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Abstract

The boundary structure of gravity coupled to external scalar and Yang–
Mills fields is described by means of the Kijowski–Tulczijew construction.
In particular, the 4-dimensional case of a degenerate boundary metric is
covered and the algebra of the constraints is calculated.
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Introduction

The aim of this thesis is to give a classical description of a theory which couples
General Relativity to external fields and to study its boundary structure. In par-
ticular, we are interested in the reduced phase space, which can be found by means
of a symplectic reduction. In [3] this has been done for the case of a space-like and
time-like boundary. In this thesis the case of a light-like boundary will be covered.

More than one hundred years after its formulation, General Relativity is still the
best theory of gravity which we have. Recent discoveries of gravitational waves
strengthen it even further. Nevertheless, it cannot be the end of the story due to
its incompatibility with modern physics. From a particle point of view, the idea of
a supersymmetric theory which includes gravity is very promising since it would
incorporate the successful standard model in an intuitive and elegant manner, using
already known concepts such as gauge groups and symmetry breaking.

The approach taken in this work starts with the Palatini–Cartan formalism,
which is a formulation of General Relativity different from the Einstein–Hilbert
case, and is extended to the coupling of an external scalar and Yang–Mills field
through the first order formalism. This results in a classical field theory describ-
ing the same space of solutions of the Einstein field equations and the respective
equations of motion of scalar and Yang–Mills fields.

Furthermore, we assume to have a manifold with boundary. What follows is
called the Kijowski–Tulczijew (KT) construction. It turns out that the space of
fields restricted to this boundary has a presymplectic structure which arises nat-
urally by the properties of a field theory. This presymplectic manifold can now
be reduced further by quotienting out the zero locus of the equations of motion.
This ends in a symplectic manifold, called the reduced phase space. Physically
speaking, this space represents the set of all admissible initial conditions and its
description is the main goal of this thesis.

It has been shown that under certain conditions there exists a cohomological
description of the observables on the space of boundary fields, called Batalin–
Fradkin–Vilkovisky (BFV) formalism. In particular, the algebra of constraints
defining the reduced space should be of first-class. This means that each possible
Poisson bracket is a linear combination of the constraints themselves. A more
geometric interpretation would be that the submanifold they define is coisotropic.

It turns out that the properties of this boundary structure change significantly
depending on whether the boundary is defined by a space-like, time-like or light-like
direction. In the first two cases the induced metric on the boundary is still nonde-
generate, while in the latter it becomes degenerate. Such a degenerate boundary
metric has drastic implications also on the boundary tetrad, being its counterpart
in the PC formalism. Indeed, by simply translating equations from the nonde-
generate to the degenerate case, they might not define the same solution space
anymore. This leads to a different set of constraints than in the nondegenerate
case.

The nondegenerate cases of pure gravity and gravity coupled to external fields
have been studied in [4] and [3], respectively. On the other hand, the degenerate
case of pure gravity has been covered in [5]. This thesis aims to perform a similar
analysis for the degenerate case of gravity coupled to external fields.
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1 Bundle Structure

The theory of gravity with external fields which we will construct in chapter 3 will
have as dynamical variables elements of fiber bundles. Furthermore, we want to
formulate General Relativity as a gauge theory. In this chapter we will set up the
geometric fundamentals to do so. We refer to [14], [19], [12] and [18].

The mathematical way to formulate physical theories with local symmetries,
called gauge theories, is by means of fiber bundles. A fiber bundle E is a differ-
entiable manifold which has several components and properties. Intuitively, E is
made of a base space M such that at every point x ∈ M there is the same fiber
F attached to it. Moreover, there is a projection map π that maps every point of
the fiber bundle to its respective point on the base space. The most simple case of
a fiber bundle is a direct product E = M × F (such as the torus T 2 = S1 × S1).
Generally, however, it can only be written locally as a direct product (it can be
trivialized). The easiest example of a non-trivial fiber bundle is the Möbius strip
which has as a base space S1 and as a fiber the interval [0, 1]. Locally we can
always write it as the direct product of a subset of the circle with the interval but
we cannot write the entire strip as F = S1 × [0, 1], since it is twisted.

Going back to physics, fields are usually defined as sections of fiber bundles
φ : M → E. The meaning of this is that at every point in spacetime x ∈ M there
is a particular field value. However, unless the fiber bundle is trivial, we can only
describe the fields locally, yet with a well-defined prescription to relate overlapping
local descriptions. In gauge theories there is a local symmetry described by a Lie
group G. Its mathematical description leads to a special case of fiber bundle,
called principal bundle, where the fiber is given by the Lie group itself (up to some
technical deviations). A gauge transformation is just an automorphism of this
principle bundle. The projection map can then be used to give rise to a notion of
verticality inside the bundle. There is also a notion of horizontality, which however
depends on an additional choice, called connection. The latter concept states how
vectors defined at nearby points are connected to each other. By pulling back this
connection onto the base manifold we receive our gauge field which is equipped with
a natural local gauge transformation. Now we also need to describe external fields
such that they transform under a change of gauge. This is achieved by means
of associated bundles, which inherit the structure group of the principal bundle
and transforms under a certain representation of it. Matter fields are therefore
described by sections of associated bundles.

1.1 Principal Bundles and Connections

Definition 1.1 (Fiber Bundle). Let E,M and F be differentiable manifolds and
π : E →M a differentiable surjection. Then (E,M, π, F ) is called a fiber bundle
if ∀x ∈M there exists an open neighbourhood U ⊂M of x and a diffeomorphism
ϕ : π−1(U)→ U × F such that the following diagram commutes

π−1(U) U × F

U

ϕ

π
proj1

,

2



1.1 Principal Bundles and Connections 3

where proj1 : U × F → U is the natural projection on the first element. The
space M is called the base space, E the total space, F the fiber and π the
projection map. The set of all {(Ui, ϕi)} such that

⋃
i Ui = M is called a local

trivialization.

Remark. Usually, the definition of a fiber bundle takes as a base space a general
topological space and requires the projection and trivialization maps to be only
continuous. However, for our purpose we will always consider differentiable struc-
tures and therefore it makes sense to incorporate differentiability in the definition
instead of writing it always as an additional requirement.

Definition 1.2 (Bundle Morphism). Let (E,M, π) and (E ′,M ′, π′) be two fiber
bundles and let Φ: E → E ′ and φ : M → M ′ be two smooth maps. Then Φ is
called a bundle morphism covering φ if the following diagram commutes1

E E ′

M M ′

Φ

π π′

φ

.

If φ is a diffeomorphism and there exists a bundle morphism Φ−1 : E ′ → E covering
φ−1 such that Φ−1 ◦ Φ = idE, then Φ is called a bundle isomorphism and we
write E ∼ E ′.

Definition 1.3 (Right Action). Let G be a Lie group and M a smooth manifold.
A right action of G on M is defined to be a smooth map

R : M ×G→M

(x, g) 7→ Rg(x)

such that it satisfies

1. Re(x) = x, ∀x ∈M , where e is the identity element in G,

2. Rg1 ◦ Rg2 = Rg2g1 , ∀g1, g2 ∈ G.

Remark. Similarly, we can define a left action of G by simply demanding that
the second point translates to Rg1 ◦ Rg2 = Rg1g2 , ∀g1, g2 ∈ G. In the case of an
abelian group any left action is also a right action and vice versa.

Definition 1.4 (Adjoint, Left Translation). Let G be a Lie group and g ∈ G. The
adjoint map and the left translation map are defined by

Adg : G→ G

h 7→ ghg−1

and

lg : G→ G

h 7→ gh.
1If the fibers have a particular mathematical structure we usually add the additional require-

ment that Φ preserves that structure. For example, in the case of a principal G-bundle we want
Φ to be equivariant with respect to the two right actions.
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Definition 1.5 (Orbit, Stabilizer). Let G be a Lie group, M a smooth manifold
and R a right action of G on M . For every x ∈M the orbit of x is defined to be

Ox = {y ∈M | ∃ g ∈ G,Rg(y) = x}. (1)

Furthermore, the stabilizer of x is defined by

Sx = {g ∈ G | Rg(x) = x}. (2)

Definition 1.6 (Free, Transitive). Let G be a Lie group and M a smooth manifold.
A right action R of G on M is said to be

• free if all stabilizers are trivial, that is Sx = {e} for all x ∈M ,

• transitive if it has just one orbit, that is Ox = M for all x ∈M .

Definition 1.7 (Principal G-Bundle). Let G be a Lie group. The fiber bundle
(P, π,M) is called principal G-bundle if

1. there exists a free smooth right action R : P×G→ P , which acts transitively
on the fibers;

2. (P, π,M) is isomorphic to (P, π′, P/G), where π′ : P → P/G is the canonical
projection on the quotient space. In other words the following diagram should
commute (see Definition 1.2)

P

M P/G

π
π′

φ

,

where φ : M → P/G is a diffeomorphism.

Remark. A principal G-bundle is a fiber bundle which is isomorphic to a bundle
whose fibers are the orbits under the right action of G, which are themselves
isomorphic to G since the action is free. In particular, this implies that the local
trivialization of a principal bundle satisfies the following condition. Let (Ui, ϕi) and
(Uj, ϕj) be two overlapping local trivialization charts, meaning that Ui ∩ Uj 6= ∅.
Then the map

ϕi ◦ ϕ−1
j : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F

is given by
ϕi ◦ ϕ−1

j (x, f) = (x, tij(x) · f),

where tij : Ui ∩ Uj → G is called transition function and the dot indicates a
smooth left action of the structure group G on F . When the local trivialization of
a fiber bundle F satisfies this condition for some Lie group G, then G is called the
structure group of F .
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Definition 1.8 (Associated Bundle). Let (P, π,M) be a principal G-bundle, F
a smooth manifold and λ : G × F → F a smooth left action. The associated
bundle to P and λ is the fiber bundle (P ×λ F, πλ,M), where

P ×λ F :=
P × F
∼

(3)

with the equivalence relation

(p, a) ∼ (q, b) ⇐⇒ ∃ g ∈ G :

{
q = Rg(p)

b = λg−1(a)
(4)

∀ p, q ∈ P and ∀a, b ∈ F and the projection

πλ : P ×λ F →M

[p, f ] 7→ π(p).

Remark. An important fact is that an associated bundle to a principal G-bundle
has a different fiber F but same structure group G and same transition functions.
In other words, for overlapping trivializations (Ui, ϕi), (Uj, ϕj) on the new fibers
F we have

ϕi ◦ ϕ−1
j (x, f) = (x, λtij(x)(f)). (5)

Definition 1.9 (Vertical Subbundle). Let (E, π,M) be a fiber bundle and x ∈ E.
The vertical subspace at x is defined to be the kernel of the pushforward of the
projection map dxπ : TxE → Tπ(x)M

VxE := ker(dxπ). (6)

The vertical subbundle is then defined to be

V E :=
⊔
x∈E

VxE. (7)

Definition 1.10 (Ehresmann Connection). Let (E, π,M) be a fiber bundle. An
Ehresmann connection is the choice of smooth subbundle HE ⊂ TE such that

TE = HE ⊕ V E, (8)

where HE is called horizontal subbundle of the connection.

Definition 1.11 (Lift). Let π : E →M be a fiber bundle, x ∈M and e ∈ E such
that π(e) = x. Given a smooth curve γ : R→M with γ(0) = x, a lift of γ through
e is defined to be a curve γ̃ : R→ E such that

1. γ̃(0) = e,

2. π(γ̃(t)) = γ(t) ∀t ∈ R.

Furthermore, given an Ehresmann connection HE on E, the lift γ̃ is called hori-
zontal if

˙̃γ(t) ∈ Hγ̃(t)E ∀t ∈ R. (9)
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Remark. As in the case of an affine connection, which is uniquely determined by a
parallel transport, an Ehresmann connection is uniquely determined by a horizontal
lift at each point, and vice versa.

As the last definitions show, the concept of verticality and connection can be
defined on any type of fiber bundle. Nevertheless, we are interested in the more
specific case of a principal bundle. Restricting to the latter we can make use of
some of its properties to find another way of characterizing the connection, namely
by means of a connection 1-form. Doing so enables us to write the connection as
a field variable which we can work with.

Definition 1.12 (Fundamental map). Let (P, π,M) be a principal G-bundle. The
fundamental map #: g→ Γ(TP ) is defined such that

A#
p :=

d

dt
[Rexp(tA)(p)]t=0, (10)

with A ∈ g and p ∈ P . Furthermore, the set of all fundamental vectors fields
is written as

g# := {v ∈ Γ(TP ) | ∃A ∈ g, v = A#}.

Remark. We call the fundamental map vertical because

dπ(A#
p ) =

d

dt
[π(Rexp(tA)(p))]t=0 =

d

dt
π(p) = 0. (11)

In other words the fundamental vector A#
p is vertical, because it is parallel to the

fibers.

Lemma 1.1. Let G be a matrix Lie group with g ∈ G and A ∈ g. Then the
following identity holds

dRg ◦ A# = (Adg−1(A))#. (12)

Proof. At p ∈ P we have

dRg(A
#
p ) =

d

dt
[(Rg ◦Rexp(tA))(p)]t=0 =

d

dt
[(Rg ◦Rexp(tA) ◦Rg−1 ◦Rg)(p)]t=0. (13)

Using the fact that Rg ◦ Rexp(tA) ◦ Rg−1 = RAdg−1 (exp(tA)) and that for matrix Lie

groups Adg−1(exp(tA)) = exp(tAdg−1(A)) we find

dRg(A
#
p ) =

d

dt
[Rexp(tAdg−1A))(Rg(p))]t=0 = (Adg−1A)#

Rg(p). (14)

Definition 1.13 (Connection 1-Form). Let P be a principal G-bundle and HP
an Ehresmann connection. The associated connection 1-form (or principal
connection) is the g-valued 1-form ω ∈ Ω1(P, g) satisfying for v ∈ Γ(TP )

ω(v) =

{
A if v = A# for some A ∈ g

0 if v is horizontal with respect to HP
. (15)
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Remark. An alternative but equivalent definition of a connection 1-form would
be to demand that it’s kernel must be the horizontal subbundle defined by the
Ehresmann connection: ker(ω) = HP . In that case we should change the definition
of Ehresmann connection a little by demanding that it is G-equivariant. The G-
equivariance condition is automatically satisfied in our definition of connection
1-form as the following proposition shows.

Proposition 1.2. Let ω∈Ω1(P, g) be a connection 1-form, then it is G-equivariant,
which means

R∗g(ω) = Adg−1 ◦ ω. (16)

Proof. If v ∈ X(P ) is horizontal the equality clearly holds. So suppose v = A# for
some A ∈ g. Then by Lemma 1.1 we have

(R∗g(ω))(A#) = ω(dRg ◦ A#) = ω((Adg−1(A))#) = Adg−1(A). (17)

Trivially, for the right-hand side we get the same result

Adg−1(ω(A#)) = Adg−1(A). (18)

Definition 1.14 (Curvature 2-Form). Let ω be a connection 1-form on a principal
G-bundle P , then the curvature 2-form of ω is defined to be

Ω = dω +
1

2
[ω ∧ ω], (19)

where the wedge product of two Lie algebra-valued differential forms ω, η ∈ Ω1(P, g)
is defined by

[ω ∧ η](v1, v2) =
1

2
([ω(v2), η(v2)]− [ω(v2), η(v1)]), (20)

with [·, ·] the Lie bracket on g and the vector fields v1 and v2.

Remark. The connection 1-form measures in some sense how far a vector field is
from being horizontal. The curvature 2-form does a similar thing for the commu-
tator of two horizontal vector fields. Let v1, v2 ∈ Γ(HP ), then

Ω(v1, v2) = −ω([v1, v2]), (21)

where we used dω(v1, v2) = v1ω(v2)− v2ω(v1)− ω([v1, v2]) and ω(v1) = ω(v2) = 0.

Definition 1.15 (Tensorial Form). Let P be a principal G-bundle, V a vector
space and ρ : G→ Aut(V ) a representation. An element α ∈ Ωk(P, V ) is called

• horizontal, if α(v1, . . . , vk) = 0 when at least one vi is vertical;

• equivariant, if R∗g(α) = ρ(g−1) ◦ α.

If α is both horizontal and equivariant, it is called a tensorial form. The space
of tensorial k-forms is denoted by Ωk

G,ρ(P, V ).
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Remark. Let’s consider the connection 1-form ω and the adjoint representation
ρ = Ad. Then Proposition 1.2 shows that it satisfies equivariance, but it does not
satisfy horizontality and is therefore not a tensorial form. If, however, we take the
difference of two connection 1-forms the resulting form is tensorial. This will be
clear in the next section and is crucial for constructing the space of connections.
The curvature 2-form on the other hand, satisfies both and is thus a tensorial form
Ω ∈ Ω2

G,Ad(P, g).

Remark. Clearly, the usual exterior derivative d : Ωk(P, V )→ Ωk+1(P, V ) does not
necessarily map tensorial forms to tensorial forms. In other words, there exists
an α ∈ Ωk

G,ρ(P, V ) such that dα /∈ Ωk+1
G,ρ (P, V ). Therefore we want to define a

derivative which has exactly this property and we call it covariant derivative.

Definition 1.16 (Covariant Derivative). The covariant derivative

dω : Ωk
G,ρ(P, V )→ Ωk+1

G,ρ (P, V ) (22)

is defined for α ∈ Ωk
G,ρ(P, V ) by

dωα := dα + ω ∧dρ α, (23)

and

ω ∧dρ α(v1, . . . , vk+1) =
1

(k + 1)!

∑
σ

sign(σ)dρ(ω(vσ(1)))α(vσ(2), . . . , vσ(k+1)). (24)

Theorem 1.3. Let P be a principal G-bundle over M , V a vector space and
ρ : G→ Aut(V ) a representation. Then there exists an isomorphism

Ωk
G,ρ(P, V ) ' Ωk(M,P ×ρ V ). (25)

Proof. See [14].

Remark. We can now extend the definition of covariant derivative of tensorial forms
naturally to differential forms on M with values in the associated bundle P ×ρ V
as

dω : Ωk(M,P ×ρ V )→ Ωk+1(M,P ×ρ V )

α 7→ dα + ω ∧dρ α.

Definition 1.17 (Soldering Form). Let P be a principal G-bundle over an N -
dimensional smooth manifold M , V an N -dimensional vector space and ρ : G →
Aut(V ) a representation. A tensorial 1-form θ ∈ Ω1(M,P×ρV ) is called soldering
form if the associated bundle morphism θ : TM → P ×ρ V is an isomorphism.

1.2 Gauge Field

Definition 1.18 (Gauge Field). Let π : P → M be a principal G-bundle, ω ∈
Ω1(P, g) a connection 1-form, {Uα} an open cover of M and σα : Uα → P a section.
The gauge field (or local connection 1-form) is defined to be the pullback of
ω along σα

Aα := σ∗αω ∈ Ω1(Uα, g). (26)
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Remark. In the case of a trivial bundle P = M ×G it is possible to define a global
gauge field A ∈ Ω1(M, g). However, generally it is only possible to build local
gauge fields, which implies that we need to be able to change between patches
Uα, Uβ. An intuitive approach would be to use the one element in G whose right
action brings us from σα(x) to σβ(x). It is always possible to find such an element
since the fibers are the orbits under the right action and the map to find this
element is called gauge map. It turns out that indeed the pullback of a tensorial
form would transform under the action of the adjoint representation of this gauge
map. However, ω is not tensorial. This adds another term in the transformation,
which contains the Maurer–Cartan form.

Definition 1.19 (Maurer–Cartan Form). Let G be a Lie group. The Maurer–
Cartan form is the g-valued 1-form θ ∈ Ω1(G, g) defined by

θg := dg(lg−1) : TgG→ TeG (27)

for all g ∈ G.

Definition 1.20 (Gauge Map). Let σα : Uα → P and σβ : Uβ → P be two sections
such that Uα ∩ Uβ 6= ∅. The gauge map is defined to be the map gαβ : Uα ∩ Uβ →
G such that ∀x ∈ Uα ∩ Uβ

σβ(x) = Rgαβ(x)σα(x). (28)

Theorem 1.4 (Gauge Transformation). Let ω be a connection 1-form and
σα : Uα → P and σβ : Uβ → P be two sections such that Uα ∩ Uβ 6= ∅. Then
on Uα ∩ Uβ the following holds

Aβ = Adg−1
αβ
◦ Aα + g∗αβ(θ), (29)

where g−1
αβ is the inverse of the group element gαβ.

Proof. See [12].

Remark. In the special case when G is a matrix Lie group the Maurer–Cartan form
is simply given by

θg = g−1dg. (30)

With the definition of adjoint action the gauge transformation rule reads

Aβ = gαβAαg
−1
αβ + g−1

αβdgαβ. (31)

Definition 1.21 (Field Strength). Let Ω ∈ Ω2(P, g) be a curvature 2-form, {Uα}
an open cover of M and σα : Uα → P a section. The field strength is defined to
be the pullback of Ω along σα

Fα := σ∗αΩ ∈ Ω2(Uα, g). (32)
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Remark. By definition of Ω there is a connection 1-form ω such that equation (19)
holds. It follows directly that the associated gauge field and field strength are
connected by the equation

Fα = dAα +
1

2
[Aα ∧ Aα]. (33)

To see how the field strength transforms under a change of trivialization chart we
make use of the fact that the Maurer–Cartan form satisfies the Maurer–Cartan
equation

dθ +
1

2
[θ ∧ θ] = 0. (34)

It follows that the transformation rule between two patches σα and σβ reads

Fβ = Adg−1
αβ
◦ Fα. (35)

In general any pullback of a tensorial form transforms under the action of the
adjoint representation. In other words the presence of the Maurer–Cartan form in
the transformation rule of the gauge field reflects the non-horizontality of ω.



2 Field Theory and Reduction

In the previous chapter we have constructed the geometric structure necessary for
formulating field theories. The next step is to study their dynamics and to define
the concept of Lagrangian. One mathematical way for such a description is by
using jet bundles and the variational bicomplex. For the theory of jet bundles we
refer to [1] and [15]. For the part about Lagrangian field theory we refer to [20].
Lastly, the references used for the reduction are [6], [7], [17] and [13].

Physical theories, such as Newton’s dynamics, Maxwell’s laws and Schrödinger’s
equation, are often described using derivatives and differential equations. Think-
ing about these examples, the fundamental objects and their derivatives are all
elements of the same space. For instance, take a function f : Rn → Rm, its deriva-
tive Df : Rn → Rm is still a function with the same domain and codomain. This
means that we can easily put them in the same equation and everything remains
well-defined.

Similarly, we need a formalism for writing down differential equations for field
theories. A field is defined to be a smooth local section of a fiber bundle σ ∈
Γ(U, F ). We can then define a bigger fiber bundle, called k-jet bundle, which in its
fibers holds also information about the derivatives of the field. In particular, we are
interested in the infinite jet bundle J∞F . An important fact is that smaller k-jet
bundles and F itself are ”contained” into the bigger ones. This allows a unified
description with all possible field values and derivatives in terms of J∞F . Next,
we define functions, vector fields and differential forms on it. Particularly, the
differential forms will be of great interest since the Lagrangian should be a volume
form on M . The set of these differential forms defines the variational bicomplex,
which can essentially be seen as the de Rham complex of the jet bundle. However,
it has the additional feature of being bigraded, meaning that its differential can be
split into two smaller differentials d = dH + dV , each of which defining a cochain.
Intuitively, the horizontal differential dH differentiates along M and the vertical
differential dV differentiates along the fibers.

The differential forms on J∞F have degrees in all possible spacetime, field and
derivative directions and their coefficients are given by functions of, again, space-
time, field and derivative values f(x, φ, ∂φ, . . . ). From a physical point of view this
is exactly what we seek for a Lagrangian, except for the fact that we only want
differential forms along the spacetime manifold; their coefficients should neverthe-
less be functions of the field and their derivatives. Therefore we need to ”pullback”
these forms in a certain way. By doing so, the natural distinction between the dif-
ferential d and the variation δ arises, where the first is the pullback of the horizontal
differential and the second is the pullback of the vertical differential.

2.1 Variational Bicomplex

For the entire section we assume (F,M, π) to be a fiber bundle over an
N -dimensional manifold M .

Definition 2.1 (k-Jet). Let x ∈ M and k ∈ N. The equivalence class of local

11
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sections at x of degree k, denoted by jkxσ, is defined by the equivalence relation

σ1 ∼ σ2 ⇐⇒


∂µσ1|x = ∂µσ2|x ∀µ = 1, . . . , N

...

∂µ1...µkσ1|x = ∂µ1...µkσ2|x ∀µ1, . . . , µk = 1, . . . , N

where σ1 : U1 → F and σ2 : U2 → F are two local sections and U1, U2 two neigh-
bourhoods of x ∈ M . The k-jet at x is then defined to be the space of all such
equivalence classes

JkxF =
Γ(U, F )

∼
(36)

and the fiber bundle of k-jets is

JkF =
⊔
x∈M

JkxF. (37)

Remark. The fiber bundle of k-jets can be seen as a fiber bundle over M with the
projection map

πkM : JkF →M

(x, jkxσ) 7→ x

or as a fiber bundle over F with the projection

πk0 : JkF → F

(x, jkxσ) 7→ σ(x).

Furthermore, let 0 ≤ l ≤ k, then JkF is also a fiber bundle over J lF with the
projection map

πkl : JkF → J lF

(x, jkxσ) 7→ (x, jlxσ).

Definition 2.2 (Infinite Jet Bundle). The infinite jet bundle J∞F is defined
to be the inverse limit2 of the sequence of projection maps πkl : JkF → J lF , for
0 ≤ l ≤ k. Its projection map onto the fiber bundle of k-jets is

π∞k : J∞F → JkF

(x, j∞x σ) 7→ (x, jkxσ).

2The formal definition of the inverse limit makes use of category theory. Even though it goes
beyond the scope of this work, we can give a quick explanation of the concept. First of all, we
need a family of groups (Ai)i∈I and a family of homomorphisms fij : Aj → Ai, where (I,≤) is
a partially ordered set. These should satisfy fii = Id and fik = fij ◦ fjk for all i ≤ j ≤ k ∈ I
(note how πkl satisfies these properties). The inverse limit of this system is then defined to be
A = lim←−Ai = {~a ∈

∏
Ai | ai = fij(aj) for all i ≤ j ∈ I}. For further details see [10] and [16].
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Remark. We want to find a coordinate description of the infinite jet bundle. To do
so we can take a local trivialization chart (U, φ) on F , such that for all x ∈ U and
p ∈ π−1(x) we have φ(p) = (xµ, yi). We can now use this to write local sections
of the bundle in coordinates, meaning that φ(σ(x)) = (xµ, σi(x)), and then lift the
local trivialization on F to a local trivialization on J∞F by defining (UJ , φJ) with

UJ := (π∞0 )−1(π−1(U)) (38)

and with φJ such that given3

ui = σi(x)

uiµ = ∂µσ
i(x)

...

uiµ1...µk = ∂µ1 . . . ∂µkσ
i(x)

...

we have
φJ(x, j∞x σ) := (xµ, ui, uiµ, . . . , u

i
µ1...µk

, . . . ). (39)

In summary, an element of the infinite jet bundle is given by a point x on the
spacetime manifold M and by an equivalence class containing information about
the field value of a section and all its derivatives at that point, which in coordinates
are given by ui and uiµ1...µk , respectively.

Definition 2.3 (k-Jet Prolongation). Let σ ∈ Γ(U, F ) be a local section for U ⊂
M . The k-jet prolongation of σ is defined to be the section jkσ ∈ Γ(U, JkF )
such that

jkσ : U → JkF

x 7→ (x, jkxσ).

Definition 2.4 (Infinite Prolongation). Let (F, π,M) and /F ′, π′,M ′) be two fiber
bundles, φ : F → F ′ a bundle morphism and φ0 : M → M ′ its restriction on the
base manifolds. The infinite prolongation j∞φ of φ is defined to be

j∞φ : J∞F → J∞F ′

(x, j∞x σ) 7→ (x, j∞φ0(x)(φ ◦ σφ−1
0 )).

Remark. We have defined the fundamental object for our construction: the infinite
jet bundle J∞F . In order to define vectors and differential forms on it we use
the projection map. We start with the vector fields on the k-jet bundle which are
defined as usual. Then we define the vector fields on the infinite jet bundle by
saying that X ∈ X(JkF ) if and only if there exists a Xk ∈ X(JkF ) such that

Xk = (π∞0 )∗(X).

3Note that when writing ui = σi(x) we implicitly assume a trivialization φ.
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Using the coordinates in (39) a general vector field can be represented as

X = aµ
∂

∂xµ
+ bi

∂

∂ui
+
∞∑
k=1

biµ1...µk
∂

∂uiµ1...µk
(40)

Similarly, the we define the p-forms on the infinite jet bundle by saying that ω ∈
Ωp(J∞F ) if and only if there exists an ωk ∈ Ωp(JkF ) such that

ω = (π∞k )∗(ωk).

Definition 2.5 (Contact Form). A p-form ω ∈ Ωp(JkF ) is called contact form
if for all k-jet prolongations jkσ

(jkσ)∗(ω) = 0. (41)

Remark. We denote the set of all contact forms on J∞F by C(J∞F ). Note that
the latter is an ideal in the exterior algebra

∧
(J∞F ). In particular, it is also a

differential ideal, meaning that

dC(J∞F ) ⊂ C(J∞F ). (42)

Definition 2.6 (Vertical Form). Let p ∈ N and s = 0, 1, . . . , p + 1. The set of
vertical (s, p)-forms is defined to be

Ω
(s,p)
V = C(J∞F )∧s ∩ Ωp(J∞F ), (43)

where C(J∞F )∧s is the s-th wedge product of C(J∞F ).

Definition 2.7 (Horizontal Form). Let p ∈ N and s = 0, 1, . . . , p + 1. A p-form
ω ∈ Ωp(J∞F ) is called a horizontal (r, p)-form if for all sets of tangent vectors
{Xi}i=1,...,p where at least p− r + 1 vectors are vertical it holds that

ω(X1, . . . , Xp) = 0. (44)

The set of all such horizontal forms is defined by Ω
(r,p)
H .

Proposition 2.1. The exterior differential d : Ωp(J∞F )→ Ωp+1(J∞F ) can be split
into

d = dH + dV (45)

such that dH : Ω
(r,p)
H → Ω

(r+1,p+1)
H increases the horizontal degree of a form and

dV : Ω
(s,p)
V → Ω

(s+1,p+1)
H increases the vertical degree of a form. Furthermore, d2

H =
d2
V = 0 and, consequently, dHdV = −dV dH . Then dH is called the horizontal

differential and dV the vertical differential.

Definition 2.8 (Variational Bicomplex). We define the variational bicomplex
to be the following chain complex
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...
...

...

· · · Ω(r−1,s−1)(J∞F ) Ω(r,s−1)(J∞F ) Ω(r+1,s−1)(J∞F ) · · ·

· · · Ω(r−1,s)(J∞F ) Ω(r,s)(J∞F ) Ω(r+1,s)(J∞F ) · · ·

· · · Ω(r−1,s+1)(J∞F ) Ω(r,s+1)(J∞F ) Ω(r+1,s+1)(J∞F ) · · ·

...
...

...

dV dV dV

dH dH

dV

dH

dV

dH

dV

dH dH

dV

dH

dV

dH

dV

dH dH

dV

dH

dV

dH

dV

where
Ω(r,s)(J∞F ) = Ω

(r,p)
H (J∞F ) ∩ Ω

(s,p)
V (J∞F ), (46)

where r is the horizontal degree, s is the vertical degree and p = r + s is the
degree of the differential form.

2.2 Lagrangian Field Theory

After this formal construction of the variational bicomplex we will introduce the
physically relevant concept of field theory. The space of fields, which is the funda-
mental object of a field theory, is defined to be the set of local sections of a fiber
bundle F . In general, this is an infinite-dimensional manifold which inherits the
structure of a Fréchet space.

Definition 2.9 (Space of Fields). Let M be an N -dimensional manifold and
(F, π,M) a fiber bundle. The space of fields is defined to be the set of local
sections of F 4

FM := Γ(U, F ). (47)

Definition 2.10 (Local Variational Bicomplex). Define the evaluation map

ev : M × FM → F

(x, φ) 7→ φ(x)

and the map

e∞ : M × FM → J∞F

(x, φ) 7→ ev(x, j∞(φ)).

Then the local variational bicomplex is defined to be

4Γ(U,F ) = {φ : U → F | U ⊂M open}
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...
...

...

· · · Ω
(r−1,s−1)
loc Ω

(r,s−1)
loc Ω

(r+1,s−1)
loc · · ·

· · · Ω
(r−1,s)
loc Ω

(r,s)
loc Ω

(r+1,s)
loc · · ·

· · · Ω
(r−1,s+1)
loc Ω

(r,s+1)
loc Ω

(r+1,s+1)
loc · · ·

...
...

...

δ δ δ

d d

δ

d

δ

d

δ

d d

δ

d

δ

d

δ

d d

δ

d

δ

d

δ

where the set of local (r, s)-forms is defined to be

Ω
(r,s)
loc (M × FM) := e∗∞(Ω(r,s)(J∞F )) (48)

and with the differential

d : Ω
(r,s)
loc (M × FM)→ Ω

(r+1,s)
loc (M × FM)

e∗∞(α) 7→ e∗∞(dHα)

and the variation

δ : Ω
(r,s)
loc (M × FM)→ Ω

(r,s+1)
loc (M × FM)

e∗∞(α) 7→ e∗∞(dV α).

Definition 2.11 (Field Theory). Let M be an N -dimensional manifold with
boundary ∂M . A Field Theory is the assignment of a space of fields FM and an
action

SM [L] =

∫
M

L, (49)

where the Lagrangian L ∈ Ω
(N,0)
loc (M ×FM) is a local (N, 0)-form, to the manifold

M .

Definition 2.12 (Source Form). A local (N, 1)-form α ∈ Ω
(N,1)
loc (M ×FM) is called

a source form, if for all (x, φ) the element α(x, φ) only depends on the 0-jet J0
xφ.

The space of all such forms is labelled by Ω
(N,1)
source(M × FM).

Lemma 2.2. The space of local (N, 1)-forms is given by the following direct sum

Ω
(N,1)
loc (M × FM) = Ω(N,1)

s (M × FM)⊕ dΩ
(N−1,1)
loc (M × FM). (50)

Theorem 2.3. Let L ∈ Ω
(N,0)
loc (M × FM) be a Lagrangian. Then there exists a

unique source form E(L) ∈ Ω
(N,1)
source(M × FM) and a local (N − 1, 1)-form α ∈

Ω
(N−1,1)
loc (M × FM) such that

δL = E(L)− dα, (51)
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where E(L) is called the Euler–Lagrange operator and is uniquely defined from
L. Moreover, α is unique up to d-exact terms and E(L + dK) = E(L) for all

K ∈ Ω
(N−1,0)
loc .

Definition 2.13 (Euler–Lagrange Equation). The Euler–Lagrange equation is
given by

E(L)(x, φ) = 0. (52)

Furthermore, we define the space ELM to be the subspace of fields which satisfy
this equation

ELM := {(x, φ) | E(L)(x, φ) = 0} ⊂ FM . (53)

2.3 Symplectic Reduction

We will give a quick introduction to symplectic geometry, Hamiltonian mechanics
and how to reduce this structure to submanifolds, given by level sets of momentum
maps.

Definition 2.14 (Symplectic Manifold). A symplectic manifold (M,ω) is a
smooth manifold M together with a symplectic form ω, that is a nondegenerate,
closed 2-form on M .

Remark. Non-degeneracy of the symplectic form implies that there exists an iso-
morphism

[ : TM → T ∗M

X 7→ ιXω

associated to ω with inverse ] : T ∗M → TM . This means that for every 1-form
there is an associated vector field, which is necessary to define the Hamiltonian
vector field.5

Definition 2.15 (Hamiltonian Vector Field). Let H ∈ C∞(M) be a smooth func-
tion on a symplectic manifold (M,ω). Then dH ∈ T ∗M and so there exists a
vector field XH ∈ TM , called Hamiltonian vector field of H, such that

dH = ιXHω. (54)

Definition 2.16 (Poisson Manifold). A Poisson manifold is a smooth mani-
fold M together with a Poisson bracket, that is a bilinear map {·, ·} : C∞(M) ×
C∞(M)→ C∞(M) satisfying

1. {f, g} = −{g, f} (Skew symmetry),

2. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity),

3. {fg, h} = f{g, h}+ g{f, h} (Leibniz rule),

∀f, g, h ∈ C∞(M).

5In the infinite dimensional case only injectivity of [ is required.
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Remark. In the definition of Poisson structure the first two conditions imply that
{·, ·} is a Lie bracket on C∞(M) while the third condition guarantees that for each
f ∈ C∞(M) the linear map Xf := {f, ·} : C∞(M)→ C∞(M) is a derivation, i.e. it
defines a vector field Xf ∈ X(M). It turns out that if the Poisson manifold derives
from a symplectic structure this vector field is the Hamiltonian vector field of f .6

Indeed, one can easily show that on every symplectic manifold (M,ω) there is a
Poisson bracket {·, ·}ω defined by

{f, g}ω := ω(Xf , Xg), (55)

where f, g ∈ C∞(M) and Xf , Xg ∈ TM are their Hamiltonian vector fields. The
skew symmetry and Leibniz rule follow directly from the antisymmetry of 2-forms
and the fact that d(fg) = fdg + gdf implies Xfg = fXg + gXf . The steps to
show the Jacobi identity make use of the fact that dω = 0 and are somewhat more
laborious.

Definition 2.17 (Symplectic Action). Let (M,ω) be a symplectic manifold and
G a Lie group. A symplectic action Ψ is a left action of G on M which acts by
symplectomorphisms7

Ψ: G→ Sympl(M) ⊂ Diff(M)

g 7→ Ψg.

Definition 2.18 (Momentum Map). Let Ψ be a symplectic action of G on M .
The map µ : M → g∗ is called momentum map if

1. For every Lie algebra element X ∈ g

dµX = ιX#ω, (56)

where µX : M → R, p 7→ µ(p)(X) and X# is the fundamental vector field
associated to X (see Definition 1.12)8;

2. µ is equivariant with respect to the action Ψ and the coadjoint action Ad∗ of
G on g∗, that is ∀g ∈ G9

µ ◦Ψg = Ad∗g ◦ µ. (57)

Then Ψ is said to be a Hamiltonian action10.

6In the infinite dimensional case only some functions, called Hamiltonian functions, possess
a Hamiltonian vector field, which is however uniquely defined. Then the Poisson bracket of two
functions is defined whenever at least one function is Hamiltonian.

7A symplectomorphism is a diffeomorphism Ψg : M → M such that it leaves the symplectic
form invariant, i.e. (Ψg)

∗ω = ω.
8In the previous definition we were treating principal bundles which have an incorporated

action R. Here instead we have written the action in terms of diffeomorphisms, which leads to
the equivalent definition X#(p) = d

dt [Ψexp(tX)(p)]t=0.
9This is the usual notation symplectic geometry literature. However, we can rephrase this

condition using a notation more similar to the previous chapter, that is Ψ∗gµ = Ad∗gµ where
µ ∈ Ω0(M, g).

10Some authors only require the first point and call equivariant momentum maps those which
satisfy also 2.
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Remark. The fundamental vector field X# is a symplectic vector field for every
X ∈ g, which means that (X#)[ is closed (dιX#ω = 0). If (X#)[ is also exact,
meaning that ιX#ω = df for some f ∈ C∞(M), the vector field is Hamiltonian. If
X# is Hamiltonian then it is also symplectic since d2 = 0.

Now we are interested in the zero level set of a momentum map

C = µ−1(0).

By definition this is a subset of M which is mapped to the zero vector 0 ∈ g∗. The
equivariance condition ensures that, if 0 is a regular value of the momentum map,
then C is preserved by the group action11

Ψg(C) ⊂ C, ∀g ∈ G.

We can now study the orbit space C/G given by the set of all orbits12

Op = {q ∈M | ∃ g ∈ G,Ψg(q) = p}.

Theorem 2.4. Let G be a compact Lie group and Ψ: G → Diff(M) a free and
transitive action on a smooth manifold M . Then the orbit space M/G is a smooth
manifold and (M,π,M/G) is a principal G-bundle with the canonical projection
π : M →M/G.

Theorem 2.5 (Marsden–Weinstein). Let (M,ω) be a symplectic manifold, G a
compact Lie group, µ a momentum map with 0 as regular value, whose action is
free and transitive on C = µ−1(0) and with the inclusion map i : C ↪−→ M . Define
the orbit space C := C/G. Then

1. C is a smooth manifold,

2. (C, π, C) is a principal G-bundle, with the canonical projection π,

3. there is a unique symplectic form ωred on C such that i∗ω = π∗ωred.

Proof. Both proofs can be found in [17].

2.4 KT Construction

Now we will go back to what we have learned about field theories and combine it
with the last section about symplectic reduction. It turns out that the space of
fields on the boundary ∂M of a field theory is naturally endowed with a presym-
plectic structure. The latter is given by the variation of the boundary term which

11More precisely, the action of G does not preserve the level sets of µ in general. Equivariance
of µ implies that the elements of G which do preserve C are exactly those that fix 0 ∈ g under
the coadjoint action.

12Physically speaking, quotienting out G of C is equivalent to fixing the symmetry of the
system. In particular, when P is a principal bundle, and is therefore equipped with a natural
action, it is equivalent to the process of gauge fixing.
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arises together with the Euler–Lagrange equations. Let’s take some action SM [L]
and apply Theorem 2.3. We then find

δSM = E(L)M −
∫
∂M

α, (58)

where we used Stokes’ theorem
∫
M
dα =

∫
∂M

α and defined E(L)M :=
∫
M
E(L).

Definition 2.19 (Presymplectic Manifold). A presymplectic manifold (M,ω)
is a smooth manifold M together with a presymplectic form ω, that is a closed
2-form on M whose kernel has constant rank13.

Definition 2.20 (Germ). Let M be a smooth manifold, U, V ⊂M two neighbour-
hoods of x ∈ M and f ∈ C∞(U), g ∈ C∞(V ). Define the equivalence relation on
the set of smooth functions on a neighbourhood of x such that f ∼ g if there exists
a neighbourhood W ⊂ U ∩ V of x such that

f |W = g|W . (59)

A germ at x is then an equivalence class under this relation.

Definition 2.21 (Preboundary Fields). The space of preboundary fields F̃∂M
on ∂M is defined to be the space of germs of fields at ∂M ×{0} on ∂M × [0, ε] for
some ε > 0.

Remark. In other words, the space of preboundary fields is just the space of possible
field values near the boundary. We still need to include the N -th dimension in the
form of a short interval [0, ε] to keep all derivatives well-defined. Furthermore,
there is a canonical submersion π̃∂M : FM → F̃∂M which maps the fields to their
restriction on the boundary, allowing us to rewrite equation (58) as stated in the
following theorem. This is important since it allows us to study this boundary
term where also the fields are restricted on the boundary.

Theorem 2.6. The space of preboundary fields F̃∂M is a smooth manifold. Fur-
thermore, there exists a (0, 1)-form α̃∂M on F̃∂M such that

δSM = E(L)M − π̃∗∂M(α̃∂M). (60)

Moreover, define the following (0, 2)-form on F̃∂M

$̃∂M := δα̃∂M , (61)

where δ is the variation defined in 2.10. Then (F̃∂M , $̃∂M) is a presymplectic
manifold.

Remark. This (0, 2)-form14 is the starting point for the symplectic description which
we will build. It is presymplectic in the sense that it is closed by construction, since
δ2 = 0, but not necessarily nondegenerate.

13In the infinite dimensional case the kernel is a subbundle ker(ω) ⊂ TM .
14All the forms which we will consider from now on will all have the form (0, s), meaning that

they are differential form along the fibers. To simplify notation we will simply call them s-forms.
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Definition 2.22 (Geometric Phase Space). The geometric phase space of a
field theory is defined to be the quotient of the space of preboundary fields by the
kernel of its presymplectic form

F∂M :=
F̃∂M

ker($̃∂M)
. (62)

Remark. Again, there is a canonical submersion π∂M : FM → F∂M , which can sim-
ply be extended from π̃∂M by additionally mapping an element to the equivalence
class it belongs to. Then we can find a 1-form α∂M on F∂M such that

δSM = E(L)M − π∗∂M(α∂M). (63)

Next, we make an assumption which has to be verified for each field theory sep-
arately, which is that (F∂M , $∂M) is a symplectic manifold, where we defined the
following 2-form on F∂M

$∂M := δα∂M . (64)

We have obtained a symplectic manifold of fields restricted to the boundary. In
order to get to the lowest possible state of reduction we need to fix the constraints,
given by the Euler–Lagrange equations, and perform a symplectic reduction. The
result is the so called reduced phase space.

Definition 2.23 (Reduced Phase Space). Define the zero locus of the Euler–
Lagrange equations on the boundary L∂M := π∂M(ELM). The Cauchy Data
C∂M is then defined to be the subspace of F∂M that can be completed to a pair
belonging to L∂M×[0,ε] for all ε > 0. If C∂M is a submanifold, then the reduced
phase space C∂M is defined to be the symplectic reduction of C∂M .

The reduced phase space is the final object of this construction. One can assume
that it is a submanifold, but usually it is not. Physically, it indicates the space
of possible initial conditions of the theory modulo symmetries. A trivial example
is the case of classical mechanics defined on a manifold M , where the reduced
phase space for a free particle is just the cotangent bundle T ∗M with the canonical
symplectic structure. In cases where equations of motion present also derivatives
which are not transverse to the boundary (or the space of initial conditions), namely
they are not evolution equations, some of these equations turn into constraints of
the theory and the reduced phase space is then built in the aforementioned way.15

Historically, the description of this space has been performed in terms of Dirac’s
analysis, where one first analyses the primary and secondary constraints which are
then regrouped into constraints of first- and second-class. The KT construction
instead allows for a more geometrical description of the reduced phase space and
it turns out to be much more natural in the case of the Palatini–Cartan formalism.
A summary of this construction can be seen in figure 1.

15This is the case for every gauge theory, where not all equations of motion are transverse.
More precisely, all systems with local symmetries according to the second Noether’s theorem
possess constraints on their momenta, since these are not all independent. Systems of this kind
are also called singular in the literature.
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Presymplectic Manifold

(F̃∂, $̃∂M)

|
Presymplectic Reductiony
Symplectic Manifold

(F∂, $∂M)

|
Symplectic Reductiony

Reduced Phase Space

(C,$red)

Figure 1: Summary of the KT construction. We start with the space of pre-
boundary fields which is naturally endowed with a presymplectic structure. By
quotienting out the kernel of the presymplectic form, we find the geometric phase
space which is consequently symplectic. Finally, we perform a symplectic reduction
by the symmetries of the theory. What one may also do in the last step, in order
to reach the reduced phase space, is to perform a coisotropic reduction (Appendix
A) by the constraints of the theory coming from the field equations.



3 Palatini–Cartan Formalism

In this chapter we will introduce the Palatini–Cartan formalism, which is an al-
ternative formulation of General Relativity almost equivalent to the Einstein for-
mulation. The main benefit is that it is formulated in terms of differential forms,
allowing a more natural restriction to the boundary. Furthermore, it is a gauge
theory. The references for this chapter are [4], [8] and [5].

Usually, General Relativity is written in terms of the Einstein–Hilbert action

SEH =

∫
M

(R− Λ)
√
g,

which leads to the Einstein field equations

Rµν −
1

2
Rgµν + Λgµν = 0

with the metric tensor g as a dynamical field variable.
The Palatini–Cartan formalism is an alternative approach to gravity equivalent

to the latter, in the sense that both give the same space of solutions of the Euler–
Lagrange equations modulo symmetries. There is some more freedom in the PC
formulation, since it has an additional gauge symmetry. The difference is that,
instead of considering the metric tensor as variable field, one introduces two new
field variables. The first is a coframe field, or vielbein, that is an orientation
preserving isomorphism e : TM → V such that one can recover the Lorentzian
metric with g = e∗η. The second field is a principal connection ω on P which turns
out to have values in the so-called Minkowski bundle V .

3.1 Coframe Field

The goal of this section is to formally introduce the tetrad, vielbein or coframe
field, which is one of the two variables of the Palatini–Cartan action. As we will
conclude, the tetrad is a bundle isomorphism TM → V . We could define it right
away from the soldering form on M with respect to the group SO(N − 1, 1) (see
Definition 1.17). However, we will take the more physical approach by defining it
from the coframe bundle. This will show how one can recover the spacetime metric
from it.

For the entire section we will assume that M is an oriented N -dimensional
pseudo-Riemannian manifold with a metric g that has signature (N − 1, 1).

Definition 3.1 (Coframe Bundle). For every x ∈ M the coframe space at x is
defined to be

L∗xM := {e = (e1, . . . , eN) | {ea} is a basis of T ∗xM}. (65)

The coframe bundle is then defined to be

L∗M :=
⊔
x∈M

L∗xM. (66)

23
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Proposition 3.1. The coframe bundle (L∗M,π,M) is a principal GL(N,R)-bundle
with the canonical projection π : L∗M →M .

Proof. See [11].

Definition 3.2 (Orthonormal Coframe Bundle). For every x ∈M the orthonor-
mal coframe space16 at x with respect to the metric g is defined to be

SO∗x(M, g) := {e = (e1, . . . , eN) | {ea} is an orthonormal basis of T ∗xM}. (67)

The orthonormal coframe bundle is then defined to be

SO∗(M, g) :=
⊔
x∈M

SO∗x(M, g). (68)

Proposition 3.2. The orthonormal coframe bundle (SO∗(M, g), π,M) is a prin-
cipal SO(N − 1, 1)-bundle with the canonical projection π : SO∗(M, g)→M .

Proof. See [11].

Remark. We have defined the coframe bundle and orthornormal coframe bundle
over M to be the fiber bundles where the fibers at some x ∈ M are the spaces
of possible bases, respectively orthonormal bases, of the cotangent space at that
x. Clearly, the orthonormal coframe bundle is a subbundle of the coframe bundle.
Furthermore, propositions 3.1 and 3.2 state that these also define principal bundles
with respect to the structure group of their fibers. The meaning of this is that for
every two bases e, ẽ ∈ L∗xM there exists some A ∈ GL(N,R) such that e = Aẽ
(similarly for the orthonormal case). As for every principal bundle, the fibers can
therefore be identified by the structure group itself.

Remark. One can define in an equivalent way the frame bundle LM and the or-
thonormal frame bundle SO(M, g). It is straightforward to show that they are also
principal bundles.

Definition 3.3 (Vielbein Map). Let (P, p,M) be a principal SO(N −1, 1)-bundle.
A vielbein map on M is defined to be a principal bundle morphism e : P → LM
together with the canonical embedding i : SO(N − 1, 1)→ GL(N,R).

Remark. In order to be a principal bundle morphism the vielbein map has to satisfy
two conditions:

1. Verticality: π ◦ e = p

2. Equivariance: Ri(g) ◦ e = e ◦ Rg for all g ∈ G.

This is equivalent to asking that the following two diagrams should commute

P LM

M

e

p
π

P LM

P LM

e

Rg Ri(g)

e

.

16Orthonormality with respect to the metric g means that gµν = eaµe
b
νηab.
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Definition 3.4 (Minkowski Bundle). Consider the principal SO(N − 1, 1)-bundle
(P, p,M) and let (V, η) be a real N -dimensional vector space with signature (N −
1, 1). The Minkowski bundle on M is the associated bundle

V := P ×ρ V, (69)

where ρ : SO(N − 1, 1)→ Aut(V ) is the fundamental representation.

Remark. Let us briefly analyse what we have just constructed. First of all we
have shown that the fiber bundle of orthonormal frames is a principal bundle with
structure group SO(N − 1, 1). By construction, one can recover the spacetime
metric with

gµν = eaµe
b
νηab,

where a, b indicate the basis vector and µ, ν its spacetime component. Then we have
a vielbein map, that is a bundle morphism, which “changes fibers” from a general
SO(N−1, 1)-bundle to the specific frame bundle while keeping the structure group.
What this map does is setting a rule for the choice of an orthonormal basis. Since
it is kind of cumbersome to work with bases as fundamental object we want to
describe them in terms of a general vector field. The vielbein map can now induce
such a “selection rule” for the associated vector bundles. In particular, we are
interested in a map going from the tangent bundle TM to the Minkowski bundle
V . It is important to notice that the tangent bundle is associated to the frame
bundle. The existence of such an induced map can be shown using the universal
property of the quotient.17 Due to the equivariance condition of the vielbein map
the universal property of the quotient for the bundle morphism π′ ◦ e : P → TM ,
where π′ : LM → TM is the projection on the tangent bundle, guarantees the
existence and uniqueness of a map ê : V → TM such that the following diagram
commutes

P LM

V TM

e

p′ π′

ê

.

Locally, we can give an explicit construction of this map and show that it is an
isomorphism. Let’s assume we have a vielbein map, then there is a specific choice
of basis {ea} at any point in M . Now we can define the isomorphism (and call it
e by abuse of notation)

e(x) : TxM → Vx (70)

v 7→ va,

where v = vaea ∈ TxM . This map forms a bundle isomorphism18 covering the
identity on M . Now we can also rewrite the metric in terms of the Minkowski

17Let F be a fiber bundle, ∼ an equivalence relation on F and π : F → F/ ∼ the canonical
projection on the quotient. For every fiber bundle E and bundle morphism f : F → E such that
p ∼ q implies f(p) = f(q) for all p, q ∈ F , there exists a unique bundle morphism g : F/ ∼→ E
such that f = g ◦ π.

18By construction, all fibers are isomorphic and this implies that there exists a vector bundle
isomorphism e.
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metric in V , that is
g = e∗η. (71)

We will take the map in (70) as a definition for the vielbein.

Definition 3.5 (Vielbein). A vielbein19 (or tetrad for N = 4) is a smooth section
e ∈ Γ(T ∗M ⊗V) such that e(x) defines an isomorphism TxM → Vx for all x ∈M .

3.2 Connection Field

Now we will introduce the second dynamical variable of the theory: the connection
field ω. Contrary to the vielbein, we do not have to artificially construct this object
since it already exists for any principal bundle P .

One important consequence of Chapter 1 was that the principal connection is not
a tensorial form. This is reflected by the fact that the gauge field does not exactly
transform in the adjoint representation since there arises another term containing
the Maurer–Cartan form. However, the difference of two connection forms is a
tensorial form. Clearly, also the difference of two gauge fields transforms in the
adjoint, since the two Maurer–Cartan forms cancel. This means that with the help
of some reference connection ω0 we can define the space of connections to be the
space of tensorial 1-forms with respect to the adjoint representation.

Definition 3.6 (Space of Connections). Let P be a principalG-bundle and Ad: G→
Aut(g) the adjoint representation. The space of connections on P is defined to
be the space of tensorial 1-forms on P with respect to the adjoint representation

A(P ) := Ω1
G,Ad(P, g). (72)

Remark. As mentioned above, the space of connections A(P ) only describes the
differences to some reference connection 1-form ω0. In other words, for every
connection 1-form ω1 ∈ Ω1(P, g) there exists an element ω ∈ A(P ) such that
ω1 − ω0 = ω.20

Corollary 3.3. Let P be a principal G-bundle over M . The space of connections
on P is isomorphic to the space of 1-forms on M with values in the associated
bundle with respect to the adjoint representation

A(P ) ' Ω1(M,P ×Ad g). (73)

Proof. This follows directly from Theorem 1.3.

Let us now come back to the case where M is an oriented N -dimensional pseudo-
Riemannian manifold and P is a principal SO(N − 1, 1)-bundle over M .

Proposition 3.4. Let V be a real N-dimensional vector space, then

∧2V ' so(N − 1, 1). (74)

19The German term vielbein translates to ”many legs” and is often used for a general N -
dimensional case. In the 4-dimensional case it is often replaced by vierbein, meaning ”four legs”,
or tetrad.

20Therefore the space of connections is an affine space modelled over A(P ).
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Proof. Let η = diag(1, . . . , 1,−1) be the Minkowski metric on V and {vi}Ni=1 a
basis of V . Then a basis of ∧2V is given by vi ∧ vj and contraction with η gives a
basis of so(N − 1, 1)21

ωji = vi ∧ vkηjk (75)

since vi ∧ vjηjkηil = −vi ∧ vjηjlηik.
Corollary 3.5. The space of connections on P is isomorphic to the space of 1-
forms on M with values in the second order exterior product of the Minkowski
bundle

A(P ) ' Ω1(M,∧2V). (76)

Remark. In equation (76) the second order exterior product of V indicates the
associated bundle P ×ρ ∧2V .

3.3 Palatini–Cartan Action

We are now ready to state the Palatini–Cartan formalism by using its main ingredi-
ents: the coframe and the connection field. The idea is to write both as differential
forms on M with values in the Minkowski bundle. It is important to note that,
although we will now make use of the Lagrangian theory constructed in Chapter 2,
the (i, j)-forms which are our dynamical objects are fundamentally different from

the local (r, s)-forms Ω
(r,s)
loc (M × FM).

Definition 3.7 ((i, j)-forms). An (i, j)-form on M is a differential i-form with
values in the j-th exterior power of V

Ω(i,j)(M) := Ωi(M,∧jV). (77)

Furthermore, we define some maps on the set of (i, j)-forms. First of all we define
the k-th wedge product of the tetrad e ∈ Ω(1,1)(M) as22

W
(i,j)
k : Ω(i,j)(M)→ Ω(i+k,j+k)(M)

α 7→ ek ∧ α.

Next, recalling equation (74) we define

[·, ·] : Ω(0,2) × Ω(0,2) → Ω(0,2)

(α, β) 7→ [α, β],

where [α, β] is defined by the Lie bracket of the corresponding elements in so(N −
1, 1). We can also extend this bracket to the following map

[·, ·] : Ω(i,2) × Ω(k,2) → Ω(i+k,2)

(α, β) 7→ [α, β],

which in coordinates is given by

[α, β]a1a2µ1...µi+k
=
∑
σi+k

sign(σi+k)α
a1a3
µσ(1)...µσ(i)

βa2a4µσ(i+1)...µσ(i+k)
ηa3a4 . (78)

21Recall that the Lie algebra so(N−1, 1) is the set of all matrices ωba satisfying ωac η
cb+ηacωbc = 0.

Furthermore, with ωab = ωac η
cb this condition becomes ωab = −ωba.

22Note that here the powers of e are defined by wedge products ek := e ∧ · · · ∧ e︸ ︷︷ ︸
k−times

.
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Remark. Note the equivalence Ω(i,j)(M) = Γ(∧iT ∗M ⊗ ∧jV). Therefore one can

rewrite the vielbein as an element e ∈ Ω
(1,1)
nd (M) and the principal connection as an

element ω ∈ Ω(1,2)(M). For the vielbein we require it to be a nondegenerate form
since it should define an isomorphism according to Definition 3.5. Furthermore, by
Theorem 1.3, every (i, j)-form is a tensorial form. Since the covariant derivative dω
from Definition 1.16 maps tensorial forms of degree k to tensorial forms of degree
k + 1 it is also a well-defined map from (i, j)-forms to (i+ 1, j)-forms.

Definition 3.8 (Classical Palatini–Cartan). Let M be an N-dimensional pseudo-
Riemannian manifold. The classical Palatini–Cartan theory is the assignment of
the pair (FPC , SPC)M to M , with the space of fields

FPC = Ω
(1,1)
nd (M)× Ω(1,2)(M) (79)

and the action23

SPC =

∫
M

1

(N − 2)!
eN−2 ∧ Fω +

Λ

N !
eN , (80)

where (e, ω) ∈ FPC .

The variation of the action δSPC leads to the Euler–Lagrange equations of motion

eN−3dωe = 0, (81)

1

(N − 3)!
eN−3Fω +

Λ

(N − 1)!
eN−1 = 0 (82)

and to the boundary term

α̃ =

∫
Σ

1

(N − 2)!
eN−2δω. (83)

3.4 Restriction on the Boundary

Now we will consider the boundary of the spacetime manifold Σ = ∂M with the
inclusion map i : Σ→M and the natural metric

g∂ := i∗g. (84)

The reduction of the fields in this bundle setting is quite intuitive. The fiber
bundles on the whole manifold M are simply restricted to its boundary Σ, while
keeping the fibers unchanged. Mathematically this is achieved by the pullback
bundle.

Definition 3.9 (Pullback Bundle). Let (F, π,M) be a fiber bundle, M ′ a smooth
manifold and φ : M ′ → M a smooth map. The pullback bundle of F by φ is
defined to be

φ∗F := {(x′, p) ∈M ′ × F | φ(x′) = π(p)}. (85)

23Here Fω is the field strength stated in equation (33).
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Definition 3.10 (Boundary (i, j)-forms). First define the pullback principal bun-
dle

P |Σ := i∗P (86)

on M by the inclusion map i : Σ → M . The latter induces the Minkowski bundle
on the boundary

V|Σ := P |Σ ×ρ V. (87)

Then we define the space of boundary (i, j)-form on Σ to be

Ω
(i,j)
∂ := Ωi(Σ,∧jV|Σ). (88)

Again, we define similar maps as in Definition 3.7 on the set of boundary (i, j)-
forms:

W
∂(i,j)
k : Ω

(i,j)
∂ → Ω

(i+k,j+k)
∂

α 7→ ek ∧ α,

[·, ·] : Ω
(i,2)
∂ × Ω

(k,2)
∂ → Ω

(i+k,2)
∂

(α, β) 7→ [α, β],

where the tetrad is a nondegenerate boundary form e ∈ Ω
(1,1)
∂ .24 Furthermore, we

define a generalization of the so(N − 1, 1) action on V|Σ and can therefore write
the bracket with the boundary tetrad as

%(i,j) : Ω
(i,j)
∂ → Ω

(i+1,j−1)
∂

α 7→ [α, e],

which in coordinates is defined by

[α, e]a1...aj−1
µ1...µi+1

=
∑
σi+1

sign(σi+1)αa1...ajµσ(1)...µσ(i)
ebµσ(i+1)

ηajb. (89)

Definition 3.11 (Lie Derivative). Let α ∈ Ω
(i,j)
∂ , ω ∈ Ω

(1,2)
∂ a boundary connection

and ξ ∈ X(Σ) a vector field. The Lie derivative of α along ξ with respect to ω is
defined to be

Lωξ α = ιξdωα− dωιξα. (90)

Remark. Again, we can see the boundary forms as the tensor product Ω
(i,j)
∂ =

Γ(∧iT ∗Σ⊗∧jV|Σ). The vielbein e ∈ Ω
(1,1)
nd (M) = T ∗M ⊗V can also be seen as an

isomorphism e : TM
∼−→ V . When restricted to the boundary one gets an object

in Ω
(1,1)
∂ = T ∗Σ ⊗ V|Σ. By the previous definition V|Σ is locally isomorphic to

Σ×V . Thus when taking the old field as a map and restricting it to the boundary
e : TΣ → V|Σ, it is not an isomorphism anymore. Indeed for all u ∈ Σ it spans
a 3-dimensional subspace e(TuΣ) of Vu which can be given the basis (e1, e2, e3).
Therefore it makes sense to define another field

en ∈ V|Σ (91)

which completes the above basis to (e1, e2, e3, en) such that it spans the whole
space. The latter is called the transversal component to the boundary.

24In this case nondegenerate means that it induces an injective map TΣ→ V|Σ.
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As explained in section 2.4, we want to quotient out the kernel of the presym-
plectic form which arises from the boundary term (83) (see Definition 2.22). Thus,
for the fields which lie not trivially in the kernel of this form, equivalence classes
arise in the geometric phase space. As we will see later, a major problem will be
to find a set of equations (if possible arising from the equations of motion) which
fix a representative of the equivalence class of [ω] uniquely. This procedure is the
same for the case of pure gravity, scalar coupling and Yang–Mills coupling. How-
ever, it strongly depends on whether the boundary metric g∂ is nondegenerate or
degenerate. In the following we will present the results of [4] for the nondegenerate
case which we will recall to in Chapters 4 and 5.

As it turns out, the equivalence class of [ω] is defined by ω ∼ ω′ ⇔ ω′ = ω + v.
The problem is that (81) is not invariant under a change of representative, meaning
that if dωe = 0 then dω′e = [v, e] is not necessarily 0. Therefore we use the following
lemma.

Lemma 3.6. Let α ∈ Ω
(2,1)
∂ and g∂ be nondegenerate, then

α = 0 ⇐⇒

{
eα = 0

enα ∈ ImW
∂(1,1)
1

. (92)

We can apply this to dωe ∈ Ω
(2,1)
∂ and find two new constraints edωe = 0 and

endωe = eσ for some σ ∈ Ω
(1,1)
∂ . The second constraint will be used to fix uniquely

the representative. The question is whether endω′e = 0 implies endωe = 0 and the
answer is yes since there is no σ ∈ Ω

(1,1)
∂ such that en[v, e] = eσ, as the following

lemma shows.

Lemma 3.7. Let g∂ be nondegenerate, then the map

χ : kerW
∂(1,1)
1 → Ω

(2,2)
∂

v 7→ en[v, e]

is injective and in particular

Imχ ∩ ImW
∂(1,1)
1 = {0}. (93)

Proof. Both proofs can be found in [4].

From here it follows that there exists a unique v ∈ kerW
∂(1,2)
1 with endω′e =

eσ+ en[v, e]. Since the corresponding ω satisfies endωe = eσ the fixing is complete.

3.5 Light-like Boundary

In this section we clarify the implications of choosing a boundary with a light-like
direction.

Let’s for a while consider the so called Minkowski space time with the metric
ηµν = diag(−1, 1, ..., 1). We start by picking a set of coordinates (x0, x1, x2, . . . , xN−1)
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such that x2 = ηµνx
µxν = −(x0)2 + (x1)2 + (x2)2 + · · ·+ (xN−1)2, and we build an-

other set of coordinates (x+, x−, x2, . . . , xN−1), called light-cone coordinates, which
are defined by

x+ :=
1√
2

(x1 + x0),

x− :=
1√
2

(x1 − x0).

We set now the invariance of x2 = xµxνηµν by allowing the metric η to change25,
which implies that

x2 = −(x0)2 + (x1)2 + (x2)2 + · · ·+ (xN−1)2

= −1

2
(x+ − x−)2 +

1

2
(x+ + x−)2 + (x2)2 + · · ·+ (xN−1)2

= 2x+x− + (x2)2 + · · ·+ (xN−1)2.

Then one recovers the Minkowski metric in light-cone coordinates

η =


0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 . (94)

It is easy to see that the directions x+ and x− are light-like directions. In other
words, a photon starting at (0, 0, 0, . . . , 0) and moving forward in the direction of
x1 will be parameterized by the coordinate x+.
Now consider a manifold whose boundary Σ = ∂M moves along the light-like com-
ponent x− and all the spatial components x2, . . . , xN−1, namely it is characterized
by the equation x+ = 0. The latter description corresponds to the case we will be
dealing with, where the dimension of the degeneracy of the boundary metric is 1.
What we actually do is to follow a similar reasoning pointwise with coframes.
Namely, we can consider the Minkowski metric on the fibers of V and choose non-
degenerate vielbein26 (e0, e1, e2, ..., eN−1). Then, as in the previous example with
Minkowski coordinates, we build the set of vielbein (e+, e−, e2, ..., eN−1) and we pull
them back to the null boundary and choose the boundary vielbein (e+, e2, ..., eN−1).
Then, in this set of coordinates, the metric on the fibers will be given by (94), since
we want to maintain the condition g = e∗η, and the boundary metric is degener-
ate with a 1-dimensional degeneracy. Notice that one can always ”diagonalize”
vielbein in this way point wise on a light like boundary.

Now let us approach the problem of choosing a unique representative of [ω] in
the case of a degenerate boundary metric. We will present the main results of [5]
which again we will refer to in Chapters 4 and 5.

25This is equivalent to taking vector fields instead of coordinates and the full space time metric
instead of η and working point wise, or equivalently to working with coframes as we will see later.

26We shall refer to vielbein such that ηabe
a
µe
b
ν = 0 as degenerate vielbein or degenerate tetrads.
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The crucial difference to the nondegenerate case is that we cannot find a unique
representative of [ω] satisfying endωe = eσ for some σ ∈ Ω

(1,1)
∂ . The impossibility

of this task comes from the fact that there is no such lemma as 3.7 in the de-
generate case. This is because in the nondegenerate case the map %|

kerW
∂(1,2)
N−3

is

injective, which is a key condition for this lemma. In the degenerate case, how-
ever, dim(ker%(1,2)|

kerW
∂(1,2)
N−2

) = N(N−3)
2

, meaning that %|
kerW

∂(1,2)
N−3

is not injective

and, hence, neither is the map v ∈ ker(W
∂(1,2)
1 ) 7→ en[v, e] ∈ Ω

(2,2)
∂ . In other words,

v has components which might be associated to more than one element en[v, e] and
we need to deal with these components separately. To do so we define the following
spaces:

T := kerW
∂(2,1)
1 ∩ J ⊂ Ω

(2,1)
∂ , (95)

K := kerW
∂(1,2)
1 ∩ ker%(1,2) ⊂ Ω

(1,2)
∂ , (96)

S := kerW
∂(1,3)
1 ∩ ker%̃(1,3) ⊂ Ω

(1,3)
∂ , (97)

where J ⊂ Ω
(2,1)
∂ is the orthogonal complement of Im%(1,2)|

kerW
∂(1,2)
1

. All these three

spaces are zero in the nondegenerate case. By definition of T it is clear that there
exists an element θ ∈ T such that endω′e = eσ + en[v, e] + enθ (considering again
ω′ = ω + v as above). This does still not fix the representative uniquely because
there are elements of ω which do not appear either in edωe or in endωe but do appear
in dωe. These lie exactly in K. Hence, we also require pKω = 0. Furthermore, the
space S plays the role of dual of T , as the following lemma shows.

Lemma 3.8. Let α ∈ Ω
(2,1)
∂ . Then∫

Σ

τα = 0 ∀τ ∈ S =⇒ pT (α) = 0. (98)

Now we can write a trivial generalization of Lemma 3.6.

Lemma 3.9. Let α ∈ Ω
(2,1)
∂ and g∂ be degenerate, then

α = 0 ⇐⇒


eα = 0

enα− enpT α ∈ ImW
∂(1,1)
1

pT α = 0

. (99)

Proof. Both proofs can be found in [5].

With the considerations from above, by applying this lemma to α = dωe a
representative of [ω] is uniquely fixed. However, there is a residual equation of the
form pT dωe = 0 which must be taken as an additional constraint.



4 Scalar Coupling

In this chapter we move away from the case of pure gravity and add coupling to a
real massless scalar field to our theory. This coupling is described in the first order
formalism.

A scalar field is just a smooth function on spacetime φ ∈ C∞(M). Normally, in
field theories a Lagrangian density for a free scalar field on an arbitrary background
is described by the Klein–Gordon term

LKG =
1

2
gµν∂µφ∂νφ,

where we assumed the scalar field to be massless. This then leads to the Klein–
Gordon equation

gµν∂µ∂νφ = 0.

We want to incorporate this description into our PC theory. We could use the KG
term but dealing with the metric in terms of the vielbein makes the computations
laborious. Therefore we use the first order formalism, by introducing a new field Π,
which physically speaking takes the role of momentum field. The difference from
the usual momentum is that at first glance the fields Π and φ are independent
of each other. However, by construction of the theory they are connected by the
equations of motion, leading back to the usual momentum field.

4.1 Scalar Palatini–Cartan Action

In this first section we give the general description of the theory in the general case
where M is an N -dimensional pseudo-Riemannian manifold.

Definition 4.1 (Pairing). Let {vi}Nµ=1 be an orthonormal27 basis of V and let
A = Aµvµ ∈ V and B = Bνvν ∈ V . The pairing of A and B is then defined as

(A,B) := AµBνηµν . (100)

Definition 4.2 (Scalar Palatini–Cartan). Let M be an N-dimensional pseudo-
Riemannian manifold with boundary Σ := ∂M . The scalar Palatini–Cartan
theory (SPC) is the assignment of the pair (FSPC , SSPC)M to M , with the space
of fields

FSPC = Ω
(1,1)
nd (M)×A(M)× C∞(M)× Ω(0,1)(M) (101)

and the action
SSPC = SPC + Sscal, (102)

with

SPC =

∫
M

1

(N − 2)!
eN−2 ∧ Fω +

Λ

N !
eN , (103)

Sscal =

∫
M

1

(N − 1)!
eN−1 ∧ Π ∧ dφ+

1

2N !
eN(Π,Π) (104)

where (e, ω, φ,Π) ∈ FSPC .

27Here orthonormal means with respect to the Minkowski metric in V . So ηµνv
µ
av

ν
b = ηab for

all basis vectors va and vb.

33
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Following what we have studied in Chapter 2, the variation of the action SSPC
leads to the Euler–Lagrange equations of motion

dωe = 0, (105)

1
(N−3)!

eN−3Fω + Λ
(N−1)!

eN−1 + 1
(N−2)!

eN−2Πdφ+ 1
2(N−1)!

eN−1(Π,Π) = 0,

(106)
d(eN−1Π) = 0, (107)

eN−1(dφ− (e,Π)) = 0. (108)

Furthermore, we get the boundary term

α̃ :=

∫
Σ

1

(N − 2)!
eN−2δω +

1

(N − 1)!
eN−1Πδφ. (109)

Remark. We can simplify equation (108) by using that the map W
(1,0)
N−1 is injective

(see Lemma B.1), meaning that

eN−1(dφ− (e,Π)) = 0 ⇔ dφ− (e,Π) = 0.

By inversion of the metric we find the usual momentum term for scalar fields

Π = πµvµ = −gµν∂νφvµ.

Furthermore, by using that eN

N !
= Volg we recover the Klein–Gordon action

Sscal = −
∫
M

1

2
Volgg

µν∂µφ∂νφ.

4.2 Scalar Boundary Structure in N = 4

In this section we study the boundary structure of the theory, following section
2.4. Our goal is to find the reduced phase space of the theory, which is the space
of admissible initial field configurations. To do so we first define the space of pre-
boundary fields by restricting the space of fields onto the boundary of the manifold.
The bundle construction makes it easy to do so. Furthermore, it turns out that by
considering $̃ = δα̃ we already have something which resembles a symplectic form,
since δ2 = 0 implies that it is closed. However, it might still be degenerate. This
means that we have to quotient out the kernel that is, perform a presymplectic
reduction, to get a symplectic manifold which is called the geometric phase space
of the theory.

In order to get the reduced phase space we need the fields to obey the equations of
motion restricted on the boundary and to fix the representative of the equivalence
classes. In general, however, these equations are not invariant under a change
of representative. In other words, the restriction onto the boundary has as a
consequence that the equations do not lead to unique solutions. In these cases
we need to find an equivalent version of the constraint which at the same time
fixes the representative. We write these constraints as Lagrange multipliers. The
reduced phase space is the quotient of the geometric phase space with respect to
these constraints.
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Definition 4.3 (Preboundary Fields). Define the space of preboundary fields
of the SPC theory and its presymplectic form to be

F̃∂ = Ω
(1,1)
∂ ×A(Σ)× C∞(Σ)× Ω

(0,1)
∂ , (110)

$̃ := δα̃ =

∫
Σ

eδeδω +
1

3!
δ(e3Π)δφ. (111)

Remark. Clearly $̃ is a 2-form on the space of preboundary fields F̃∂. It is also
closed δ$̃ = 0 since δ2 = 0. However, it is not nondegenerate because ker($̃) 6=
{0}. Thus after quotienting out the kernel the latter defines a symplectic form.

Proposition 4.1. From Definition 2.22 we know that the geometric phase space
is the space of preboundary fields modulo its kernel

F∂ =
F̃∂

ker($̃)
.

For the SPC theory we therefore have

F∂ = Ω
(1,1)
∂ × A(Σ)

∼
× C∞(Σ)× Ω

(0,1)
∂

∼
(112)

where the equivalence classes [ω] and [Π] satisfy

ω ∼ ω′ ⇐⇒ ω′ = ω + v, with ev = 0, (113)

Π ∼ Π′ ⇐⇒ Π′ = Π + γ, with e3γ = 0. (114)

Proof. The kernel of a 2-form is defined through the inner product

ker($̃) = {X ∈ X(F̃∂)|ιX$̃ = 0}. (115)

Consider now a generic vector field X = Xe
δ
δe

+ Xω
δ
δω

+ Xφ
δ
δφ

+ XΠ
δ
δΠ

. This is a

vector field with respect to the variation δ (see Definition 2.10), meaning that the

components are along the field values Xe ∈ Ω
(1,1)
∂ ,Xω ∈ A(Σ),Xφ ∈ C∞(Σ),XΠ ∈

Ω
(0,1)
∂ . Contracting it with equation (111) gives

ιX$̃ =

∫
Σ

eXeδω +
1

2
e2ΠXeδφ+ eXωδe

+
1

3!
e3XΠδφ+

1

2
e2ΠXφδe+

1

3!
e3XφδΠ

=

∫
Σ

(
eXω +

1

2
e2ΠXφ

)
δe+ eXeδω

+
1

3!
e3XφδΠ +

(1

2
e2ΠXe +

1

3!
e3XΠ

)
δφ.

Therefore we find that the kernel is defined by the set of equations

eXω +
1

2
e2ΠXφ = 0, (116)

eXe = 0, (117)

1

3!
e3Xφ = 0, (118)

1

2
e2ΠXe +

1

3!
e3XΠ = 0. (119)
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Using that W
∂(1,1)
1 and W

∂(0,0)
3 are both injective (see Lemma B.3) equations (117)

and (118) are equal to Xe = 0 and Xφ = 028, which leads to trivial equivalence
relations for e and φ. Furthermore equations (116) and (119) are equivalent to
eXω = 0 and e3XΠ = 0, proving the statement.

Theorem 4.2. (F∂, $) is a symplectic manifold with symplectic form

$ =

∫
Σ

eδeδ[ω] +
1

3!
δ(e3[Π])δφ. (120)

Remark. The physical space of the theory will be the geometric phase space with
fixed representative modulo the constraints. The constraints are given by the
equations of motion (105)–(108) restricted on the boundary. Note that (107) will
not be fixed since it is an evolution equation containing transversal derivatives.
Furthermore (108) simplifies because W

(1,0)
N−1 is injective (see Lemma B.1). In 4

dimensions the constraints become

dωe = 0, (121)

eFω +
Λ

6
e3 +

1

2
e2Πdφ+

1

12
e3(Π,Π) = 0, (122)

dφ− (e,Π) = 0. (123)

4.2.1 Nondegenerate Case

The fixing of the representative leads to some problems. The constraints are not
invariant under a change of representative. For example take equation (121) and
two elements of the same equivalence class ω, ω′ ∈ [ω] with ω′ = ω+ v and ev = 0.
Then if dωe = 0 it follows that

dω′e = dωe+ [v, e] = [v, e] (124)

which is not necessarily equal to 0. Thus it is useful to rephrase the constraint into
another weaker constraint plus a condition which fixes the representative uniquely,
which is done in the following two theorems.

Theorem 4.3. Let ω ∈ A(Σ) and e ∈ Ω
(1,1)
∂ and g∂ be nondegenerate, then

dωe = 0 ⇐⇒

{
edωe = 0

endωe ∈ ImW
∂(1,1)
1

, (125)

where the first equation is called invariant constraint and the second one is
called structural constraint.

Proof. Follows trivially from Lemma 3.6 by substituting α = dωe.

Theorem 4.4. Let g∂ be nondegenerate, then ∀ω′ ∈ A(Σ) there is a unique de-
composition

ω′ = ω + v, (126)

such that ev = 0 and endωe ∈ ImW
∂(1,1)
1 .

28Recall that Ω
(0,0)
∂ = C∞(Σ).
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Theorem 4.5. Let g∂ be nondegenerate, then ∀Π′ ∈ Ω
(0,1)
∂ there is a unique de-

composition
Π′ = Π + γ, (127)

such that e3γ = 0 and dφ− (e,Π) = 0.

Proof. See [11].

Remark. We see that imposing the structural constraint is equivalent to choosing
a representative for [ω]. Similarly, choosing a representative for [Π] already fixes
the constraint (123). This means that the only remaining part of the equations
(121) and (123) is the invariant constraint. We will use Lagrange multipliers to fix
the constraints. This leads us to the following functions

Lc :=

∫
Σ

cedωe, (128)

Jµ̃ :=

∫
Σ

µ̃
(
eFω +

Λ

3!
e3 +

1

2
e2Πdφ+

1

12
e3(Π,Π)

)
, (129)

with c ∈ Ω
(0,2)
∂ [1]29 and µ̃ ∈ Ω

(0,1)
∂ [1] in order to make the integral well-defined.

It is convenient to split the element µ̃ into a normal component and a tangential
component. For the latter we simply use e and contract it with a vector field in
Σ. Therefore we have the decomposition µ̃ = ιξe + λen with ξ ∈ X(Σ)[1] and
λ ∈ C∞(Σ)[1]. This replaces Jµ̃ with two different constraints

Pξ :=

∫
Σ

1

2
ιξ(e

2)Fω +
1

3!
ιξ(e

3Π)dφ+ ιξ(ω − ω0)edωe, (130)

Hλ :=

∫
Σ

λen

(
eFω +

Λ

3!
e3 +

1

2
e2Πdφ+

1

12
e3(Π,Π)

)
. (131)

The cosmological constant only appears in the normal constraint since ιξe
4 = 0.

Furthermore we added a term proportional to edωe with the help of a reference
connection ω0. This is not necessary but it largely simplifies computations.

Theorem 4.6. Let g∂ be nondegenerate. Then the Poisson brackets of the con-
straints in the SPC theory read

{Lc, Lc} = −1

2
L[c,c], (132)

{Pξ, Pξ} =
1

2
P[ξ,ξ] −

1

2
LιξιξFω0 , (133)

{Hλ, Hλ} = 0, (134)

{Lc, Pξ} = LLω0ξ c, (135)

{Lc, Hλ} = −PX(a) + LX(a)(ω−ω0)a −HX(n) , (136)

{Pξ, Hλ} = PY (a) − LY (a)(ω−ω0)a +HY (a) , (137)

with X = [c, λen], Y = Lω0
ξ (λen) and where the superscripts (a) and (n) describe

their components with respect to the frame (ea, en).

Proof. See [11].
29Here the number 1 in the square brackets indicates that there is an additional odd (ghost)

degree of freedom. This is not necessary for the computations of the Poisson brackets but it sim-
plifies them slightly. It would be necessary, however, for the incorporation of the BFV formalism.
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4.2.2 Degenerate Case

The main difference to the nondegenerate case is that we cannot find a unique
representative of the equivalence class [ω] satisfying the structural constraint. This
means that we need to find another set of weaker equations which are able to fix
the representative. The idea is to subtract the problematic part leading to a new
structural constraint. However, by modifying the latter it does not define the same
zero locus as dωe = 0 anymore. Thus another constraint has to be added which
accounts for the missing part of the weakened structural constraint.

Theorem 4.7. Let ω ∈ A(Σ) and e ∈ Ω
(1,1)
∂ and g∂ degenerate, then

dωe = 0 ⇐⇒


edωe = 0

endωe− enpT dωe ∈ ImW
∂(1,1)
1

pT dωe = 0

, (138)

where the last equation is called degeneracy constraint.

Proof. Follows trivially from Lemma 3.9 by substituting α = dωe.

Theorem 4.8. Let g∂ be degenerate, then ∀ω′ ∈ A(Σ) there is a unique decompo-
sition

ω′ = ω + v, (139)

such that ev = 0, endωe− enpT dωe ∈ ImW
∂(1,1)
1 and pKv = 0.

Remark. Let us compare this to Theorem 4.4. The point is that in the nondegen-
erate case the map

ker
(
W

∂(1,2)
1

)
→ Ω

(2,2)
∂

v 7→ en[v, e]

is injective, meaning that the decomposition is unique. This is no longer the case
in the degenerate case. Thus we need to consider the components of dωe in T and
the components of ω in K separately.

Theorem 4.9. Let g∂ be degenerate with dim(ker(g∂)) = 1, en ∈ V|Σ (as defined

in equation (91)) and [Π] ∈ Ω
(0,1)
∂

∼ an equivalence class. Then there is a unique

π ∈ kerW
∂(0,1)
3 and πn with

Π = πnen + π, (140)

such that

1. dφ− (e,Π) = 0,

2. pWΠ = 0,

3. ξ(φ) = 0,

where W = e(kerg∂), ξ ∈ kerg∂ and kerg∂ = {ξ ∈ X(Σ) | ιξg∂ = 0} ⊂ X(Σ).
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Proof. We can write a general element Π ∈ Ω
(0,1)
∂ along any basis as Π = πnen+πava

with a = 1, 2, 3. It is clear that π = πava is in kerW
∂(0,1)
3 because e3 ∧ va = 0 for

every a due to antisymmetry of the wedge product. This directly implies that the
component πn in (140) is already uniquely defined by the equivalence class [Π].
It remains to show that the conditions define a unique π. Since dim(ker(g∂)) = 1
and e is injective we have that W ⊂ V|Σ is a 1-dimensional subspace. Now we
can choose a basis {v1, v2, v3} of V|Σ such that v3 ∈ W . Then if we write π =
π1v1 + π2v2 + π3v3 the condition pWΠ = 0 implies that π3 = 0. Next, consider
the condition ξ(φ) = 0, which implies that the scalar field φ is constant along the
vector fields which lie in the kernel of the metric. Then we can use the vielbein to
write components of the tangent space in terms of components of V which results
in

dφ =
∂φ

∂xi
dxi = e1

i∂1φdx
i + e2

i∂2φdx
i,

since e maps the component along ξ to the component along v3. Furthermore,
by definition of W , g is invertible on the complement of W in V|Σ. So it exists
(g−1)ab =: gab such that gabg

ab = 1 for a, b = 1, 2. Then

dφ− (e,Π) =
∂φ

∂xi
dxi − (eai dx

iva, π
bvb + πnen)

= eai ∂aφdx
i − eai πbgabdxi − eai πngandxi

= eai (∂aφ− πbgab − πngan)dxi = 0.

And since a, b 6= 3

∂aφ− πbgab − πngan = 0 =⇒ πb = gab(∂aφ− πngan).

So with π3 = 0 and πn already fixed, we have that Π is uniquely determined in
terms of its components.

Remark. From theorems 4.7 and 4.8 we see that the new structural constraint,
together with some additional equations, fixes the representative for [ω]. Simulta-
neously the constraints (121) splits into the invariant constraint and the degeneracy
constraint. On the other hand, constraint (123) together with conditions 2. and
3. from Theorem 4.9 fix the representative for [Π]. This leads to the following
Lagrange multipliers

Lc =

∫
Σ

cedωe,

Pξ =

∫
Σ

1

2
ιξ(e

2)Fω +
1

3!
ιξ(e

3Π)dφ+ ιξ(ω − ω0)edωe,

Hλ =

∫
Σ

λen

(
eFω +

Λ

3!
e3 +

1

2
e2πdφ+

1

2 · 3!
e3(Π,Π)

)
− pS(λen(ω − ω0))dωe,

Rτ =

∫
Σ

τdωe,

with c ∈ Ω
(0,2)
∂ [1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1] and τ ∈ S[1]. Notice that in Hλ

we added a term which is proportional to Rτ ′ , with τ ′ = pS(λen(ω − ω0)). This is
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of course optional but it simplifies calculations. There is one crucial difference in
the newly added constraint, which is that τ is not an element of the entire space
Ω

(1,3)
∂ but only of the subspace S and the latter depends on e. As a consequence

a variation of this Lagrange multiplier is not independent of a variation of e. The
following lemma describes this property.

Lemma 4.10. The variation of an element τ ∈ S is constrained by the following
equations

p′ρ̃δτ = ρ̃−1
(δρ̃
δe

(τ)δe
)
,

p′W δτ = W−1
1 (τδe),

where ρ̃−1 and W−1
1 are defined on their images and p′ρ̃ and p′W are respectively the

projections to a complement of the kernel of ρ̃ and W
∂,(1,3)
1 .

Proof. See [5].

Theorem 4.11. Let g∂ be degenerate with dim(kerg∂) = 1. Then the Poisson
brackets of the constraints in the SPC theory read

{Lc, Lc} = −1

2
L[c,c], (141)

{Rτ , Rτ} ≈ Fττ , (142)

{Pξ, Pξ} =
1

2
P[ξ,ξ] −

1

2
LιξιξFω0 , (143)

{Hλ, Hλ} ≈ Fτ ′τ ′ , (144)

{Lc, Rτ} = −RpS [c,τ ], (145)

{Lc, Pξ} = LLω0ξ c, (146)

{Lc, Hλ} = −PX(a) + LX(a)(ω−ω0)a −HX(n) +RpS(X(a)ea(ω−ω0)−λendω0c)
, (147)

{Rτ , Pξ} = RpSL
ω0
ξ τ , (148)

{Rτ , Hλ} ≈ Fττ ′ +Gλτ +KS
λτ (149)

{Pξ, Hλ} = PY (a) − LY (a)(ω−ω0)a +HY (a) −RpS(Y (a)ea(ω−ω0)−λenιξFω0 ), (150)

with τ ′ = pS(λen(ω − ω0)), X = [c, λen], Y = Lω0
ξ (λen) and where the superscripts

(a) and (n) describe their components with respect to the frame (ea, en). Further-
more, Fττ , Fττ ′, Fτ ′τ ′, Gλτ and KS

λτ are functions of e, ω,Π, φ, τ, τ ′ and λ defined
in the proof which are not proportional to any other constraint.

Remark. The symbol “≈” indicates the identity on the zero locus of the constraints.
In particular, this means that those brackets written with this symbol are not
a linear combination of the constraints themselves. On the other hand, all the
brackets written with a “=” vanish on the zero locus, for example {Lc, Lc} ≈ 0.

Proof. We notice that Lc and Rτ remain the same as in the free theory case. Thus
we write the other two as a sum of a free and an interacting part

Pξ = P 0
ξ + P I

ξ ,

Hλ = H0
λ +HI

λ,
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with

P 0
ξ =

∫
Σ

1

2
ιξ(e

2)Fω + ιξ(ω − ω0)edωe,

P I
ξ =

∫
Σ

ιξ(p)dφ,

H0
λ =

∫
Σ

λen

(
eFω +

Λ

3!
e3
)
− pS(λen(ω − ω0))dωe,

HI
λ =

∫
Σ

λen

(1

2
e2Πdφ+

1

2 · 3!
e3(Π,Π)

)
.

Here we have introduced the new field p := 1
3!
e3Π. Making use of previous results

we can easily calculate their variations and the Hamiltonian vector fields. For Lc
we get

δLc =

∫
Σ

−1

2
c[δω, e2] +

1

2
cdωδ(e

2) =

∫
Σ

[c, e]e δω + dωce δe,

and therefore the Hamiltonian vector field reads

Le = [c, e], Lω = dωc+ VL,

Lp = 0, Lφ = 0,

where VL ∈ ker(W
∂,(1,2)
1 ). Next, the variation of Rτ reads

δRτ =

∫
Σ

δeτdωe− τ [δω, e] + τdωδe

=

∫
Σ

(g(τ, ω, e) + dωτ)δe+ [τ, e]δω,

where we have introduced the formal expression g(τ, ω, e) which encodes the de-
pendence of τ on e, that is (see Lemma 4.10)

δeg(τ, ω, e) =

(
p′ρ̃ρ̃
−1
(δρ̃
δe

(τ)δe
)

+ p′WW
−1
1 (τδe)− p′X ρ̃−1

(δρ̃
δe

(τ)δe
))

dωe. (151)

and the vector fields

eRe = [τ, e], eRω = g(τ, ω, e) + dωτ,

Rp = 0, Rφ = 0.

For Pξ we get

δP 0
ξ =

∫
Σ

ιξ(eδe)Fω +
1

2
ιξ(e

2)δFω + ιξ(δω)edωe− ιξ(ω − ω0)δ(edωe)

=

∫
Σ

−eδeιξFω +
1

2
dωιξ(e

2)δω − 1

2
δωιξdω(e2) +

1

2
δω[ιξ(ω − ω0), e2]

+
1

2
dωιξ(ω − ω0)δ(e2)

=

∫
Σ

−eδeιξFω − (Lωξ e)eδω + eδω[ιξ(ω − ω0), e] + dωιξ(ω − ω0)eδe

=

∫
Σ

−e δe(Lω0
ξ (ω − ω0) + ιξFω0)− (Lω0

ξ e)e δω,
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and

δP I
ξ =

∫
Σ

ιξ(δp)dφ+ ιξpd(δφ)

=

∫
Σ

δpιξ(dφ) + d(ιξp)δφ

=

∫
Σ

−ξ(φ) δp− Lω0
ξ p δφ,

and the vector field

P0
e = −Lω0

ξ e, P0
ω = −Lω0

ξ (ω − ω0)− ιξFω0 ,

P0
p = 0, P0

φ = 0,

PIe = 0, PIω = 0,

PIp = −Lω0
ξ p, PIφ = −ξ(φ).

Finally, for the variation of Hλ we find

δH0
λ =

∫
Σ

λen

(
δeFω + eδFω +

Λ

2
e2δe

)
− pS(λenδω)dωe− δ(pS(λen(ω − ω0))dωe

− pS(λen(ω − ω0))δ(dωe)

=

∫
Σ

(
λenFω + λen

Λ

2
e2
)
δe− λenedωδω − pS(λenδω)dωe

− δeτ ′dωe+ τ ′[δω, e]− τ ′dωδe

=

∫
Σ

(
λenFω + λen

Λ

2
e2
)
δe+ dω(λen)eδω + λendωeδω − λenδωpT (dωe)

− g(τ ′, ω, e)δe− [τ ′, e]δω − dωτ ′δe

=

∫
Σ

(
λenFω + λen

Λ

2
e2 − g(τ ′, ω, e)− dωτ ′

)
δe

+
(
edω(λen) + λeσ − [τ ′, e]

)
δω,

where we have used τ ′ = pS(λen(ω − ω0)) and endωe − enpT dωe = eσ with σ ∈
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ImW
∂(1,1)
1 due to Theorem 4.7. Furthermore, for the interacting part we find

δHI
λ =

∫
Σ

λen

(e2

4
(Π,Π)δe+ eΠdφδe+

e3

3!
(Π, δΠ) +

e2

2
dφδΠ +

e2

2
Πdδφ

)
=

∫
Σ

λen

(e2

4
(Π,Π) + eΠdφ

)
δe+

1

2
dω(λene

2Π)δφ

+
1

2
λene

2(dφ− (e,Π))δΠ− λe
3

3!
(en,Π)δΠ− λ

2
e2(en,Π)Πδe

=

∫
Σ

(
λen

e2

4
(Π,Π) + λeneΠdφ−

λ

2
e2(en,Π)Π

)
δe

− λ(en,Π)δp+
1

2
dω(λene

2Π)δφ,

and consequently the vector fields read

eH0
e = edω(λen) + λeσ − [τ ′, e], eH0

ω = λenFω + λen
Λ

2
e2 − g(τ ′, ω, e)− dωτ ′,

H0
p = 0, H0

φ = 0,

HI
e = 0, HI

ω = λenΠdφ+
e

4
λen(Π,Π)− λ

2
eΠ(Π, en),

HI
p =

1

2
dω(λene

2Π), HI
φ = −λ(en,Π).

Now we are ready to calculate the Poisson structure of the constraints. Since the
constraints Lc and Pξ are identical to the nondegenerate case we can simply take
their brackets from [11]

{Lc, Lc} =

∫
Σ

[c, e]edωc =

∫
Σ

1

2
[c, e2]dωc

=

∫
Σ

1

4
dω[c, c]e2 =

∫
Σ

−1

2
[c, c]edωe = −1

2
L[c,c],

{Lc, Pξ} =

∫
Σ

−[c, e]e(Lω0
ξ (ω − ω0) + ιξFω0)− dωceLω0

ξ e

=

∫
Σ

1

2

(
Lξω0c[ω − ω0, e

2] + c[ω − ω0,Lξω0(e2)]

− c[e2, ιξFω0 ]− dωLω0
ξ (e2)c

)
=

∫
Σ

1

2
Lω0
ξ c[ω, e

2]− 1

2
dcιξd(e2) +

1

2
[ιξω0, d(e2)]c

=

∫
Σ

1

2
Lω0
ξ cdω(e2) =

∫
Σ

Lω0
ξ cedωe = LLω0ξ c,

{Pξ, Pξ} = {P 0
ξ , P

0
ξ }+ 2{P 0

ξ , P
I
ξ }+ {P I

ξ , P
I
ξ }

=
1

2
P[ξ,ξ] −

1

2
LιξιξFω0 ,
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where we have used

{P 0
ξ , P

0
ξ } =

∫
Σ

Lω0
ξ (ω − ω0)Lω0

ξ (e)e+ ιξFω0Lω0
ξ (e)e

=

∫
Σ

1

2
Lω0
ξ (ω − ω0)Lω0

ξ (e2) +
1

2
ιξFω0Lω0

ξ (e2)

=

∫
Σ

1

4
Lω0

[ξ,ξ](e
2)(ω − ω0) +

1

4
[ιξιξFω0 , e

2](ω − ω0) +
1

2
Lω0
ξ (e2)ιξFω0

=

∫
Σ

1

4
ι[ξ,ξ]dω0(e

2)(ω − ω0) +
1

4
dω0ι[ξ,ξ](e

2)(ω − ω0) +
1

4
[ιξιξFω0 , e

2](ω − ω0)

+
1

2
Lω0
ξ (e2)ιξFω0

=

∫
Σ

1

4
ι[ξ,ξ]dω(e2)(ω − ω0)− 1

4
ι[ξ,ξ][ω − ω0, e

2](ω − ω0) +
1

4
ι[ξ,ξ](e

2)dω0(ω − ω0)

+
1

4
[ιξιξFω0 , e

2](ω − ω0) +
1

2
Lω0
ξ (e2)ιξFω0

=

∫
Σ

1

4
dω(e2)ι[ξ,ξ](ω − ω0)− 1

4
[ω − ω0, e

2]ι[ξ,ξ](ω − ω0)− 1

4
ι[ξ,ξ](e

2)Fω0

+
1

4
ι[ξ,ξ](e

2)Fω −
1

8
ι[ξ,ξ](e

2)[ω0 − ω, ω0 − ω] +
1

4
[ιξιξFω0 , e

2](ω − ω0)

+
1

2
Lω0
ξ (e2)ιξFω0

=

∫
Σ

1

2
ι[ξ,ξ](ω − ω0)edωe+

1

4
ι[ξ,ξ](e

2)Fω −
1

4
dω(e2)ιξιξFω0

=
1

2
P 0

[ξ,ξ] −
1

2
LιξιξFω0 ,

{P 0
ξ , P

I
ξ } = 0

and

{P I
ξ , P

I
ξ } =

∫
Σ

ξ(φ)Lω0
ξ p =

∫
Σ

dω0(ιξp)ιξ(dφ)

=

∫
Σ

ιξ(dω0ιξp)dφ =

∫
Σ

1

2
ι[ξ,ξ](p)dφ

=
1

2
P I

[ξ,ξ].

Similarly Lc and Rτ are identical to the case of pure gravity with a degenerate
metric. The results of [5] give us directly the following two brackets

{Rτ , Rτ} ≈ Fττ , (152)

{Lc, Rτ} =

∫
Σ

[c, e]g(τ, ω, e) + [c, e]dωτ + dωc[τ, e]

=

∫
Σ

[c, e]g(τ, ω, e)− [c, τ ]dωe =

∫
Σ

p′S [c, τ ]dωe− [c, τ ]dωe

=

∫
Σ

−pS [c, τ ]dωe = −RpS [c,τ ].
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The bracket {Pξ, Rτ} divides into the following

{Pξ, Rτ} = {P 0
ξ , Rτ}+ {P I

ξ , Rτ} = RpSL
ω0
ξ τ ,

where we have used

{P 0
ξ , Rτ} =

∫
Σ

−[τ, e]Lω0
ξ (ω − ω0)− [τ, e]ιξFω0 − Lω0

ξ eg(τ, ω, e)− Lω0
ξ edωτ

=

∫
Σ

−Lω0
ξ eg(τ, ω, e) + Lω0

ξ τdωe =

∫
Σ

−p′SL
ω0
ξ τdωe+ Lω0

ξ τdωe

=

∫
Σ

pSLω0
ξ τdωe = RpSL

ω0
ξ τ

and
{P I

ξ , Rτ} = 0. (153)

Let us now look at all the brackets containing Hλ. Starting with {Lc, Hλ} which
divides into two parts, where the first is given by

{Lc, H0
λ} =

∫
Σ

[c, e]λenFω +
Λ

2
[c, e]λene

2 − [c, e]g(τ ′, ω, e)− [c, e]dωτ
′

+ edωcdω(λen) + edωcλσ − dωc[τ ′, e]

=

∫
Σ

−[c, λen]eFω −
Λ

3!
[c, λen]e3 + pS([c, τ ′]− λendωc)dωe

=

∫
Σ

−
(

[c, λen](a)eaeFω − [c, λen](n)eneFω

)
− Λ

3!
[c, λen](n)ene

3

pS(λendω0c)dωe+ pS([c, λen](a)ea(ω − ω0) + [c, λen](n)en(ω − ω0))dωe

= −P 0
X(a) + LX(a)(ω−ω0)a −H

0
X(n) +RpS(X(a)ea(ω−ω0)−λendω0c)

.

(154)

Note that we have separated the element X = [c, λen] ∈ Ω
(0,1)
∂ into a tangential

component [c, λen](a) and a normal component [c, λen](n), where the first is a vector
field in X(Σ) since it contracts with the vielbein and the second is a smooth function
in C∞(Σ) since it contracts with the fourth basis vector in V . Similarly, we get for
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the second bracket

{Lc, HI
λ} =

∫
Σ

λen
4
e2(Π,Π)[c, e] + λeneΠdφ[c, e]− λ

2
e2Π(Π, en)[c, e]

=

∫
Σ

λen

( 1

2 · 3!
[c, e3](Π,Π) +

1

2
[c, e2]Πdφ

)
− λ

3!
[c, e3]Π(Π, en)

=

∫
Σ

−[c, λen]
( 1

2·3!
e3(Π,Π) +

1

2
e2Πdφ

)
− λen

2
e2[c,Π]dφ− λ

3!
e3[c,Π](Π, en)

=

∫
Σ

−[c, λen](a)ea

( 1

2·3!
e3(Π,Π) +

1

2
e2Πdφ

)
− [c, λen](n)en

( 1

2·3!
e3(Π,Π) +

1

2
e2Πdφ

)
= −P I

X(a) −HI
X(n) .

(155)

In the last computation we have used that

−λen
2
e2[c,Π]dφ− λ

3!
e3[c,Π](Π, en) =

λen
3!
e3
(

[c,Π](a)(Π, ea) + [c,Π](n)(Π, en)
)

=
λen
3!
e3([c,Π],Π) =

λen
2 · 3!

e3[c, (Π,Π)] = 0.

This means that the complete bracket reads

{Lc, Hλ} = {Lc, H0
λ}+ {Lc, HI

λ}
= −PX(a) + LX(a)(ω−ω0)a −HX(n) +RpS(Y (a)ea(ω−ω0)−λendω0c)

.
(156)

Next, for {Pξ, Hλ} we first calculate

{P 0
ξ , H

0
λ} =

∫
Σ

−Lω0
ξ e
(
λenFω +

Λ

2
λene

2 − g(τ ′, ω, e)− dωτ ′
)

− (Lω0
ξ (ω − ω0) + ιξFω0)

(
edω(λen) + λeσ − [τ ′, e]

)
=

∫
Σ

Lω0
ξ (λen)eFω +

Λ

3!
e3Lω0

ξ (λen)

+ pS

(
− Lω0

ξ τ
′ + λen(Lω0

ξ (ω − ω0) + ιξFω0)
)
dωe

=

∫
Σ

Lω0
ξ (λen)(a)eaeFω + Lω0

ξ (λen)(n)eneFω +
Λ

3!
e3Lω0

ξ (λen)(n)en

+ pS(λenιξFω0)dωe− pS(Lω0
ξ (λen)(a)ea(ω − ω0))dωe

− pS(Lω0
ξ (λen)(n)en(ω − ω0)))dωe

= P 0
Y (a) − LY (a)(ω−ω0)a +H0

Y (n) −RpS(Y (a)ea(ω−ω0)−λenιξFω0 ),
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with Y = Lω0
ξ (λen). The remaining part can be calculated together as

{P 0
ξ , H

I
λ}+ {P I

ξ , H
0
λ}+ {P I

ξ , H
I
λ}

=

∫
Σ

−Lω0
ξ e
(
λen

e2

4
(Π,Π) + λeneΠdφ−

λ

2
e2(en,Π)Π

)
+ Lω0

ξ pλ(en,Π)− ξ(φ)
1

2
dω(λene

2Π)

=

∫
Σ

− λen
2 · 3!

(Π,Π)Lω0
ξ (e3)− λen

2
ΠdφLω0

ξ (e2) +
λ

3!
Π(Π, en)Lω0

ξ (e3)

+ λLω0
ξ (p)(Π, en)− 1

2
dω(λene

2Π)ιξdφ

=

∫
Σ

Lω0
ξ

( λen
2 · 3!

)
(Π,Π)e3 +

λen
2 · 3!

Lω0
ξ (Π,Π)e3 − λen

2
ΠdφLω0

ξ (e2)

+
λ

3!
Π(Π, en)Lω0

ξ (e3) +
λ

3!
Lω0
ξ (Πnen)e3(Π, en)− λen

3!
Lω0
ξ (e3)Πn

Lω0
ξ

(λen
2

)
e2Πdφ+

λen
2
Lω0
ξ (e2)Πdφ+

λen
2
e2Lω0

ξ (Π)dφ

=

∫
Σ

Lω0
ξ (λen)

(e2

4
(Π,Π) + eΠdφ

)
+ λen

(e3

3!
(Π,Lω0

ξ (Π)) +
e3

2
(e,Π)Lω0

ξ (Π)
)

+
λ

3!
e3(Π, en)Lω0

ξ (Π)

=

∫
Σ

Lω0
ξ (λen)

(e2

4
(Π,Π) + eΠdφ

)
− λen

2
e3(e,Π)Lω0

ξ (Π)− λ

3!
e3(Π, en)Lω0

ξ (Π)

+
λen
2
e3(e,Π)Lω0

ξ (Π) +
λ

3!
e3(Π, en)Lω0

ξ (Π)

=

∫
Σ

Lω0
ξ (λen)

(e2

4
(Π,Π) + eΠdφ

)
= P I

Y (a) +HI
Y (n) ,

where we used that (e,Π) = dφ. Once more the complete bracket is given by

{Pξ, Hλ} = {P 0
ξ , H

0
λ}+ {P 0

ξ , H
I
λ}+ {P I

ξ , H
0
λ}+ {P I

ξ , H
I
λ}

= PY (a) − LY (a)(ω−ω0)a +HY (n) −RpS(Y (a)ea(ω−ω0)−λenιξFω0 ).

Also {Hλ, Hλ} splits into three parts, which are given by

{H0
λ, H

0
λ} ≈ Fτ ′τ ′ ,

{HI
λ, H

I
λ} =

∫
Σ

−λ
2

(en,Π)dω(λene
2Π)

=

∫
Σ

−λ
2

(en,Π)dλene
2Π− λ

2
(en,Π)λdω(ene

2Π)

=

∫
Σ

−λ
2

(en,Π)dλene
2Π,
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{H0
λ, H

I
λ} =

∫
Σ

(
λen

e

4
(Π,Π) + λenΠdφ− λ

2
e(en,Π)Π

)
(edω(λen) + λeσ − [τ ′, e])

=

∫
Σ

λdλe2
n

e2

4
(Π,Π) + λdλe2

neΠdφ+
λ

2
(en,Π)dλene

2Π

− λ2
(
en
e

4
(Π,Π) + enΠdφ− 1

2
e(en,Π)Π

)
eσ

− λ2

4
pS(en(ω − ω0))[ene, e](Π,Π)− λ2pS(en(ω − ω0))[enΠ, e]dφ

+
λ2

2
pS(en(ω − ω0))[eΠ, e](en,Π)

=

∫
Σ

λ

2
(en,Π)dλene

2Π,

where we have used that λ2 = 0 and e2
n = 0. Consequently, the complete bracket

reads
{Hλ, Hλ} = {H0

λ, H
0
λ}+ 2{H0

λ, H
I
λ}+ {HI

λ, H
I
λ} ≈ Fτ ′τ ′ . (157)

The last remaining bracket to be calculated is {Hλ, Rτ}, which splits into two parts
given by

{H0
λ, Rτ} ≈ Fττ ′ +Gλτ

and

{HI
λ, Rτ} =

∫
Σ

−λenΠdφ[τ, e]− e

4
λen(Π,Π)[τ, e] +

λ

2
eΠ(Π, en)[τ, e].

The last two terms are zero because e[τ, e] = 0 (see Lemma B.5). The first term
instead does not vanish in general:∫

Σ

−λenΠdφ[τ, e] =

∫
Σ

−λΠdφτ [en, e] =

∫
Σ

−λΠdφτ(en, e) =

∫
Σ

−λΠdφτenkdx
k

=

∫
Σ

(
− λΠaτ bcdi (dφ)je

n
k

)
vavbvcvddx

idxjdxk

=: KS
λτ ,

where we have used en[τ, e] = τ [en, e] (again Lemma B.5) and [en, e] = (en, e) =
enkdx

k for k = 1, 2, 3. The complete bracket reads

{Hλ, Rτ} ≈ Fττ ′ +Gλτ +KS
λτ .

4.3 Conclusion SPC Theory

We have analysed the boundary structure of the SPC theory in N = 4 for the case
of a degenerate boundary metric by calculating its Poisson algebra in Theorem
4.11. We have also stated the results following from a nondegenerate boundary
metric in Theorem 4.6. We will now state the consequences of the constrained
algebra for the reduced phase space. In particular, following Definition A.1 we can
detect the number of first- and second-class constraints.
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Corollary 4.12. Let g∂ be non-degnerate. Then the constraints {Lc, Pξ, Hλ} in
the SPC theory define a first-class system and the submanifold C ⊂ F∂ given by
the zero locus of the constraints is coisotropic.

Proof. From Theorem 4.6 we see that the Poisson brackets of the constraints are
all given by a linear combination of the constraints themselves, hence vanishing on
the zero locus. It therefore defines a system of first-class and by Proposition A.3
C is coisotropic.

Remark. In the nondegenerate case the constraints on the geometric phase space
are all of first-class. Hence, they define a coisotropic submanifold C of F∂ and the
reduced phase space can be found by means of a coisotropic reduction C = C/ ∼
(see Theorem A.4). Furthermore, all constraints are associated to gauge trans-
formations, meaning that their Hamiltonian flows leave the subspace invariant.
In particular, Lc generates the internal gauge symmetry (recall that c ∈ Ω

(0,2)
∂

and ∧2V ' so(3, 1)), Pξ is associated to the local diffeomorphisms tangential to
the boundary and Hλ is the generator of the local diffeomorphisms normal to the
boundary.

Corollary 4.13. Let g∂ be degnerate with dim(ker(g∂)) = 1. Then, in the SPC
theory, we have first- and second-class constraints. In particular, Lc, Pξ, Hλ by
themselves are first-class constraints.

Proof. From Theorem 4.11 we see that not all the Poisson brackets vanish on the
zero locus of the constraints, meaning that they do not define a first-class system.
In particular, the brackets {Rτ , Rτ}, {Rτ , Hλ} and {Hλ, Hλ}, which we denote
with the matrices D,B and C, respectively, are different from zero. We extend
the proof done in [5] for the pure gravity degenerate case. We want to proof that
BTD−1B = −C. Note, that the matrices D and C are identical to the pure gravity
case and the only additional term in B is KS

λτ which can be found in the proof of
Theorem 4.11. In particular, KS

λτ is proportional to the odd quantity λ and does
not contain derivatives. Then by Lemma A.2 the contribution to BTD−1B coming
from KS

λτ vanishes and hence leaving the same terms as in the case of pure gravity.
Therefore by Proposition A.1 the number of second-class constraints is the rank
of the matrix D which is 1 and the second-class constraint is Rτ . Furthermore,
by Definition A.1 there are 3 constraints of first-class, which must be Lc, Pξ and
Hλ.

In the degenerate case, due to the different outcome of Theorem 4.7, another
constraint Rτ appears, which turns out to be of second-class. The constrained
system does therefore not define a coisotropic submanifold of F∂. The differences
between the nondegenerate and degenerate cases in the SPC theory have been
outlined in figure 2.
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Scalar Palatini–Cartan

Geometric Phase Space
F∂ = Ω

(1,1)
∂ × A(Σ)

∼
× C∞(Σ)× Ω

(0,1)
∂

∼
$ =

∫
Σ

eδeδ[ω] +
1

3!
δ(e3[Π])δφ

Equations of motion

(1) dωe = 0

(2) eFω +
Λ

6
e3 +

1

2
e2Πdφ+

1

12
e3(Π,Π) = 0

(3) dφ− (e,Π) = 0

Nondegenerate case

(1) Fixes [ω] + Lc

(2) Pξ, Hλ

(3) Fixes [Π]

Lc, Pξ, Hλ are of first-class
and {Lc, Pξ, Hλ} defines a
coisotropic submanifold

Degenerate case

(1) + pKv = 0 Fix [ω] + Lc, Rτ

(2) Pξ, Hλ

(3) + pWΠ = 0 + ξ(φ) = 0 Fix [Π]

Lc, Pξ, Hλ are of first-class, Rτ is of second-
class and {Lc, Rτ , Pξ, Hλ} does not define
a coisotropic submanifold

Figure 2: Summary of the boundary structure of the SPC theory in N = 4 dimen-
sions and the differences between the nondegenerate and degenerate case.



5 Yang–Mills Coupling

We start this chapter by reminding how the usual Yang–Mills theory is stated
in the gauge field framework which we have established in chapter 1. A Yang–
Mills theory refers to any gauge theory based on a Lie group whose Lie algebra
is compact and reductive.30 So let G be such a Lie group, g its Lie algebra, M
the usual N -dimensional pseudo-Riemannian manifold, (P, π,M) a principal G-
bundle and ω ∈ Ω1(P, g) a principal connection on it. If we consider a section
σ : U → P we can recover the local version of the connection, that is the gauge
field A = σ∗(ω). In coordinates it reads

A(x) = AIµ(x)TIdx
µ, (158)

where {TI} is a basis of the Lie algebra g. The field strength is then FA = dA +
1
2
[A ∧ A] which leads to31

FA(x) =
1

2
(∂µA

I
ν − ∂νAIµ + f IJKA

J
µA

K
ν )TIdx

µ ∧ dxν (159)

=
1

2
F I
µν(x)TIdx

µ ∧ dxν , (160)

where f IJK are the structure constants of g defined by [TJ , TK ] = f IJKTI . On every
Lie algebra (over some field K) there is a unique invariant symmetric bilinear form
K : g × g → K, called Killing form, given by the trace in some representation
K(a, b) = Tr(ρ(a)ρ(b)). In the case of a compact reductive Lie algebra the Killing
form of the basis elements defines a metric32

kIJ := Tr(TITJ). (161)

The final goal is to construct a gauge invariant Lagrangian, that is some volume
form which does not change under gauge transformations. We can make use of the
fact that the field strength transforms under the adjoint action. In order to receive
a volume form out of it we can simply take the wedge product of the field strength
with its Hodge star dual ?FA

33, which also transforms under the adjoint action.
Gauge invariance is achieved by taking the trace of the resulting object

Tr(FA ? FA) = VolgF
I
µνF

J
ρσg

µρgνσkIJ , (162)

where Volg =
√
|det(g)|dx1 . . . dxN .

5.1 Yang–Mills Palatini–Cartan Action

Again, we start by giving a general description of the theory for an N -dimensional
pseudo-Riemannian manifold M .

30For the considerations of this chapter it is actually enough to assume that the Lie algebra
possesses an invariant nondegenerate symmetric bilinear form.

31[A ∧A] = [AIµTIdx
µ ∧AJνTJdxν ] = AIµA

J
ν [TI , TJ ]dxµ ∧ dxν .

32Where we used the fundamental representation ρ : g→ End(g), ρ(a) = a.
33On every pseudo-Riemannian manifold M with metric g the Hodge star operator is defined

as ? : Ωk(M) → ΩN−k(M) such that for α = 1
k!αµ1...µk

dxµ1 . . . dxµk the Hodge star dual of α is

?α = 1
k!(N−k)!

√
|det(g)|αν1...νkgν1µ1 . . . gνkµkεµ1...µkµk+1...µN

dxµk+1 . . . dxµN .

51
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Definition 5.1 (Pairing). Let {vi}Nµ=1 be an orthonormal basis of V and let A =
Aµνvµ ∧ vν ∈ ∧2V and B = Bρσvρ ∧ vσ ∈ ∧2V . The pairing of A and B is then
defined as

(A,B) := AµνBρσηµρηνσ. (163)

Definition 5.2 (Yang–Mills Palatini–Cartan). LetM be an N-dimensional pseudo-
Riemannian manifold with boundary Σ := ∂M . The Yang-Mills Palatini–
Cartan theory (YMPC) is the assignment of the pair (FYMPC , SYMPC)M to M ,
with the space of fields

FYMPC = Ω
(1,1)
nd (M)×A(M)× Ω(0,2)(M)⊗ g× Ω(1,0)(M)⊗ g (164)

and the action
SYMPC = SPC + SYM , (165)

with

SPC =

∫
M

1

(N − 2)!
eN−2 ∧ Fω +

Λ

N !
eN , (166)

SYM :=

∫
M

1

(N − 2)!
eN−2Tr(BFA) +

1

2N !
eNTr(B,B) (167)

where (e, ω,B,A) ∈ FYMPC .

The variation of the action SYMPC leads to the equations of motion

dωe = 0, (168)

eN−3

(N − 3)!
(Fω + Tr(BFA)) +

eN−1

(N − 1)!
(Λ +

1

2
Tr(B,B)) = 0, (169)

eN−2
(
FA +

1

2
(e2, B)

)
= 0, (170)

dA(eN−2B) = 0 (171)

and the boundary term

α̃YM =

∫
∂M

eN−2

(N − 2)!
δω +

eN−2

(N − 2)!
Tr(BδA). (172)

Remark. By Lemma B.1 we know that the map W
(2,0)
N−2 : Ω(2,0) → Ω(N,N−2) is injec-

tive. Thus equation (170) can be simplified to

FA +
1

2
(e2, B) = 0.

In coordinates the B-field reads

B = Bµνvµvν = (−1)NgµρgνσFρσvµvν

which leads to the usual Yang–Mills action

SYM = −
∫
M

1

2
VolgTr(FµνF

µν).
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5.2 Yang–Mills Boundary Structure in N = 4

The procedure is identical as in the scalar coupling. First we restrict the fields
to the boundary, then we quotient out the kernel of the presymplectic form and
finally we impose the constraints using a suitable choice of representative.

Definition 5.3 (Preboundary Fields). The space of preboundary fields of the
YMPC theory and its presymplectic form are defined to be34

F̃∂ = Ω
(1,1)
∂ ×A(Σ)× Ω

(0,2)
∂,g × Ω

(1,0)
∂,g , (173)

$̃ := δα̃ =

∫
Σ

eδeδω + Tr(eBδeδA) +
1

2
Tr(e2δBδA). (174)

Proposition 5.1. The geometric phase space for the YMPC theory reads

F∂ = Ω
(1,1)
∂ × A(Σ)

∼
×

Ω
(0,2)
∂,g

∼
× Ω

(1,0)
∂,g (175)

where the equivalence classes [ω] and [B] satisfy

ω ∼ ω′ ⇐⇒ ω′ = ω + v, with ev = 0, (176)

B ∼ B′ ⇐⇒ B′ = B + C, with e2C = 0. (177)

Proof. As in the scalar case, we consider now a generic vector field X = Xe
δ
δe

+
Xω

δ
δω

+ XB
δ
δB

+ XA
δ
δA

. This is a vector field with respect to the variation δ (see
Definition 2.10), meaning that the components are along the field values Xe ∈
Ω

(1,1)
∂ ,Xω ∈ A(Σ),XB ∈ Ω

(0,2)
∂,g ,XA ∈ Ω

(1,0)
∂,g . Contracting it with equation (174)

gives

ιX$̃ = Tr

∫
Σ

eXeδω + eBXeδA+ eXωδe

+
1

2
e2XBδA+ eBXAδe+

1

2
e2XAδB

= Tr

∫
Σ

(
eXω + eBXA

)
δe+ eXeδω

+
1

2
e2XAδB +

(
eBXe +

1

2
e2XB

)
δA.

Therefore we find that the kernel is defined by the set of equations

eXω + eΠXA = 0, (178)

eXe = 0, (179)

1

2
e2XA = 0, (180)

eBXe +
1

2
e2XB = 0. (181)

34We defined the g-valued boundary fields Ω
(i,j)
∂,g := Ω

(i,j)
∂ ⊗ g. The fact that they are g-valued

will not play a crucial role for computations.
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As in the scalar case, using that W
∂(1,1)
1 and W

∂(1,0)
2 are both injective (see Lemma

B.3) equations (179) and (180) are equivalent to Xe = 0 and XA = 0, which leads
to trivial equivalence relations for e and φ. Furthermore equations (116) and (119)
are equivalent to eXω = 0 and e2XΠ = 0, proving the statement.

Theorem 5.2. (F∂, $) is a symplectic manifold with symplectic form

$ =

∫
Σ

eδeδ[ω] +
1

2
Tr(δ(e2[B])δA). (182)

Remark. The next step is to simultaneously fix the representatives and impose the
constraints, which are given by the equations of motion for N = 4:

dωe = 0, (183)

eFω +
Λ

6
e3 + Tr

(
eBFA +

1

2 · 3!
e3(B,B)

)
= 0, (184)

dA(e2B) = 0, (185)

FA +
1

2
(e2, B) = 0. (186)

Notice how the equivalence relation of [ω] and the equation of motion (183) remain
the same as in the scalar case (and pure gravity). This implies that for both the
nondegenerate and degenerate case the same discussion as in the previous chapter
apply.

5.2.1 Nondegenerate Case

Theorem 5.3. Let g∂ be nondegenerate, then ∀B′ ∈ Ω
(0,2)
∂,g there is a unique de-

composition
B′ = B + C, (187)

such that e2C = 0 and FA + 1
2
(e2, B) = 0.

Proof. See [3].

Remark. The previous theorem shows that imposing the constraint coming from
equation (186) is equivalent to choosing a representative for [B] ∈ Ω

(0,2)
∂,g / ∼.

In order to fix the representative of the equivalence classes [ω] ∈ A(Σ)/ ∼ we use
again Theorems 4.3 and 4.4 as in the case of the scalar coupling. Hence, equation
(183) again splits into the invariant and structural constraint, where the first be-
comes a Lagrange multiplier and the second chooses a representative. Equation
(184) takes a similar role as (129) in the scalar case. However, in the case of Yang–
Mills coupling we get an additional constraint coming from equation (185). Using
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Darboux coordinates ρ = 1
2
e2B the Lagrange multipliers read

Lc :=

∫
Σ

cedωe, (188)

Mµ :=

∫
Σ

1

2
Tr(µdAρ), (189)

Pξ :=

∫
Σ

1

2
ιξ(e

2)Fω +
1

2
Tr(ιξρFA) + ιξ(ω − ω0)edωe+ Tr

(
ιξ(A− A0)dAρ

)
, (190)

Hλ :=

∫
Σ

λen

(
eFω +

Λ

3!
e3 + eTr(BFA) +

1

2 · 3!
e3Tr(B,B)

)
, (191)

with c ∈ Ω
(0,2)
∂ [1], µ ∈ C∞(Σ, g)[1], ξ ∈ X(Σ)[1] and λ ∈ C∞(Σ)[1]. These con-

straints define smooth functions on the symplectic manifold F∂ and with the sym-
plectic form

$ =

∫
Σ

eδeδω + Tr(δρδA) (192)

we can calculate the Poisson structure of these constraints, which is stated in the
following theorem.

Theorem 5.4. Let g∂ be nondegenerate. Then the Poisson brackets of the con-
straints in the YMPC theory read

{Lc, Lc} = −1

2
L[c,c], (193)

{Mµ,Mµ} = −1

2
M[µ,µ], (194)

{Pξ, Pξ} =
1

2
P[ξ,ξ] −

1

2
LιξιξFω0 −

1

2
MιξιξFA0

, (195)

{Hλ, Hλ} = 0, (196)

{Lc,Mµ} = 0, (197)

{Lc, Pξ} = LLω0ξ c, (198)

{Lc, Hλ} = −PX(a) + LX(a)(ω−ω0)a −HX(n) , (199)

{Mµ, Pξ} = MLA0
ξ µ

, (200)

{Mµ, Hλ} = 0, (201)

{Pξ, Hλ} = PY (a) − LY (a)(ω−ω0)a +HY (a) , (202)

with X = [c, λen], Y = Lω0
ξ (λen) and where the superscripts (a) and (n) describe

their components with respect to the frame (ea, en).

Proof. See [3].

5.2.2 Degenerate Case

Theorem 5.5. Let g∂ be degenerate with dim(ker(g∂)) = 1, en ∈ V|Σ (as defined

in equation (91)) and [B] ∈ Ω
(0,2)
∂,g

∼ an equivalence class. Then there exist unique

b ∈ ker(W
∂,(0,2)
2 ) and ban with

B = 2banvaen + b, (203)
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such that

1. FA + 1
2
(e2, B) = 0,

2. ιξFA = 0,

3. pW ′B = 0,

where ξ ∈ ker(g∂) and W ′ is the space spanned by elements which can be written as

a wedge product A = B ∧ C such that B ∈ Ω
(0,1)
∂ and C ∈ W = e(kerg∂) ⊂ Ω

(0,1)
∂ .

Proof. We can write a general element B ∈ Ω
(0,2)
∂,g along any basis as B = 2banvaen+

babvavb with a, b = 1, 2, 3. It is clear that b = babvavb ∈ ker(W
∂,(0,2)
2 ) because

e2∧va∧vb = 0 for all a, b due to antisymmetry of the wedge product. This directly
implies that the components ban in (203) are already uniquely determined by the
equivalence class [B].
It remains to show that the conditions define a unique b. Since dim(ker(g∂)) = 1
and e is injective we have that W ⊂ V|Σ is a 1-dimensional subspace. Now we can
choose a basis {v1, v2, v3} of V|Σ such that v3 ∈ W . Then a basis of W ′ is given
by {v1v3, v2v3} and with b = b12v1v2 + b13v1v3 + b23v2v3 the condition pW ′B = 0
implies that b13 = b23 = 0.
We can use the vielbein to rewrite the components of the curvature in terms of
components of elements in ∧2V

FA = Fijdx
idxj = Fabe

a
i e
b
jdx

idxj. (204)

Next, consider the condition ιξFA = 0, which implies that the Yang–Mills curvature
FA contracted with any vector field which lies in the kernel of the metric vanishes.
This means that

FA = F12e
1
i e

2
jdx

idxj, (205)

since e maps the components along ξ to the component along v3. Furthermore,
by definition of W , g is invertible on the complement of W in V|Σ. So it exists
(g−1)ab =: gab such that gabg

ab = 1 for a, b = 1, 2. Then

FA +
1

2
(e2, B) = Fijdx

idxj +
1

2
(eai e

b
jdx

idxjvavb, b
cdvcvd + 2bcnvcen) (206)

= Fabe
a
i e
b
jdx

idxj + bcdeai e
b
jgacgbddx

idxj + bcneai e
b
jgacgbddx

idxj (207)

= eai e
b
j(Fab + bcdgacgbd + bcngacgbn)dxidxj = 0. (208)

And since a, b, c, d 6= 3

Fab + bcdgacgbd + bcngacgbn = 0 =⇒ bcd = −gacgbdFab − gbdgbnbcn. (209)

So with b13 = b23 = 0 and ban fixed for all a, we have that B is uniquely determined
in terms of its components.

Remark. Theorem 5.5 shows that constraint (186) together with conditions 2. and

3. is equivalent to choosing a unique representative for [B] ∈ Ω
(0,2)
∂,g / ∼.

In order to fix the representative of the equivalence class [ω] ∈ A(Σ)/ ∼ we use the
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same two theorems (4.7 and 4.8) as in the scalar coupling case. Hence, equation
(183) again splits into structural, invariant and degeneracy constraints, where the
first fixes the representative of [ω]. Altogether, using Darboux coordinates the
constraint functions in the degenerate case read

Lc :=

∫
Σ

cedωe, (210)

Mµ :=

∫
Σ

Tr(µdAρ), (211)

Pξ :=

∫
Σ

1

2
ιξ(e

2)Fω +
1

2
Tr(ιξρFA) + ιξ(ω − ω0)edωe+ Tr

(
ιξ(A− A0)dAρ

)
, (212)

Hλ :=

∫
Σ

λen

(
eFω +

Λ

3!
e3 + eTr(BFA) +

1

2 · 3!
e3Tr(B,B) (213)

− (ω − ω0)pT (dωe)
)
,

Rτ :=

∫
Σ

τdωe, (214)

with c ∈ Ω
(0,2)
∂ [1], µ ∈ C∞(Σ, g)[1], ξ ∈ X(Σ)[1], λ ∈ C∞(Σ)[1] and τ ∈ S[1].

Theorem 5.6. Let g∂ be degenerate with dim(kerg∂) = 1. Then the Poisson
brackets of the constraints in the YMPC theory read

{Lc, Lc} = −1

2
L[c,c], (215)

{Rτ , Rτ} ≈ Fττ , (216)

{Pξ, Pξ} =
1

2
P[ξ,ξ] −

1

2
LιξιξFω0 −

1

2
MιξιξFω0

, (217)

{Hλ, Hλ} ≈ Fτ ′τ ′ , (218)

{Mµ,Mµ} = −1

2
M[µ,µ], (219)

{Lc, Rτ} = −RpS [c,τ ], (220)

{Lc, Pξ} = LLω0ξ c, (221)

{Lc, Hλ} = −PX(a) + LX(a)(ω−ω0)a −HX(n) (222)

+RpS(X(a)ea(ω−ω0)−λendω0c)
+MX(a)(A−A0)(a)

,

{Lc,Mµ} = 0, (223)

{Rτ , Pξ} = RpSL
ω0
ξ τ , (224)

{Rτ , Hλ} ≈ Fττ ′ +Gλτ +KYM
λτ (225)

{Rτ ,Mµ} = 0, (226)

{Pξ, Hλ} = PY (a) − LY (a)(ω−ω0)a +HY (a) −RpS(Y (a)ea(ω−ω0)−λenιξFω0 ), (227)

{Pξ,Mµ} = MLA0
ξ µ

, (228)

{Hλ,Mµ} = 0, (229)

with τ ′ = pS(λen(ω − ω0)), X = [c, λen], Y = Lω0
ξ (λen) and where the superscripts

(a) and (n) describe their components with respect to the frame (ea, en). Further-
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more, Fττ , Fττ ′, Fτ ′τ ′, Gλτ and KYM
λτ are functions of e, ω,B, τ, τ ′ and λ defined

in the proof which are not proportional to any other constraint.

Proof. As in the scalar case, we split the functions into a free and an interacting
component. Lc and Rτ only have a free part, whereas Mµ only has an interacting
part since it does not exist in the free theory. The remaining two constraints split
into

Pξ = P 0
ξ + P I

ξ ,

Hλ = H0
λ +HI

λ,

with

P 0
ξ =

∫
Σ

1

2
ιξ(e

2)Fω + ιξ(ω − ω0)edωe,

P I
ξ =

∫
Σ

Tr
(
ιξρFA + ιξ(A− A0)dAρ

)
,

H0
λ =

∫
Σ

λen

(
eFω +

Λ

3!
e3 − (ω − ω0)pT (dωe)

)
,

HI
λ =

∫
Σ

λenTr
(
eBFA +

1

2 · 3!
e3(B,B)

)
.

Most of the variations and correspondent Hamiltonian vector fields are identical
to the scalar case. The only different ones are those with interacting part, which
are δMµ, δP I

ξ and δHI
λ.

For Lc we get

δLc =

∫
Σ

[c, e]e δω + dωce δe, (230)

and thus

Le = [c, e], Lω = dωc+ VL,

Lρ = 0, LA = 0.

For Mµ we get

δMµ =

∫
Σ

Tr(µδ(dAρ)) =

∫
Σ

Tr(−µ([δA, ρ] + dA(δρ))

=

∫
Σ

Tr
(
[µ, ρ]δA+ dAµ δρ

)
,

and therefore

Me = 0, Mω = 0,

Mρ = [µ, ρ], MA = dAµ.

For Pξ we get

δP 0
ξ =

∫
Σ

−e δe(Lω0
ξ (ω − ω0) + ιξFω0)− (Lω0

ξ e)e δω,
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and

δP I
ξ =

∫
Σ

Tr
(
δ(ιξρFA) + δ(ιξ(A− A0)dAρ)

)
=

∫
Σ

−Tr
(
ιξδρFA − ιξρdAδA− ιξ(δA)dAρ− ιξ(A− A0)[δA, ρ] + ιξ(A− A0)dAδρ

)
=

∫
Σ

−Tr
((
ιξFA − dAιξ(A− A0)

)
δρ+

(
ιξdAρ+ dAιξρ+ [ιξ(A− A0), ρ]

)
δA
)

=

∫
Σ

−Tr
((
LA0
ξ (A− A0) + ιξFA0

)
δρ+ LA0

ξ ρδA
)
,

and the vector fields

P0
e = −Lω0

ξ e, P0
ω = −Lω0

ξ (ω − ω0)− ιξFω0 ,

P0
ρ = 0, P0

A = 0,

PIe = 0, PIω = 0,

PIρ = −LA0
ξ ρ, PIA = −LA0

ξ (A− A0)− ιξFA0 .

For Hλ we get

δH0
λ =

∫
Σ

(
λenFω + λen

Λ

2
e2 − g(τ ′, ω, e)− dωτ ′

)
δe

+
(
dω(λene) + λσe− [τ ′, e]

)
δω,

and

δHI
λ =

∫
Σ

Tr
(
λenδ(eBFA) +

λen
2 · 3!

δ
(
e3(B,B)

))
=

∫
Σ

Tr
(
λen
(
BFA +

e2

4
(B,B)

)
δe+ λeneδBFA − λeneBdA(δA) +

λen
3!
e3(B, δB)

)
=

∫
Σ

Tr
(
λen
(
BFA +

e2

4
(B,B)

)
δe+ λeneδBFA + dA(λeneB)δA

+
λen
2
e(e2, B)δB +

λ

2
(B, ene)e

2δB
)

=

∫
Σ

Tr
((
λen(BFA +

e2

4
(B,B))− λeB(B, ene)

)
δe

+ dA(λeneB)δA+ λ(B, ene)δρ
)
,

where in the last step we used FA + 1
2
(e2, B) = 0 and ρ = 1

2
e2B and in the step

before the identity

λen
3!
e3(C,D) =

λ

2
(C, ene)e

2D +
λen
2
e(e2, C)D, (231)
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which can be recovered from Lemma B.4 for N = 4. Then the vector fields read

eH0
e = edω(λen) + λeσ − [τ ′, e], eH0

ω = λenFω + λen
Λ

2
e2 − g(τ ′, ω, e)− dωτ ′,

H0
ρ = 0, H0

A = 0,

HI
e = 0, eHI

ω = Tr
(
λenBFA +

e2

4
λen(B,B)− λeB(B, ene)

)
,

HI
ρ = dA(λeneB), HI

A = λ(B, ene).

Finally, for Rτ we get

δRτ =

∫
Σ

(g(τ, ω, e) + dωτ)δe+ [τ, e]δω, (232)

and the vector fields

eRe = [τ, e], eRω = g(τ, ω, e) + dωτ,

Rp = 0, Rφ = 0.

Now we can calculate the Poisson brackets. All brackets expect the ones containing
Mµ, P I

ξ and HI
λ remain the same as in the scalar case. The following are all identical

to the scalar case

{Lc, Lc} = −1

2
L[c,c],

{Rτ , Rτ} ≈ Fττ ,

{Lc, Rτ} = −RpS [c,τ ]

and
{Lc, Pξ} = LLω0ξ c,

where the last one does not change because {Lc, P I
ξ } = 0. The constraints Lc, Pξ

and Mµ are identical to the nondegenerate case and their brackets have therefore
already been calculated in [11]. We will first consider all brackets which do not
contain Hλ. So

{Lc,Mµ} = 0;

{Mµ,Mµ} =

∫
Σ

Tr(dAµ[µ, ρ]) =

∫
Σ

−Tr([µ, dAµ]ρ)

=
1

2

∫
Σ

Tr(dA[µ, µ]ρ) = −1

2

∫
Σ

([µ, µ]dAρ)

= −1

2
M[µ,µ];

{Mµ, Pξ} =

∫
Σ

−Tr
(

[µ, ρ]
(
LA0
ξ (A− A0) + ιξFA0

)
+ LA0

ξ ρ dAµ
)

=

∫
Σ

Tr
(
LA0
ξ µ[A− A0, ρ] + µ[A− A0,LA0

ξ ρ]− µ[ρ, ιξFA0 ]− dALA0
ξ ρ µ

)
=

∫
Σ

Tr
(
LA0
ξ µ[A, ρ]− dµιξdρ+ [ιξA0, dρ]µ

)
=

∫
Σ

Tr
(
LA0
ξ µ dAρ

)
= MLA0

ξ µ
;
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{Pξ, Pξ} = {P 0
ξ , P

0
ξ }+ 2{P 0

ξ , P
I
ξ }+ {P I

ξ , P
I
ξ }

=
1

2
P[ξ,ξ] −

1

2
LιξιξFω0 −

1

2
MιξιξFA0

,

where we used that {P 0
ξ , P

0
ξ } = 1

2
P 0

[ξ,ξ] −
1
2
LιξιξFω0 is the same computation as

in the scalar case and {P 0
ξ , P

I
ξ }. Furthermore, the calculation of the interacting

part simplifies if one notes that with the substitution 1
2
e2 7→ ρ and ω 7→ A it is

equivalent to the free part {P 0
ξ , P

0
ξ }

{P I
ξ , P

I
ξ } =

∫
Σ

Tr
(
LA0
ξ ρ
(
LA0
ξ (A− A0) + ιξFA0

))
=

∫
Σ

Tr
(1

2
dA(ρ)ι[ξ,ξ](A− A0) +

1

2
ι[ξ,ξ](ρ)FA −

1

2
dA(ρ)ιξιξFA0

)
=

1

2
P I

[ξ,ξ] −
1

2
MιξιξFA0

.

Since Rτ does not have an interacting part its bracket with Mµ and P I
ξ vanishes.

Therefore we have
{Mµ, Rτ} = 0

and
{Pξ, Rτ} = RpSL

ω0
ξ τ .

Now we consider the brackets containing Hλ and we will start with {Lc, Hλ}, where
the part {Lc, H0

λ} is identical to the scalar case and the second term is given by

{Lc, HI
λ} =

∫
Σ

Tr

(
λen

(1

4
e2(B,B)[c, e] +BFA[c, e]

)
+ λeB(B, ene)[c, e]

)
=

∫
Σ

Tr

(
− [c, λen]

( 1

2 · 3!
e3(B,B) + eBFA

)
− λene[c, B]FA

+
λ

2
e2(B, ene)[c, B]

)
=

∫
Σ

Tr

(
− [c, λen]

( 1

2 · 3!
e3(B,B) + eBFA

)
− λeneFA[c, B]

+
λen
2 · 3!

e3[c, (B,B)]− λen
2
e(e2, B)[c, B]

)
=

∫
Σ

−[c, λen]Tr
( 1

2 · 3!
e3(B,B) + eBFA

)
= −P I

X(a) −HI
X(n) +MX(a)(A−A0)(a)

,

with X = [c, λen]. Then the total bracket reads

{Lc, Hλ} = −PX(a)+LX(a)(ω−ω0)(a)
−HX(n)+RpS(X(a)ea(ω−ω0)−λendω0c)

+MX(a)(A−A0)(a)
.

Next, we consider the bracket {Pξ, Hλ}. The free part {P 0
ξ , H

0
λ} is again identical
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to the scalar case. The remaining three terms can be calculated together as follows

{P 0
ξ , H

I
λ}+ {P I

ξ , H
0
λ}+ {P I

ξ , H
I
λ}

=

∫
Σ

−Lω0
ξ eTr

(
λen

(
BFA +

e2

4
(B,B)

)
− λeB(B, ene)

)
− LA0

ξ ρTr(λ(B, ene))− (LA0
ξ (A− A0) + ιξFA0)Tr(dA(λeneB))

=

∫
Σ

Tr
(
− Lω0+A0

ξ (e3)
λen
2 · 3!

(B,B)− Lω0+A0
ξ eλenBFA + Lω0

ξ (e2)
λ

2
B(B, ene)

− LA0
ξ (e2)

λ

2
B(B, ene)− LA0

ξ B
λ

2
e2(B, ene)

− Lω0
ξ (e2)

λ

2
B(B, ene)− Lω0

ξ B
λ

2
e2(B, ene)

+ λeneBdA
(
− ιξFA + dAιξ(A− A0)

))
=

∫
Σ

Tr
(
Lω0
ξ (λen)

e3

2 · 3!
(B,B) +

λen
3!
e3(B,Lω0+A0

ξ B) + Lω0
ξ (λen)eBFA

+ λeneLω0+A0
ξ (BFA)− λen

2
(B, ene)e

2Lω0+A0
ξ B

+ λeneB
(
− dAιξFA + [FA, ιξ(A− A0)]

)
=

∫
Σ

Tr
(
Lω0
ξ (λen)

e3

2 · 3!
(B,B) +

λen
3!
e3(B,Lω0+A0

ξ B) + Lω0
ξ (λen)eBFA

+ λeneFALω0+A0
ξ B + λeneBLA0

ξ (FA)

− λen
3!
e3(B,Lω0+A0

ξ B) + λene
(e2, B)

2
Lω0+A0
ξ B

− λeneB
(
− dA0ιξFA + ιξ[A− A0, FA]

))
=

∫
Σ

Tr

(
Lω0
ξ (λen)

( e3

2 · 3!
(B,B) + eBFA

)
+ λeneBLA0

ξ FA − λeneB(ιξdA0FA − dA0ιξFA)
)

=

∫
Σ

Lω0
ξ (λen)Tr

( e3

2 · 3!
(B,B) + eBFA

)
= PLω0ξ (λen)(a) +HLω0ξ (λen)(n) −MLω0ξ (λen)(a)(ω−ω0)(a)

.

In the last computation we used several times that the fields e and FA transform
in the trivial representation of g and so(N − 1, 1), respectively. This means that
[A0, e] = 0 and [ω0, FA] = 0 and consequently LA0

ξ e = 0 and Lω0
ξ FA = 0. Now we
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calculate the following bracket

{Mµ, Hλ} =

∫
Σ

Tr
(

[µ, ρ]λ(B, ene) + dAµdA(λeneB)
)

=

∫
Σ

Tr
(λ

2
e2[µ,B](B, ene) + d(λeneB)[A, µ]

+ [A, λeneB]dµ+ [A, λeneB][A, µ]
)

=

∫
Σ

Tr
(
− λeneB[dA, µ] + λeneB[A, dµ]− λeneB[A, dµ]

+
λen
2
eB[µ, [A,A]] +

λen
3!
e3(B, [µ,B])− λen

2
e(B, e2)[µ,B]

)
=

∫
Σ

Tr
(
λeneB

(
[µ, FA] +

1

2
[µ, (e2, B)]

)
+

λen
2 · 3!

e3[µ, (B,B)]
)

= 0,

where in the last step we used FA + 1
2
(e2, B) = 0 and Tr[µ, (B,B)] = 0. Next,

consider {Hλ, Hλ} which splits into three parts which are given by

{H0
λ, H

0
λ} ≈ Fτ ′τ ′ ,

{HI
λ, H

I
λ} =

∫
Σ

Tr(λ(B, ene)dA(λeneB)) =

∫
Σ

Tr(λeB(B, ene)dλen),

and

{H0
λ, H

I
λ} =

∫
Σ

Tr

((
λenBFA + λen

e2

4
(B,B)− λeB(B, ene)

)
·
(
dω(λen) + λσ +W−1

1 [τ ′, e]
))

=

∫
Σ

Tr(−λeB(B, ene)dλen).

Therefore the complete bracket reads

{Hλ, Hλ} = {H0
λ, H

0
λ}+ 2{H0

λ, H
I
λ}+ {HI

λ, H
I
λ} ≈ Fτ ′τ ′ .

The last remaining bracket is once again {Hλ, Rτ} which splits into two parts given
by

{H0
λ, Rτ} ≈ Fττ ′ +Gλτ

and

{HI
λ, Rτ} =

∫
Σ

Tr
(
λenBFAW

−1
1 [τ, e] + λen

e

4
(B,B)[τ, e]− λB(B, ene)[τ, e]

)
.

The second term is zero because e[τ, e] = 0. The first and third terms instead do
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not vanish in general:

{HI
λ, Rτ} =

∫
Σ

Tr
(
λenBFAW

−1
1 [τ, e]− λB(B, ene)[τ, e]

)
=

∫
Σ

Tr
(λen

2
B(B, e2)− λB(B, ene)e

)
W−1

1 [τ, e]

=

∫
Σ

Tr

(
λB
(en

2
(B, e2)− (B, ene)e

))
W−1

1 [τ, e]

=

∫
Σ

Tr

(
λ(babeaeb + 2baneaen)

(en
2

(B, e2)− (B, ene)e
))

W−1
1 [τ, e]

=: KYM
λτ .

Then the complete bracket reads

{Hλ, Rτ} ≈ Fττ ′ +Gλτ +KYM
λτ .

5.3 Conclusion YMPC Theory

As for the SPC case, we have analysed the boundary structure of the YMPC
theory in N = 4 for the case of a degenerate boundary metric by calculating its
Poisson algebra in Theorem 5.6 and we have also stated the results following from
a nondegenerate boundary metric in Theorem 5.4. Once again, we will state the
consequences of the constrained algebra for the reduced phase space.

Corollary 5.7. Let g∂ be nondegenerate. Then the constraints {Lc, Pξ, Hλ,Mµ}
in the SPC theory define a first-class system and the submanifold C ⊂ F∂ given by
the zero locus of the constraints is coisotropic.

Proof. From Theorem 5.4 we see that the Poisson brackets of the constraints are
all given by a linear combination of the constraints themselves, hence vanishing on
the zero locus. It therefore defines a system of first-class and by Proposition A.3
C is coisotropic.

Remark. As in the scalar case, Lc, Pξ, Hλ are the generators of the internal gauge
transformations of so(3, 1), of the local diffeomorphisms tangential to the boundary
and of the local diffeomorphisms normal to the boundary, respectively. The new
constraint Mµ is associated to the gauge transformation of the Yang–Mills field
with respect to the Lie algebra g. Indeed, notice the analogy between Mµ and
Lc which both generate the respective gauge transformations of the compact Lie
group G and SO(3, 1).

Corollary 5.8. Let g∂ be degenerate with dim(ker(g∂)) = 1. Then, in the YMPC
theory, we have first- and second-class constraints. In particular, Lc, Pξ, Hλ,Mµ by
themselves are first-class constraints.

Proof. The proof can be copied mutatis mutandis from Corollary 4.13, by noting
that also KYM

λτ is proportional to λ and does not contain derivatives.
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Once again, the presence of the second-class constraint Rτ implies that the con-
strained system does not define a coisotropic submanifold of F∂. The differences
between the nondegenerate and degenerate cases in the YMPC theory have been
outlined in figure 3.

Yang–Mills Palatini–Cartan

Geometric Phase Space
F∂ = Ω

(1,1)
∂ × A(Σ)

∼
×

Ω
(0,2)
∂,g

∼
× Ω

(1,0)
∂,g

$ =

∫
Σ

eδeδ[ω] +
1

2
Tr(δ(e2[B])δA)

Equations of motion

(1) dωe = 0

(2) eFω +
Λ

6
e3 + Tr

(
eBFA +

1

2 · 3!
e3(B,B)

)
= 0

(3) dA(e2B) = 0

(4) FA +
1

2
(e2, B) = 0

Nondegenerate case

(1) Fixes [ω] + Lc

(2) Pξ, Hλ

(3) Mµ

(4) Fixes [B]

Lc, Pξ, Hλ,Mµ are of first-class
and {Lc, Pξ, Hλ,Mµ} defines a
coisotropic submanifold

Degenerate case

(1) + pKv = 0 Fix [ω] + Lc, Rτ

(2) Pξ, Hλ

(3) Mµ

(4) + pW ′B = 0 + ιξFA = 0 Fix [B]

Lc, Pξ, Hλ,Mµ are of first-class, Rτ is
of second-class and {Lc, Rτ , Pξ, Hλ,Mµ}
does not define a coisotropic submanifold

Figure 3: Summary of the boundary structure of the YMPC theory in N = 4
dimensions and the differences between the nondegenerate and degenerate case.



A First- and Second-Class Constraints

We will give a quick overview of the concept of first- and second-class constraints
and their connection to symplectic reduction. In simple (and not totally correct)
words, a constraint is of first-class if its Poisson bracket with all other constraints
vanishes on the constrained surface, and of second-class if it does not vanish. They
have also different physical interpretations. The first-class constraints are in one to
one correspondence with the generators of gauge transformations. Take for example
a first-class constraint φ, then it generates the following gauge transformation

δε = ε{φ, ·}. (233)

Intuitively, this means that the constraint flows all commute with each other on
the constrained submanifold or in other words, if we start at one point on the
constrained subspace, all the constrained flows bring us to another point on the
submanifold. If all constraints of a system are of first-class, one can canonically
quantize the theory by promoting the Poisson bracket to a commutator. On the
other hand, the second-class constraints are just identities through which we can
express some canonical variables in terms of the others and they are not related
to gauge transformations. Indeed, a similar transformation as above, would move
a point on the constrained submanifold out of it. One can still try to canonically
quantize the system by replacing the Poisson bracket by the so called Dirac bracket
{·, ·}D [9]. Furthermore, from a geometric point of view, a constrained system of
first-class defines a coisotropic submanifold C and its leaf space naturally inherits
a symplectic structure. Indeed, even though the restriction of the symplectic form
ω onto C is degenerate, its kernel, called the characteristic distribution, is spanned
by the Hamiltonian vector fields Xi of the constraints φi. The fact that the system
is of first-class then implies that the characteristic distribution is involutive and
hence, the symplectic reduction C, which is the quotient of C by the characteristic
distribution, is endowed with a unique symplectic form ω. If only second-class
constraints are present, the constrained submanifold is symplectic and no reduc-
tion is needed. If both first- and second-class constraints are present, then the
submanifold is presymplectic.

Definition A.1 (First- and Second-Class). Let M be a symplectic manifold and let
{φi ∈ C∞(M)}i=1,...,n be a set of smooth functions on it. Denote with Cij = {φi, φj}
the matrix of the Poisson brackets of the functions. Then the number s of second-
class functions of the set is the rank (assumed to be constant on the zero locus)
of the matrix Cij on the zero locus of the functions. The number of first-class
functions is then f = n − s. In particular if Cij ≈ 0 ∀i, j = 1, . . . , n then we say
that the system is of first-class.

Remark. This definition stands in agreement with the usual definition of first-
and second-class constraints but it allows for a more general treatment, since it is
invariant under rearranging the constraints by linear combinations. In particular,
if we have a set of constraints φi = 0 for i = 1, . . . , n and we can write all the
Poisson brackets as linear combinations

{φi, φj} =
∑
k

fkijφk, (234)
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then all Poisson brackets vanish on the constrained subspace and the system is of
first-class.

Proposition A.1. Let M be a symplectic manifold and let {ψi ∈ C∞(M)}i=1,...,n

and {φj ∈ C∞(M)}j=1,...,m be two sets of smooth functions. Denote with Cjj′ , Bij, Dii′

respectively the matrices representing the Poisson brackets {φj, φj′}, {ψi, φj} and
{ψi, ψi′} with i, i′ = 1, . . . , n and j, j′ = 1, . . . ,m. Then, if D is invertible and
C = −BTD−1B, the number of second-class constraints is n, i.e. the rank of the
matrix D.

Lemma A.2. Let D be an invertible matrix such that D−1 does not contain any
derivatives and let B be some matrix proportional to the odd parameter λ such that
it does not contain derivatives. Then BTD−1B = 0.

Proof. Both proofs can be found in [5].

Definition A.2 (Coisotropic Submanifold). Let (M,ω) be a symplectic manifold
and letN ⊂M be a submanifold. ThenN is said to be coisotropic if TpN

⊥ ⊂ TpN
for all p ∈ N , where TpN

⊥ := {v ∈ TpM | ω(v, w) = 0∀w ∈ TpN}. Similarly, N is
said to be isotropic if TpN ⊂ TpN

⊥ and Lagrangian if TpN
⊥ = TpN .

Proposition A.3. Let M be a symplectic manifold and let C ⊂M be a submani-
fold defined by the zero locus of a set of smooth functions {φi ∈ C∞(M)}i=1,...,n

C := {x ∈M | φi(x) = 0∀i}. (235)

Then C is a coisotropic submanifold of M if and only if the constraints define a
system of first-class.

Proof. See [2].

Theorem A.4 (Coisotropic reduction). Let (M,ω) be a symplectic manifold and
i : C ↪−→M a coisotropic submanifold. Then the space of leaves C of the character-
istic foliation inherits a unique symplectic form ω such that π∗(ω) = i∗(ω).

Proof. See [11].

This quotient space C from Theorem A.4 might not be smooth. A better al-
ternative is therefore the BFV formalism which describes the quotient space by a
cohomological resolution. In particular, one extends the original symplectic man-
ifold to a graded supersymplectic manifold and introduces the odd BFV action S
on it, such that the classical master equation (CMS) holds35

{S, S} = 0. (236)

The Hamiltonian vector field Q of S is an odd operator defined by Q = {S, ·}. One
can then show, that the space of smooth functions on the reduced phase space is
isomorphic its the degree zero cohomology

H0(C) ' C∞(C), (237)

where C is the BFV complex associated to Q.

35The odd degree comes from the new variables ci and c†i , called ghosts and antighost. Both
of them are odd with a ghost degree of +1 and -1, respectively. The BFV action is then S =∫

Σ
ciφi + 1

2f
k
ijc
†
kc
icj +R, where R assures that S satisfies the CMS.



B Important Lemmas

Recall definitions 3.7 and 3.10 where we defined the (i, j)-forms

W
(i,j)
k : Ω(i,j)(M)→ Ω(i+k,j+k)(M)

α 7→ ek ∧ α

and the boundary forms

W
∂(i,j)
k : Ω

(i,j)
∂ → Ω

(i+k,j+k)
∂

α 7→ ek ∧ α.

Lemma B.1. The following propositions are true

1. W
(2,0)
N−2 is injective,

2. W
(1,0)
N−1 is injective.

Proof. See [5].

Lemma B.2. Let ω ∈ Ω(2,0) and B ∈ Ω(0,2), then

eN−2ωB = −2(N − 2)!

N !
eNωµνB

µν . (238)

Proof. See [5].

Lemma B.3. The following propositions are true for N ≥ 4

1. W
∂(2,1)
N−3 is surjective,

2. W
∂(1,1)
N−3 is injective,

3. W
∂(1,2)
N−3 is injective,

4. W
∂(1,0)
N−2 is injective,

5. W
∂(0,0)
k is injective for all k.

Proof. All proofs can be found in [4], [8] and [3].

The bracket [·, ·] : Ω(1,1) × Ω(1,1) → Ω(2,0) of two (1, 1)-forms X, Y ∈ Ω(1,1) is
defined by

[X, Y ]µν = Xa
[µY

b
ν]gab. (239)

Then the bracket of the vielbein with itself vanishes

[e, e]µν =
1

2
(eaµe

b
ν − eaνebµ)gab = 0, (240)

since g is symmetric.
The bracket [·, ·] : Ω(1,2) × Ω(1,2) → Ω(2,2) of two (1, 2)-forms X, Y ∈ Ω(1,2) is

defined by
[X, Y ]abµν = X

[ac
[µ Y

b]d
ν] gcd. (241)

Then the following holds
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• The bracket of the connection field with itself does not vanish in general

[ω, ω]abµν =
1

4

(
ωacµ ω

bd
ν − ωbcµ ωadν − ωacν ωbdµ + ωbcν ω

ad
µ

)
gcd (242)

• The bracket of two connection fields is symmetric under exchange

[ω, ω0]abµν =
1

4

(
ωacµ ω

bd
0,ν − ωbcµ ωad0,ν − ωacν ωbd0,µ + ωbcν ω

ad
0,µ

)
gcd

=
1

4

(
ωad0,µω

bc
ν − ωbd0,µωacν − ωad0,νω

bc
µ + ωbd0,νω

ac
µ

)
gcd = [ω0, ω]abµν .

(243)

Lemma B.4. Let A,B ∈ Ω
(0,1)
∂ and C,D ∈ Ω

(0,2)
∂ . Then the following identities

hold

1. en
eN−1

(N−1)!
(A,B) = (−1)|A|+|B|

[
en

eN−2

(N−2)!
(e, A)B + eN−1

(N−1)!
(en, A)B

]
,

2. en
eN−1

(N−1)!
(C,D) =

[
en

eN−3

2(N−3)!
(e2, C)D + eN−2

(N−2)!
(ene, C)D

]
.

Proof. See [5].

Lemma B.5. Let τ ∈ S. Then the following identities hold

1. en ∧ τ = 0,

2. en[τ, e] = τ [en, e],

3. e[τ, e] = 0.

Proof. The first identity has been shown in [5]. The second follows trivially from
[τen, e] = τ [en, e] − en[τ, e] = 0. For the last identity note that by definition of

S τ ∈ ker(W
∂(1,3)
1 ), so eτ = 0. Hence also [eτ, e] = e[τ, e] + τ [e, e] = 0 and using

[e, e] = 0 the statement follows.
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