alg
Disk/𝑀−

× Alg
Disk/𝑀+

such that 𝐴−|𝑀0×ℝ = 𝐴+|𝑀0×ℝ =∶ 𝐴0. We do this by
using factorization homology and the bar construction. Giving a Disk/𝑀-algebra valued in
a symmetric monoidal ∞-category C is equivalent to giving a symmetric monoidal functor
Env(Disk/𝑀) → C, so this is what we construct now. Given (𝑈 ↪−→ 𝑀) ∈ Env(Disk/𝑀) we
define

𝐴(𝑈) ∶= ∫
𝑈−

𝐴− ⨂
∫𝑈0×ℝ 𝐴0

∫
𝑈+

𝐴+, (80)
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where 𝑈−, 𝑈0 and 𝑈+ are defined through the inherited collar-gluing 𝑈 ↪−→ 𝑀 −→ [−1, 1]. Well-
definition of the bar construction is provided if we have the appropriate left and right module
structures on ∫𝑈−

𝐴− and ∫𝑈+
𝐴+ over the associative algebra ∫𝑈0×ℝ 𝐴0. Pushforward along

the restrictions 𝑓|𝑈− ∶ 𝑈− → [−1, 1) and 𝑓|𝑈+ ∶ 𝑈+ → (−1, 1], together with the properties
of factorization homology provides these left and right module structures. Furthermore, the
associative algebra object is also the same because consecutive restrictions commute on the
nose. The functoriality of factorization homology in the manifold variable and the functoriality
of the bar construction means that we can already evaluate morphisms in Disk/𝑀 , which makes
𝐴 already a functor. Next we have to check whether 𝐴 also has a symmetric monoidal structure.
For this purpose denote 𝐹−(𝑈) = ∫𝑈−

𝐴−, 𝐹0(𝑈) = ∫𝑈0×ℝ 𝐴0, 𝐹+(𝑈) = ∫𝑈+
𝐴+ and B•(𝑅, 𝐴, 𝐿) ∶

Δop → C for the simplicial object of the bar construction of a right module 𝑅, associative algebra
𝐴 and left module 𝐿. Given two objects 𝑈, 𝑉 ∈ Env(Disk/𝑀) we have

𝐴(𝑈 ⊔ 𝑉 ) = colim(B•(𝐹−(𝑈 ⊔ 𝑉 ), 𝐹0(𝑈 ⊔ 𝑉 ), 𝐹+(𝑈 ⊔ 𝑉 )))
≃ colim(B•(𝐹−(𝑈) ⊗ 𝐹−(𝑉 ), 𝐹0(𝑈) ⊗ 𝐹0(𝑉 ), 𝐹+(𝑈) ⊗ 𝐹+(𝑉 )))
≃ colim(B•(𝐹−(𝑈), 𝐹0(𝑈), 𝐹+(𝑈)) ⊗ B•(𝐹−(𝑉 ), 𝐹0(𝑉 ), 𝐹+(𝑉 )))

≃ colim(Δop → Δop × Δop
B•(𝐹−(𝑈),𝐹0(𝑈),𝐹+(𝑈))⊗B∗(𝐹−(𝑉 ),𝐹0(𝑉 ),𝐹+(𝑉 ))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C)

≃ colim(Δop × Δop
B•(𝐹−(𝑈),𝐹0(𝑈),𝐹+(𝑈))⊗B∗(𝐹−(𝑉 ),𝐹0(𝑉 ),𝐹+(𝑉 ))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C)

≃ colim(B•(𝐹−(𝑈), 𝐹0(𝑈), 𝐹+(𝑈))) ⊗ colim(B∗(𝐹−(𝑉 ), 𝐹0(𝑉 ), 𝐹+(𝑉 )))
≃ 𝐴(𝑈) ⊗ 𝐴(𝑉 ), (81)

where Δop → Δop × Δop is the diagonal functor. The first equivalence comes about because
factorization homology is symmetric monoidal, the second equivalence is given because C is a
symmetric monoidal ∞-category (and not simply monoidal). The fourth equivalence uses the
finality of the diagonal functor which comes from the fact that Δop is sifted. Finally, the fifth
equivalence exists because the symmetric monoidal structure commutes with (sifted) colimits.
This shows that 𝐴 is a monoidal functor; that it is symmetric too is immediately obvious from
the above calculation. The restrictions of 𝐴 to the appropriate pieces of 𝑀 should reproduce
𝐴−, 𝐴0 and 𝐴+. Checking this amounts to evaluating disks 𝑈 which are contained in only one
of the pieces. For the case of 𝑈0 × ℝ = ∅ = 𝑈+, we have

𝐴(𝑈) = ∫
𝑈

𝐴− ⨂
𝟙

𝟙 ≃ 𝐴−(𝑈), (82)

and similarly if 𝑈− = ∅ = 𝑈0 × ℝ. Alternatively, for the case of 𝑈− = 𝑈0 × ℝ = 𝑈+ we instead
have

𝐴(𝑈) = ∫
𝑈

𝐴0 ⨂
∫𝑈 𝐴0

∫
𝑈

𝐴0 ≃ 𝐴0(𝑈). (83)

If 𝑈 is such that 𝑈+ = ∅, but 𝑈0 × ℝ ≠ ∅ then

𝐴(𝑈) = ∫
𝑈

𝐴− ⨂
∫𝑈0×ℝ 𝐴−

𝟙 ≃ ∫
𝑈

𝐴− ⨂
∫𝑈0×ℝ 𝐴−

∫
∅
𝐴− ≃ ∫

𝑈
𝐴− = 𝐴−(𝑈), (84)

where the last equivalence is provided by the collar-gluing property of factorization homology.
This completes the proof of essential surjectivity.
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The second step to show our desired equivalence is to show full faithfulness, i.e. we need to
find an equivalence of morphism spaces

HomAlg
Disk/𝑀

(𝐴, 𝐵) ≃ HomP((𝐴−, 𝐴+), (𝐵−, 𝐵+)). (85)

A morphism of algebras 𝑓 is given by a family of morphisms 𝑓(𝑈) for each 𝑈 ∈ Env(Disk/𝑀)
together with a commutative square

𝐴(𝑈) 𝐵(𝑈)

𝐴(𝑉 ) 𝐵(𝑉 )

𝑓(𝑈)

𝐴(𝑒) 𝐵(𝑒)

𝑓(𝑉 )

for each (𝑒 ∶ 𝑈 → 𝑉 ) ∈ Env(Disk/𝑀). Starting with the data of (𝑓− ∶ 𝐴− → 𝐵−) ∈ Alg
Disk/𝑀−

and (𝑓+ ∶ 𝐴+ → 𝐵+) ∈ Alg
Disk/𝑀+

such algebra morphisms that 𝑓−|𝑀0×ℝ = 𝑓+|𝑀0×ℝ =∶ 𝑓0 we
now construct an algebra morphism 𝑓 . The functoriality of the bar construction means that 𝑓
would be defined if we provide a triple of morphisms

∫
𝑈−

𝐴− → ∫
𝑈−

𝐵− ∫
𝑈0×ℝ

𝐴0 → ∫
𝑈0×ℝ

𝐵0 ∫
𝑈+

𝐴+ → ∫
𝑈+

𝐵+, (86)

for each 𝑈 , with the same commutativity requirements. But factorization homology can be
viewed as a functor

∫
𝑈

∶ Alg
Disk/𝑀

(C) −→ Alg
Mfld/𝑀

(C)
ev𝑈−−→ C, (87)

and this functoriality of factorization homology, now in the algebra variable, provides exactly
the necessary data in the form of ∫𝑈−

𝑓−, ∫𝑈0×ℝ 𝑓0 and ∫𝑈+
𝑓+. Checking that the so constructed

morphism 𝑓 restricts to morphism equivalent to 𝑓−, 𝑓0 and 𝑓+ amounts to exactly the same
calculation as the one above for objects. Finally, the reason why the maps (𝑓−, 𝑓−) ↦ 𝑓 and
𝑓 ↦ (𝑓−, 𝑓+) actually assemble into an equivalence is, along with factorization homology being
a functor as in eq. (87), so is the bar construction.

Together with theorem 3.27 we immediately have the following corollary:

Corollary 4.2. A collar-gluing of smooth manifolds 𝑓 ∶ 𝑀 → [−1, 1] induces an equivalence
of ∞-categories

FAlglc
𝑀(C) ≃ FAlglc

𝑀−
(C) ⨉

FAlglc
𝑀0×ℝ(C)

FAlglc
𝑀+

(C). (88)

Remark 4.3. It does not seem unlikely that theorem 3.27 can be expanded to a more general
version that also works for stratified manifolds. Big pieces of the work have already been done
in the proof of theorem 3.30. In such a case the above corollary would hold in the stratified
case too.
Example 4.4. Using corollary 4.2 we can recover the result about locally constant factorization
algebras on the circle from proposition 3.43. Namely, as we know, the circle can be exhibited
as a collar-gluing 𝑆1 ≅ ℝ ∐𝑆0×ℝ ℝ ≅ ℝ ∐ℝ⊔ℝ ℝ. For locally constant factorization algebras this
means that

FAlglc
𝑆1(C) ≃ FAlglc

ℝ(C) ⨉
FAlglc

ℝ⊔ℝ(C)
FAlglc

ℝ(C) ≃ Alg𝔼1
(C) ⨉

FAlglc
ℝ⊔ℝ(C)

Alg𝔼1
(C). (89)
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Since a disjoint union is a collar-gluing we also have that FAlglc
ℝ⊔ℝ ≃ FAlglc

ℝ(C) × FAlglc
ℝ(C) ≃

Alg𝔼1
(C) × Alg𝔼1

(C). Let’s denote the restriction functors that restrict to the first and the
second component of the disjoint union ℝ ⊔ ℝ by |1 and |2 respectively. Going back to eq. (89),
the data of a locally constant factorization algebra on 𝑆1 is equivalent to the data of two 𝔼1-
algebras 𝐴 and 𝐵 such that their restrictions 𝐴|1 = 𝐵|1 and 𝐴|2 = 𝐵|2 agree. Since all of these
are 𝔼1-algebras there are equivalences with the restrictions forming

𝐴|1 𝐵|1

𝐴 𝐵

𝐴|2 𝐵|2

=

≃
≃ ≃

≃
=

That is we have the data of two algebras 𝐴 and 𝐵, and two equivalences from 𝐴 to 𝐵. It
is standard that this data is equivalent (in one direction by composing) to the data of an
𝔼1-algebra with a self-equivalence.
Example 4.5. Just as for the circle, higher spheres can also be described as a collar-gluing
𝑆𝑛 ≅ ℝ𝑛 ∐𝑆𝑛−1×ℝ ℝ𝕟. Thus, we can iterate the procedure from example 4.4 to get the locally
constant factorization algebras on all higher spheres.

For example, for the two-sphere 𝑆2 we have

FAlglc
ℝ2(C) ⨉

FAlglc
𝑆1×ℝ(C)

FAlglc
ℝ2(C) ≃ Alg𝔼2

(C) ⨉
Alg𝔼1

(Aut(Alg𝔼1
(C)))

Alg𝔼2
(C), (90)

namely, a locally constant factorization algebra on 𝑆2 equivalent to two 𝔼2-algebras, such
that they restrict on the fattened equator to the same 𝔼2-algebra equipped with an 𝔼1-
automorphism. It is nontrivial to describe this data in a simpler way as was possible for
𝑆1. We can see, though, that for the higher spheres there are higher coherent equivalences that
locally constant factorization algebras keep track of.
Remark 4.6. If corollary 4.2 was extendable to stratified spaces we would have the immediate
simplification of the result we saw in theorem 3.50, because its right-hand side is of the exact
form to be a collar-gluing. Namely, it’s the collar-gluing exhibiting ℝ𝑛

∗ as ≅ ℝ𝑛
∗ ∐𝑆𝑛−1×ℝ ℝ𝑛.

The result then simplifies to

Mod𝔼𝑛(C) ≃ FAlglc
ℝ𝑛∗

(C). (91)

This would confirm that the intuition we had from the 1 dimensional examples continues to
hold in higher dimensions in a form that is easily parsable; introducing point defects on the
manifold directly gives modules for the algebra.

5 Classifying FAlglcs on Defect Manifolds

Our goal in this section is to lay out a possible roadmap for classifying locally constant
factorization algebras on stratified manifolds. Specifically we will focus on the case of stratified
manifolds 𝑀Σ, which are described by a smooth, 𝑛-dimensional manifold 𝑀 together with
a distinguished smooth, properly embedded, 𝑑-dimensional submanifold Σ ↪−→ 𝑀 , such that
𝑑 < 𝑛. In other words we are considering objects 𝑀Σ ∈ Mfld(D𝑑⊂𝑛) as discussed in defini-
tion 1.38. More general statements can be achieved by iterating the procedure and explicating
the information of more defects, stratum by stratum, in the stratified manifold.
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Remark 5.1. Having already considered the classification of disk algebras with D∗
𝑑⊂𝑛-structure

in theorem 2.30, one might wonder whether the classification we are after is already done by
simply using the factorization homology functor, and porting over the classification of disk
algebras to the setting of locally constant factorization algebras. There are two issues with this
direction of inquiry. One problem is that not all D𝑑⊂𝑛-manifolds are frameable since this is not
even the case for smooth manifolds; framed disk algebras like in theorem 2.30 can only evaluate
framed stratified manifolds.

The second problem is that having classified all Disk(B)-algebras does not immediately give
a classification of Disk(B)/𝑀-algebras for a given manifold 𝑀 . There is a fully faithful functor

Alg
Disk(B)(C) −→ Alg

Disk(B)/𝑀
(C), (92)

which is induced by the forgetful functor Disk(B)/𝑀 → Disk(B), but this functor will, in
general, not be an equivalence. We can see this using remark 2.10 which tells us that the
left-hand side depends on B, while the right-hand side doesn’t.

The data of an embedding Σ ↪−→ 𝑀 allows us to construct a regular neighborhood of our
defect, echoing the tubular neighborhood theorem, now in the case of stratified spaces.

Theorem 5.2 ([AFT17b, prop.8.2.3, prop.8.2.5]). Let Σ ↪−→ 𝑀 be a proper, constructible
embedding of stratified manifolds. There exists a stratified map

C(𝜋) → 𝑀 (93)

under Σ ↪−→ 𝑀 such that:
1. the image is open, and
2. C(𝜋) is the fiberwise open cone of the constructible bundle LΣ

𝜋−→ Σ giving the link.
If Σ is a stratum of 𝑀 then the map C(𝜋) → 𝑀 is even an open embedding.

Remark 5.3. In more detail, specialized to our situation, the regular neighborhood C(𝜋) is
constructed as the pushout of stratified manifolds

LΣ × {0} Σ

LΣ × ℝ≥0 C(𝜋),

𝜋

id×0 ⌟

where LΣ is the link of Σ in 𝑀Σ (see [AFT17b]). In our case of interest where the stratified
manifold is 𝑀Σ, the link LΣ takes a simple form; it can always be constructed as the sphere
bundle of the normal bundle of Σ when embedded into 𝑀 as smooth manifolds.
Example 5.4. For the case of (Σ ↪−→ 𝑀) = 𝑆1 ↪−→ ℝ3, i.e. a circle defect in Euclidean 3-space,
the link LΣ would be a torus.

Construction 5.5. The existence of C(𝜋) allows us to define a collar-gluing for the stratified
manifold 𝑀Σ

𝑀Σ ≅ (𝑀 ∖ Σ) ∐
LΣ×ℝ

C(𝜋), (94)

where the map LΣ × ℝ → 𝑀 ∖ Σ is provided by LΣ × ℝ ≅ LΣ × ℝ⪈0 ≅ C(𝜋) ∖ Σ ↪−→ 𝑀 ∖ Σ. We
also note that the properness of the embedding Σ ↪−→ 𝑀 makes 𝑀 ∖ Σ an open submanifold of
𝑀 .
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It is obvious from these constructions that if corollary 4.2 held for stratified manifolds too,
then we could state an equivalence of ∞-categories

FAlglc
𝑀Σ

(C) ≃ FAlglc
𝑀∖Σ(C) ⨉

FAlglc
LΣ×ℝ(C)

FAlglc
C(𝜋)(C), (95)

as a first step in the classification of locally constant factorization algebras on 𝑀Σ. Since we
have focused on stratified manifolds with the particular form 𝑀Σ, the locally constant fac-
torization algebras FAlglc

𝑀∖Σ in this decomposition already live on a smooth manifold, rather
than a stratified space. Similarly, this is the case for the locally constant factorization algebras
FAlglc

LΣ×ℝ. The more prescient question is about the classification of locally constant factoriza-
tion algebras on the one remaining stratified space C(𝜋). One hint comes from the following
construction:
Construction 5.6. Using the maps

LΣ × ℝ≥0
𝜋×id−−−→ Σ × ℝ≥0 Σ id×0−−→ Σ × ℝ≥0, (96)

the universal property of the pushout for C(𝜋) defines for us a map

C(𝜋) 𝑛−−−→ Σ × ℝ≥0, (97)
which we call the fiberwise norm map. We similarly, define for ease of notation 𝑛∘ ∶= 𝜋 × id ∶
LΣ × ℝ → Σ × ℝ, as the restriction of 𝑛 to the interior.
Remark 5.7. The reason for the name is most visible in the case of point defects, e.g. 𝑀Σ = ℝ𝑛

∗ .
In this case C(𝜋) ≅ ℝ𝑛

∗ , Σ × ℝ≥0 ≅ ℝ≥0, and the fiberwise norm map 𝑛 ∶ ℝ𝑛
∗ → ℝ≥0 from above

is exactly the norm in the usual sense. When the defect is higher dimensional, the above
construction takes the norm in each fiber hence the name fiberwise norm.
Lemma 5.8. The fiberwise norm map 𝑛 ∶ C(𝜋) → Σ × ℝ≥0 is a constructible bundle.
Proof. The pushout construction of C(𝜋) and construction 5.6 make it obvious that the nec-
essary restrictions of C(𝜋) over the strata give bundles over Σ and Σ × ℝ, fulfilling the condi-
tions.

Using the result mentioned in remark 3.21, about locally constant factorization algebras on
ℝ≥0 × Σ results in:
Lemma 5.9. The pushforward along the fiberwise norm map fits into a commutative diagram

FAlglc
C(𝜋)(C) LMod(FAlglc

Σ(C))

FAlglc
LΣ×ℝ(C) Alg𝔼1

(FAlglc
Σ(C)).

𝑛∗

𝑛∘
∗

Proof. Lemma 5.8 guarantees that the pushforward 𝑛∗ ∶ FAlglc
C(𝜋) → FAlglc

Σ×ℝ≥0
exists at

the level of locally constant factorization algebras. The mentioned remark 3.21 together
with proposition 3.39 then provides the equivalence of the codomain of the pushforward with
LMod(FAlglc

Σ(C)). The vertical functors are simply restrictions away from the defect in each
case, so that the commutativity if immediate.

Remark 5.10. This lemma gives us the direction that defects in general will again be related
to a kind of module structure of the algebras, but it does not provide the full classification. If
we are able to describe locally constant factorization algebras on the space C(𝜋) in full detail,
then we would be able to reconstruct the locally constant factorization algebras on 𝑀Σ.
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6 Applications to Physical Examples

As we mentioned previously, a lot of the work on factorization algebras can be given a
physics interpretation. This is especially visible in [CG16], where the motivating examples
come from quantum mechanics and quantum field theory, and specifically from the deformation
quantization approach. We will introduce some of these examples here, following the exposition
in [CG16].
Example 6.1 (A Barebones Model of Quantum Mechanical Observables). We begin by consider-
ing quantum mechanics. Our goal will be to show that the observables of quantum mechanical
systems naturally organize to form a prefactorization algebra.

To avoid issues around measurement in quantum mechanics, we will say that the observables
Obs(𝑈) of a quantum system that occur in a given time period 𝑈 ⊂ ℝ are all the possible ways
in which an arbitrary test system can be changed by being coupled to our system. Since we are
not being precise the exact definition of what observables are will not matter a lot for now; it is
rather their structure and operations that we care about. There are two natural requirements
we make on the observable. For one, we require them to be defined for every time interval
𝑈 ⊂ ℝ. Secondly, due to the superposition principle, for example, the minimal requirement of
linearity is that Obs(𝑈) is a complex vector space for each 𝑈 .

We notice that with this setup, if 𝑉 ⊂ ℝ is a smaller time interval contained in 𝑈 ⊂ ℝ then
there is a natural restriction map

Obs(𝑈) → Obs(𝑉 ). (98)

In effect, we have defined a copresheaf Obs ∶ Opns(ℝ) → Vectℂ of complex vector spaces on ℝ.
In the quantum setting, a key observation is that we cannot observe a system in two different

ways at once, since observing changes the state of the system itself. However, we can do
observations as long as they occur at different times. This is encapsulated as giving maps

Obs(𝑈1) ⊗ Obs(𝑈2) −→ Obs(𝑈), (99)

whenever 𝑈1 and 𝑈2 are disjoint and their union is contained in 𝑈 . We also notice that for
such a formulation we have immediately upgraded out target category Vectℂ to a symmetric
monoidal category Vect⊗

ℂ equipped with the tensor product. Furthermore, we can do any finite
number 𝑛 of measurements which would give us maps

𝑛
⨂
𝑖=1

Obs(𝑈𝑖) −→ Obs(𝑈), (100)

under the same disjointness and containment criteria, but this maps also have to be compatible
in a sense which essentially reproduces associativity. This all shows that under some very
natural model assumptions the observables of a quantum mechanical system are organized into
a Vectℂ-valued prefactorization algebras on ℝ.

In fact, we can expect even more to be true. Any observation that we get during a time
interval 𝑈 can be refined so that we get the same observation during a shorter interval. We can
think of this as increasing the coupling. In such a case the observables would in fact get the
additional structure of being a locally constant, Vectℂ-valued prefactorization algebra on ℝ.

Another fact that this teaches us is that associative algebras only appear because of the
topology of ℝ, since we know that had the dimensionality been higher like for ℝ𝑛 we would
have gotten 𝔼𝑛-algebras, and even more complicated algebras for other underlying manifolds.
Example 6.2 (First Steps Towards Field Theories). The machinery of example 6.1 is not very
advanced, and we can easily see that even if we switch to quantum field theory the previous
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considerations hold true. However, the way the details are fleshed out will definitely be different.
The simplest example of this is the choice of target (∞-)category. The target category that
we chose in example 6.1 was the (ordinary) category of complex vector spaces. However, we
immediately run into problems if we want to extend this to higher dimensions.

One problem that arises is that Vectℂ is an ordinary category. This means that when viewed
as an ∞-category its higher homotopies are all given in a trivial manner9. Mathematically, this
gives rise to the fact that the ∞-cateogries

Alg𝔼𝑛
(Vectℂ) (101)

for 𝑛 ≥ 2 are all equivalent and all give rise to the concept of unital, commutative (and asso-
ciative) complex algebras. Vectℂ simply does not have enough higher structure to differentiate
between them.

In a similar vein, a physical observation that arises from gauge theories is that the vector
spaces we work in are not plain but actually have the structure of cochain complexes. Namely,
they are such that in a cochain complex of observables 𝑉 , the ‘physical’ observables are given
by the zeroth cohomology H0(𝑉 ). This is because if 𝑣 ∈ 𝑉 0 is an observable of degree 0, the
equation d𝑣 = 0 means that 𝑣 is compatible with the gauge symmetries of the theory, thus it
has to be in the kernel of the differential. If we have two observables 𝑣, 𝑣′ ∈ 𝑉 0, which are both
in the kernel of the differential then they could be physically equivalent they always return the
same result, which we interpret as 𝑣′ = 𝑣 + d𝑢 for some 𝑢 ∈ 𝑉 −1, since the exact element d𝑢
can never physically be observed.

Both of these observations point us to the ∞-category of chain (or cochain, depending on
conventions) complexes Chℂ. Furthermore, the symmetric monoidal structure is the tensor
product ⊗ since this is how independent quantum systems are combined.

Chℂ (in the cochain convention) has as objects cochain complexes and the morphism spaces
can be given the following rough, combinatorial description that can be found in [Tan]:

1. The vertices of Hom(𝑉 , 𝑊) are maps of chain complexes 𝑓 ∶ 𝑉 → 𝑊 , i.e. such that
d𝑓 = 𝑓d.

2. The edges of Hom(𝑉 , 𝑊) are given by triples (𝑓0, 𝑓1, 𝐻), where 𝑓0 and 𝑓1 are chain maps
and 𝐻 is a chain homotopy, i.e. a degree -1 map 𝐻 ∶ 𝑉 → 𝑊 such that 𝑓1−𝑓0 = d𝐻+𝐻d.

3. Simplices of Hom(𝑉 , 𝑊) of dimension 𝑘 are given by maps of degree −𝑘, which exhibit
higher homotopies. For example for 𝑘 = 2 we have the data

𝑓1

𝑓0 𝑓2,

𝐻12
𝐺

𝐻01

𝐻02

where 𝐺 is a degree -2 map that exhibits a homotopy between 𝐻02 and 𝐻12 + 𝐻01.
Example 6.3 (Correlation Functions). [[CG16, sec.1.4.4]] There are some cases where we can
very naturally extract correlation functions from the data of a factorization algebra. Working
perturbatively, suppose we have a factorization algebra on a manifold 𝑀 valued in cochain
complexes over the ring ℝ[ℏ]

𝐹 ∈ FAlg𝑀(Chℝ[ℏ]), (102)

and suppose that

H0(𝐹(𝑀)) = ℝ[ℏ]. (103)
9The homotopies are exactly as specified by the nerve functor that turns an ordinary category into an

∞-category.
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As noted in [CG16, sec.1.4.4] this condition holds in some natural examples, like Chern–Simons
theory on ℝ3 or for massive scalar field theories on compact manifolds. In such a case, given
disjoint open subsets {𝑈𝑖 ⊂ 𝑀}𝑖=1,…,𝑛 the factorization algebra maps gives rise to a multilinear
map

⟨−⟩ ∶
𝑛

⨉
𝑖=1

𝐻0(𝐹(𝑈𝑖)) −→ H0(𝐹(𝑀)) = ℝ[ℏ], (104)

so that given physical observables 𝑂𝑖 ∈ H0(𝐹(𝑈𝑖)), we get a formal power series ⟨𝑂1 … 𝑂𝑛⟩ ∈
ℝ[ℏ].

If the condition in eq. (103) is not satisfied, then there is a variant that works well for ℝ𝑛.
In these cases we can define an ℝ[ℏ]-linear map

H0(𝐹(ℝ𝑛)) → ℝ[ℏ] (105)

called the vacuum, that is translation invariant and satisfies a type of cluster decomposition.
We then proceed as above. The details of this can be found in [CG16].

There are many more things that can be said about the connection of factorization algebras
to physics, however the prerequisite material would be too great to state them properly. The
two volumes of the book [CG16] go over the prerequisites and provide exactly this connection
in various different ways.

A 𝔼𝑛-algebras

The operad governing 𝔼𝑛-algebras was first defined in [BV] as a topological operad, and has
since become ubiquitous in algebraic topology. As we saw in proposition 2.6 one incarnation of
this operad is as framed embeddings of disks into other disks. Here we follow the exposition of
[Lur, sec.5.1] to define the operad differently, and see how it can be given the structure of an
∞-operad.

Definition A.1. Let 𝑛 be an integer, and 𝑆 be a finite set. We will call a map 𝑓 ∶ (−1, 1)𝑛×𝑆 →
(−1, 1)𝑛 a rectilinear embedding if it is given by

𝑓(𝑥1, … , 𝑥𝑛, 𝑠) = (𝑎𝑠
1𝑥1 + 𝑏𝑠

1, … , 𝑎𝑠
𝑛𝑥𝑛 + 𝑏𝑠

𝑛), (106)

where 𝑎𝑠
𝑖 , 𝑏𝑠

𝑖 ∈ ℝ and 𝑎𝑠
𝑖 > 0 for all 𝑠 ∈ 𝑆 and all 1 ≤ 𝑖 ≤ 𝑛. We denote the set of such

rectilinear embeddings as Rect((−1, 1)𝑛 × 𝑆 → (−1, 1)𝑛).

Remark A.2. The set Rect((−1, 1)𝑛 × 𝑆 → (−1, 1)𝑛) has a natural topology on it given by the
subspace topology, when considered as an open subset of ℝ2𝑛|𝑆|, by the map

Rect((−1, 1)𝑛 × 𝑆 → (−1, 1)𝑛) −→ ℝ2𝑛|𝑆|, (107)

which sends a rectilinear embedding to the tuple of its coefficients as in definition A.1.
Classically, the 𝔼𝑛 operad was defined as a topological operad according to the following:

Definition A.3. Let 𝑛 be an integer. As a topological operad, E𝑛 is defined by the collection
of spaces

{Rect((−1, 1)𝑛 × ⟨𝑘⟩∘ → (−1, 1)𝑛)}𝑘≥0 , (108)

where ⟨𝑘⟩∘ = {1, 2, … , 𝑘} and where:
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1. The symmetric group Σ𝑘 acts on Rect((−1, 1)𝑛 × ⟨𝑘⟩∘ → (−1, 1)𝑛) by permutations in
the finite set ⟨𝑘⟩∘.

2. The composition maps are given induced by the maps

⟨𝑘1⟩∘ × … ⟨𝑘𝑚⟩∘ −→ ⟨𝑘1 + ⋯ + 𝑘𝑚⟩∘. (109)

3. The unit is given by the map id ∶ (−1, 1)𝑛 × ⟨1⟩∘ ≅ (−1, 1)𝑛 → (−1, 1)𝑛.

Remark A.4. This is why the operad is sometimes known as the operad of little 𝑛-cubes.
Towards an ∞-operadic definition, we can construct, now a little more categorically, a

topological category 𝔼𝑛.

Definition A.5 ([Lur, def.5.1.0.2]). Let 𝑛 be an integer. Define a topological category 𝔼𝑛 with
the following:

1. The objects of 𝔼𝑛 are the sets ⟨𝑘⟩ = {∗, 1, 2, … , 𝑘} ∈ Fin∗.
2. A morphism from ⟨𝑘⟩ to ⟨𝑙⟩ is given by a morphism (𝛼 ∶ ⟨𝑘⟩ → ⟨𝑙⟩) ∈ Fin∗ together with

a rectilinear embedding (−1, 1)𝑛 × 𝛼−1{𝑗} −→ (−1, 1)𝑛 for each 𝑗 ∈ ⟨𝑙⟩∘, such that the
topology of the morphism space is given by

Hom𝔼𝑛
(⟨𝑘⟩⟨𝑙⟩) = ∐

𝛼∶⟨𝑘⟩→⟨𝑙⟩
∏

1≤𝑗≤𝑘
Rect((−1, 1)𝑛 × 𝛼−1{𝑗}, (−1, 1)𝑛). (110)

3. Composition of morphisms is, as usual, defined by partial concatenation.

Proposition A.6 ([Lur, prop.5.1.0.3], [Lur09, cor.1.1.5.12]). The obvious functor between (the
nerves) 𝔼𝑛 → Fin∗ exhibits 𝔼𝑛 as an ∞-operad.

More intuitively, we can think of the 𝔼𝑛 ∞-operad as defining homotopy associative algebras
with various levels of commutativity:

1. 𝔼1 is the operad that describes unital, homotopy associative algebras.
2. 𝔼2 is the operad that describes unital, homotopy associative algebras for which there exist

homotopies that make the multiplication commutative, but the space of those homotopies
is generically not contractible.

3. The higher 𝑛 is the more and more higher homotopies exist that make the multiplication
and all its previous coherences commutative.

4. In the limit 𝑛 → ∞, we get the ∞-operad 𝔼∞ that governs homotopy commutative
algebras with fully coherent homotopies

A more detailed explanation of this intuitive picture can be found in [Tan].
Remark A.7. We should also remember that having defined things operadically, means that we
have the freedom to place our algebra in a wide variety of ∞-operads or symmetric monoidal
∞-categories. However, if the target is the nerve of an ordinary category then it will not be
able to tell the difference between 𝔼𝑛-algebras, with 𝑛 ≥ 2, they will all look fully commutative.
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