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The Homotopy Hypothesis

Abstract

The goal of this thesis is to give an introduction of the main concepts about model
categories and their homotopy theory. There will also be a brief discussion about left
Bousfield localisations. Furthermore we will establish a Quillen equivalence between the
model category on 2-truncated simplicial sets and the model category on bi-groupoids
with strict 2-functors. Later we discuss the similarities between the homotopy theory of
the 2-truncations and the homotopy theory of bi-groupoids with weak 2-functors. Before
giving this result we will establish two additional Quillen equivalences for the case of 0
and 1-truncated simplicial sets respectively and also a more restrictive one for the case of
2-truncations.

‘Not all those who wander are lost.’
-J.R.R. Tolkien, The Fellowship of the Ring
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‘En memoria da miu tat Theodosi.’
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The Homotopy Hypothesis

Introduction

First we should deal with the question

‘What is abstract homotopy theory?’

The concept of homotopy is most likely known from topology or algebraic topology, for those
familiar with these areas. The idea of a homotopy, sometimes also referred to as a deformation,
seems to appear in a lot of different contexts. It aims to give a setting, abstract enough, allowing
comparisons between certain structures. It is often very useful to generalise something in a more
abstract concept in order to be able to give a proof of certain desired properties, it may well
happen that the proof becomes easier in such generality. This theory seems to arise in a lot of
mathematics, an example would for instance be chain homotopy, so the main motivation was
to generalise such concepts.
Back to the question about abstract homotopy theory. The main idea is to start with some
setting where one has a notion of equivalence, usually it is some kind of weak equivalence. That
is, one usually starts with a category C where one chooses some class of morphismsW ⊆ mor(C )
(W for weak equivalence), the next step is then to localise this category C with respect to this
class of morphisms. The result will be a new category, which we will refer to as the homotooy
category of C , denoted by Ho(C ).
There are several different approaches to describe this kind of process - or better theory - we
mentioned above. One of the more powerful ones, and also the one we will use throughout this
thesis, will be the concept of model categories. A model category is asked to have all limits
and colimits and comes equipped with three classes of morphisms called weak equivalences,
fibrations and cofibrations respectively. These classes of morphisms have to satisfy some rules
or axioms. This kind of categories are particularly nice for the idea of creating a homotopy
theory in the sense described above i.e. the homotopy category of a model category. All objects
in this homotopy category will be fibrant and cofibrant and furthermore a special version of
Whitehead’s theorem will hold, namely that the weak equivalences become invertible by be-
coming homotopy equivalences. In some sense we turn weak equivalences into isomorphisms
and since we are working with model categories it can also be shown that every isomorphism in
the homotopy category actually comes from such a weak equivalence.
A classical example would be the ‘classical homotopy theory for topological spaces’. In this
particular case one deals with the category of topological spaces where objects are topological
spaces and morphisms are continuous maps between them. The homotopies between continuous
maps then correspond to the usual concept of homotopy which should be known from topology.
This classic theory is also closely related to algebraic topology. Another very important example
is the one of simplicial sets, both will be discussed in this thesis.
Next it is time to address another important question.

‘What is the homotopy hypothesis?’

First of all, there should be a notion making it possible to compare different homotopy theories.
Indeed such a tool exists, we say that two of these theories are equivalent if the respective
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homotopy categories are equivalent as categories and the underlying categories form a Quillen
pair. Actually we can also set this directly in the context of model categories, though we may
not require that these model categories are equivalent as categories, this notion would simply
be too strong. Instead we introduce the concept of Quillen equivalence, this notion will be weak
enough for the setting of model categories and equivalent to the above idea that the homotopy
categories should be an equivalence of categories.
Time to answer the above question. The homotopy hypothesis is the assertion, that∞-groupoids
are equivalent to topological spaces up to weak homotopy equivalences (these are the class of
weak equivalences in Top) i.e. a Quillen equivalence. There is also a stronger statement, which
sometimes also falls into this notion of ‘the homotopy hypothesis’, namely that n-groupoids
are equivalent to homotopy n-types. The homotopy theory of simplicial sets is modeling ∞-
groupoids (i.e. they are Kan complexes). The homotopy hypothesis tells us that this is actually
Quillen equivalent to topological spaces.
The present work will consist of three main parts. In the first part, we will introduce a lot of basic
notions and machinery needed for the above discussed theory. Starting with some set theoretical
preliminaries, we introduce the notion of a model category and discuss several types of such
structures. Next we introduce the concept of homotopy theory for model categories to be able
to define the so called homotopy category of a model category. This leads to the definition and
discussion of Quillen functors leading us towards the definition of a Quillen equivalence between
model categories. For the final stage of this first part, we introduce the concept of Bousfield
localisations, where a Bousfield localisation is a new model structure on the underlying category
in which we add more weak equivalences than we had before but keep the same cofibrations.
In the second part we apply most of the theory defined in the first part. Especially we discuss
two particular cases, namely the categories Top of topological spaces and sSet of simplicial sets.
We will show that they have some very nice model category structures and therefore may be
Bousfield localised with respect to any class of morphisms from the respective category. These
first two parts are a collection of known results, provided here in order to justify the statements
and theories given in the last part.
The last part is really the core of this thesis. At the beginning we state the ‘classical’ homotopy
hypothesis establishing a Quillen equivalence between sSetQ and TopQ, which are the above
categories equipped with the nice model category structure developed in the second part. We
then proceed to Bousfield localise these categories with respect to a special morphism, giving
us the definition of a category of n-truncations for TopQ and sSetQ respectively.
With this new definitions we proof some different version of the homotopy hypothesis, namely
that these truncations also form Quillen equivalences. It will allow us to connect 0-groupoids,
1-groupoids and 2-groupoids, as given by the homotopy hypothesis, to the more classical notions.
In the final section of this thesis, we introduce the concept of a weak n-Grpd, and show that
at least for the cases n = 0, 1, there is a Quillen equivalence between n-truncated simplicial sets
and n-groupoids.
For n = 2 we need to consider bi-groupoids with strict 2-functors rather than weak 2-functors
for this to work, the reason being that it would not be a model category otherwise. In the end
though, we will still relate the homotopy theories of 2-truncations with the one of bi-groupoids
with weak functors, just not in the form of a Quillen equivalence.
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Conventions and Notations

We generally assume the ZFC axiomatic from set theory.
When we talk about the natural numbers N, we include 0.
If not explicitly stated otherwise, a category will usually denote a locally small category. A
category C is said to be locally small, if for any objects A,B in C , C (A,B) is a proper set
rather than a class.
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Part I

Theory
As the title suggests, this first part of the present thesis, contains a lot of theory and fundamental
concepts about model categories and homotopy theory.
The first section deals with the foundations. It will introduce helpful concepts like transfinite
composition, this may be thought of as replacing induction arguments with arguments using
Zorn’s lemma. After that we will introduce a concept called the small object argument, this
argument is particularly useful when one deals with cofibrantly generated model categories. In
practice a lot of important model categories are indeed cofibrantly generated. We also deal with
a concept of compactness, which is introduced in [PHir03] and is needed in order to deal with
cellular model categories.
The second section introduces the definition of a model category and discusses some properties
about them. Further, this section introduces some ot the more important notions of model
category structures. We are especially interested in cofibrantly generated ones, cellular ones
and left proper model categories. The reason for this is that if a category carries all of these
structures, it will behave very well under left Busfield localisations.
The third section discusses homotopy in model categories and inspects the relation of homotopy.
It will turn out that the concepts of right and left homotopy coincide if certain conditions are
met.
The fourth section is one of the more important ones, especially for the homotopy hypothesis.
In a first step, we will define what the homotopy category of a model category is and explain
why this concept is well behaved. We will use the theory of localisations to define the homotopy
category. Towards the end of the section we introduce the concept of Quillen functors, Quillen
pairs and Quillen equivalences. The last being the main tool for the present work, giving a weaker
notion of equivalence between categories in the sense that it relates the homotopy categories
of the respective categories. That is, two categories are Quillen equivalent iff their homotopy
categories are equivalent as categories. As the name may suggest these concepts were first
discussed by Quillen in [GQui67].
The fifth section deals with Bousfield localisations, though we will restrict to the case of left
Bousfield localisations, as these turn out to be the more natural choice in practice. The section
is more of a brief introduction of the concepts as the whole theory is very involved. It was first
introduced by Bousfield but was really developed by Hirschhorn in [PHir03]. We will provide two
theorems providing two large classes of model categories for which the left Bousfield localisations
exist with respect to any class of morphisms of the underlying category. They are also the two
largest known classes with such a property. The first class (the one we will mostly use) considers
cellular left proper model categories and the second one considers simplicial combinatorial left
proper model categories.
Finally, in the sixth section we give a general construction of a nerve realisation adjunction.
The main theorem which we will state there will provide us with lots of adjunctions needed
throughout the whole thesis.

Gian Deflorin September 1, 2019 1
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1 Foundations

We start with some set theoretic notions needed for the next section. It will be especially
helpful for the small object argument, this argument provides (under good assumptions) a more
or less convenient way to construct functorial factorisations if one faces the challenge to show
that a certain category has to be a model category. Furthermore we introduce the notion of
compactness, used to define cellular model categories in the next section. We follow [PHir03]
and [MHov91] very closely, that is all results provided here and some proofs are taken from
there. We also use some inspiration from [nLab].

1.1 Ordinals, Cardinals and Transfinite Composition

We will be interested in the concept of transfinite composition in order to be able to define
small objects. To do so we first have to understand the idea of ordinals and cardinals, of course
this discussion will be very brief.

1.1.1 Ordinals

Definition 1.1. 1. A preordered set is a set with a relation that is reflexive and transitive.
2. A partially ordered set is a preordered set in which the relation is also antisymmetric.
3. A totally ordered set is a partially ordered set in which every pair of elements is com-

parable.
4. A well ordered set is a totally ordered set in which every nonempty subset has a first

element.

Definition 1.2 (Lesser Ordinal). If η is a well ordered set, then a lesser ordinal of η is a
well ordered set which is an element of η.

Definition 1.3 (Ordinal). An ordinal is a well ordered set in such a way that it is the well
ordered set of all lesser ordinals and every well ordered set is isomorphic to a unique ordinal.

Remark 1.4. 1. Often an ordinal is just defined to be a well ordered set.
2. The union of a set of ordinals is an ordinal and it is the least upper bound of the set.
3. We use the usual convention that the ordering is the member relation ”∈”.

�

Example 1.5. Examples of ordinals include 1, 2, . . . , the natural numbers N, the real numbers
R. Some more fancy examples involve NN, where NN = R, or RR and so on. And there is of
course also Ω which is the set of all ordinals. J

Definition 1.6 (Successor). If η is an ordinal then the successor of η is the first ordinal
greater than η, denoted by Succ(η). In the classical von Neumann notation one would denote
the successor of an ordinal η by η ∪ {η}.

Gian Deflorin September 1, 2019 2
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Definition 1.7 (Limit Ordinal). A limit ordinal is any ordinal which is not a successor of
any other ordinal.

Example 1.8. The empty set ∅ is a limit ordinal. Another example are the natural numbers N.
J

For us it is useful to consider a preordered set as a category.

Remark 1.9. We consider a preordered set S as a small category, where the objects are just
the elements of S and a single morphism from s to t for s, t ∈ S if s ≤ t. �

Definition 1.10. If S is a totally ordered set and T a subset of S, then T will be called right-
cofinal in S if ∀ s ∈ S ∃ t ∈ T : s ≤ t.

Theorem 1.11 ([PHir03]). If C is a cocomplete category and S a totally ordered set, T a right
cofinal subset of S and X : S → C is a functor, then the natural map

colimT X → colimS X

is an isomorphism.

Proof. We construct a map which is inverse to the map colimT X → colimS X. First we choose
for any s ∈ S an element t ∈ T such that s ≤ t and define a map Xs → colimT X as the
composition Xs → Xt → colimT X. If we happen to choose a different t′ ∈ T such that s ≤ t′,
then we must either have t ≤ t′ or t′ ≤ t but then the map we just defined is independent of
the choice of t ∈ T .
Now, with a similar argument for a different s′ ∈ S such that s ≤ s′ then for t ∈ T such that
s′ ≤ t the composition Xs → Xs′ → Xt → colimT X equals the composition Xs → Xt →
colimT X. Now the combination of these maps define a map colimS X → colimT X. This is now
our candidate for the inverse map.
Let s ∈ S but then the composition

Xs → colimS X → colimT X → colimS X

equals the map Xs → colimS X which then means that the composition colimS X →
colimT X → colimS X is the identity. Nearly the same argument yields that the composition
colimT X → colimS X → colimT X is the identity, giving the desired result. �

Proposition 1.12 ([PHir03]). If S is a totally ordered set, then there is a right cofinal subset
T of S that is well ordered.

Proof. The idea is to consider the set of well ordered subsets of S. In a next step one may show,
that this set has a maximal element, furthermore one argues that a maximal element has to be
right cofinal. A more detailed proof may be found as Proposition 10.1.6 in [PHir03]. �

Gian Deflorin September 1, 2019 3
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1.1.2 Cardinals

Definition 1.13 (Cardinality). Given a set S we define the cardinality of S, denoted by
card(S), to be the smallest ordinal for which there is a bijection card(S)→ S.

Definition 1.14 (Cardinal). A cardinal is an ordinal that is of greater cardinality than any
lesser ordinal.

Definition 1.15. If S is a set then the cardinal of S is the unique cardinal whose underlying
set has a bijection with S.

Remark 1.16. As for ordinals there is of course also a successor for a cardinal i.e. if γ is a
cardinal the successor of γ, denoted Succ(γ) is the first cardinal greater than γ. Again with von
Neumann notation one has Succ(γ) = γ ∪ {γ}. �

Definition 1.17 (Regular, γ-filtered). A cardinal γ is regular if whenever A is a set whose
cardinal is less than γ and ∀ a ∈ A ∃ Sa, where Sa is a set for every a ∈ A, whose cardinal is
less than γ, the cardinality of the set ⋃a∈A Sa is less than γ. Equivalently we will also use the
following formulation. Let γ be a cardinal. An ordinal α is γ-filtered if it is a limit ordinal,
and if A ⊆ α and card(A) ≤ γ, then sup(A) < α.

Remark 1.18. If γ is finite, a γ-filtered ordinal is just a limit ordinal. �

Example 1.19. Since the finite union of finite sets is finite, an example for a regular cardinal
is given by the countable cardinal ℵ0. J

Some useful properties about cardinals can be found in [PHir03] p. 187 - 188.

1.1.3 Transfinite Composition

Definition 1.20 (λ-sequence, Composition). Let C be a category that is closed under colimits.
1. If λ is an ordinal, then a λ-sequence in C is a functor X : λ→ C i.e. it is a diagram

X0 → X1 → · · · → Xβ → . . . (β < λ)

in C , such that for every ordinal γ < λ the induced map

colimβ<λXβ → Xγ

is an isomorphism.
2. The composition of the λ-sequence is the map X0 → colimβ<λXβ.

Definition 1.21 (Transfinite Composition). Let C be a cocomplete category.
1. If D is a class of maps in C and λ is an ordinal, then a λ-sequence of maps in D is

a λ-sequence
X0 → X1 → · · · → Xβ → . . . (β < λ)

in C such that the map Xβ → Xβ+1 is in D for β + 1 < λ.
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2. If D is a class of maps in C , then a transfinite composition of maps in D is a map
in C that is the composition of a λ-sequence in D for some possibly finite ordinal λ.

3. If D is a subcategory of C , then a transfinite composition of maps in D is a transfinite
composition of maps in the class of maps of D.

Lemma 1.22 ([PHir03]). Let C be a category, λ a limit ordinal and let X : λ→ C be a functor.
If the functor Y : λ→ C is defined by: Y0 = X0, Yβ+1 = Xβ if β + 1 < λ, Yβ = colimγ<βXγ if
β < γ and β is a limit ordinal. Then Y is a λ-sequence in C and

colimβ<λXβ = colimβ<λ Yβ.

Proof. This follows from the universal property of colimits. �

Definition 1.23 (Reindexing). If C is a category and λ a limit ordinal and X : λ → C is
a functor, then the λ-sequence Y , obtained from the functor X as in the above lemma, will be
called the reindexing of X.

The next proposition may be found as Proposition 10.2.7 in [PHir03], the proof will not be given
here.

Proposition 1.24 ([PHir03]). If C is a category, S a set and gs : Cs → Ds a map in C for
every s ∈ S, then the coproduct ∐

gs :
∐
Cs →

∐
Ds

is a transfinite composition of pushouts of the gs. If S is infinite, then it is a transfinite compo-
sition indexed by an ordinal whose cardinal equals that of S.

Some further properties about transfinite composition may be found in [PHir03] p. 190 - 191.

1.2 Small Objects

Definition 1.25 (Small). Let C be a cocomplete category and let D be a subcategory of C .
1. If κ is a cardinal, then an object W in C is κ-small relative to D if, for every regular

cardinal λ > κ and every λ-sequence

X0 → X1 → · · · → Xβ → . . . (β < λ)

in C such that the map Xβ → Xβ+1 is in D for every ordinal β such that β + 1 < λ the
map of sets

colimβ<λ C (W,Xβ)→ C (W, colimβ<λXβ)
is an isomorphism.

2. An object is small relative to D if it is κ-small relative to D for some cardinal κ.
3. An object is small if it is small relative to C .

Remark 1.26. If κ < κ′ and A is κ-small relative to D then A is also κ′-small relative to D,
since κ and κ′ are regular. �
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Definition 1.27 (Finite). Let C be a cocomplete category, D a collection of morphisms of C
and A an object of C .

1. We say that A is finite relative to D if A is κ-small relative to D for a finite cardinal
κ.

2. We say that A is finite if it is finite relative to C itself.

The following example will be needed later.

Example 1.28 ([MHov91]). Every object in Set is small.
Indeed, if A ∈ Set we claim that A is card(A)-small. To see this suppose that λ is a card(A)-
filtered ordinal and X is a λ-sequence of sets. Given a map f : A → colimβ<λXβ we find
for each a ∈ A an index β(a) such that f(a) is in the image of Xβ(a) (this comes from the
construction of the filtered colimit of sets). Then we let γ be the supremum of the β(a). Because
λ is card(A)-filtered γ < λ and the map f will factor through a map g : A → Xγ as required.
A similar argument shows that if two maps A→ Xβ and A→ Xγ are equal in the colimit they
must be equal at some stage of the colimit. J

Definition 1.29 (Lifting). Let C be a category and consider the commutative diagram of solid
arrows

A B

C D.

f

i p

g

h

A lift or lifting in the diagram is a (dotted) morphism h : C → B in C such that h ◦ i = f
and p ◦ h = g.

Definition 1.30 (Lifting Properties). We consider a category C . A morphism i : A→ C in C
is said to have the left lifting property (LLP) with respect to another morphism p : B → D
in C and p is said to have the right lifting property (RLP) with respect to i if there is a
lift h : C → B in C such that for some f : A→ B and g : C → D in C the diagram

A B

C D

f

i p

g

h

commutes i.e. h ◦ i = f and p ◦ h = g.

Notation 1.31. Let C be a category and S a class of morphisms in C . We sometimes write
RLP (S) for the collection of morphisms with the RLP with respect to S. Similarly we write
LLP (S) for the collection of morphisms with the LLP with respect to S.
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Definition 1.32. Let I be a class of maps in a category C .
1. A map is I-projective if it has the LLP with respect to every map in I. This class will

be denoted I-proj i.e. I-proj = LLP (I).
2. A map is I-injective if it has the RLP with respect to every map in I. This class of maps

will be denoted I-inj i.e. I-inj = RLP (I).
3. A map is an I-cofibration if it has the LLP with respect to every I-injective map. This

class will be denoted I-cof i.e. I-cof = LLP (RLP (I)).
4. A map is an I-fibration if it has the RLP with respect to every I-projective map. This

class will be denoted I-fib i.e. I-fib = RLP (LLP (I)).

Remark 1.33. 1. Let C be a model category and I the class of cofibrations then I-inj is the
class of acyclic fibrations and I-cof = I. Dually if I is the class of fibrations then I-proj
is the class of acyclic cofibrations and I-fib = I. The definition of a model category will
be defined in the next section, but it is best to state this remark here.

2. It is also worth mentioning that I ⊆ I-cof and I ⊆ I-fib. Furthermore (I-cof)-inj = I-inj
and (I-fib)-proj = I-proj. If I ⊆ J then J-inj ⊆ I-inj and J-proj ⊆ I-proj. Thus I-cof ⊆
J-cof and I-fib ⊆ J-fib.

�

Lemma 1.34 ([MHov91]). Suppose that F : C
//
Doo _ : U is an adjunction, I a class of maps

in C and J a class of maps in D . Then
1. U(FI-inj) ⊆ I-inj.
2. F (I-cof) ⊆ FI-cof.
3. F (UJ-proj) ⊆ J-proj.
4. U(J-fib) ⊆ UJ-fib.

Proof. 1. Let g ∈ FI-inj and f ∈ I. Then g has the RLP with respect to Ff and so by
adjointness Ug has the RLP with respect to f . Thus Ug ∈ I-inj as required.

2. Let f ∈ I-cof and g ∈ FI-inj. Then by the previous part Ug ∈ I-inj and so f has the
LLP with respect to Ug. Adjointness implies that Ff has the LLP with respect to g and
so Ff ∈ (FI-inj)-proj = FI-cof.

The other two properties hold by duality. �

Definition 1.35 (Cell Complex). Let C be a cocomplete category and I a class of maps in C .
1. The subcategory of relative I-cell complexes is the subcategory of maps that can be

constructed as a transfinite composition of pushouts of elements of I.
2. An object X in C is an I-cell complex if the map ∅ → X is a relative I-cell complex.
3. A map is an inclusion of I-cell complexes if it is a relative I-cell complex whose

domain is an I-cell complex.

Remark 1.36. The collection of relative I-cell complexes is denoted by I-cell.
The first condition of the above definition means, that if f : A→ B is a relative I-cell complex,
then there is an ordinal λ and a λ-sequence X : λ→ C such that f is the composition of X and
such that, for each β for which β + 1 < λ, there is a pushout square
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Cβ Xβ

Dβ Xβ+1

gβ

where gβ ∈ I.
The identity map at A is the transfinite composition of the trivial 1-sequence A, so identity maps
are relative I-cell complexes. If f : A→ B is an isomorphism then f is also the composition of
the 1-sequence A so f is a relative I-cell complex. �

We give some useful properties about I-cell.

Lemma 1.37. Suppose I is a class of maps in a category C with all small colimits. Then I-cell
⊆ I-cof.

Proof. Remember that I-cof is defined by a lifting property, so it is closed under transfinite
composition and pushouts which concludes the proof. �

Lemma 1.38 ([MHov91]). Suppose λ is an ordinal and X : λ → C is a λ-sequence such that
every map Xβ → Xβ+1 is either a pushout of a map of I or an isomorphism. Then the transfinite
composition of X is a relative I-cell complex.

Proof. We define an equivalence relation ∼ on λ. If α ≤ β define α ∼ β if for all γ such that
α ≤ γ ≤ β the map Xγ → Xγ+1 is an isomorphism. Then each equivalence class [α] under ∼ is a
closed interval [α′, α′′] of λ and if α ≤ β and α ∼ β then the map Xα → Xβ is an isomorphism.
The set of equivalence classes is a well-ordered set and so is isomorphic to a unique ordinal µ.
The functor X descends to a functor Y : µ → C where Y[α] = Xα′ . Each map Yβ → Yβ+1 is
a pushout of a map of I. Y is a µ-sequence. Indeed, if [β] is a limit ordinal of µ then β′ must
be a limit ordinal of λ. Since the transfinite composition of Y is isomorphic to the transfinite
composition of X we are done. �

Lemma 1.39 ([MHov91]). Suppose C is a cocomplete category, and I is a set of maps of C .
Then I-cell is closed under transfinite compositions.

Proof. Let X : λ→ C be a λ-sequence of relative I-cell complexes so that each map Xβ → Xβ+1
is a relative I-cell complex. Then Xβ → Xβ+1 is the composition of a λ-sequence Y : γβ → C
of pushouts of maps of I. Consider the set S of all pairs of ordinals (β, γ) such that β < γ and
γ < γ′. Put a total order on S by defining (β, γ) < (β′, γ′) if β < β′ or γ < γ′. Then S becomes
a well-ordered set so is isomorphic to a unique ordinal µ. We therefore get a functor Z : µ→ C
which one can readily verify is a µ-sequence. Each map Zα → Zα+1 is either one of the maps
Yγ → Yγ+1 or else is an isomorphism. Since a composition of X is also a composition of Z the
previous lemma implies that a composition of X is a relative I-cell complex. �

Lemma 1.40 ([MHov91]). Suppose C is a cocomplete category, and I is a set of maps of C .
Then any pushout of coproducts of maps of I is in I-cell.
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Proof. Let λ be an ordinal, since every set K is isomorphic to an ordinal and gk : Ck → Dk a
map of I for all k in K. Assume f is the pushout of the diagram

∐
Ck X

∐
Dk Y.

∐
gk f

We want that f is a relative I-cell complex. We then form a λ-sequence by letting X0 = X and
Xβ+1 be the pushout Xβ

∐
Cβ Dβ over gβ and by letting Xβ = colimα<βXα for limit ordinals β.

The transfinite composition X → Xλ of this λ-sequence is now isomorphic to the map f and
hence f is a relative I-cell complex. �

Definition 1.41 (Presentation). Let C be a cocomplete category and let I be a set of maps in
C . If f : X → Y is a relative I-cell complex, then a presentation of f is a pair consisting of
a λ-sequence

X = X0 → X1 → · · · → Xβ → . . . (β < λ)

(for some ordinal λ) and a sequence of ordered triples

{(T β, eβ, hβ)}β<λ

such that
1. the composition of the λ-sequence is isomorphic to f
2. for every β < λ

(a) T β is a set
(b) eβ is a function eβ : T β → I
(c) if i ∈ T β and eβi is the element Ci → Di of I, then hβi is a map hβi : Ci → Xβ such

that there is a pushout diagram∐
Tβ Ci

∐
Tβ Di

Xβ Xβ+1.

∐
hβi

If the map f : ∅ → Y (∅ is the initial object) is a relative I-cell complex, then a presentation of
f is called presentation of Y .

Definition 1.42 (Presented Relative I-cell Complex). Let C be a category and I a set of maps
in C , then a presented relative I-cell complex is a relative I-cell complex f : X → Y
together with a particular presentation

(X = X0 → X1 → · · · → Xβ → . . . (β < λ), {T β, eβ, hβ}β<γ)

of it. A presented relative I-cell complex in which X = ∅ (the initial object) will be called
presented I-cell complex.
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Definition 1.43. Let C be a cocomplete category and I a set of maps in C . If

(f : X → Y,X = X0 → X1 → · · · → Xβ → . . . (β < λ), {T β, eβ, hβ}β<γ)

is a presented relative I-cell complex then
1. the presentation ordinal of f is λ
2. the set of cells of f is ∐β<λ T

β

3. the size of f is the cardinal of the set of cells of f
4. if e is a cell of f the presentation ordinal of e is the ordinal β such that e ∈ T β
5. if β < λ, then the β-skeleton of f is Xβ.

1.3 Compactness

This idea of compactness is due to [PHir03], needed for his notion of cellular model categories.
Compactness is actually a somewhat weaker notion of smallness.

Definition 1.44. Let C be a cocomplete category and let I be a set of maps in C .
1. If γ is a cardinal then an object W in C is γ-compact relative to I if for every presented

relative I-cell complex f : X → Y every map from W to Y factors through a subcomplex
of f of size at most γ.

2. An object W in C is compact relative to I if it is γ-compact relative to I for some
cardinal γ.

Definition 1.45. Let C be a cofibrantly generated model category with generating cofibrations
I.

1. If γ is a cardinal, then an object W ∈ C is γ-compact if it is γ-compact relative to I.
2. An object W ∈ C is compact if there is a cardinal γ for which it is γ-compact.

The definition of a cofibrantly generated model category will follow in section 2.

1.4 The Category of Finite Ordinals

We introduce this category to be able to define the category of cosimplicial and simplicial
objects. A tool also needed to dedfine the category of simplicial sets later on. We will follow
[GoJa09] and use inspiration from [nLab].

Definition 1.46 (Category of Finite Ordinals). The category of finite ordinals is the
category ∆ with objects

[n] = {0→ 1→ 2→ · · · → n} for n ≥ 0

and morphisms
∆([n], [k])

the set of weakly order-preserving maps.
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Usually, this category is called the simplex category in common literature. I prefer the term
category of finite ordinals due to its nature.

Remark 1.47. There are two subcategories of ∆, namely ∆+ the category of injective order-
preserving maps and ∆− the category of surjective order preserving maps.
Any morphism in ∆ can be factored uniquely into a morphism of ∆− followed by a morphism
of ∆+. �

Definition 1.48 (Cofaces, Codegeneracies and Cosimplicial Identities). We consider two special
morphisms in ∆

1. di : [n− 1]→ [n] ∈∆+ for n ≥ 1 and 0 ≤ i ≤ n, where the image of di does not include i
(cofaces).

2. si : [n] → [n − 1] ∈ ∆− for n ≥ 1 and 0 ≤ i ≤ n − 1, where si identifies i and i + 1
(codegeneracies).

All relations between these two maps are implied by the cosimplicial identities:

djdi = didj−1 i < j

sjdi = disj−1 i < j

= id i = j, j + 1
= di−1sj i > j + 1

sjsi = si−1sj i > j

1.5 The Category of Cosimplicial and Simplicial Objects

The following categories are especially nice to work with, as they preserve a lot of properties
initially given by the category which we first considered, before applying the definition.

Definition 1.49 (Category of Cosimplicial and Simplicial Objects). Let C be any category.
1. The category of cosimplicial objects in C is the functor category Fun(∆,C ).
2. The category of simplicial objects in C is the functor category Fun(∆op,C ).

Remark 1.50. Since Fun(∆,C ) and Fun(∆op,C ) are functor categories they have all colimits
and limits that exist in C taken objectwise. �
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2 Model Categories

We will define model categories with the help of weak factorisation systems. In the definition of
a model category we will impose the use of functorial weak facorisation systems, this is justified
with the fact that the most important categories we will be using in the thesis satisfy the small
object argument (as we will see later), which on the other hand guarantees us this kind of
functorial factorisations.
It will turn out that defining model categories in this way (with the use of weak factorisation
systems) is indeed the same as the ”classic” way of defining them, which is for example used in
[MHov91] or [DwSp95].
Later in the section we give a lot of different types of model category structures. At some
point we will deal with Bousfield localisations. At the moment there are two large classes of
model categories, where it is known, that the Bousfield localisations exist with respect to any
class of morphisms in the respective category. These classes are either proper cellular model
categories or proper combinatorial simplicial model categories, depending on left and right
Bousfield localisations. We only need left and right proper respectively in the before mentioned
cases.
After the definition of the respective model categories we usually state a recognition theorem
in order to show that a certain category is indeed of the desired type.
This section contains material from [MHov91], [PHir03], [JLur09], [ClBa], [DaDu], [DwSp95],
[ERie09] and quite some inspiration from [nLab].

2.1 Weak Factorisation Systems

A weak factorization system on a category is a pair (L,R) of classes of morphisms such that
every morphism of the category factors as the composite of a morphism in L followed by a
morphism in R, and L and R are closed under having the lifting property against each other.

Definition 2.1 (Retract). Let C be a category and X ∈ C an object. X is said to be a retract
of an object Y if there exist morphisms i : X → Y and r : Y → X such that r ◦ i = idX .
If f, g ∈ C are morphisms, we say that f is a retract of g if the object of mor(C ) represented
by f is a retract of the object of mor(C ) represented by g. Here mor(C ) is the category of
morphisms of C . In other words we have the following commutative diagram

A B A

A′ B′ A′

i

f g

r

f

i′ r′

such that r ◦ i = idA, r′ ◦ i′ = idA′.
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Definition 2.2 (Weak Factorisation System - WFS). A weak factorisation system (WFS)
on a category C is a tuple (L,R) of classes of morphisms of C such that

1. Any morphism f : X → Y of C may be factored as f : X ∈L−→ Z
∈R−−→ Y.

2. Furthermore we want that L has the LLP against every morphism in R and R has the
RLP against every morphism in L.

Remark 2.3. If (L,R) is a WFS for a category C , then (Lop,Rop) is a WFS on C op. �

The following is a nice example, which can be found on Joyale’s CatLab. Later one we will see
more examples in the discussions of Part II.

Example 2.4. Let R a ring. A morphism of left R-modules is projective if it has the LLP with
respect to epimorphisms. An R-module M is projective iff 0 → M is projective i.e. a map of
R-modules u : M → N is projective iff it is monic and its cokernel is a projective R-module.
Then the category of R-modules admits a weak factorisation system (L,R) in which L is the
class of projective morphisms and R is the class of epimorphisms. J

2.1.1 Properties of Weak Factorisation Systems

We introduce the closure properties from [nLab] and provide a more detailed proof.

Theorem 2.5 (Closure Properties, [nLab]). Let (L,R) be a weak factorisation system on some
category C . Then

1. All isomorphisms and identities of C are in L and R.
2. L and R are closed under composition in C . Furthermore L is closed under transfinite

composition.
3. L and R are closed under retracts in the category Fun([1],C ).
4. L is closed under pushouts of morphisms in C and R is closed under pullbacks of mor-

phisms in C .
5. L is closed under coproducts in Fun([1],C ) and R is closed under products in Fun([1],C ).

Proof. 1. Consider a commutative solid arrow diagram in C

A X

B Y

f

i p

g

f◦i−1

with i an isomorphism. We can construct a lift (the dotted arrow in the diagram). In
particular there is a lift if p ∈ R and hence i ∈ L. The other case is dual. For the identity
we just adapt the very same diagram.

2. Consider the following commutative diagram

Gian Deflorin September 1, 2019 13



The Homotopy Hypothesis

A B

C

D E

g∈L

p∈R

h∈L

which we rewrite as the commuting solid arrow diagram

A B

C D E.

g∈L p∈R

h∈L

l

Since we are dealing with a WFS there exists a lift l (dotted arrow) in the above diagram.
Rearranging the diagram gives us a commuting solid arrow diagram

C B

D E.

l

h∈L p∈Rk

The same property of a WFS as before gives us another lift k (dotted arrow) making the
diagram commute. This gives us the commuting diagram

A B

C

D E

g∈L

p∈R

h∈L

k

i.e. g ◦ h has the LLP against R with respect to p i.e. g ◦ h ∈ L. The other case is dual.
It follows that L is closed under transfinite composition since it is given by colimits of
sequential composition and successive lifts against the underlying sequence. As above this
constitutes a cocone, the existence of the lift follows by its universal property.

3. Consider a commutative diagram

idA : A C A

idB : B D B

j i∈L j

we paste the commuting diagram

A X

B Y

j f∈R
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to it resulting in a solid commuting arrow diagram

A C A X

B D B Y

∈L ∈R

i

l

from the properties of a WFS we get a lift l (dotted arrow) making the above diagram
commutative. But then l ◦ i is a lift for the following diagram

A X

B Y

j ∈R

in other words, this means that j has the LLP against R but then j ∈ L. The other case
is as usual formally dual.

4. Let p ∈ R and consider a pullback diagram in C

Z
∏
X X

Z Y.

f∗p p

f

We need to show, that f ∗p has the RLP with respect to all i ∈ L. Consider now the
commutative diagram

A Z
∏
X

B Z.

i f∗p

g

We paste to get the commutative solid arrow diagram

A Z
∏
X X

B Z Y

i∈L p∈R

g

l

f

again since we are dealing with a WFS there is a lift l in the above diagram (dotted arrow).
We get a diagram

B

Z
∏
X X

Z Y

l

g

ĝ
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and by the universal property of pullbacks there is a unique map ĝ : B → Z. We are left
to show that the upper triangle of

A Z
∏
X

B Z

i f∗p
g

commutes. We have cones given by A → Z
∏
X → X and A

i−→ B
g−→ Z. Which gives a

diagram

A Z
∏
X

B Z
∏
X X

Z Y

where the dotted arrow is unique by the universal property of pullbacks. On the other
hand we get from A→ B → Z

∏
X → X and A→ B → Z a diagram

A

B Z
∏
X

Z
∏
X X

Z Y.

Again by the universal property of pullbacks we get a unique dotted map in the above
diagram. By uniqueness it now follows, that the maps A→ Z

∏
X and A→ B → Z

∏
X

are equal, hence the diagram

A Z
∏
X

B Z

i f∗p
g

commutes. Therefore f ∗p has the RLP with respect to all i ∈ L. The other case is dual.
5. Consider {(As is−→ Bs) ∈ L}s∈S a set of elements in L. Colimits in Fun([1],C ) are com-

puted componentwise. This product in Fun([1],C ) is the universal morphism out of the
coproduct of objects ∐s∈S As induced via the universal property by the set of morphisms
(is)s∈S : ∐s∈S As −→

∐
s∈S Bs. Consider∐

s∈S As X

∐
s∈S Bs Y.

(is)s∈S f∈R
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This is the cocone under the coproduct of objects, hence by the universal property of the
coproduct, we get an equivalence to the collection of solid arrow diagrams

As X

Bs Y

is∈L f∈R
ls

for every s ∈ S. From WFS we get a list ls : Bs → X for every s ∈ S (dotted arrow).
Now the above collection with the lifts is itself a cocone again by the universal property
of coproducts equivalent to a lift (ls)s∈S in∐

s∈S As X

∐
s∈S Bs S.

(is)i∈S f∈R
(ls)s∈S

Now the coproduct of the (ls)s∈S has the LLP against f ∈ R and hence (is)s∈S ∈ L. The
other case is again dual.

�

We state a remark which will be important for later, namely when we argue the model structures
on topological spaces and simplicial sets.

Remark 2.6. This result also holds if we consider a cocomplete category C and choose a class
of morphisms S in C and further L = S-proj and R = S-inj. That is to say, that the proof
is carried out in the exact same way as the original one about the closure properties. When we
speak of the closure properties we refer to both these versions depending on the situation. �

This remark and the above theorem now have the following consequence.

Corollary 2.7. Let C be a cocomplete category and S a class of morphisms in C . Then every
S-inj morphism has the RLP with respect to all relative S-cell complexes and their retracts.

Proof. Theorem 2.5 and Remark 2.6. �

Lemma 2.8 (Retract Argument). Consider a composite morphism f : X i−→ A
p−→ Y. Then the

following hold.
1. If f has the LLP against p, then f is a retract of i.
2. If f has the RLP against i, then f is a retract of p.

Proof. From the composite morphism we consider the following solid arrow diagram

X A

Y Y

i

f pl
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where the dotted arrow exists by assumption and we have p ◦ l = idY . We then consider the
diagram

idX : X X X

idY : Y A Y

f i f

l p

i.e. f is a retract of i. The second part is formally dual. �

2.2 Functorial Weak Factorisation Systems

First we introduce functorial factorisations via a functor construction to encapsulate the most
important properties of such a factorisation. It is indeed inspired by the definitions of [ERie09]
and [nLab].

Definition 2.9 (Functorial Factorisation). For C a category, a functorial factorisation of
the morphisms in C is a functor

F : Fun([1],C )→ Fun([2],C )

which is a section of the composition functor D1 : Fun([2],C ) → Fun([1],C ) i.e. such that
D1 ◦F = idFun([1],C ).

The following remark will help to clarify this definition.

Remark 2.10 (A Remark on Functorial Factorisations). The arrow category Arr(C ) is eqiva-
lent to the functor category Fun([1],C ), while Fun([2],C ) has as objects pairs of composable
morphisms in C .
There are 3 injective functors di : [1]→ [2] (di omits the index i in its image). By precomposition,
this induces a functor Di : Fun([2],C ) → Fun([1],C ). Here, D1 sends a pair of composable
morphisms to their composition.
More detailed, we have

di : [1]→ [2]
{0→ 1} 7→ {0→ 1→ 2},

where

d0: {1→ 2} 7−→
1

0 2

d2: {0→ 1} 7−→
1

0 2
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d1: {0→ 2} 7−→
1

0 2

So D1 sends maps f : A→ B, g : B → C in C to g ◦ f : A→ C i.e.

D1 : {A f−→ B
g−→ C} 7−→ {A g◦f−−→ C}

where F considers

{A g◦f−−→ C} 7−→
B

A C

gf

g◦f

i.e. F is a section for D1. �

Definition 2.11 (Functorial WFS - FWFS). A weak factorisation system on a category C is
called functorial (FWFS), if every morphism of C comes from a functorial factorisation as
described in Definition 2.9.

2.3 The Model Structure

Definition 2.12 (Two-out-of-Three). Let C be a category and W a class of morphisms of C .
For any two composable morphisms f, g of C , if two of f, g, g ◦ f are in W then so is the third.

Definition 2.13 (Category of Weak Equivalences). A category with weak equivalences is
a category C equipped with a subcategory W ⊆ C , which contains all isomorphisms of C and
satisfies the two-out-of-three property.

Definition 2.14 (Model Structure). A model structure on a category C is a triple (W , C,F)
of classes of morphisms in C , subject to

1. W turns C into a category with weak equivalences.
2. (C,F ∩W) and (C ∩W ,F) are two functorial weak factorisation systems on C .

Remark 2.15. We often denote the arrows in W by ∼−→ and call them weak equivalences,
the ones in C by ↪→ and call them cofibrations, finally the ones in F by � and call them
fibrations. �

Finally we are ready to state the amazing definition of a model category (in our case with the
addition of functorial factorisations).

Definition 2.16 (Model Category). A model category is a bicomplete category C equipped
with a model structure.
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When we will work with different model categories later on, we often use a subscript with the
respective classes of morphisms to better distinguish between them. For the above general model
category C , we would write WC , CC and FC for the respective classes of morphisms.
Remark 2.17. The bicompleteness condition yields the existence of an initial object, usually
denoted by ∅, and terminal object, usually denoted by ∗, for a model category C . �

A trivial but still important example is the following one.
Example 2.18. Any category can be endowed with the trivial model category structure, that is
the weak equivalences are the isomorphisms in this category and the fibrations and cofibrations
consist of any map in the category. If we consider a category C we usually denote this model
category structure by CT . J

The following lemma is from [ERie09]. A slightly more general statement of the lemma, not
relying on functorial factorisations, may also be found in [ERie09].
Lemma 2.19 ([ERie09]). Let C be a model category, then the class W is closed under retracts.

Proof. Let w ∈ W be a weak equivalence and suppose that we have a retract diagram

A C A

B D B.

f w f

Applying the functorial factorisation from (C ∩W ,F) to this diagram gives a diagram

A C A

V W V

B D B

g u g

h v h

with u, g ∈ C ∩W and v, h ∈ F such that w = v ◦u and f = h◦ g. The horizontal composites of
the first diagram are identities. Since we are dealing with functorial factorisations, the middle
horizontal composite of the above diagram is also an identity.
Hence, h is a retract of v. By the 2-3 property v is a weak equivalence, so v ∈ F ∩W and hence
h ∈ F ∩W since both classes of FWFS are closed under retracts. Thus f = h ◦ g ∈ W by the
2-3 property. �

With this lemma and all the work we did so far, we showed, that Definition 2.16 actually
coincides with the usual definition of a model category, where usual means a model category
with functorial factorisations, see for instance [MHov91]. Even if not, the above proof can be
slightly modified to not use functorial factorisations (see for instance [ERie09]) showing that
Definition 2.16 without using FWFS but just WFS is equivalent to the usual definition of a model
category as stated for example in [DwSp95], this definition can also be found in Appendix B of
the present work.
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Definition 2.20. 1. A map of a model category C which is a fibration and a weak equivalence
is called an acyclic fibration or trivial fibration, similarly a map which is a cofibration
and a weak equivalence is called an acyclic cofibration or trivial cofibration.

2. We denote by ∅ the initial object and by ∗ the terminal object in C .
3. An object A in C is called cofibrant, if the unique map ∅ → A is a cofibration and we

call the class of such objects C(C ).
4. An object A in C is called fibrant, if the unique map A → ∗ is a fibration and we call

the class of such objects F (C ).

Notice that the initial and terminal object in the above definition always exist, this follows from
the bicompleteness property of model categories.
The proof of the following result will already use material which we introduce in the next
sections. It is intentionally stated here as a nice termination of the discussion about model
categories. The proposition and proof is from Appendix E in [AnJo].

Proposition 2.21 ([AnJo]). A model category C is determined by its class of cofibrations C
together with its class of fibrant objects F (C ).

Proof. It is enough to show that the classW is determined by C and F (C ). The class of acyclic
cofibrations is determined by C, since the right class of a weak factorisation system is determined
by its left class. For any map u : A→ B, there exists a commutative square

A′ A

B′ B

u′ u

in which the horizontal maps are acyclic fibrations and the objects A′ and B′ are cofibrants.
The map u is acyclic iff the map u′ is acyclic. Hence it suffices to show that the class W ∩C is
determined by C and F (C ). If A and B are two objects of C , we denote by h(A,B) the set of
maps A→ B in the homotopy category Ho(C ). A map between two cofibrant objects u : A→ B
belongs to W iff the map h(u,X) : h(B,X)→ h(A,X) is bijective for every object X ∈ F (W).
If A is cofibrant in C and X ∈ F (W), then the set h(A,X) is a quotient of the set C (A,X)
by the left homotopy relation. Let us factor the codiagonal map A

∐
A → A as a cofibration

(i0, i1) : A∐A → Cyl(A) followed by an acyclic fibration Cyl(A) → A. The construction of
the cylinder object only depends on C. It follows that the left homotopy relation on the set
C (A,X) only depends on C. Hence also the set h(A,X). It follows that W is determined by C
and F (C ). �
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2.4 The Small Object Argument

We will now state one of the more important results, a tool which will be used to show that
a certain category is a model category. It will be especially useful for the categories Top of
topological spaces and sSet of simplicial sets, though we will use it in a form of another theorem
(the recognition theorem for cofibrantly generated model categories) which makes it somehow
easier to check our desired properties.
We use material from [PHir03] and [MHov91].

Definition 2.22 (Permit Small Object Argument). Let C be a model category and I a set of
morphisms in C . We say that I permits the small object argument, if the domains of the
elements of I are small relative to I-cell.

The next result is a very important one, it can be found in this form in [MHov91] or [PHir03],
the proof follows [MHov91].

Theorem 2.23 (The Small Object Argument). Let C be a cocomplete category and I a set
of morphisms in C . Suppose that I permits the small object argument, then any morphism
f ∈ C may be factored as

f : X ∈ I-cell−−−−→ Ef
∈ I-inj−−−−→ Y

in a functorial way.

Proof. Consider a cardinal κ such that every domain of I is κ-small relative to I-cell and λ a
κ-filtered ordinal. Given f : X → Y we will define a functorial λ-sequence Zf : λ → C such
that Zf

0 = X and a natural transformation Zf ρf−→ Y factoring f . Each map Zf
β → Zf

β+1 will
be a pushout of a coproduct of maps of I. Then we will define γf to be the composition of Zf

and δf to be the map Ef = colimZf → Y induced by ρf . γ and δ will depend on the choice
of colimit functor as well. It follows from the previous two lemmata that γf is a relative I-cell
complex.
Zf and ρf : Zf → Y will be defined by transfinite induction. We begin with Zf

0 = X and
ρf0 = f . Assume we have defined Zf

α and ρfα for all α < β for some limit ordinal β. Define
Zf
β = colimα<β Z

f
α and define ρfα to be the map induced by the ρfα. From Zf

β and ρfβ we define
Zf
β+1 and ρfβ+1 in the following way.

Let S be the set of all commutative squares

A Zf
β

B Y

g ρf
β

where g ∈ I. For s ∈ S let gs : As → Bs denote the corresponding map of I. Define Zf
β+1 to be

the pushout in the diagram
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∐
s∈S As Zf

β

∐
s∈S Bs Zf

β+1.

∐
gs

Define ρfβ+1 to be the map induced by ρfβ.

we are left to show that δf = colim ρfβ. Ef = colimZf
β → Y has the RLP with respect to I.

Indeed, assume we have a commutative square

A Ef

B Y

h

g δf

k

where g is a map of I. Since the domains of the maps of I are κ-small relative to I-cell there
is a β < λ such that h is the composite A

hβ−→ Zf
β → Ef . By construction there is a map

B
kβ−→ Zf

β+1 such that kβg = ihβ and k = ρβ+1kβ where i is the map Zf
β → Zf

β+1. The composition
B

kβ−→ Zf
β+1 → Ef is the required lift in our diagram. �

Corollary 2.24 ([MHov91]). Let I be a set of morphisms in a cocomplete category C . Suppose
also that I permits the small object argument. Then given f : A → B in I-cof, there is a map
g : A→ C in I-cell such that f is a retract of g by a map which fixes A.

Proof. By the small object argument we have a factorisation f = p ◦ g, where g ∈ I-cell and
p ∈ I-inj. f ∈ I-cof implies that f has the LLP with respect to p and so we conclude by the
retract argument. �

Proposition 2.25 ([MHov91]). Let I be a set of maps in a cocomplete category C . Suppose
that I permits the small object argument and A is some object which is small relative to I-cell.
Then A is in fact small relative to I-cof.

Proof. Assume A is κ-small relative to I-cell. Suppose that λ is a κ-filtered ordinal and X : λ→
C is a λ-sequence of I-cofibrations. We construct a λ-sequence Y of relative I-cell complexes
and natural transformations i : X → Y and r : Y → X with ri = 1 by transfinite induction.
Define Y0 = X0 and i0 and r0 to be the identity map. Having defined Yβ, iβ and rβ apply
functorial factorisations of the small object argument to the composite Yβ

rβ−→ Xβ
Xβ+1−−−→ to

obtain gβ : Yβ → Yβ+1 and rβ+1 : Yβ+1 → Xβ+1 with gβ ∈ I-cell, rβ+1 ∈ I-inj and rβ+1gβ = fβrβ.
Then we have a solid arrow commutative diagram

Xβ Yβ+1

Xβ+1 Xβ+1.

gβ◦iβ

fβ rβ+1
iβ+1
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Since fβ ∈ I-cof and rβ+1 ∈ I-inj there is a lift in the above diagram (dotted arrow). For
limit ordinals β we define Yβ = colimα<β iβ = colimα<β iα and rβ = colimα<β rα. Now the map
colim C (W,Xβ) → C (W, colimXβ) is a retract of the corresponding map for Y . Since W is
κ-small relative to I-cell the corresponding map for Y is an isomorphism. Therefore the map X
must also be an isomorphism and so W is κ-small relative to I-cof as well. �

The reason for the above proposition is, that some authors use I-cof instead of I-cell in the
definition of permitting the small object argument.

2.5 Cofibrantly Generated Model Categories

Cofibrantly generated model categories are particularly nice to work with, as they provide
the small object argument. Most likely the notion is derived from an attempt to generalise
the concept observed in the specific cases of topological spaces and simplicial sets. These two
examples of cofibrantly generated model categories will be discussed later. Another helpful fact
is that most categories used in practice, turn out to be cofibrantly generated.
Furthermore this kind of model category turns out to be very helpful in order to establish
Quillen pairs between certain categories, but more on that later.
It is also an important notion in order to define the model structures which will follow, these
include for example cellular model categories in which we are particularly interested.
We will follow [MHov91], [PHir03] and [nLab].

Definition 2.26. Let C be a model category. We say that a triple (C , I, J) is a cofibrantly
generated model category for sets I and J of morphisms of C if

1. I and J permit the small object argument.
2. The class of fibrations is J-inj.
3. The class of acyclic fibrations is I-inj.

Notation 2.27. We refer to I as the set of generating cofibrations and to J as the set
of generating acyclic cofibrations. Sometimes we may put a subscript to emphasise the
category we are considering i.e. IC or JC .

We summarise some properties about cofibrantly generated model categories.

Proposition 2.28 ([PHir03]). Let (C , I, J) be a cofibrantly generated model category.
1. The cofibrations form the class I-cof.
2. Every cofibration is a retract of a relative I-cell complex.
3. The domains of I are small relative to the cofibrations.
4. The acyclic cofibrations form the class of J-cof.
5. Every acyclic cofibration is a retract of a relative J-cell complex.
6. The domains of J are small relative to the acyclic cofibrations.

Proof. Immediate consequence of Corollary 2.24 and Proposition 2.25. �

Therefore we also have the following corollary.
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Corollary 2.29. Let (C , I, J) be a cofibrantly generated model category. Then we have
1. I-cof = LLP (RLP (I)).
2. J-cof = LLP (RLP (J)).

Proposition 2.28 and Corollary 2.29 really give us an idea, why cofibrantly generated model
categories are called the way they are. Indeed, the proposition tells us, that I-cof is the class of
cofibrations and J-cof is the class of acyclic cofibrations. The corollary says, that any of these
can be created with the left and right lifting properties from the sets I and J respectively.

Remark 2.30. The functorial factorisations in a cofibrantly generated model category need not
be given by the small object argument, but those factorisations are always available. Even though
some authors define cofibrantly generated model categories in such a way, that these functorial
factorisations are choosen. This is for instance the case in [PHir03], however we followed the
definition of [MHov91]. �

2.5.1 The Recognition Theorem

It follows one of the more important results, which gives a way to determine if a category admits
the structure of a cofibrantly generated model category. This theorem was due to D. M. Kan
and can be found in this form in [MHov91] or [PHir03], the proof will follow [MHov91].

Theorem 2.31 (Recognition Theorem for Cofibrantly Generated Model Categories). Let
C be a bicomplete category. Suppose W is a subcategory of C and I and J are sets of maps
of C . Then there is a cofibrantly generated model structure (C , I, J) on C , with W as the
subcategory of weak equivalences iff the following conditions hold.

1. The subcategory W has the 2-3 property and is closed under retracts.
2. I and J permit the small object argument.
3. J-cof ⊆ W ∩I-cof and I-inj ⊆ W ∩J-inj.
4. W ∩I-cof ⊆ J-cof or W ∩J-inj ⊆ I-inj.

Proof. The conditions hold for a cofibrantly generated category. For the other implication sup-
pose that we have a category C with a subcategory W and sets of maps I and J satisfying the
hypotheses of the theorem. Define a map to be a fibration iff it is in J-inj and define a map to
be a cofibration iff it is in I-cof. Then the fibrations and cofibrations are closed under retracts.
It follows from the hypotheses that every map in J-cell is an acyclic cofibration and also that
every map in I-cell is an acyclic fibration.
We define functorial factorisations f = β(f) ◦ α(f) = δ(f) ◦ γ(f) by using the small object
argument on I and J respectively by choosing colimit functors and appropriate cardinals. Thus
α(f) is in I-cell and is hence a cofibration, β(f) is in I-inj and hence an acyclic fibration γ(f)
is in J-cell and hence an acyclic cofibration and δ(f) is in J-inj and hence a fibration.
We use the last hypotheses to conclude. AssumeW ∩I-cof ⊆ J-cof, then every acyclic cofibration
is in J-cof and so has the LLP with respect to the fibrations which form the class J-inj. Given an
acyclic fibration p : X → Y we need to show that p has the RLP with respect to all cofibrations
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or equivalently with respect to I. We can factor p = β(p) ◦α(p) where α(p) is a cofibration and
β(p) ∈ I-inj. Since W has the 2-3 property α(p) is an acyclic cofibration. Hence p has the RLP
with respect to α(p). The retract argument gives us that p is a retract of β(p) so p ∈ I-inj as
required.
A similar argument concludes the case for W ∩J-inj ⊆ I-inj. �

We will now state a very nice result which was originally due to D. M. Kan. It basically sais
that under certain conditions, there is an induced cofibrantly generated model structure on a
category if there is an adjuncion between the categories. This version and also the proof of the
statement can be found as Theorem 11.3.2 in [PHir03].

Theorem 2.32 ([PHir03]). Let (C , I, J) be a cofibrantly generated model category. Let D
be a bicomplete category, and let F : C

//
Doo _ : U be a pair of adjoint functors. If we let

FI = {Fu | u ∈ I} and FJ = {Fv | v ∈ J} and if in addition
1. FI and FJ permit the small object argument
2. U takes relative FJ-cell complexes to weak equivalences

then there is a cofibrantly generated model category structure (D , F I, FJ) on D and the
weak equivalences are the maps that U takes into a weak equivalence in C .

The main advantage of working with cofibrantly generated model categories is, that it will be
easier to check that functors are Quillen functors. Even though Quillen pair will be defined
later, it is best to state this result already here.

Lemma 2.33 ([MHov91]). Let (C , I, J) be a cofibrantly generated model category and D a model
category. Assume that F : C

//
Doo _ : U is an adjunction pair. Then F : C

//
Doo _ : U is a

Quillen pair iff Ff is a cofibration for all f ∈ I and Ff is an acyclic cofibration for all f ∈ J .

Proof. The right implication is clear. For the other one Lemma 1.34 says that F (I-cof) ⊂ FI-cof.
Let C be the class of cofibrations in D . Then by hypothesis FI ⊂ C and so FI-cof ⊂ C-cof. But
the definition of a model category implies that C-cof = C. Therefore F (I-cof) ⊂ C and so F
preserves cofibrations. A similar argument shows that F preserves acyclic cofibrations and so F
is a left Quillen functor. �

Remark 2.34. The combination of the above theorem and lemma, implies that if we are able to
apply Theorem 2.32, then we automatically get a Quillen pair between the two categories. Since
we are most interested about Quillen equivalences, this is a great step in the right direction. As
we will see in Part III, it is enough to only apply the lemma to give us some desired Quillen
pairs. �
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2.6 Cellular Model Categories

Here we will give the definition of one of the most important model structures. As far as I
know they were first introduced by P. Hirschhorn in [PHir03]. They are based on the cofibrantly
generated model structure. This class of model structure turns out to be one of the largest classes,
where Bousfield localisations exist for any class of morphisms from the underlying category,
under the assumption that we are also left respectively right proper.
This section follows [PHir03] and will be needed for the existence of left Bousfield localisations.

Definition 2.35 (Regular Monomorphism). A regular monomorphism is a morphism
f : A→ B in some category C which occurs as the equaliser of some pair of parallel morphisms
D ⇒ E i.e. for which a diagram of the form

C
f−→ D ⇒ E

exists.

Definition 2.36 (Effective Monomorphism). Let C be a category that is closed under pushouts.
The map f : A→ B in C is an effective monomorphism if f is the equaliser of the pair of
natural inclusions

B ⇒ B
∐
A

B.

Example 2.37. In Set the class of effective monomorphisms is the class of injective maps. But
then again in Set effective epimorphisms are also the class of surjective maps, so at least in this
case we can not see what makes them ”effective” morphisms. Still as an example this should be
good enough. J

Definition 2.38 (Cellular Model Category). A cellular model category is a cofibrantly
generated model category C such that

1. the domains and codomains of the elements of I are compact.
2. the domains of the elements of J are small relative to I.
3. the cofibrations are effective monomorphisms.

The following results will be helpful for later, when we show that certain categories are cellular
ones.

Proposition 2.39 ([PHir03]). If C is a category that is closed under pushouts, then a map is
an effective monomorphism iff it is a regular monomorphism.

Proof. If f : A→ B is an effective monomorphism it is defined to be the equaliser of a particular

pair of maps. Conversely if f : A→ B is the equaliser of the maps B W

g

h

then g and h

factor as

B B
∐
AB W

i0

i1

g
∐
h
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and we must show that f is the equaliser of i0 and i1. Since (g∐h)i0 = g and (g∐h)i1 = h this
follows by definition. �

Proposition 2.40 ([PHir03]). If C is a category that is closed under pushouts, then an effective
monomorphism is a monomorphism.

Proof. Let f : A → B be an effective monomorphism and let g : W → A and h : W → A be
maps such that fg = fh. If i0 and i1 are natural maps from B to B∐AB, then i0f = i1f and
so i0fg = i1fg and i0fh = i1fh. The universal property of the equaliser now implies g = h. �

Proposition 2.41 ([PHir03]). If C is a category that is closed under pushouts, then the class
of effective monomorphisms is closed under retracts.

Proof. If f : A→ B is a retract of g : C → D, then we have a diagram

A C A

B D B

B
∐
AB D

∐
C D B

∐
AB

f g f

i0 i1 j0 j1 i0 i1

in which all of the horizontal compositions are identity maps. If g is an effective monomorphism
then g is the equaliser of j0 and j1. By a diagram chase argument it follows that f is the equaliser
of i0 and i1. �

Proposition 2.42 ([PHir03]). Let (C , I, J) be a cofibrantly generated model category. If relative
I-cell complexes are effective monomorphisms then all cofibrations are effective monomorphisms.

Proof. This follows from Proposition 2.28 and Proposition 2.41. �

2.6.1 The Recognition Theorem

We state the recognition theorem for cellular model categories. This theorem was due to P.
Hirschhorn and appears in [PHir03].

Theorem 2.43 (Recognition Theorem for Cellular Model Categories). Let C be a model
category, then C is a cellular model category if there are sets I and J of maps in C such
that:

1. a map is an acyclic fibration iff it has the RLP with respect to every element of I
2. a map is a fibration iff it has the RLP with respect to every element of J
3. the domains and codomains of the elements of I are compact relative to I
4. the domains of the elements of J are small relative to I
5. relative I-cell complexes are effective monomorphisms.
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Proof. This is Theorem 12.1.9 in [PHir03]. One shows that I permits the small object argument
therefore I is the set of generating cofibrations for C . One then shows that J is the set of
generating acyclic cofibrations. Finally one concludes by Proposition 2.42. �

Remark 2.44. It is worth pointing out, that if we already have a cofibrantly generated model
category and want to show that it is a cellular model category, it is indeed enough to only verify
conditions 3. and 5. of the above theorem. We will make use of this observation later on. �

2.7 Combinatorial Model Categories

This section is more for completion, since combinatorial model categories yield another large
class of categories, where the Bousfield localisation exists for any class of morphisms in the
underlying category, under the assumption that we are also left respectively right proper.
We will follow [ClBa] and [nLab].

Definition 2.45 (Locally Presentable). A category C is locally presentable if it satisfies the
following conditions:

1. C is cocomplete.
2. There is a small set S of objects in C which generates C Under colimits i.e. every object

of C may be obtained as the colimit of a small diagram taking values in S.
3. Every object in C is small.
4. C is a locally small category.

Definition 2.46 (Combinatorial). A model category C is combinatorial if it is locally pre-
sentable as a category and cofibrantly generated as a model category.

Definition 2.47 (Accessible). A locally small category C is κ-accessible for a regular cardinal
κ if

1. the category has κ-filtered colimits
2. there is a set of κ-compact objects that generate the category under κ-filtered colimits.

If there is such a κ for a category C , then C is called an accessible category.

2.7.1 The Recognition Theorem

The theorem and the concept of this type of categories was originally due to Smith. The result
appears in a similar form with proof as Proposition 1.7 in [ClBa], the form stated here originates
from [nLab].

Gian Deflorin September 1, 2019 29



The Homotopy Hypothesis

Theorem 2.48 (Recognition Theorem for Combinatorial Model Categories). If C is a
locally presentable category, ArrW(C ) ⊆ Arr(C ) an accessible full subcategory of the arrow
category Arr(C ) on a class W ⊆ Mor(C ), I ⊆ Mor(C ) a proper set of morphisms in C
such that

1. W has the 2-3 property
2. I-inj ⊂ W
3. C(I) ∩W closed under pushouts and transfinite composition

then C is a combinatorial model category with weak eqivalences W and cofibrations C(I)
and fibrations inj(W ∩C(I)).

2.8 Simplicial Model Categories

This section is also mainly for completion and also since this type of model structure is a very
important one for a lot of applications.
Definition 2.49 (Simplicial Category). A simplicial category C is a category together with
the following data.

1. (Function Complex) for every X, Y ∈ ob(C ) a simplicial set Map(X, Y )
2. (Composition Rule) for every X, Y, Z ∈ ob(C ) a map of simplicial sets

cX,Y,Z : Map(Y, Z)×Map(X, Y )→ Map(X,Z)

3. for every X ∈ ob(C ) a map of simplicial sets i∗ : ∗ → Map(X,X), here ∗ denotes the
simplicial set with a single point

4. for every X, Y ∈ ob(C ) an isomorphism

Map(X, Y )0 ∼= C (X, Y )

commuting with the composition rule
such that for all W,X, Y, Z ∈ ob(C ) the following diagrams commute

1. (Associativity)

(Map(Y, Z)×Map(X, Y ))×Map(W,X) Map(X,Z)×Map(W,X)

Map(Y, Z)× (Map(X, Y )×Map(W,X))

Map(Y, Z)×Map(W,Y ) Map(W,Z)

cX,Y,Z×1Map(W,X)

∼=

cW,X,Z

1Map(Y,Z)×cW,Y,Z

cW,Y,Z

2. (Left Unit)

∗ ×Map(X, Y ) Map(Y, Y )×Map(X, Y )

Map(X, Y )
∼=

iY ×1Map(X,Y )

cX,Y,Y
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3. (Right Unit)

Map(X, Y )× ∗ Map(Y, Y )×Map(X, Y ).

Map(X, Y )
∼=

iY ×1Map(X,Y )

cX,X,Y

Definition 2.50 (Simplicial Model Category). A simplicial model category is a model
category C that is also a simplicial category such that the following hold.

1. For any X, Y ∈ ob(C ) and for simplicial set K there are objects X ⊗ K and Y K of C
such that there are isomorphisms of sets

Map(X ⊗K,Y ) ∼= Map(K,Map(X, Y )) ∼= Map(X, Y K)

natural in X, Y and K.
2. If i : A→ B is a cofibration and p : X → Y is a fibration then the map of simplicial sets

Map(B,X) i∗×p∗−−−→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration that is an acyclic fibration if either i or p is a weak equivalence.

Remark 2.51. Basically, a simplicial model category is a model category enriched over sSetQ
in a compatible way, but the Quillen model structure on sSet will be discussed in a later section.

�

2.9 Proper Model Categories

We introduce the last type of categories needed in order to permit the existence of Bousfield
localisations with respect to any class of morphismsm of a given category. We will see later that
both the category of topological spaces and the one of simplicial sets are left and right proper.

Definition 2.52 (Proper Categories). Let C be a model category.
1. C will be called left proper if every pushout of a weak equivalence along a cofibration is

a weak equivalence.
2. C is called right proper if every pullback of a weak equivalence along a fibration is a

weak equivalence.
3. C is called proper if it is both left proper and right proper.

The following result is especially powerful, though also not at all easy to prove. Anyways it has
a very nice consequence in the form of the following proposition. It can be found as Proposition
13.1.2 in [PHir03].
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Proposition 2.53 (C. L. Reedy, [PHir03]). Let C be a model category.
1. Every pushout of a weak equivalence between cofibrant objects along a cofibration is a weak

equivalence.
2. Every pullback of a weak equivalence between fibrant objects alsong a fibration is a weak

equivalence.

Corollary 2.54 ([PHir03]). Let C be a model category.
1. If every object of C is cofibrant then C is left proper.
2. If every object of C is fibrant then C is right proper.
3. If every object of C is both cofibrant and fibrant then C is proper.

Proof. Consequence of Proposition 2.53. �
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3 Homotopy

Let C be a model category and fix two objects A and X in C . The goal is to construct some
reasonable homotopy relations on C (A,X). This relation will indeed turn out to be an equiv-
alence relation, the main reason for defining this is to be able to define the category of fibrant
cofibrant objects modulo this equivalence relation. The existence of this category will depend
upon this chapter. This category will turn out to have nice properties, especially it remains
locally small if the initial category was already locally small.
When we define the homotopy category of a model category this construction will help us to
show that the definition of the homotopy category, which will be a localisation, preserves a lot
of good properties from the original category. That is, our main concern that we will remain
locally small should not be a problem at all anymore. We will achieve this by showing that the
homotopy category is equivalent to the category of fibrant cofibrant objects modulo the above
equivalence relation.
We will follow [DwSp95] with some inspiration from [nLab] other references include [PHir03]
and [MHov91]. That is, most of the statements are from [DwSp95] but we provide a lot more
detailed proofs to all these statements.

3.1 Homotopy Relations on Maps

3.1.1 Cylinder and Path Objects

Definition 3.1 (Cylinder and Path Object). Let C be a model category and A,X two objects
in C .
A cylinder object for A is an object Cyl(A) of C together with a diagram

∆A : A
∐
A

i=(i0,i1)−−−−−→ Cyl(A) ∼−→ A

which is a factorisation of the codiagonal map (or folding map)

∆A : A
∐
A→ A.

We call a cylinder object Cyl(A)
1. a good cylinder object if A∐A→ Cyl(A) is a cofibration.
2. a very good cylinder object if it is a good cylinder object and if in addition the map

Cyl(A)→ A is an (acyclic) fibration.
Dually we define a path object for X to be an object Path(X) of C together with a diagram

∇X : X ∼−→ Path(X) p=(p0,p1)−−−−−→ X
∏
X

which is a factorisation of the diagonal map

∇X : X → X
∏
X.

We call a path object Path(X)
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1. a good path object if Path(X)→ X
∏
X is a fibration.

2. a very good path object if it is a good path object and if in addition the map X →
Path(X) is an (acyclic) cofibration.

The following example is inspired by [nLab].
Example 3.2. In the category Top of topological spaces, with the Quillen model structure
(which we will define later) a cylinder object for some object X in Top would be the standard
cylinder object X × [0, 1]. In the model structure of Quillen a sufficient condition for X × [0, 1]
to be good, is that X is a CW complex. From this example one really sees, why such an object
is called cylinder object.

X

X × {1}

X × {0}

X × [0, 1]

1

0
i0

i1

J

Remark 3.3. Notice, that there is always the trivial cylinder and path object for every object
in a model category C . Just choose Cyl(A) := A or Path(X) := X for some objects A and X
in C . Also, as we will see in the next lemma, since we may factor ∆ and ∇, there will always
exist one specific cylinder and path object for some object in C . �

Lemma 3.4. Let C be a model category and let A and X be objects in C . Then the following
holds:

1. There is at least one very good cylinder object for A.
2. There is at least one very good path object for X.

Proof. Consider the codiagonal map ∆A : A∐A→ A, which we may factor as

∆A : A
∐
A

(i0,i1)
↪−−−→ B

∼−→
p
→ A.

Define B := Cyl(A), which is now a very good cylinder object for A. This concludes the first
part, the second follows by duality. �

Lemma 3.5 ([DwSp95]). Let C be a model category.
1. If A is a cofibrant object in C and Cyl(A) is a good cylinder object for A, then the maps

i0, i1 : A→ Cyl(A) are acyclic cofibrations.
2. If X is a fibrant object in C and Path(X) is a good path object for X, then the maps

p0, p1 : Path(X)→ X are acyclic fibrations.
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Proof. Consider the identity map idA : A→ A, by Definition 3.1 we get

idA : A i0−→ Cyl(A) ∼−→
p
A and idA : A i1−→ Cyl(A) ∼−→

p
A

idA and p are weak equivalences and hence, by the 2-3 property we get that i0 and i1 must be
weak equivalences.
Since A is cofibrant we have by definition a map ∅ → A and A

∐
A is defined via the pushout

diagram

∅ A

A A
∐
A.

t

l in0

in1

Notice that this diagram is well defined and commutes, since l is unique and hence we must
have equality in0 ◦ l = in1 ◦ l.
in0 is the pushout of l which is a cofibration and in1 is the pushout of t which is also a cofibration
since A is cofibrant.
Hence in0 and in1 are both cofibrations. We have i0 = i ◦ in0 and i1 = i ◦ in1 for i : A∐A →
Cyl(A).

Since Cyl(A) is a good cylinder object it follows that A∐A i−→ Cyl(A) is a cofibration. Consider

i0 : A in0−−→ A
∐
A

i−→ Cyl(A) and i1 : A in1−−→ A
∐
A

i−→ Cyl(A).

in0, in1 and i are all cofibrations then so are the composites i0 and i1. The second property
follows by a dual argument. �

3.1.2 Left and Right Homotopy

Next we define the notions of left and right homotopy.

Definition 3.6 (Left and Right Homotopy). Let C be a model category and f, g : A→ X two
parallel morphisms in C .
A left homotopy η : f ⇒L g from f to g is a morphism η : Cyl(A) → X from a cylinder
object of A such that the following diagram commutes

A Cyl(A) A.

X

i0

f
η

i1

g

A left homotopy is called
1. a good left homotopy if Cyl(A) is a good cylinder object.
2. a very good left homotopy if Cyl(A) is a very good cylinder object.
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Dually, a right homotopy η : f ⇒R g from f to g is a morphism η : A → Path(X) to some
path object of X such that the following diagram commutes

A

X Path(X) X.

f g
η

p0 p1

A right homotopy is called
1. a good right homotopy if Path(X) is a good path object.
2. a very good right homotopy if Path(X) is a very good path object.

The following example is inspired from [nLab].

Example 3.7. In Top the category of topological spaces, consider two maps f, g : X → Y . A
left homotopy η : F ⇒L g is a continuous function η : X × [0, 1] → Y such that it fits in a
commutative diagram of the form

X X × [0, 1] X.

Y

i0

f
η

i1

g

In words, η deforms f into g in a continuous way. As a picture, one may think of it in the
following way

X

X × {1}

X × {0}

X × [0, 1]

1

0

Y

η

f

g

i0 i1 g

f

J
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Lemma 3.8 ([DwSp95]). Let C be a model category and f, g : A→ X two morphisms in C .
1. If f ⇒L g : A→ X is a left homotopy η then there exists a good left homotopy from f to

g.
2. If f ⇒L g : A → X is a left homotopy η and X is in addition fibrant then there exists a

very good left homotopy from f to g.
3. If f ⇒R g : A→ X is a right homotopy η then there exists a good right homotopy from f

to g.
4. If f ⇒R g : A→ X is a right homotopy η and A is in addition cofibrant then there exists

a very good right homotopy from f to g.

Proof. 1. Consider the map
A
∐
A→ Cyl(A)→ A,

which we get from our left homotopy η : f ⇒L g.
Now we apply functorial factorisations to A∐A → Cyl(A), hence there exists an object
Cyl′(A) such that

A
∐
A ↪→ Cyl′(A) ∼−→→ Cyl(A).

Therefore
A
∐
A ↪→ Cyl′(A) ∼−→→ Cyl(A) ∼−→ A.

Finally this gives us
A
∐
A ↪→ Cyl′(A) ∼−→ A.

Hence Cyl′(A) is a good cylinder object, which gives us a good left homotopy η′ : f ⇒L g.
2. By 1. we have that there exists a good left homotopy for f and g, say η : f ⇒L g : A→ X.

Therefore we know the existence of a good cylinder object Cyl(A) i.e.

A
∐
A ↪→ Cyl(A) ∼−→ A.

We factor the map Cyl(A) ∼−→ A by applying functorial factorisations and the 2-3 property
as

Cyl(A) ∼
↪−→ Cyl′(A) ∼−→→ A.

We have
A
∐
A ↪→ Cyl(A) ∼

↪−→ Cyl′(A) ∼−→→ A

and hence
A
∐
A ↪→ Cyl′(A) ∼−→→ A

meaning that Cyl′(A) is a very good cylinder object.
Therefore we have that

Cyl(A) ∼
↪−→ Cyl′(A)

is a weak equivalence.
Next we will use that X is fibrant, hence we get a diagram (since ∗ is our terminal object)

Cyl(A) X

Cyl′(A) ∗.

η

a b
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Since a is an acyclic cofibration and b is a fibration we may apply properties of FWFS to
this diagram to get a lift η′ : Cyl′(A)→ X

Cyl(A) X

Cyl′(A) ∗

η

a b
η′

which gives us a left homotopy η′ : Cyl′(A) → X from f to g. η′ is a very good left
homotopy from f to g, since Cyl′(A) is a very good cylinder object.

The remaining properties follow by duality of the first two. �

Lemma 3.9 ([DwSp95]). Let C be a model category and let f, g : A→ X be two morphisms in
C .

1. Let A be cofibrant and η : f ⇒L g a left homotopy from f to g. Then f is a weak
equivalence iff g is a weak equivalence.

2. Let X be fibrant and η : f ⇒R g a right homotopy from f to g. Then f is a weak equivalence
iff g is a weak equivalence.

Proof. By Lemma 3.8 1. we may choose a good left homotopy. Consider the diagram

A
∐
A

A Cyl(A) A.

X

i

i0

f

in0

η

in1

i1

g

Now, since A is fibrant, we have by Lemma 3.5 that i, i0 and i1 are acyclic cofibrations, meaning
that they are weak equivalences.
From the above diagram we get

f = η ◦ i0 and g = η ◦ i1.

”⇒ ” : We assume that f is a weak equivalence, but then since f = η ◦ i0 it follows by the 2-3
property that η is also a weak equivalence. From g = η ◦ i1 and another application of the 2-3
property we get that g is a weak equivalence.
” ⇐ ” : On the other hand, assume now, that g is a weak equivalence, since g = η ◦ i1 and by
the 2-3 property we have that η must be a weak equivalence. Again, since f = η ◦ i0 by the 2-3
property it follows immediately, that f itself is a weak equivalence. The second part is the dual
statement. �

Lemma 3.10 ([DwSp95]). Let C be a model category.
1. If A ∈ C is cofibrant, then ⇒L is an equivalence relation on C (A,X).
2. If X ∈ C is fibrant, then ⇒R is an equivalence relation on C (A,X).
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Proof. As usual we need to show reflexivity, symmetry and transitivity.
Reflexivity: Just consider A = Cyl(A), since A∐A→ A→ A fulfills Definition 3.1. Therefore
we may consider the homotopy f ⇒L f from f to f , which is well defined.
Symmetrie: We define a switching map. Let η : f ⇒L g be a left homotopy from f to g i.e.

A
∐
A

A Cyl(A) A.

X

i

i0

f

in0

η

in1

i1

g

Relabeling the diagram gives us

A
∐
A

A Cyl(A) A.

X

i

i1

g

in1

η

in0

i0

f

Which means that we have a left homotopy η : g ⇒L f from g to f
Transitivity: Suppose that we have a left homotopy from f to g, say η : f ⇒L g and a left
homotopy from g to h, say ν : g ⇒L h.
Since η is a left homotopy, there exists a good left homotopy by part one of Lemma 3.8 η′ :
Cyl(A)→ X from f to g and from the same lemma, we get the existence of a good left homotopy
ν ′ : Cyl′(A)→ X. Therefore

A
∐
A ↪→ Cyl(A) ∼−→ A and A

∐
A ↪→ Cyl′(A) ∼−→ A. (1)

We use the following diagram to conclude

A
∐
A A

∐
A

A Cyl(A) A Cyl′(A) A.

X X

i i′

i0

f

in0

η′

in1

i1

g

i′0

in′0

g ν′

in′1

i′1

h

Since A is cofibrant, we know from Lemma 3.5 part 1. that i0, i′0, i1 and i′1 are all acyclic
cofibrations, hence

Cyl(A) i1←−
∼
A

i′0−→
∼

Cyl′(A).

From this we construct a pushout and call it Cyl′′(A)
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A Cyl′(A)

Cyl(A) Cyl′′(A).

i′0

i1

Notice that this diagram must exist due to bicompleteness. We need to show, that Cyl′′(A) is
indeed a cylinder object for A.
We use the universal property of the above pushout to get the following diagram

A Cyl′(A)

Cyl(A) Cyl′′(A)

A

i′0

i1 a0

∼

a1

∼

p

therefore there is a unique map p : Cyl′′(A)→ A. Furthermore we get

A
∐
A

(a0◦i′0,a1◦i1)−−−−−−−→ Cyl′′(A) ∼−→
p
A.

a0 and a1 are weak equivalences since weak equivalences are stable under pushouts meaning
that p itself is a weak equivalence by the 2-3 property.
Hence we get that that Cyl′′(A) is indeed a cylinder object for A.
We will use the same trick for the missing left homotopy, consider the pushout

A Cyl′(A)

Cyl(A) Cyl′′(A)

X.

i′0

i1 a0
ν′

a1

η′

η′′

Once more by the universal property of pushouts we get a unique map η′′ : Cyl′′(A)→ X, which
is the desired left homotopy η′′ : f ⇒L h from f to h. The second part follows from duality. �

Let πL(A,X) denote the set of equivalence classes of C (A,X) under the equivalence relation
generated by ⇒L. Furthermore, let πR(A,X) denote the set of equivalence classes of C (A,X)
under the equivalence relation generated by ⇒R.
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Lemma 3.11 ([DwSp95]). Let C be a model category A, X objects in C and p : Y → X,
i : A→ B morphisms in C .

1. Let A be cofibrant and consider the map p : Y → X to be an acyclic fibration, then
composition with p induces a bijection

p∗ : πL(A, Y )→ πL(A,X)
[f ] 7→ [p ◦ f ]

2. Let X be fibrant and consider the map i : A → B to be an acyclic cofibration, then
composition with i induces a bijection

i∗ : πR(B,X)→ πR(A,X)
[f ] 7→ [f ◦ i]

Proof. We show that p∗ is well-defined, injective and surjective.
Well defined: Let f, g : A → Y be two parallel maps in C and let η : f ⇒L g be a left
homotopy from f to g. Then p ◦ η : p ◦ f ⇒L p ◦ g is a left homotopy from p ◦ f to p ◦ g. Indeed
we have a diagram

A Cyl(A) A

Y

X

p◦f

f
η

g

p◦g
p

giving the desired left homotopy.
Surjectivity: Let [f ] ∈ πL(A,X). A is cofibrant and p : Y → X an acyclic fibration, we
consider the diagram

∅ Y

A X.

i p

f

By the properties of FWFS (since i is a cofibration and p an acyclic fibration), there exists a
lift g : A→ Y

∅ Y

A X.

i p
g

f
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We then have, by the commutativity of the above diagram

p∗(g) def.= [p ◦ g] = [f ].

Now, since [f ] ∈ πL(A,X) was arbitrary, we are done.
Injectivity: Let f, g : A→ Y be two parallel maps in C and say that

p ◦ f ⇒L p ◦ g : A→ X

is a left homotopy from p ◦ f to p ◦ g. Therefore, by Lemma 3.8 we have a good left homotopy,
say η : Cyl(A)→ X and hence

A
∐
A

i
↪−→ Cyl(A) ∼−→ A,

where Cyl(A) is a good cylinder object.
Now consider the diagram

A
∐
A Y

Cyl(A) X.

(f,g)

i p

η

Then there exists a lift η′ : Cyl(A)→ Y in the above diagram, by the properties of FWFS. But
this lift is precisely the map defining our desired left homotopy

η′ : f ⇒L g.

Therefore if p ◦ f ⇒L p ◦ g then f ⇒L g due to the following diagram

A Cyl(A) A.

Y

X

p◦f

f
η

g

p◦g
p

The rest holds by a dual argument. �

Lemma 3.12 ([DwSp95]). Let C be a model category A, X objects in C and f, g : A → X
morphisms in C .

1. Let X be fibrant and consider a left homotopy from f to g i.e. η : f ⇒L g. For h : A′ → A
in C , there exists a left homotopy

f ◦ h⇒L g ◦ h.

2. Let A be cofibrant and consider a right homotopy from f to g i.e. η : f ⇒R g. For
h : X → Y in C , there exists a right homotopy

h ◦ f ⇒R h ◦ g.
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Proof. From the left homotopy η : f ⇒L g and that X is fibrant we get by Lemma 3.8 that
there must exist a very good homotopy from f to g

η′ : Cyl(A)→ X,

with
A
∐
A ↪−→ Cyl(A) ∼−→

m
→ A,

for Cyl(A) a very good cylinder object.
Let us choose a good cylinder object Cyl(A′) for A′ i.e.

A′
∐
A′

j
↪−→ Cyl(A′) ∼−→

l
A′.

Consider the diagram

A′
∐
A′ A

∐
A Cyl(A)

Cyl(A′) A′ A

(h,h)

j

i

∼

l h

i.e.
A′
∐
A′ Cyl(A)

Cyl(A′) A.

i◦(h,h)

j ∼

h◦l

Now, by the properties of FWFS, there must exist a lift k : Cyl(A′) → Cyl(A) in the above
diagram.
Hence, we have

A′
∐
A′ → Cyl(A′) k−→ Cyl(A) η′−→ X.

Therefore we have a left homotopy

η′ ◦ k : f ◦ h⇒L g ◦ h.

The second part is the dual argument. �

Lemma 3.13 ([DwSp95]). Let C be a model category and A, X objects in C .
1. Let X be fibrant, then the composition in C induces a map

πL(A′, A)× πL(A,X)→ πL(A′, X)
([h], [f ]) 7→ [f ◦ h].

2. Let A be cofibrant, then the composition in C induces a map

πR(A,X)× πR(X, Y )→ πR(A, Y )
([h], [f ]) 7→ [f ◦ h].

Proof. We want to show that if h⇒L k : A′ → A and f ⇒L g : A→ X, then

f ◦ h and g ◦ k

represent the same element in πL(A′, X).
For this, we may show that

η : f ◦ h⇒L g ◦ h : A′ → X and ν : g ◦ h⇒L g ◦ k : A′ → X

Gian Deflorin September 1, 2019 43



The Homotopy Hypothesis

are left homotopies.
From Lemma 3.12 we immediately get the homotopy η.
For ν consider the left homotopy ν ′ : h⇒L k i.e.

A′
∐
A′ ↪−→ Cyl(A′) ∼−→ A′, A′

∐
A′ ↪−→ Cyl(A′) ν′−→ A.

Now, for g : A→ X we have

A′
∐
A′ → Cyl(A′) ν′−→ A

g−→ X i.e. A′
∐
A′ → Cyl(A′) g◦ν′−−→ X.

ν = g ◦ ν ′ : g ◦ h⇒L g ◦ k

is the desired left homotopy. The rest is the dual statement. �

3.2 Relationship between Left and Right Homotopy

The left and right homotopy relations agree in C (A,X) if A is cofibrant and X is fibrant.

Lemma 3.14 ([DwSp95]). Let C be a model category and f, g : A→ X two morphisms in C .
1. If A is cofibrant and f ⇒L g, then f ⇒R g.
2. If X is fibrant and f ⇒R g, then f ⇒L g.

Proof. Consider f ⇒L g we know, that there exists a good left homotopy for f to g by Lemma
3.8. Therefore, we have a good cylinder object for A say

A
∐
A

(i0,i1)
↪−−−→ Cyl(A) ∼−→

j
A

and a homotopy η : Cyl(A)→ X from f to g.
Since A is cofibrant and Cyl(A) is a good cylinder object we get by Lemma 3.5 that the maps

i0, i1 : A ∼
↪−→ Cyl(A)

are acyclic cofibrations.
Now we choose a good path object for X i.e.

X
∼−→
q

Path(X) (p0,p1)−−−−→→ X ×X.

Consider the diagram

A Cyl(A)

Path(X) X.

i0

q◦f f
η

p1

It commutes, since p1 ◦ q = idX . Similarly we consider the diagram
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A Cyl(A)

Path(X) X.

i0

q◦f f◦j

p0

It commutes, since j ◦ i0 = idA. Combining these diagrams yields a commutative diagram

A Path(X)

Cyl(A) X ×X.

q◦f

i0 (p0,p1)

(f◦j,η)

Now by properties of FWFS (since i0 is an acyclic cofibration and (p0, p1) is a fibration), there
exists a lift ν : Cyl(A)→ Path(X) in the above diagram.
Consider

A

Cyl(A)

X Path(X) X.

i0f g

ν
η η

Now the upper two triangles commute because of our left homotopy and the lower two since ν
is a lift. It follows, that ν ◦ i0 is a right homotopy from f to g. The second statement follows
from duality. �

If C is a model category and we are in the situation where A is a cofibrant object and X is a
fibrant object in C , we then denote the set of equivalence relations on C (A,X)

π(A,X) = πL(A,X) = πR(A,X).

Notice, that these equalities hold due to Lemma 3.14.
We will now use the symbol

∼

to denote the equivalence of elements in π(A,X), instead of ⇒L and ⇒R.

Corollary 3.15 ([DwSp95]). Let C be a model category, A a cofibrant and X a fibrant object
of C . Fix a good cylinder object Cyl(A) for A and a good path object Path(X) for X. Let
f, g : A→ X be maps in C . Then

1. f ∼ g iff f ⇒R g via the fixed path object Path(X).
2. f ∼ g iff f ⇒L g via the fixed cylinder object Cyl(A).
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Proof. ”⇐ ” : trivial.
” ⇒ ” : Let f ∼ g, then by Lemma 3.14, there exists a left homotopy f ⇒L g. From the proof
of Lemma 3.14 there exists a good path object for X. Especially we may choose the given path
object Path(X) from the proof. The other case is the dual statement. �

Definition 3.16 (Homotopy Inverse). Let C be a model category and f : A→ X a morphism
in C . We say that f has a homotopy inverse, if there exists some map g : X → A in C such
that

g ◦ f ∼ idA and f ◦ g ∼ idX .

Proposition 3.17 ([DwSp95]). Let C be a model category and suppose that f : A → X ∈
C (A,X) and that A and X are both fibrant and cofibrant objects in C . Then f is a weak
equivalence iff f has a homotopy inverse.

Remark 3.18. We will see later, that at least for a model category, every isomorphism arises in
this particular way, i.e. the weak equivalences are the preimages of the isomoprhisms. Of course
this is generally not true if we do not consider a model category. �

Proof. ”⇒ ” : Let f : A→ X in C be a weak equivalence. Then by the FWFS we get

f : A ∼
↪−→
i
B −→

p
→ X

for some B in C .
Now by the 2-3 property, since f and i are weak equivalences, p is also a weak equivalence.
Consider the diagram

A A

B ∗.

idA

i

By FWFS, since i is an acyclic cofibration and A → ∗ is a fibration (since A is fibrant), there
is a lift r : B → A in the above diagram i.e.

A A

B ∗.

idA

i
r

From the commutativity of the diagram we get

r ◦ i = idA

i.e. i has a left inverse r.
From Lemma 3.11 i induces a bijection

i∗ : πR(B,B)→ πR(A,B)
[g] 7→ [g ◦ i].
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Now by
i∗([i ◦ r]) = [i ◦ r ◦ i] = [i ◦ idA] = [i] = [idB ◦ i] = i∗([idB])

we have that
i ◦ r ⇒R idB.

Therefore, r is a right inverse of i up to right homotopy. Hence

r ◦ i = idA and i ◦ r ∼ idB.

Now we have a two sided right homotopy inverse of i. Since left and right homotopy coincide,
they are homotopy inverses.
” ⇐ ” : Suppose now that f has a homotopy inverse. Since f is in C , there exists maps p and
q in C with f = p ◦ q due to functorial factorisations, such that for f : A→ X we get

f : A ∼
↪−→
q
B −→

p
→ X.

We claim, that B is fibrant and cofibrant.
Indeed, since A and X are both fibrant and cofibrant we get a diagram

∅

A B X

∗

a
k

b

q

c

p

l
d

where a, b are cofibrations, q is an acyclic fibration and c, d, p are fibrations.
Therefore, since a = q ◦ k we have that k is also a cofibration and hence

∅ → B

is a cofibration i.e. B is cofibrant.
From l = d ◦ p we have that l also a fibration and hence

B → ∗

is a fibration i.e. B is fibrant. Hence B is fibrant and cofibrant.
We want to show that f is a weak equivalence. Since

f : A ∼
↪−→
q
B −→

p
→ X

by the 2-3 property, it is enough to show, that p is a weak equivalence.
Let g : X → A be a homotopy inverse for f s.t.

f ◦ g ∼ idX and g ◦ f ∼ idA

Gian Deflorin September 1, 2019 47



The Homotopy Hypothesis

and let η : Cyl(X)→ X be a homotopy between f ◦ g and idX

X
∐
X

(i0,i1)−−−→ Cyl(X) η−→ X.

By Lemma 3.5, (i0, i1) are acyclic cofibrations (since X, A are fibrant and cofibrant).
Consider the diagram

X B

Cyl(X) X.

q◦g

i0 p

η

There exists a lift η′ : Cyl(X)→ B in the above diagram, by the properties of FWFS.
Define s := η′ ◦ i1 i.e.

s : X i1−→ Cyl(X) η′−→ B.

Therefore
X

i1−→ Cyl(X) η′−→ B
p−→→ X

i.e. p◦s = idX . Notice, that this is well defined and makes sense, since η′ ◦p = η and p◦η′ ◦ i1 =
η ◦ i1 = idX , since η is a homotopy for f ◦ g and idX .
Now q is a weak equivalence, we then know that q has a homotopy inverse (from the last lemma),
call it r i.e. q ◦ r ∼ idB and r ◦ q ∼ idA.
Consider f = p ◦ q then by Lemma 3.13 there exists a map

πL(B,B)× πL(B,X)→ πL(B,X)
([idB], [p]) 7→ [p ◦ idB]

([q ◦ r], [p]) 7→ [p ◦ q ◦ r] = [f ◦ r]

hence [p ◦ idB] = [f ◦ r] giving p ◦ idB ∼ f ◦ r hence p ∼ f ◦ r.
Next we claim, that s ∼ q ◦ g. Indeed, consider the diagram

X B

Cyl(X)

q◦g

i0
η′

i.e. η′ ◦ i0 = q ◦ g.
By the diagram and (i0, i1) we have

s = η′ ◦ i1 ∼ η′ ◦ i0 = q ◦ g.

Giving us s ∼ q ◦ g.
From the above reasoning and the fact that q and r are homotopy inverses we have

s ◦ p ∼ q ◦ g ◦ p ∼ q ◦ g ◦ f ◦ r ∼ q ◦ r ∼ idB.
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Now by Lemma 3.9, since idB is a weak equivalence, A cofibrant, X fibrant and s ◦ p ∼ idB,
s ◦ p must be a weak equivalence.
Consider the commutative diagram

B B B

X B X.

p

idB

s◦p

idB

p

s p

Since idB ◦ idB = idB and p ◦ s = idX it follows, that p is a retract of s ◦ p and hence by the
retract argument, that p is a weak equivalence. �
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4 The Homtopy Category, Quillen Functors and Derived
Functors

In this section we define the notion of homotopy category for a model category. We first give the
definition which uses localisations of categories. After the definition we give a careful discussion
about localisations and which problems may arise from such a construction.
The basic result is that the localisation Ho(C ) := C [W−1] of a model category C obtained by
inverting the weak equivalences is equivalent (as categories) to the quotient category Ccf/∼ of
the cofibrant and fibrant objects by the homotopy relation, defined in the last section.
It is very important to point out that these categories are not the same, they are just equivalent.
Finally we introduce some important machinery, namely the one of Quillen equivalences which
seems to be the right notion for an equivalence of model categories. The notion is indeed weaker
than for instance the notion of an equivalence of categories. One may think of it as a way more
general concept of homotopy equivalence.
We use the material from [Stac17], [MHov91], [TFri11], [GaZi67], [SMcl97], [PHir03] and inspi-
ration from [nLab].

4.1 The Homotopy Category of a Model Category

4.1.1 The Definition of the Homotopy Category Ho(C )

Definition 4.1 (Homotopy Category). We define the homotopy category Ho(C ) to be the
localisation of a model category C , where we localise with respect to the weak equivalences i.e.

Ho(C ) := C [W−1].

Before we define the localisation of categories we give some motivation in the case of commu-
tative unital rings. We also need to check if this definition is well defined and behaves as we
want, that is no size issues should occur. We will see that under the localisation the result does
not need to be locally small if we started with a locally small category, we will also see that
this does hold in the case of model categories. All of this will be established in the following
sections.

4.1.2 Localisation of Commutative Unital Rings

This section follows the definitions and structures given in [Stac17], with some additional proofs.
For the whole section, a ring will always be a commutative unital ring.

Definition 4.2. Let A be a ring, S a subset of A. We say that S is a multiplicative subset
of A if 1 ∈ S and S is closed under multiplication i.e. s, s′ ∈ S implies that ss′ ∈ S.

Given a ring A and a multiplicative subset S of A, we define a relation on A× S as follows:

(x, s) ∼ (y, t)⇔ ∃ u ∈ S s.t. (xt− ys)u = 0.
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Lemma 4.3. The relation ∼ is an equivalence relation.

Proof. The relation is clearly reflexive and symmetric. If (x, s) ∼ (y, t) and (y, t) ∼ (z, l), then

(xt− ys)u = 0 and (yl − zt)v = 0 for some u, v ∈ S.

Multiplying the first equation by lv and the second by su and adding them gives

(xl − zs)tuv = 0.

Since S is closed under multiplication, (x, s) ∼ (z, l) and hence ∼ is transitive. �

Let x/s be the equivalence class of (x, s) and A[S−1] be the set of all equivalence classes. We
define addition and multiplication in the following way.

x/s+ y/t = (xt+ ys)/st, x/s · y/t = xy/st

Lemma 4.4. (A[S−1],+, ·) is a ring.

Proof. Addition is well defined. Let (x, s) ∼ (x′, s′) and (y, t) ∼ (y′, t′). Then there exists
u, v ∈ S such that

(xs′ − x′s)u = 0 and (yt′ − y′t)v = 0.

However, (xt+ys)s′t′−(x′t′+y′s′)st = xts′t′+yss′t′−x′t′st−y′s′st = (xs′−x′s)tt′+(yt′−y′t)ss′,
multiplication by uv gives us 0. Hence (xt+ ys)/st = (x′t′ + y′s′)/s′t′. Multiplication follows in
a similar way. It is not hard to check, that those operations turn A[S−1] into a commutative
ring with identity 1/1 = s/s for all s ∈ S and zero element 0/1 = 0/s for all s ∈ S. �

Definition 4.5. The ring A[S−1] is called the localisation of A with respect to S.

There is a natural ring map from A to its localisation A[S−1] defined as

ϕ : A→ A[S−1]
x 7→ x/1.

Definition 4.6. The map ϕ is called localisation map.

Remark 4.7. In general this map is not injective, unless S contains no zerodivisors. Indeed, if
x/1 = 0, then there exists some u ∈ S such that xu = 0 in A but this means that x = 0, since
S contains no zerodivisors. �

Universal Property

The localisation has the following universal property:

Proposition 4.8. Let f : A→ B be a ring homomorphism that sends every element in S to a
unit of B. Then there exists a unique ring homomorphism g : A[S−1]→ B such that the diagram
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A A[S−1]

B

ϕ

f
g

commutes.

Proof. Existence: We define a map g : A[S−1]→ B as follows:
for x/s ∈ A[S−1] let g(x/s) = f(x)f(s)−1 ∈ B. This homomorphism is a well-defined ring
homomorphism and makes our diagram commute. Indeed,
• well-defined: Say (x, s) ∼ (y, t), then we have (xt− ys)u = 0 for some u ∈ S. This gives us

(f(xt)− f(ys))f(u) = 0 in S.

Hence we have
f(xt)− f(ys) = 0 since f(u) is a unit in S.

This yields
f(x)f(s)−1 = f(y)f(t)−1

and finally
g(x/s) = g(y/t).

• ring-homomorphism Let 1/1, x/s, y/t ∈ A[S−1].

• g(1/1) = f(1)f(1)−1 = 1.

• g(x/s + y/t) = g((xt + ys)/st) = f(xt + ys)f(st)−1 = (f(xt) + f(ys))f(st)−1 =
f(xt)f(st)−1 + f(ys)f(st)−1 = f(x)f(s)−1 + f(y)f(t)−1 = g(x/s) + g(y/t).

• g(x/s · y/t) = g(xy/st) = f(xy)f(st)−1 = f(x)f(s)−1 · f(y)f(t)−1 = g(x/s) · g(y/t).

• commutativity: We get that g ◦ ϕ = f , take a ∈ A and consider g(ϕ(a)) = g(a/1) =
f(a)f(1)−1 = f(a).
Uniqueness: Let g′ : A[S−1] → B be a homomorphism such that g′(x/1) = f(x). Hence
f(s) = g′(s/1) for s ∈ S by commutativity of the diagram. But then g′(x/s) = g′(x/1)g′(1/s) =
g′(x/1)g′(s/1)−1 = f(x)f(s)−1 = g(x/s), meaning that g′ = g. �

Lemma 4.9. The localisation A[S−1] is the 0 ring iff 0 ∈ S.

Proof. If 0 ∈ S then (a, s) ∼ (0, 1) for any pair by definition. If 0 6∈ S, then 1/1 6= 0/1 in
A[S−1]. �

Example 4.10. • Let A be a ring and S the multiplicative set of nonzero divisors of A.
A[S−1] is called the total quotient ring of A. For A an integral domain, A[S−1] will be the
fraction field of A.
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• Let A = Z and S = {2n | n ∈ N}, then A[S−1] = Z
[

1
2

]
. Indeed, consider

ϕ̂ : Z
[1
2

]
→ A[S−1]

x

2n 7→
[
x

2n
]
.

• (Localising at a prime) Let P be a prime ideal in any ring A and let S = A\P . By
definition of prime ideal, S is multiplicatively closed. Passing to the ring A[S−1] in this
case is localising A at P and the ring A[S−1] is denoted by AP . Every element of A not
in P becomes a unit in AP .
For example: let A = Z and P = (p) be a prime ideal, for some prime p, then

Z(p) =
{
a

b

∣∣∣∣ p 6 | b} ⊂ Q

and every integer b not divisible by p is a unit. [DuFo04]

J

4.1.3 Localisation of Categories

It may happen, depending on the context, that one has to deal with a category which is not
well behaved for the desired purpose. In such a situation it is often helpful to find some different
category and a connection between the two of them, in which those certain properties behave
in a better way. One way to achieve this, is the concept of localisations, in which one will loose
some properties but the most important concepts may still be valid. This is also seen in the
idea that we will use, i.e. we use the quotient category in order to define the localisation of
categories.
Another issue with localisations, as we will see, are size issues. If one starts with a locally
small category the localisation may result in a large category (which tends to happen most
of the time). This is not the case when localising model categories with respect to the weak
equivalences. It is also true that there are no size issues if one is dealing with small categories,
which we will also prove in this section.
We will use the idea in [TFri11], with slightly different proofs, notation and some other additional
examples and remarks. The inspiration for the construction and notation in the proof of the
main theorem is taken from [nLab] and [SMcl97], the original idea seems to be from [GaZi67],
though they give a more refined version of the whole concept called a calculus of fractions.

Quotient of Categories

Say ∼ is an equivalence relation on every morphism set C (A,B) which is preserved under
composition, meaning that

(f1 ∼ f2) ⇒ (f1 ◦ g ∼ f2 ◦ g) and (h ◦ f1 ∼ h ◦ f2) ∀ f1, f2, g, h ∈ mor(C ),
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whenever the compositions are defined.
Then composition of equivalence classes is well-defined and defines the quotient category C /∼
together with a canonical projection functor C → C /∼. The objects of C /∼ are the same as
the objects of C .

Example 4.11. Monoids and groups may be regarded as categories with one object. In this case
the quotient category coincides with the notion of a quotient monoid or a quotient group. J

Localisation of Categories

Let C be a category and let W ⊆ mor(C ) be a subclass (W for ”weak equivalence”). We will
turn all morphisms of W into isomorphisms by adjoining formal inverses of them.
We are looking for a category C [W−1] equipped with a localisation functor

Loc : C → C [W−1]

with the following universal property.
1. Loc(ω) is an isomorphism for all ω ∈ W .
2. If F : C → D is any functor which maps W to isomorphisms, then there exists a unique

functor L : C [W−1]→ D such that the diagram

C C [W−1]

D

Loc

F
∃!L

commutes.

Definition 4.12. If such a functor Loc exists, the category C [W−1] is called the localisation
of C with respect to W.

Remark 4.13. • Notice, that even though Loc sends elements of W ⊆ Mor(C ) to isomor-
phisms in C [W−1], not every isomorphisms in C [W−1] is forced to come from an element
of W.

• If we localise a category, this category will most likely grow in size. For this consider the
following.
We define a category C such that

ob(C ) := {∗, •}

and
Mor(C ) := {id∗, id•, ∗ a−→ •, ∗ b−→ •}.

It looks something like this (without the identities):

C : ∗ •
a

b
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We choose W := {∗ a−→ •} and localise with respect to it i.e.

C [W−1] : ∗ •

a

b

a−1

The objects will still be the same

ob(C [W−1]) = ob(C ) = {∗, •},

but since we want C [W−1] to be a category we gain a lot more morphisms than before (due
to composition), we get

mor(C [W−1]) = {(a−1)m(ba−1)n(b)l | m, l = 0 ∨ 1 and n ∈ N} ∪ {a, id∗, id•}.

�

Theorem 4.14. C [W−1] and Loc always exist and are unique up to unique isomorphism.

Proof. Let C be a category and choose W in Mor(C ). Let Wop in C op be the corresponding
class to W in C .
Existence: The pair (Loc,C [W−1]) exists.
We define a directed graph G[C ,W−1] as:

1. the vertices of G[C ,W−1] -call them obj(G[C ,W−1])- are the objects of C and

2. arrows of G[C ,W−1] between vertices x and y are given by C (x, y) tWop(x, y).

The arrows in Wop are written as ω−1 for ω ∈ W(y, x).
Let P(G[C ,W−1]) be the path category on G[C ,W−1] such that:

1. obj(P(G[C ,W−1])) = ob(G[C ,W−1]) = obj(C )

2. a morphism from a to b is a string 〈an, fn, an−1, . . . , a1, f1, a0〉 n ≥ 0 with ai ∈ ob(C ),
a = a0, b = an and ∀ 0 < i ≤ n fi : ai−1 → ai is an edge from ai−1 to ai in G[C ,W−1].

3. composition is given by concatenation:
〈an, fn, an−1, . . . , a1, f1, a0〉 ∗ 〈bm, gm, bm−1, . . . , b1, g1, b0〉 :=

〈an, fn, an−1, . . . , a1, f1, a0 = bm, gm, bm−1, . . . , b1, g1, b0〉

whenever a0 = bm.

4. dom(〈an, fn, an−1, . . . , a1, f1, a0〉) = a0 and codom(〈an, fn, an−1, . . . , a1, f1, a0〉) = an.

5. the identity is given by the empty string 〈a〉 ∀ a ∈ ob(C ).
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We will use the notation 〈fn, . . . , f1〉 for 〈an, fn, an−1, . . . , a1, f1, a0〉.
Remark that 〈fn, . . . , f1〉∗〈gm, . . . , g1〉 = 〈fn, . . . , f1, gm, . . . , g1〉 = 〈g1〉◦· · ·◦〈gm〉◦〈f1〉◦· · ·◦〈fn〉.
We get a canonical map C → P(G[C ,W−1]) which is the identity on objects and maps every
morphism f of C to a corresponding single-literal 〈f〉. This map is a good candidate for the
desired map Loc. However, neither is this map a functor nor does it map W to isomorphisms.
To fix this, we introduce the equivalence relation ∼:

1. 〈idx〉 ∼ 〈x〉 ∀ x ∈ ob(C )

2. 〈f, g〉 ∼ 〈g ◦ f〉 ∀ f : x→ y, g : y → z ∈ Mor(C )

3. 〈ω, ω−1〉 ∼ 〈idx〉 and 〈ω−1, ω〉 ∼ 〈idy〉 ∀ ω : x→ y in W

This gives us the quotient category P(G[C ,W−1])/∼ and an induced map

Loc : C →P(G[C ,W−1])/∼.

With the relation ∼ the map Loc clearly is a functor that maps W to isomorphisms. Indeed,

• Loc(f ◦ g) = 〈f ◦ g〉/∼ = 〈g, f〉/∼ = 〈g〉/∼ ∗ 〈f〉/∼ = 〈f〉/∼ ◦ 〈g〉/∼ = Loc(f) ◦ Loc(g)

• Loc(ida) = 〈ida〉/∼ = 〈a〉/∼ = ida = idLoc(a)

• Let ω : x→ y in W .
Loc(ω ◦ ω−1) = 〈ω ◦ ω−1〉/∼ = 〈ω−1, ω〉/∼ = 〈ω−1〉/∼ ∗ 〈ω〉/∼ = 〈ω〉/∼ ◦ 〈ω−1〉/∼ =
Loc(ω) ◦ Loc(ω−1). Since 〈ω, ω−1〉 ∼ 〈idx〉 ∼ 〈x〉 we have

Loc(ω) ◦ Loc(ω−1) = idx = idLoc(x).

Similarly, Loc(ω−1 ◦ ω) = Loc(ω−1) ◦ Loc(ω) and from 〈ω−1, ω〉 ∼ 〈idy〉 ∼ 〈y〉 we get

Loc(ω−1) ◦ Loc(ω) = idy = idLoc(y).

Hence, Loc(ω) and Loc(ω−1) are isomorphisms in P(G[C ,W−1])/∼ and thus Loc maps W
to isomorphisms.

Construction of the unique functor L : P(G[C ,W−1])/∼ → D :
• Existence of L:
Let 〈ln, . . . , l1〉/∼ be a string in P(G[C ,W−1])/∼. Then we define a map L as follows

L(〈l1 ◦ · · · ◦ ln〉/∼) := L(〈l1〉/∼) ◦ · · · ◦ L(〈ln〉/∼),

where

L(〈li〉/∼) =

F (li) if li ∈ Mor(C )
F (li)−1 if li ∈ Wop
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and
L(〈a〉/∼) := ida for all object a ∈ C .

This clearly is a functor (by construction).
Let ω : x→ y in W , it follows
L(〈ω〉/∼) ◦ L(〈ω−1〉/∼) = L(〈ω ◦ ω−1〉/∼) = L(〈ω−1, ω〉/∼) = L(〈idy〉/∼) = L(〈y〉/∼) = idL(y)
and
L(〈ω−1〉/∼)◦L(〈ω〉/∼) = L(〈ω−1 ◦ω〉/∼) = L(〈ω, ω−1〉/∼) = L(〈idx〉/∼) = L(〈x〉/∼) = idL(x).
From the diagram

C P(G[C ,W−1])/∼

D

Loc

F
L

and the above computation, we have that L(〈ω〉/∼) = F (ω). Which gives us

L(〈ω−1〉/∼) = F (ω)−1.

Hence L ◦ Loc maps elements of W to isomorphisms in D .
L is well-defined, since we have that:

• L(〈a〉/∼) = ida = L(〈ida〉/∼) for all object A ∈ C .

• F (f ◦ g) = L(Loc(f ◦ g)) = L(〈f ◦ g〉/∼) = L(〈g, f〉/∼) = L(〈g〉/∼∗ 〈f〉/∼) = L(〈f〉/∼◦
〈g〉/∼) = L(〈f〉/∼)◦L(〈g〉/∼) = L(Loc(f))◦L(Loc(g)) = F (f)◦F (g) for f , g morphisms
in C .

• Let ω : x→ y in W .
L(〈ω−1 ◦ ω〉/∼) = L(〈ω−1〉/∼) ◦ L(〈ω〉/∼) = F (ω)−1 ◦ F (ω) = idx = L(〈idx〉/∼) =
L(〈x〉/∼).

By construction this functor clearly renders the above diagram commutative. This finally gives
us the desired map L.
• Uniqueness of L:
Let L′ : P(G[C ,W−1])/∼ → D be another functor such that the desired diagram commutes. We
then have L′(〈ω〉/∼) = F (ω), hence

L′(〈ω−1〉/∼) = F (ω)−1 for ω ∈ W .

By commutativity of the diagram L′(〈l〉/∼) = F (l) for l ∈ C . Then

L′(〈li〉/∼) = F (li) = L(〈li〉/∼),

for li ∈ Mor(C ) ∪W−1.
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Let a, b ∈ ob(C ) and consider 〈ln, . . . , l1〉/∼ in P(G[C ,W−1])/∼. We have

L′(〈ln, . . . , l1〉/∼) = L′(〈l1 ◦ · · · ◦ ln〉/∼) = L′(〈l1〉/∼) ◦ · · · ◦ L′(〈ln〉/∼) =

F (l1) ◦ · · · ◦ F ((ln)) = L(〈l1〉/∼ ◦ · · · ◦ 〈ln〉/∼) = L(〈l1 ◦ · · · ◦ ln〉/∼) = L(〈ln, . . . , l1〉/∼).

Hence L is unique. We define C [W−1] := P(G[C ,W−1])/∼
Uniqueness: The pair (Loc,C [W−1]) is unique.
We have seen, that there exists a pair (Loc,C [W−1]) having the universal property

C C [W−1]

D .

Loc

F
∃!L

Now let (Loc′,C [W−1]′) be another such pair having the universal property

C C [W−1]′

D .

Loc′

F
∃!L′

By universality of Loc and Loc′ we have that

C [W−1]

C C [W−1]′

C [W−1]

C [W−1]′

∃!LLoc

Loc′

Loc

Loc′

∃!L′

∃!L

such that L ◦ Loc = Loc′ and L′ ◦ Loc′ = Loc . From the above diagram we get

Loc = (L′ ◦ L) ◦ Loc

but we also have that
Loc = idC [W−1] ◦ Loc

by uniqueness this yields
L′ ◦ L = idC [W−1].

Similarly we have
Loc′ = (L ◦ L′) ◦ Loc′
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again
Loc′ = idC [W−1]′ ◦ Loc′

uniqueness of L′ then gives
L ◦ L′ = idC [W−1]′ .

Hence L and L′ are isomorphisms, which gives us that the pair

(Loc,C [W−1])

is unique up to unique isomorphism. This finally concludes the proof.
�

Example 4.15. Let C be a category and consider W = mor(C ), then C [W−1] is a groupoid. J

4.1.4 Size Issues of Localisations

As already mentioned the localisation of a locally small category need not be locally small again
and it usually results in a large category. Showing that a category remains locally small is not
always an easy task.
What follows is an example for size issues in a localisation of a locally small category.
Later we will see that there are no size issues for small categories.

Example 4.16. Let S be a class and not a set. We define the following category C . The objects
of C will be

ob(C ) = {∗, •} ∪ S,

for some elements ∗, • 6∈ S.
There will be the identity morphisms, unique morphisms from ∗ to all elements of S (one for
each element), and unique morphisms from • to elements of S (one for each element), i.e.

mor(C ) := {id∗, id•, ids, ∗ ∃!−→ s, • ∃!−→ s | for all s ∈ S},

which is a class.
A graphic representation would be (without the identity morphisms):

C :

∗

. . . s′ . . . s . . .

•

for s, s′ ∈ S.
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This constructed category C is a locally small category. It is not hard to see that it is actually
a category and indeed locally small since the hom-sets are empty or singletons i.e.

C (∗, s) = {∗ →s∗ s | where →s∗ is the unique arrow from ∗ to s.}

C (•, s) = {• →s• s | where →s• is the unique arrow from • to s.}

both contain exactly one element for every s ∈ S, the other cases include the empty set and the
identity morphisms.
We now choose

W := {∗ → s | for all s ∈ S}

and localise.
The resulting category looks like this (without identity morphisms)

C [W−1] :

∗

. . . s′ . . . s . . .

•

for s, s′ ∈ S.
But now, there exist morphisms • → ∗ namely for every element of S at least one of them. But
this implies, that C [W−1](•, ∗) is not a set but a class.
Hence, since C [W−1](•, ∗) is a proper subclass of mor(C [W−1]) our category C [W−1] can not
be locally small, even though C was. J

If we are in the case of a small category, then there are no size issues, as we will see.

Theorem 4.17. Let C be a small category and let W ⊆ mor(C ), then the path category
P(G[C ,W−1]) of C is also a small category.

Proof. Let C be a small category and chooseW ⊆ mor(C ). By the definition of a small category
we have that ob(C ) and mor(C ) are sets. By construction of the localisation in Theorem 4.14
we have

ob(C ) = ob(P(G[C ,W−1]))

and thus a set. Note that Mor(P(G[C ,W−1])) can be identified with

ob(C ) ∪
⋃
n∈N
{f : {1, . . . , n} → mor(C ) tWop} ∼= ob(C ) ∪

⋃
n∈N

({1, . . . , n} × (mor(C ) tWop)),

where ob(C ) represents the empty strings (identities) and {f : {1, . . . , n} → mor(C ) t Wop}
are the strings of length n. Hence mor(P(G[C ,W−1])) is a set.
Finally, we get that the path category P(G[C ,W−1]) is a small category. �
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A direct consequence of this theorem is the following corollary.

Corollary 4.18. Let C be a small category and W ⊆ mor(C ), then the localisation C [W−1] of
C is also a small category.

Proof. C small Thm.3.2⇒ P(G[C ,W−1]) small ⇒ P(G[C ,W−1])/∼ small ⇒ C [W−1] small. �

Let us now argue that we do not run into trouble with this construction. We have seen that
the localisation always exists, that is true for a general category with weak equivalences. But
we also want to claim, that this category (localisation) is a locally small category if we consider
a model category. It could for example be, that Ho(C (A,B)) may not not be a set (as we have
seen in the above examples). So for Ho(C ) to exist we would need to pass to a higher universe.
Let us now argue that there is no trouble with Ho(C ).

4.1.5 The Equivalence of Ho(C ) and Ho(Ccf )

Definition 4.19. 1. Let Cc be the full subcategory of C generated by the cofibrant objects in
C .

2. Let Cf be the full subcategory of C generated by the fibrant objects in C .
3. Let Ccf be the full subcategory of C generated by objects of C which are fibrant and

cofibrant.

4.1.6 Fibrant and Cofibrant Approximations

Definition 4.20 (Fibrant/Cofibrant Approximations). Let C be a model category.
1. (a) A cofibrant approximation to an object X is a pair (QX, i) where QX is a cofi-

brant object and i : QX → X is a weak equivalence.
(b) A fibrant cofibrant approximation to X is a cofibrant approximation (QX, i)

such that i : QX → X is an acyclic fibration.
2. (a) A fibrant approximation to an object X is a pair (RX, j) where RX is a fibrant

object and j : X → RX is a weak equivalence.
(b) A cofibrant fibrant approximation to X is a fibrant approximation (RX, j) such

that j : X → RX is an acyclic cofibration.

Remark 4.21. A fibrant cofibrant approximation is often also referred to as a fibrant re-
placement. Similarly a cofibrant fibrant approximation is sometimes referred to as a cofibrant
replacement.
We sometimes use cofibrant approximation to refer to the object QX without explicitely men-
tioning the map i. Similarly, we sometimes use fibrant approximation to refer to the object RX
without explicitely mentioning the map j. �

Lemma 4.22. Let C be a model category and let X ∈ C be an object. We then have an
acyclic fibration pX : QX ∼−→→ X with QX a cofibrant element in C and an acyclic cofibration
iX : X ∼

↪−→ RX with RX fibrant object in C .
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Proof. By the bicompleteness of a model category we have the existence of an initial object
∅ ∈ C and a terminal object ∗ ∈ C such that

∅ → X and X → ∗

exist. We now apply functorial factorisations to the above maps to get

∅ ↪−→
iX

QX −→
pX
→ X and X ↪−→

jX
RX −→

qX
→ ∗

for some QX,RX in C .
Notice, that QX is cofibrant and RX is fibrant in C . �

Remark 4.23. If X is already cofibrant, we just choose pX = idx and if X is already fibrant
we choose qX = idX . �

The next proposition shows us that Ho(Ccf ) is equivalent to Ho(C ) as categories, the proof
follows [MHov91].

Proposition 4.24. Let C be a model category and consider the inclusion functors

Cc

C Ccf .

Cf

They induce equivalences of categories

Ho(Ccf )→ Ho(Cc)→ Ho(C ) and Ho(Ccf )→ Ho(Cf )→ Ho(C ).

Proof. We show that Ho(Cc)→ Ho(C ) is an equivalence. Cc
i−→ C preserves weak equivalences

and so does induce a functor Ho(i) : Ho(Cc)→ Ho(C ). The inverse is induced by the cofibrant
replacemcent functor Q. Recall that QX is cofibrant and there is a natural acyclic fibration
QX

pX−→ X. In particular, Q preserves weak equivalences and so induces a functor Ho(Q) :
Ho(C )→ Ho(Cc). The natural transformation p can be thought of as a natural weak equivalence
Q◦ i→ 1Cc or i◦Q→ 1C . On the homotopy category, Ho(p) is therefore a natural isomorphism
Ho(i) ◦ Ho(Q) → 1Ho(Cc) and natural isomorphism Ho(Q) ◦ Ho(i) → 1Ho(C ), so Ho(Q) and
Ho(i) are inverse equivalences of categories. A very similar argument holds for the equivalence
Ho(Ccd) → Ho(Cc) where we use the fibrant replacement and conclude by a similar argument
as above. Finally the last chain of equivalences is also very similar to the above discussion. �
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4.1.7 The Category Ccf/∼

With the machinery introduced in the section before we are now ready to construct a category
Ccf/∼ which remains locally small by construction if C was. This is particularly important since
in the next section we will define the homotopy category of a model category. The definition
will use localisations which may not turn out to preserve locally samllness as discussed in the
next section. It will however turn out that the homotopy category of Ccf is equivalent to the
category Ccf/∼ and further we prove that the homotopy category of a model category C is
equivalent to the homotopy category of Ccf which gives us the desired smallness properties for
the localisation.

Proposition 4.25. The category Ccf/∼ exists.

Proof. Indeed this follows immediately from the last section especially Lemma 3.10, Lemma
3.11 and Lemma 3.12. �

We have the following corollary from Proposition 3.17.

Corollary 4.26 ([MHov91]). Let C be a model category. Let γ : Ccf → Ho(Ccf ) and δ :
Ccf → Ccf/∼ be the canonical functors. Then there is a unique isomorphism of categories
j : Ccf/∼ −→ Ho(Ccf ) such that j ◦ δ = γ. Furthermore j is the identity on objects.

Proof. We show that Ccf/∼ has the same universal property that Ho(Ccf ) has. The functor
δ takes homotopy equivalences to isomorphisms and hence takes weak equivalences to isomor-
phisms by Proposition 3.17. Suppose that F : Ccf → D is a functor that takes weak equivalences
to isomorphisms. Let A∐A (i0,i1)−−−→ A′

s−→ A be a cyclinder object for A. Then s ◦ i0 = s ◦ i1 = 1A
and so since s is a weak equivalence we have F ◦ i0 = F ◦ i1. Thus if H : A′ → B is a left homo-
topy between f and g, we have Ff = (FH)(Fi0) = (FH)(Fi1) = Fg and so F identifies left
homotopic maps, dually right homotopic maps. Thus there is a unique functor G : Ccf/∼ → D
such that G ◦ δ = F . Indeed, G is the identity on objects and takes the equivalence class of a
map f to Ff . The properties of localisations conclude the proof. �

4.1.8 The Equivalence of Ccf/∼ and Ho(Ccf )

The following theorem is often referred to as the fundamental theorem of model categories, as
it is called in that way for example in [MHov91]. Either way this theorem gives us the last
missing step in concluding the discussion about the homotopy category of a model category,
finally yielding the amazing fact that model categories remain locally small under localisation.
Consider a model category C , even though we argued in an earlier section, that not every
isomorphism in Ho(C ) comes from a weak equivalence of C this does indeed hold for model
categories, as we will see in the next result.
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Theorem 4.27 (Fundamental Theorem of Model Categories, [MHov91]). Let C be a model
category. Let γ : C → Ho(C ) denote the canonical functor, and let Q denote the cofibrant
replacement functor of C and R denote the fibrant replacement functor.

1. The inclusion Ccf → C induces an equivalence of categories Ccf/∼
∼−→ Ho(Ccf ) →

Ho(C ).
2. There are natural isomorphisms

C (QRX,QRY )/∼ ∼= Ho(C (γX, γY )) ∼= C (RQX,RQY )/∼.

In addition, there is a natural isomorphism Ho(C (γX, γY )) ∼= C (QX,RY )/∼ and
if X is cofibrant and Y is fibrant there is a natural isomorphism Ho(C (γX, γY )) ∼=
C (X, Y )/∼. In particular, Ho(C ) is a category without moving to a higher universe.

3. The functor γ : C → Ho(C ) identifies left or right homotopic maps.
4. If f : A → B is a map in C such that γf is an isomorphism in Ho(C ), then f is a

weak equivalence.

Proof. 1. This is Proposition 4.24 and Corollary 4.26.
2. The inverse of the equivalence Ho(Ccf ) → Ho(C ) is given by Ho(Q) ◦ Ho(R) or Ho(R) ◦

Ho(Q). This gives us the natural isomorphism C (QRX,QRY )/∼ ∼= Ho(C (γX, γY )) ∼=
C (RQX,RQY ). The rest follows from Lemma 2.8, Lemma 2.9 Lemma 2.10 and the fact
in the proof of Proposition 1.12 and the natural equivalences QX → X → RX.

3. This is basically Corollary 4.26 and part 1 of this theorem.
4. Suppose f : A→ B is a map in C such that γf is an isomorphism in Ho(C ). Then QRf is

an isomorphism in Ccf/∼, from which it follows that QRf is a homotopy equivalence. By
Proposition 3.17 we see that QRf is a weak equivalence. Then using the fact that both
the natural transformations QX → X and X → RX are weak equivalences we find that
f must be a weak equivalence.

�

Example 4.28. Consider a model category with the trivial model structure, then the homotopy
category is the category itself. J
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4.2 Quillen Functors and Derived Functors

The main goal of this section is to introduce the concept of Quillen equivalences. This section
follows [MHov91].

4.2.1 Quillen Functors

Definition 4.29 (Quillen Functors). Let C and D be model categories.
1. We call a functor F : C → D a left Quillen functor if F is a left adjoint and preserves

cofibrations and acyclic cofibrations.
2. We call a functor U : D → C a right Quillen functor if U is a right adjoint and

preserves fibrations and acyclic fibrations.
3. Suppose F : C

//
Doo _ : U is an adjunction. We call F : C

//
Doo _ : U a Quillen

adjunction or a Quillen pair if F is a left Quillen functor and denote it by (F,U)Q.

We could also reformulate condition 3. in the sense that we want U to be a right Quillen functor
instead of F to be a left Quillen functor, as the following lemma shows.

Lemma 4.30. Let F : C
//
Doo _ : G be an adjunction, for C and D two model categories.

Then F : C
//
Doo _ : G is a Quillen adjunction iff U is a right Quillen functor.

Proof. One uses adjointness to show that Ff has the LLP with respect to p iff f has the
LLP with respect to Up. Then we use the characterisation of cofibrations, acyclic cofibrations,
fibrations and acyclic fibrations by lifting properties. �

Here comes Ken Brown’s lemma, it is a mighty tool indeed. Sometimes even a life saver, as we
will see in Part III.

Lemma 4.31 (Ken Brown’s Lemma). Let C be a model category and (D ,W) a category of
weak equivalences.
Assume that F : C → D is a functor sending acyclic cofibrations between cofibrant objects
to weak equivalences. Then F sends all weak equivalences between cofibrant objects to weak
equivalences.
Dually, if F sends acyclic fibrations between fibrant objects to weak equivalences, then F sends
all weak equivalences between fibrant objects to weak equivalences.

Proof. Let A,B be cofibrant objects and f : A→ B ∈ W . We factor the map
(f, idB) : A∐B → B as (f, idB) : A∐B q∈C−−→ C

p∈W ∩F−−−−−→ B. With the pushout diagram

∅ A

B A
∐
B

∈C

∈C i0

i1
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we get that i0 and i1 are cofibrations. By the two out of three property, both q ◦ i0 and q ◦ i1
are weak equivalences, hence acyclic cofibrations of cofibrant objects.
By hypothesis of F , we then have that both F (q ◦ i0) and F (q ◦ i1) are weak equivalences. Since
F (p) ◦ F (q ◦ Fi1) = F (p ◦ q ◦ i1) = F (idB) = idF (B) is also a weak equivalence, the two out
of three property yields that F (p) is a weak equivalence, the exact same argument shows that
F (f) = F (p ◦ q ◦ i0) is a weak equivalence. The dual argument follows. �

Remark 4.32. K. Brown’s lemma implies that every left Quillen functor preserves weak equiva-
lences between cofibrant objects, and that every right Quillen functor preserves weak equivalences
between fibrant objects. This is a very helpful fact that we should keep in mind, it will be used
in Part III of the thesis. �

Notation 4.33. Given a Quillen adjunction (F,U)Q, we usually denote the unit map X →
UFX by η and the counit map FUX → X by ε.

Lemma 4.34 ([MHov91]). Left (right) Quillen functors are stable under composition. Also
Quillen adjunctions are stable under composition.

Proof. Indeed, let F : C
//
Doo _ : U and F ′ : D

//
Eoo _ : U ′ be adjunctions. We can define

their composition to be the adjunction

F ′ ◦ F : C
//
Eoo _ : U ◦ U ′.

If we assume ϕ : D(FA,B) → C (A,UB) to be a natural isomorphism expressing U as a right
adjoint of F and ϕ′ : E (F ′A,B)→ D(A,U ′B) to be the natural isomorphism expressing U ′ as
a right adjoint of F ′ then we may consider their composition ϕ ◦ ϕ′ as the composite

E (F ′FA,B)→ D(FA,U ′B)→ C (A,UU ′B).

Composition of adjunctions is associative and has identities. The identity adjunction of a cate-
gory C is the identity functor together with identity adjointness isomorphism. The composition
of Quillen adjunctions is a Quillen adjunction. �

Therefore it is possible to define several different notions of a category of model categories using
as morphisms left Quillen functors, right Quillen functors or Quillen adjunctions. In the spirit
of [MHov91] we will consider Quillen adjunctions. However independent of this choice such a
morphism never has to preserve the functorial factorisations.
If we consider a model category C and use the same category, cofibrations, fibrations and weak
equivalences but different functorial factorisations to form a new model category C ′ the identity
functor will be an isomorphism of model categories between them. Meaning that the choice of
functorial factorisations has no effect on the isomorphism class of the model category. Further
remarks may be found in [MHov91].
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4.2.2 Derived Functors and Naturality

We will now study the functors on the homotopy category induced by Quillen functors.

Definition 4.35 (Total Derived Functors). 1. If F : C → D is a left Quillen functor, define
the total left derived Quillen functor LF : Ho(C )→ Ho(D) to be the composite

Ho(C ) Ho(Q)−−−→ Ho(Cc)
Ho(F )−−−→ Ho(D).

Given a natural transformation τ : F → F ′ of left Quillen functors, define the total
derived natural transformation Lτ to be Ho(τ) ◦ Ho(Q), so that (Lτ)X = τQX .

2. If U : D → C is a right Quillen functor, define the total right derived functor
RU : Ho(D)→ Ho(C ) of U to be the composite

Ho(D) Ho(R)−−−→ Ho(Df )
Ho(U)−−−→ Ho(C ).

Given a natural transformation τ : U → U ′ of right Quillen functors, define the total
derived natural transformation Rτ to be Ho(τ) ◦ Ho(R), so that RτX = τRX .

This definition is the reason we have assumed that the functorial factorizations are part of the
structure of a model category. Otherwise, in order to define LF , we would have to choose a
functorial cofibrant replacement, so we would not be able to define LF in a way that depends
only on the model category C .
Note that we can define LF even if F is not a left Quillen functor, but just a functor that takes
weak equivalences between cofibrant objects to weak equivalences. Dually, we can define RU if
U is any functor that takes weak equivalences between fibrant objects to weak equivalences.

Lemma 4.36 ([MHov91]). The total derived natural transformation is functorial.

Proof. Indeed, if τ : F → F ′ and τ ′ : F ′ → F ′′ are natural transformations between weak left
Quillen functors, then L(τ ′ ◦ τ) = (Lτ ′) ◦ (Lτ), and of course L(1F ) = 1LF . We have a dual
statement for natural transformations between right Quillen functors. �

The following theorem can be found as Theorem 1.3.7 in [MHov91].

Theorem 4.37 ([MHov91]). Let C be a model category. There is a natural isomorphism α :
L(1C )→ 1Ho(C ). Also, for every pair of left Quillen functors F : C → D and F ′ : D → E , there
is a natural isomorphism m := MF ′F : LF ′ ◦ LF → L(F ′ ◦ F ). These natural isomorphisms
satisfy the following properties.

1. An associativity coherence diagram commutes. That is, if F : C → C ′, F ′ : C ′ → C ′′ and
F ′′ : C ′′ → C ′′′ are left Quillen functors, then the following diagram commutes.

(LF ′′ ◦ LF ′) ◦ LF L(F ′′ ◦ F ′) ◦ LF L((F ′′ ◦ F ′) ◦ F )

LF ′′ ◦ (LF ′ ◦ LF ) LF ′′ ◦ L(F ′ ◦ F ) L(F ′′ ◦ (F ′ ◦ F )).

mF ′′F ′◦LF m(F ′′◦F ′)F

LF ′′◦mF ′F mF ′′(F ′◦F )
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2. A left unit coherence diagram commutes. That is, if F : C → D is a left Quillen functor,
then the following diagram commutes.

L1D ◦ LF L(1D ◦ F )

1Ho(D) ◦ LF LF.

m

α◦LF

3. A right unit coherence diagram commutes. That is, if F : C → D is a left Quillen functor,
then the following diagram commutes.

LF ◦ L1C L(F ◦ 1C )

LF ◦ 1Ho(C ) LF.

m

LF◦α

Definition 4.38 (Horizontal Composition). Suppose σ : F ⇒ G is a natural transformation of
functors F,G : C → D and τ : F ′ ⇒ G′ is a natural transformation of functors F ′, G′ : D → E .
The horizontal composition τ ∗ σ is the natural transformation F ′ ◦ F ⇒ G′ ◦ G given by
(τ ◦ σ)X = τGX ◦ F ′σX = G′σX ◦ τFX .

Lemma 4.39 ([MHov91]). Suppose σ : F ⇒ G is a natural transformation of weak left Quillen
functors F,G : C → D and τ : F ′ ⇒ G′ is a natural transformation of weak left Quillen functors
F ′, G′ : D → E . Let m be the composition isomorphism of Theorem 4.37. Then the following
diagram commutes.

LF ′ ◦ LF L(F ′ ◦ F )

LG′ ◦ LG L(G′ ◦G).

m

Lτ∗Lσ L(τ∗σ)

m

Proof. The map L(τ ∗σ)◦m : F ′QFQX → G′GQX is the composite τGQX◦F ′σQX◦F ′QσQX . By
the naturality of q this may be rewriten as τGQX ◦F ′qGQX ◦F ′QσQX . Then by the naturality of τ
we further rewrite this as G′qGQX ◦τQGQX ◦F ′QσQX which is the definition of m◦ (Lτ ∗Lσ). �

We would also like the same claim for adjunctions, for that matter we have to show that the
total derived functor preserves adjunctions.

Lemma 4.40 ([MHov91]). Suppose C and D are model categories and (F,U)Q : C → D is a
Quillen adjunction. Then LF and RU are part of the adjunction (LF,RU), which we call the
derived adjunction.

Proof. Consider the natural isomorphism ϕ : D(FX, Y ) → C (X,UY ) coming from the given
adjunction, but then Rϕ : Ho(D(FQX, Y ))→ Ho(C (X,URY )) must be a natural isomorphism.
As we have seen, there are natural isomorphisms Ho(D(FQX, Y )) ∼= D(FQX,RY )/∼ and
Ho(C (X,URY )) ∼= C (QX,URY )/∼. Therefore we must show, that ϕ respects the homotopy
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relation. Let A ∈ C be cofibrant and B ∈ D fibrant and assume that f, g : FA → B are
homotopic. Then there is a path object Path(B) for B and a right homotopy H : FA→ Path(B)
from f to g. Since U preserves products, fibrations and weak equivalences between fibrant
objects, U Path(B) is a path object for UB. But this means that ϕH : A → U Path(B) is
a right homotopy from ϕf to ϕg. Conversely let ϕf and ϕg be homotopic. Then there is a
cylinder object Cyl(A) for A and a left homotopy H : Cyl(A) → UB from ϕf to ϕg. Since F
preserves coproducts, cofibrations and weak equivalences between cofibrant objects, F Cyl(A)
is a cylinder object for FA. Finally ϕ−1 : F Cyl(A)→ B is a left homotopy from ϕ−1ϕf = f to
g. �

4.2.3 Quillen Equivalences

It may happen, that the derived adjunction (LF,RU) is an equivalence of categories but (F,U)
is not. In the following subsection we will discuss this behavior. This will lead us to the definition
of a Quillen equivalence.
From now on if we talk about an adjunction (F,U) i.e. F : C

//
Doo _ : U we consider a

natural isomorphism ϕ : D(FA,B) → C (A,UB) expressing U as a right adjoint of F . We use
the notation (F,U, ϕ) for the adjunction and if it happens to be a Quillen adjunction we use
(F,U, ϕ)Q.

Definition 4.41. A Quillen adjunction (F,U, ϕ)Q between C and D is called a Quillen equiv-
alence iff for all cofibrant X in C and fibrant Y in D , a map f : FX → Y is a weak equivalence
in D iff ϕ(f) : X → UY is a weak equivalence in C .

Proposition 4.42 ([MHov91]). Let (F,U, ϕ)Q : C → D be a Quillen adjunction. Then the
following are equivalent.

1. (F,U)Q is a Quillen equivalence.
2. The composite X η−→ UFX

UrFX−−−→ URFX is a weak equivalence for all cofibrant X and the
composite FQUX

FqUX−−−→ FQX
ε−→ is a weak equivalence for all fibrant X.

3. (LF,RU)Q is an adjoint equivalence of categories.

Proof. ”1. ⇒ 2.” : Let (F,U, ϕ)Q be a Quillen equivalence and X cofibrant then ϕrFX : X →
URFX ∈ W adjoint to rFX : FX → RFX ∈ W . In terms of the unit η of ϕ we have
ϕrFX = UrFX ◦ η.
Similarly if X is fibrant so FqUX = ϕ−1qUX ∈ W adjoint to qUX : QUX → UX.
”2. ⇒ 1.” : Assume (F,U, ϕ) satisfies 2. Let f : FX → Y ∈ W for X cofibrant ad Y fibrant
ϕf : X η−→ URX

Uf−→ UY we have a commutative diagram

X UFX UY

X URFX URY.

η Uf

UrFX UrY

URf
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f ∈ W implies RF ∈ W . URf ∈ W since U preserves weak equivalences between fibrant objects
therefore the bottom composition above is a weak equivalence and also the rightmost vertical
map is a weak equivalence. Therefore the top composition ϕf ∈ W .
If ϕf : X → UY ∈ W then we have a commutative diagram

FQX FQUY Y

FX FUY Y.

FQ(ϕf)

FqX FqUY

F (ϕf) ε

The bottom composition is f . The top composition and the leftmost vertical map are weak
equivalences and hence f ∈ W . ”2. ⇔ 3.” : The unit of Rϕ is the map X

q−1
X−−→ QX

UrFQX◦η−−−−−→
URFQX. Hence by Theorem 4.27 the unit of Rϕ is an isomorphism iff UrFQXη is a weak
equivalence for all cofibrant X. The proof uses the fact that F preserves weak equivalences
between cofibrant objects, the fact that U preserves weak equivalences between fibrant objects
and the commutative diagram

QX UFQX URFQX

X UFX URFX.

η

qX

UrFQX

UFqX URFqX

η UrX

Dually, the counit Rϕ is an isomorphism iff ε◦FqUX is a weak equivalence for all fibrant X. �

Going back to the remark in the introduction of this subsection, we now see that if (LF,RU)
is an equivalence of categories, then we say that (F,U) is a Quillen equivalence, and the other
way around. This provides us a tool to compare different homotopy theories in the setting of
model categories.
We state some useful corollaries which will not be proven but the proofs can be found in
[MHov91].

Corollary 4.43 ([MHov91]). Suppose (F,U, ϕ) and (F,U ′, ϕ′) are Quillen adjunctions from
C to D . Then (F,U, ϕ) is a Quillen equivalence iff (F,U ′, ϕ′) is so. Dually if (F ′, U, ϕ′′)Q is
another Quillen adjunction then (F,U, ϕ)Q is a Quillen equivalence iff (F ′, U, ϕ′′)Q is so.

The next result says, that Quillen equivalences have the 2-3 property.

Corollary 4.44 ([MHov91]). Suppose F : C → D and G : D → E are left (resp. right) Quillen
functors. Then if two out of three of F,G and GF are Quillen equivalences then so is the third.
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Corollary 4.45 ([MHov91]). Suppose (F,U, ϕ)Q : C → D is a Quillen adjunction. The follow-
ing are equivalent.

1. (F,U, ϕ) is a Quillen equivalence.
2. F reflects weak equivalences between cofibrant objects and for every fibrant Y the map

FQUY → Y is a weak equivalence.
3. U reflects weak equivalences between fibrant objects and for every cofibrant X the map

X → URFX is a weak equivalence.

Lemma 4.46 ([MHov91]). Suppose τ : F ⇒ G is a natural transformation between left (resp.
right) Quillen functors. Then Lτ (resp. Rτ) is a natural isomorphism iff τX is a weak equivalence
for all cofibrant (resp. fibrant) X.

Proof. Assume that F and G are left Quillen functors. Then (Lτ)X = τQX so Lτ is a natural
isomorphism iff τQX is a weak equivalence for all X. Since F and G preserve weak equivalences
between cofibrant objects this is true iff τX is a weak equivalence for all cofibrant X. The dual
statement is similar. �
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5 Bousfield Localisations

An important tool in order to prove our main results in Part III will be the machinery of
Bousfield localisations, especially the case of left Bousfield localisations. They will also be used
to formalise truncations of simplicial sets in the last part of the thesis.
The idea of Bousfield localisations is rather simple though if one actually wants to set up
everything in a formal way it will become tough quite fast. Anyway, the idea of Bousfield
localisations is roughly to add more weak equivalences to a model category but keep the same
cofibrations, the result will be - if certain conditions are met - a new model category structure
on the underlying category. This new model structure also has a lot of the nice properties the
old one had. We will for example see, that a large class - where the localisation will exist for
any set of morphisms from the respective category - exists. This class is given by cofibrantly
generated, cellular and left proper model categories in the case of left Bousfield localisations.
The existence theorem, which will be at the end of the section, will then imply that there is a
new model category structure on the underlying category with more weak equivalences as before
and this new model structure is in addition also cofibrantly generated, cellular and left proper.
Furthermore, if the initial category was a simplicial one then the localisation also carries the
structure of a siplicial model category.
There is also another large class, where the left Bousfield localisation exists for any set of mor-
phisms of the respective category. That is, if we have a left proper, simplicial and combinatorial
model category then the theorem implies that there is a new model category structure i.e. the
left Bousfield localisation, on the underlying category. This result will only be stated for com-
pleteness of the discussion, in order to give the theorems for both cases. They give the largest
known classes, where the left Bousfield localisation exists with respect to any set of morphisms.
The results can be found in [PHir03] and [ClBa] respectively.
It was Bousfield who introduced the concept of such localisations, but it was Hirschhorn who
further developed this concept and gave a lot of very useful properties about it. This can all be
found in his book [PHir03].
We will only discuss left Bousfield localisations, since we will only deal with them. Furthermore
they are easier to handle than the right ones. One more reason for doing so is that they seem
to arise more naturally. Anyways, there are always similar results for the case of right Bousfield
localisations, a discussion about them may also be found in [PHir03].
It is no surprise, that we will follow the book [PHir03] for this whole section and in addition,
for the second theorem about the existence, we also follow [ClBa].
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5.1 The Reedy Model Category Structure

We introduce some concepts needed, in order to be able to define Bousfield localisations. This
theory can be found in [PHir03].

5.1.1 Reedy Categories

Definition 5.1 (Reedy Category). A Reedy category is a quadruple (C ,C+,C−, deg), con-
sisting of a small category C together with two subcategories C+ and C− both containing all
objects of C and in which every object can be assigned a degree deg : ob(C )→ Z≥0, such that

1. Every non-identity morphism of C+ raises degree.
2. Every non-identity morphism of C− lowers degree.
3. Every morphism g in C has a unique factorisation g = g+◦g− with g+ ∈ C+ and g− ∈ C−.

Remark 5.2. The category C+ is called direct subcategory and the category C− is called
inverse subcategory. �

Example 5.3. We already have an example of a Reedy category in section 1. Indeed, the category
of finite ordinals is such an example. We just have to choose C+ := ∆+ and C− := ∆− with
degree

ob(∆)→ Z≥0

[n] 7→ n.

J

Proposition 5.4. If C is a Reedy category, then C op is a Reedy category in which C op
+ = (C+)op

and C op
− = (C−)op.

Proof. Just choose a degree function for C , the same function will work as a degree function
for C op. �

Proposition 5.5. If C and D are Reedy categories, then C × D is a Reedy category with
(C ×D)+ = C+ ×D+ and (C ×D)− = C− ×D−.

Proof. If we have chosen degree functions for C and D , we define a degree function for C ×D
by deg(X × Y ) = deg(X) + deg(Y ). The required uniqueness follows from the given uniqueness
for C and D . �
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5.1.2 The Reedy Model Category Structure

Definition 5.6 (Latching and Matching Category). Let C be a Reedy category and let α ∈ C
be an object.

1. The latching category ∂(C+ ↓ α) of C at α is the full subcategory of (C+ ↓ α) containing
all objects except the identity map of α.

2. The matching category ∂(α ↓ C−) of C at α is the full subcategory of (α ↓ C−)
containing all objects except the identity map of α.

Remark 5.7. Let C be a Reedy category and let α be an object of C . Then the opposite of
the latching category of C at α is naturally isomorphic to the matching category of C op at α.
Similarly the opposite of the matching category of C at α is naturally isomorphic to the latching
category of C op at α. �

Definition 5.8. Let C be a category and D a model category.
1. If X is a C -diagram in D then X is

(a) objectwise cofibrant if Xα is a cofibrant object of D for every α ∈ ob(C ).
(b) objectwise fibrant if Xα is a fibrant object in D for every α ∈ ob(C ).

2. If X and Y are C -diagrams in D , then a map of diagrams f : X→ Y is
(a) an objectwise cofibration if fα : Xα → Yα is a cofibration for all α ∈ ob(C ).
(b) an objectwise fibration if fα : Xα → Yα is a fibration for all α ∈ ob(C ).
(c) an objectwise weak equivalence if fα : Xα → Yα is a weak equivalence for all

α ∈ ob(C ).
Definition 5.9. Let C be a Reedy category and D a model category. Let X be a C -diagram in
D and α ∈ ob(C ). We use X to denote also the induced ∂(C+ ↓ α)-diagram, defined on objects
by X(β→α) = Xβ and the induced ∂(α ↓ C−)-diagram, defined on objects by X(β→α) = Xβ.

1. The latching object of X at α is LC
αX = colim∂(C+↓α) X and the latching map of X at

α is the natural map LC
αX→ Xα.

2. The matching object of X at α is MC
α X = lim∂(α↓C−) X and the matching map of X

at α is the natural map Xα →MC
α X.

Definition 5.10. Let C be a Reedy category and D a model category. Let X and Y be C -
diagrams in D and let f : X→ Y be a map of C -diagrams.

1. If α is an object in C then the relative latching map of f at α is the map
Xα

∐
LC
α X L

C
αY→ Yα.

2. If α is an object in C then the relative matching map of f at α is the map
Xα → Yα

∏
MC
α YM

C
α X.

Example 5.11. We consider latching and matching objects in sSet, the category of simplicial
sets which we will define later. Consider S : ∆op → Set, where we consider Set with the trivial
model structure. L∆op

[n] S = colim∂(∆op
+ ↓[n]) S. Consider [m]→ [l] ∈∆op which gives a factorisation

[n]

[m] [l]

Gian Deflorin September 1, 2019 74



The Homotopy Hypothesis

in ∂(∆op
+ ↓ [n]). Then

Sm Sl

colimS

Sn

where the dotted map is the natural latching map. On the other hand for M∆op

[n] S = lim∂([n]↓∆op
− ) S

we have

Sn

limS

Sm Sl

where the dotted line is the natural matching map. We also used the fact that

X : (∆op
+ ↓ [n])→ D

[m]→ [n] 7→ X[m] =: Xm.

Actually it is worth pointing out that the n-th latching object is the union of all degenerate
n-simplices and the n-th matching object is the (n − 1) skeleton. Therefore ”cofibrations” of
simplicial sets in a model category with respect to a Reedy model structure are similar to building
a space by cell attachements and Reedy fibrations are closely related to looking at a Postnikov
tower. Some of this concepts will be introduced later, but it is still best to state this observation
right here. J

Definition 5.12 (Reedy Model Structure). Let C be a Reedy category, let D be a model category
and let X,Y : C → D be C -diagrams in D .

1. A map of diagrams f : X→ Y is a Reedy weak equivalence if for every object α of C
the map fα : Xα → Yα is a weak equivalence in D .

2. A map of diagrams f : X → Y is a Reedy cofibration if for every object α of C the
relative latching map

Xα

∐
LC
α X

LC
αY→ Yα

is a cofibration in D .
3. A map of diagrams f : X → Y is a Reedy fibration if for every object α of C the

relative matching map
Xα → Yα

∏
MC
α Y

MC
α X

is a fibration in D .
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Example 5.13. Let C be a model category. Then the category Fun(∆op,C ) of simplicial objects
has a model category structure from the Reedy category structure of ∆op. Similarly, the cate-
gory Fun(∆,C ) of cosimplicial objects has a model category structure from the Reedy category
structure of ∆. J

We have the following result, which can be found in this form as Theorem 15.3.4 in [PHir03]
and was due to D. M. Kan. The proof can be found as section 15.3.16 in [PHir03].

Theorem 5.14 ([PHir03]). Let C be a Reedy category and let D be a model category.
1. The category DC of C -diagrams in D with the Reedy weak equivalences, Reedy cofibrations

and Reedy fibrations is a model category.
2. If D is a left proper, right proper or proper model category, then the model category defined

in 1. is respectively left proper, right proper or proper.
3. If D is a simplicial model category, then the model category defined in 1. is a simplicial

model category.

5.2 Left Bousfield Localisations

We can finally introduce our main machinery.

5.2.1 Resolutions

Notation 5.15. Let C be a model category and let X ∈ C be an object. Then
1. the constant cosimplicial object at X will be denoted cc∗X.
2. the constant simplicial object at X will be denoted cs∗X.

Definition 5.16 (Resolutions). Let C be a model category and X ∈ C an object.
1. (a) A cosimplicial resolution of X is a cofibrant approximation X̃ → cc∗X to cc∗X

in the Reedy model category structure on Fun(∆,C ).
(b) A fibrant cosimplicial resolution is a cosimplicial resolution in which the weak

equivalence X̃→ cc∗X is a Reedy acyclic fibration.
2. (a) A simplicial resolution of X is a fibrant approximation cs∗X → X̂ to cs∗X in

the Reedy model category structure on Fun(∆op,C ).
(b) A cofibrant simplicial resolution is a simplicial resolution in which the weak

equivalence cs∗X → X̂ is a Reedy acyclic cofibration.

Remark 5.17. Sometimes we use the term cosimplicial resolution to refer to the object X̃
without explicitely mentioning the weak equivalence X̃ → cc∗X. Similarly, we use simplicial
resolution to refer to the object X̂ without explicitely mentioning the weak equivalence cs∗X →
X̂. �

The next result appears as Proposition 16.1.3 in [PHir03].
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Proposition 5.18 ([PHir03]). Let C be a simplicial model category.
1. If X is an object of C and W → X is a cofibrant approximation to X, then the cosimplicial

object W̃ in which W̃n = W ⊗∆n is a cosimplicial resolution of X.
2. If Y is an object in C and Y → Z is a fibrant approximation to Y , then the simplicial

object Ẑ in which Ẑn = Z∆n is a simplicial resolution of Y .

Corollary 5.19. Let C be a simplicial model category.
1. If X is a cofibrant object of C , then the cosimplicial object X̃ in which X̃n = X ⊗∆n is

a cosimplicial resolution of X.
2. If Y is a fibrant object of C , then the simplicial object Ŷ in which Ŷn = Y ∆n is a simplicial

resolution of Y .

Proof. Follows from Proposition 5.18. �

Notation 5.20. Let C be a model category.
1. If X is a cosimplicial object in C and Y ∈ C then C (X, Y ) will denote the simplicial set

natural in both X and Y defined by

C (X, Y )n = C (Xn, Y )

with face and degeneracy maps induced by the coface and codegeneracy maps in X.
2. If X ∈ C and Y is a simplicial object in C then C (X,Y) will denote the simplicial set

natural in X and Y defined by

C (X,Y)n = C (X,Yn)

with face and degeneracy maps induced by those in Y.
3. If X is a cosimplicial object in C , Y is a simplicial object in C then C (X,Y) will denote

a bisimplicial set, natural in X and Y, defined by

C (X,Y)n,k = C (Xk,Yn)

with face and degeneracy maps induced by the coface and codegeneracy maps in X and the
face and degeneracy maps in Y.

4. If X is a cosimplicial object in C , Y a simplicial object in C , then diagC (X,Y) will
denote the simplicial set, natural in X and Y defined by

(diagC (X,Y))n = C (Xn,Yn)

with face and degeneracy maps induced by coface and codegeneracy maps in X and face
and degeneracy maps in Y.
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5.2.2 Homotopy Function Complexes

Definition 5.21 (Left Homotopy Function Complexes). If C is a model category and X, Y ∈ C ,
then a left homotopy function complex from X to Y is a triple

(X̃, RY,C (X̃, RY ))

where
1. X̃ is a cosimplicial resolution of X
2. RY is a fibrant approximation to Y
3. C (X̃, RY ) is the simplicial set in 5.20 1.

Definition 5.22 (Right Homotopy Function Complexes). If C is a model category and X, Y ∈
C then a right homotopy function complex from X to Y is a triple

(QX, Ŷ,C (QX, Ŷ))

where
1. QX is a cofibrant approximation to X
2. RY is a simplicial resolution of Y
3. C (QX,RY) is the simplicial set in 5.20 2.

Definition 5.23 (Two-sided Homotopy Function Complex). If C is a model category X, Y ∈ C
then a two-sided homotopy function complex from X to Y is a triple

(X̃, Ŷ, diagC (X̃, Ŷ))

where
1. X̃ is the cosimplicial resolution of X
2. Ŷ is the simplicial resolution of Y
3. diagC (X̃, Ŷ) is the simplicial set in 5.20 4.

Definition 5.24 (Homotopy Function Complex). Let C be a model category. A homotopy
function complex from X to Y is either

1. a left homotopy function complex from X to X
2. a right homotopy function complex from X to Y
3. a two-sided homotopy function complex from X to Y .

The respective homotopy function complex will be denoted by map(X, Y ).

Remark 5.25. Homotopy function complexes are independent of the choice of simplicial and
cosimplicial resolutions respectively. For a proof of this fact see for instance Theorem 17.4.8 in
[PHir03]. �

The following theorem is one of the main results of P. Hirschhorn in his book [PHir03]. As one
may imagine the proof is rather involved and will therefore not be given here. The result can be
found as Theorem 17.7.7 in [PHir03]. In the theorem map(−,−) is a fixed homotopy function
complex from Definition 5.24.
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Theorem 5.26 ([PHir03]). Let C be a model category and g : X → Y a morphism in C .
The following are equivalent.

1. g is a weak equivalence.
2. For any object W in C , the map g induces a weak equivalence of homotopy function

complexes
g∗ : map(W,X) ∼−→ map(W,Y ).

3. For any cofibrant object in C , the map g induces a weak equivalence of homotopy
function complexes

g∗ : map(W,X) ∼−→ map(W,Y ).

4. For any object Z in C , the map g induces a weak equivalence of homotopy function
complexes

g∗ : map(Y, Z) ∼−→ map(X,Z).

5. For any fibrant object Z in C , the map g induces a weak equivalence of homotopy
function complexes

g∗ : map(Y, Z) ∼−→ map(X,Z).

This theorem should remind us of some sort of weaker version of Yoneda’s lemma.

Remark 5.27. Homotopy function complexes actually have an interesting connection to the
homotopy category of a given model category in the following sense.
Let C be a model category, X, Y ∈ C and map(X, Y ) a homotopy function complex, then
π0(map(X, Y )) is naturally isomorphic to the set of maps from X to Y in Ho(C ). For a proof
of this statement, see for instance Theorem 17.7.2 in [PHir03]. �

5.2.3 Left Localisation of Model Categories

We will just very briefly give the definition of a left localisation of a model category, as stated
in [PHir03].

Definition 5.28 (Left Localisation). Let C be a model category and let S be a class of mor-
phisms in C . A left localisation of C with respect to S is a model category LS(C ) together
with a left Quillen functor j : C → LS(C ) such that

1. The total left derived functor Lj : Ho(C ) → Ho(LS(C )) of j takes the images in Ho(C )
of the elements of S into isomorphisms in Ho(LS(C )).

2. If D is a model category and ϕ : C → D is a left Quillen functor such that Lϕ : Ho(C )→
Ho(D) takes the images in Ho(C ) of the elements of S into isomorphisms in Ho(D), then
there is a unique left Quillen functor δ : LS(C )→ D such that δ ◦ j = ϕ.

Proposition 5.29. Let C be a model category and let S be a class of maps in C . If LS(C )
exists it is unique up to unique isomorphism.

Proof. This follows directly from the universal property provided in Definition 5.28. �
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More details and properties about this kind of localisation may be found in Chapter 3 of [PHir03].
The only important thing for us is to know that the left Bousfield localisation, which we define
in the next section, is also a left localisation of model categories.
This will be rather important in Part III, when we have to deal with a specific left Bousfield
localisation, where it is very helpful to know the localisation functor.

5.2.4 Left Bousfield Localisations

We will restrict ourselves to the case of left Bousfield localisations, there are similar results for
the case of right Bousfield localisations. In practice the left localisations are used more often
than the right ones. All these results may be found in [PHir03].

Notation 5.30. Let C be a model category, X, Y ∈ ob(C ) objects. We use the notation
map(X, Y ) to denote a simplicial set that is some unspecified homotopy function complex from
X to Y . Therefore map(X, Y ) will denote either

1. LC (X, Y ) := C (X̃, RY ) that is part of a left homotopy function complex
(X̃, RY,C (X̃, RY )), which we often call left derived hom-space

2. RC (X, Y ) := C (QX, Ŷ) which is part of a right homotopy function complex
C (QX, Ŷ,C (QX, Ŷ)), which we often call right derived hom-space

3. DC (X, Y ) := diagC (X̃, Ŷ) which is part of a two-sided homotopy function complex
(X̃, Ŷ, diagC (X̃, Ŷ)), which we often call two-sided derived hom-space.

Definition 5.31 (Local). Let C be a model category and S a class of morphisms in C .
1. (a) An object W ∈ C is S-local if W is fibrant and for all f : A→ B in S the induced

map of homotopy function complexes

f ∗ : map(B,W )→ map(A,W )

is a weak equivalence.
(b) If S consists of the single map f : A → B then an S-local object will also be called

f-local.
(c) If S consists of the single map ∅ → A then an S-local object is also called A-local.

2. (a) A map g : X → Y in C is a S-local equivalence if for all S-local objects W the
induced map of homotopy function complexes

g∗ : map(Y,W )→ map(X,W )

is a weak equivalence.
(b) If S consists of the single map f : A → B then an S-local equivalence is called an

f-local equivalence.
(c) If S consists of the single map ∅ → A then an S-local equivalence will also be called

an A-local equivalence.
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Definition 5.32 (Left Bousfield Localisation). Let C be a model category and let S be a class
of maps in C . The left Bousfield localisation of C with respect to S (if it exists) is a model
category structure LBS (C ) on the underlying category C such that

1. The class of weak equivalences of LBS (C ) equals the class of S-local equivalences of C .
2. The class of cofibrations of LBS (C ) equals the class of cofibrations of C .
3. The class of fibrations of LBS (C ) equals the class of maps with the RLP with respect to

those maps that are both cofibrations and S-local equivalences.

As stated in the above definition, we do not yet know under which conditions such Bousfield
localisations exist. In the next section we will address this problem. For now, assuming that
they exist in the particular cases, we state some nice properties about Bosufield localisations,
The results can be found in [PHir03] as Proposition 3.4.1, Proposition 3.3.3 and Proposition
3.3.18.

Proposition 5.33 ([PHir03]). Let C be a model category and let S be a class of maps in C .
If C is a left proper model category and LBSC is the left Bousfield localisation of C with respect
to S, then an object of C is S-local iff it is fibrant in C .

Proposition 5.34 ([PHir03]). Let C be a model category and let S be a class of maps in C . If
LBSC is the left Bousfield localisation of C with respect to S, then

1. every weak equivalence of C is a weak equivalence of LBSC
2. the class of acyclic fibrations of LBSC equals the class of acyclic fibrations in C
3. every fibration of LBSC is a fibration of C
4. every acyclic cofibration of C is an acyclic cofibration of LBSC .

Proposition 5.35 ([PHir03]). Let C be a model category and let S be a class of morphisms in
C . If LBS (C ) is the left Bousfield localisation of C with respect to S, D is a model category, and
F : C → D is a left Quillen functor that takes every cofibrant approximation to an element of
S into a weak equivalence in D , then F is a left Quillen functor when considered as a functor
LBS (C )→ D .

Theorem 5.36 (Bousfield Localisation is a Localisation, [[PHir03]). ] Let C be a model category
and let S be a class of maps in C . If LBS (C ) is the left Bousfield localisation of C with respect
to S, then the identity functor C → LBS (C ) is a left localisation of C with respect to S.

Proof. Let LS(C ) be the left Bousfield localisation of C and j : C → LS(C ) be the identity
functor. Let F : C

//
Doo _ : U be a Quillen pair such that the total left derived functor

LF : Ho(C ) → Ho(D) takes the images in Ho(D) of the elements of C into isomorphisms in
Ho(D). Since j is the identity functor, the functor F : LBS (C ) → D is the unique functor such
that F ◦ j = F , and Proposition 5.35 shows that F : LBS (C )→ D is a left Quillen functor. �

As the title of the above statement already suggests, we have showed that every left Bousfield
localisation is indeed a left localisation of model categories.
The next theorem will turn out to be useful later on in Part III, it can be found in this form as
Theorem 3.3.20 in [PHir03].
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Theorem 5.37 ([PHir03]). Let C and D be model categories and let F : C
//
Doo _ : U be a

Quillen pair.
If S is a class of maps in C , LBS (C ) is the left Bousfield localisation of C with respect to S and
LBF (QS)D is the left Bousfield localisation of D with respect to F (QS) then

1. (F,U) is also a Quillen pair when considered as functors

F : LBS (C ) //
LBF (QS)(D)oo _ : U.

2. If (F,U) is a Quillen equivalence when considered as functors F : C
//
Doo _ : U then

(F,U) is also a pair of Quillen equivalences when considered as functors

F : LBS (C ) //
LBF (QS)(D)oo _ : U.

5.3 Existence of Left Bousfield Localisations

We state the two most important theorems for the existence of left Bousfield localisations. There
are two large known classes of model categories for which these localisations exist for every set
of morphisms of the given category. As we will see left properness is important in both cases
and in addition we want our category to either be cellular or simplicial and combinatorial.
Before we can state the main theorems we will need to introduce some further theory. We will
only be interested in the case, where we Bousfield localise with respect to a single map. This is
the case which we will consider throughout Part III. We will introduce the more general theory
here for completeness.
Something important to know, are the classes of generating cofibrations and generating acyclic
cofibrations for the model structure created by the left Bousfield localisation. If we consider a
general set of maps and localise with respect to it, it will not be so easy to determine the set
of generating acyclic cofibrations. The set of generating cofibrations will - to no surprise - be
the same. This simply follows, since we have the same cofibrations, but since we add more weak
equivalences one has to expect, that the set of generating acyclic cofibrations will change.

5.3.1 Horns

Definition 5.38. Let C be a model category and S a class of morphisms in C , then a full class
of horns on S is a class Λ(S) of maps obtained by choosing, for every element f : A→ B ∈ S,
a cosimplicial resolution f̃ : Ã→ B̃ of f such that f̃ is a Reedy cofibration and letting Λ(S) be
the class of maps

Λ(S) =

Ã⊗∆n
∐

Ã⊗∂∆n

B̃⊗∆n

∣∣∣∣ f : A→ B ∈ S, n ≥ 0

 .
Definition 5.39. Let (C , IC , JC ) be a cofibrantly generated model category. If S is a set of maps
of C , then an augmented set of S-horns is a set Λ(S) of maps

Λ(S) = Λ(S) ∪ JC .
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These definitions depend on the choice of a cosimplicial resolution. We will always assume that
such a resolution was chosen. The next result can be found as Proposition 4.2.5 in [PHir03].
Proposition 5.40 ([PHir03]). Let (C , IC , JC ) be a left proper cellular model category and let
S be a set of maps in C , then there is a set Λ̃(S) of relative IC -cell complexes with cofibrant
domains such that every element of Λ̃(S) is an S-local equivalence and an object X of C is
S-local iff the map X → ∗ is in Λ̃(S)-inj.

The next theorem looks very promising as a candidate for the generating acyclic cofibrations,
it is Theorem 4.2.9 in [PHir03].
Theorem 5.41 ([PHir03]). Let (C , IC , JC ) be a left proper cellular model category and S a set
of morphisms in C . Then every relative Λ̃(S)-cell complex is both a cofibration and an S-local
equivalence.
Proposition 5.42 ([PHir03]). Let (C , IC , JC ) be a left proper cellular model category and let
S be a set of morphisms in C . If j : X → RX is a relative Λ̃(S)-cell complex and RX is a
Λ̃(S)-inj, then the pair (RX, j) is a cofibrant S-localisation of X.

Proof. Follows from Theorem 5.41 and Proposition 5.40. �

It would be really beautiful if we could now claim that we already found our set of generating
acyclic cofibrations with the above definitions and results. Unfortunately, reality is a cruel place
and so we provide an example why this is not true in general. The example was due to A. K.
Bousfield and can also be found in [PHir03].
Example 5.43. Consider the category Top∗ of pointed topological spaces and let n > 0 and
choose f : ∂Dn+1 → Dn+1. The path space fibration p : PK(Z, n)→ K(Z, n) is a Λ{f}-inj and
so every Λ{f}-cof has the the right lifting property with respect to p.
The cofibration ∗ → Sn does not have the lifting property with respect to p and hence is not a
Λ{f}-cof.
However, since one can show that the composition ∗ → Sn → Dn+1 and f itself are f -local
equivalences, the 2-3 property of f -local equivalences implies that the inclusion ∗ → Sn is an
f -local equivalence, but it is not a Λ{f}-cof. J

5.3.2 The Bousfield-Smith Cardinality Argument

We will need something known as the Bousfield-Smith cardinality argument, stated in the form
of the following proposition, which gives us generating acyclic cofibrations, this will be justified
in the proof of Theorem 5.45. The proof of the next proposition can be found as section 4.5 in
[PHir03].
Proposition 5.44 ([PHir03]). Let (C , IC , JC ) be a left proper cellular model category and S a
set of maps in C , then there is a set JS of inclusions of cell complexes such that the class of
JS-cof equals the class of cofibrations that are also S-local equivalences.

This very brief preliminary work will be used to prove the main theorem of this section. For
more details on this whole machinery one is highly encouraged to look it up in [PHir03].
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5.3.3 The Main Theorems

Theorem 5.45 (Existence of Left Bousfield Localisations I, [PHir03]). Let (C , IC , JC ) be
a left proper cellular model category and let S be a set of maps in C .

1. The left Bousfield localisation of C with respect to S exists. That is, there is a model
category structure LBS (C ) on the underlying category C in which
(a) WLBS (C ) = {S-local equivalences of C }.
(b) CLBS (C ) = {cofibrations of C }
(c) FLBS (C ) = {maps with RLP with respect to maps which are cofibrations and

S-local equivalences }.
2. The fibrant objects of LBS (C ) are the S-local objects of C .
3. LBS (C ) is a left proper cellular model category.
4. If C is a simplicial model category then that simplicial structure gives LBS (C ) the

structure of a simplicial model category.

proof (sketch). This is section 4.6 in [PHir03]. We will give a short discussion about the first
part of the theorem, since we only need that part later. We will use the recognition theorem for
cofibrantly generated model categories, Theorem 2.31.
The class of S-local equivalences satisfies the 2-3 property and it is also closed under retracts,
these facts follow from Proposition 3.2.3 and Proposition 3.2.4 in [PHir03].
Now, let JS be the set provided by Proposition 5.44, and let ILBS (C ) = IC . Every element of JS
has a cofibrant domain and every cofibrant object in a cellular model category is small relative
to the subcategory of cofibrations (see Theorem 12.4.3 in [PHir03]). Therefore, IC and JS both
admit the small object argument.
The subcategory of IC -cof is the subcategory of cofibrations in the given model category struc-
ture on C and the IC -inj are the acyclic fibrations in that model category. Thus Proposition
5.44 implies that the first condition of part 3 of Theorem 2.31 is satisfied.
Since the JS-cof are a subcategory of the IC -cof, every IC -inj must be a JS-inj. Proposition 3.1.5
in [PHir03] implies that every JS-inj is an S-local equivalence, this gives the second part of the
second condition of part 3 in Theorem 2.31.
We conclude by Proposition 5.44, giving the last needed condition. Therefore the recognition
theorem for cofibrantly generated model categories shows that there is a model category struc-
ture on LBS (C ) i.e. (LBS (C ), IC , JS) is a cofibrantly generated model category. �

For completeness we state the following theroem, characterising the other large class of model
categories, where the left Bosufield localisation exists with respect to any set of maps. Since we
will not be using it, there will not be a proof. It can be found in this form as Theorem 2.11 in
[ClBa].
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Theorem 5.46 (Existence of Left Bousfield Localisations II, [ClBa]). If C is a left proper,
simplicial, combinatorial model category and S is a set of morphisms in C , then the left Bousfield
localisation LBS (C ) does exist as a combinatorial model category.
Moreover it satisfies the following.

1. The fibrant objects of LBS (C ) are precisely the S-local objects of C that are fibrant in C .
2. LBS (C ) is a left proper model category.
3. LBS (C ) is a simplicial model category.
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6 The General Nerve and Realisation Construction

We will give a convenient characterisation when two model categories -if they fulfill certain
conditions- give an adjunction pair.
Since it is possible to state this construction in a great generality we shall do so. It is a con-
struction which will be used a lot to establish Quillen equivalences later on, since every Quillen
equivalence has to be a Quillen pair, which on the other hand has to be an adjunction pair.
We follow [BuFaBl04] and [FoLo17].
For the following, let D be a locally small cocomplete category (really for later we deal with
model categories which are even bicomplete), C a small category and a category V such that D
is tensored over V . For a better intuition one may replace C with ∆ and V with Set, actually
we will mostly use it in this case anyway.
Definition 6.1 (Tensored). Let V be a category. A V -enriched category C will be called ten-
sored over V , if there exists a functor

⊗ : V × C → C

such that there is a natural isomorphism

C (V ⊗ C,C ′)
∼=−→ V (V,C (C,C ′))

∀ V ∈ V and ∀ C,C ′ ∈ C .

6.1 The General Nerve

We now define the nerve according to [BuFaBl04]. Actually it is not really needed in this kind
of generality later on, but I got a bit carried away.
Definition 6.2 (Geometric Nerve). Let C be a small category and D a locally small and
cocomplete category tensored over V for some category V . Given a functor i : C → D and an
object C ∈ C we define

N (A)C = D(i(C), A).
One obtains a functor

N : D → Fun(C op,V )
defined on objects as N (A) = D(i(−), A) and on arrows f : A → B in D via composition
N (f) = f is defined as the map N (A)C

fC−→ N (B)C , fC(α) = f ◦ α.
Remark 6.3. If we would replace C with ∆ and V with Set. The above definition with the
functor i : ∆→ D one can define the n-simplices of an object A of D as the arrows from i([n])
to A i.e.

N (A)n = D(i([n]), A).
Now the functoriality of i provides face and degeneracy operators satisfying the simplicial iden-
tities so that N (A) becomes a simplpicial set. Thus one obtains a functor

N : D → Fun(∆op,Set) = sSet

defined as above. �
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6.2 The General Realisation

Now we define the geometric realisation functor, which we will define as left Kan extension.
Though this is a very abstract construction, it will turn out to be helpful nonetheless for the
case of simplicial sets, where it is not too hard to see what this should be.
Definition 6.4 (Geometric Realsation). Let C be V -enriched small category and D a locally
small and cocomplete category tensored over V for some category V . The geometric realisa-
tion functor Π is defined as left Kan extension of

C D

Fun(C op,V )

i

Y
LY i

i.e. Π := LY i, where Y : C → Fun(C op,V ), C 7→ C (−, C) is the enriched Yoneda embedding.
Remark 6.5. The left Kan extension LYi above may be represented as a coend in the following
way

Π(K) ∼=
∫ C∈C

i(C)⊗K(C)

for some K ∈ Fun(C op,V ) (this is usually referred to as the coend formula). �

Cocompleteness in the above definition is a crucial condition since it is needed for the existence
of the left Kan extension.

6.3 The Main Theorem

The following result will state that the above two functors are indeed an equivalence pair. Again
this statement is stated in a great generality, but I could not resist to show it in all its glory as
presented here. Either way, the result which we will need is the corollary which we conclude as
a special case from the next Theorem.
Theorem 6.6. Let C be a V -enriched small category and D a V -enriched cocomplete category
tensored over V for some category V . There is an adjunction

Π : Fun(C op,V ) //
Doo _ : N .

Proof. Let K be some object in Fun(C op,V ) and D some object in D , then we have

D(Π(K), D) ∼= D

(∫ C∈C

i(C)⊗K(C), D
)

∼=
∫
C∈C

D(i(C)⊗K(C), D)

∼=
∫
C∈C

V (K(C),D(i(C), D))

=
∫
C∈C

V (K(C),N (D)(C))
∼= Fun(C op,V )(K,N (D)).
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The first step uses the above remark, the second one uses properties of ends and coends, the
next step uses the property of the tensoring. The equality is just by definition and the last step
uses the co-Yoneda lemma. Also notice, that all isomorphisms are natural. �

Here comes an interesting example of the above construction. I found it in the n-category café
and it was provided by Tom Leinster, the original example was provided in [SM94].

Example 6.7. Let S ∈ Top. Denote with O(S) the poset of open subsets of S regarded as
a category, where O(S)(X, Y ) is either empty or contains exactly one element. Consider the
category (Top ↓ S). We have a canonical functor

J : O(S)→ (Top ↓ S)
U 7→ (U ↪→ S).

Fix some S ∈ Top. Since Top has all small comlimits (which we will see later), (Top ↓ S) also
has all small colimits. Now applying Theorem 6.6 to J , gives an adjunction

Fun(O(S)op,Set) // (Top ↓ S)oo _ .

If we go right and left in the adjunction, this gives the so called sheafification of a presheaf,
going left and then right gives the ”étalification” of a space over S.
Restricting this adjunction to presheaves over S and étale spaces over S gives an equivalence of
categories

Sh(S) //
Et(S)oo _ .

J
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Part II

Applications
This part consists of two sections, discussing the model structures on the categories of topological
spaces and simplicial sets respectively.
The first section deals with the case of topological spaces. First we show that Top carries a
cofibrantly generated model structure. Later on we also deduce that TopQ is indeed a cofibrantly
generated, cellular, simplicial and proper model category and that in addition every object is
fibrant in TopQ. From the previous part we then know that the left Bousfield localisation exists
with respect to any class of maps in TopQ.
After that we give a short discussion about Kelley spaces, and show that they carry the same
model structure as TopQ. The reason for introducing those spaces is simply, that they are the
very nice and well behaved topological spaces. This will ease the proof of the classical homotopy
hypothesis later on. We indeed show that the categories TopQ and KQ are Quillen equivalent.
The second section deals with the case of simplicial sets. First we will discuss some basic
properties about simplicial sets. Next we define the singular functor and the geometric realisation
and show that they are an adjunction with the help of the previous part. This adjunction is
important to define the Quillen model structure sSetQ on sSet, as the weak equivalences are
defined using the geometric realisation.
After that we will begin the discussion, that sSetQ is a cofibrantly generated model category.
We will not prove every result needed as it is already very involved to verify. Especially since we
will also define homotpy groups in sSetQ, other key concepts will include anodyne extensions
and the machinery of minimal fibrations. Furthermore, we will also argue that sSetQ is indeed
a cofibrantly generated, cellular, simplicial, combinatorial and proper model category. Similarly
as for TopQ we can then conclude, that the left Bousfield localisation exists for any class of
maps in sSetQ.
Throughout the discussion we also give some nice properties of the geometric realisation functor,
which will be helpful for the proof of the classical homotopy hypothesis, stating that sSetQ and
TopQ are Quillen equivalent.
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7 The Quillen Model Structure on Topological Spaces

In this section we will define the model structure TopQ on the category Top of topological spaces
and show that it is a model category in the sense of Definition 2.16. Later on we also show, that
Top carries in addition the structure of a cellular, proper and simplicial model category. The
last part of the chapter will be dealing with the category of Kelley spaces. Those spaces are
particularly nice topological spaces and will make it easier to show the classical version of the
homotopy hypothesis, stating that there is a Quillen equivalence between simplicial sets and
topological spaces. Furthermore this category will also be helpful in the next section where we
discuss the Quillen model structure on the category of simplicial sets.
We will follow [nLab], [PHir03] and [MHov91].
First we may argue that the category of topological spaces Top is bicomplete. Remember, that
the category Top is the category, where objects are topological spaces (here topological spaces
should be chosen nice enough) and the morphisms are continuous maps between topological
spaces.
In this section R will denote the real numbers.
Proposition 7.1. Top is bicompete.

proof (sketch). Let I be a small category and consider the functor F : I → Top. Now a limit
of F is obtained in the following way. We take the limit in the category Set and then topologise
it as a subspace of the product ∏F (i) for i ∈ I . The product is given by the product topology.
A colimit of F is obtained in the following way. We take the colimit colimF in the category
Set and we say that a set U in colimF is open iff j−1

i (U) is open in F (i) for any i ∈ I , where
ji : F (i)→ colimF is the structure map of the colimit.
The result now follows from the fact, that Set is a bicomplete category. �

We are ready to state the definitions for the different classes of maps needed for the model
structure.
Definition 7.2. Write

I := [0, 1] ↪→ R
for the standard topological interval, a compact connected topological subspace of the real
line.
Definition 7.3. For n ∈ N write

Dn := {x ∈ Rn | |x| ≤ 1} ↪→ Rn for the standard topological n-disk.
Sn−1 = ∂Dn := {x ∈ Rn | |x| = 1} ↪→ Rn for the standard topological n-sphere.

With the convetion that D0 = {0}, S−1 = ∅ and S0 = ∗∐ ∗.
We define the classic model structure on topological spaces and prove that it will indeed be a
model category.
In order to do so, we will use Theorem 2.31. First of all we will need to define the set of
generating cofibrations and generating acyclic cofibrations.

Gian Deflorin September 1, 2019 90



The Homotopy Hypothesis

Definition 7.4 (Generating Cofibrations). The set

ITop := {∂Dn → Dn | n ≥ 0}

will be called the set of generating cofibrations for Top.

Definition 7.5 (Generating Acyclic Cofibrations). The set

JTop := {Dn → Cyl(Dn), (x) 7→ (x, 0) | n ≥ 0}

will be called the set of generating acyclic cofibrations for Top.

Remark 7.6. In the setting of topological spaces, the cylinder object Cyl(Dn) of Dn is just
Dn × I. �

We are now able to define the model structure.

Definition 7.7 (Model Category of Top). Let f : X → Y be a morphism in Top. We say that
f is

1. a weak equivalence if πn(f, x) : πn(X, x)→ πn(Y, f(x)) is an isomorphism for all n ≥ 0
and all x ∈ X (for n = 0 this is an isomorphism of sets and for n ≥ 1 an isomorphism of
groups).

2. a fibration if it is in JTop-inj.
3. a cofibration if it is in ITop-cof.

We denote this model structure by TopQ.

Remark 7.8. The weak equivalences as defined above are called weak homotopy equivalences.
An interesting fact, is that πn is an abelian group for n ≥ 2. �

Definition 7.9 (Relative Cell Complex). A map in ITop-cell is called a relative cell complex.

Remark 7.10. A relative CW-complex is a special case of a relative cell complex, where the
cells can be attached in order of their dimensions.
The maps of JTop are relative CW-complexes hence are relative ITop-cell complexes. This can
be seen if one considers the following pushout diagram

∂Dn Dn

Dn Cyl(Dn).

Thus JTop-cof ⊂ ITop-cof. �

It is now worth pointing out that the fibrations are Serre fibrations. For comparison, here is the
usual definition of a Serre fibration.
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Definition 7.11 (Serre Fibration). Let f : X → Y be a continuous map between topological
spaces. f is a Serre fibration if for every commutative square of solid continuous functions

Dn × {0} X

Cyl(Dn) Y

(id,0) f
h

there exists a continuous (dotted) function h : Dn → X making the above diagram commute.

One can show, that that if f and g are homotopic then f is a weak equivalence iff g is a weak
equivalence. Therefore every homotopy equivalence is a weak equivalence.
Now we are ready to start verifying the axioms of a model category, as stated in section 2,
starting with weak equivalences.

Proposition 7.12. The class WTop satisfies the 2-3 property.

Proof. Let f : X → Y ∈ WTop but then f induces isomorphisms f ∗i : πi(X)
∼=−→ πi(Y ) for any

i ≥ 0 by definition. We are now left to show that the f ∗i have the 2-3 property. So it is enough
to show this fact for isomorphisms. Since isomorphisms are invertible it is really just necessary
to claim that the composition of isomorphisms is an isomorphism. This is clear, since if f and
g are isomorphisms then so are f−1 and g−1. Hence (f ◦ g) (if it exists) has an inverse (f ◦ g)−1,
so it is indeed an isomorphism. �

The next main step is to show the existence of the two functorial weak factorisation systems.
This involves that we first state some helpful and technical results. The next proposition can
be found as Proposition 10.7.4 in [PHir03].

Proposition 7.13 ([PHir03]). If f : X → Y is a relative ITop-cell complex in Top, then a
compact subset of Y can intersect the interiors of only finitely many cells of Y \im(f).

Corollary 7.14 ([PHir03]). A compact subset of a cell complex in Top can intersect the inte-
riors of only finitely many cells.

Proof. Follows from Proposition 7.13. �

Proposition 7.15 ([PHir03]). Every cell of a cell complex in Top is contained in a finite
subcomplex of the cell complex.

Proof. Use Corollary 7.14. �

Corollary 7.16 ([PHir03]). A compact subset of a cell complex in Top is contained in a finite
subcomplex of the cell complex.

Proof. This follows from Proposition 7.15 and Corollary 7.14. �
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Lemma 7.17. The elements of JTop are finite relative cell complexes.

Proof. This is clear, since we are dealing with CW-complexes. �

Lemma 7.18. Every relative JTop-cell complex is in WTop.

Proof. Let f : X → Y be a relative JTop-cell complex i.e. Y is attained from X by a possibly
infinite ”gluing” process. Therefore we have the following diagram.

X X1 X2 . . . Y

limXα

Notice that, since we are working with JTop, every step Xα → Xα+1 in the transfinite composi-
tion is a weak equivalence (since it is a retraction).
Then by Corollary 7.14 this process terminates after a finite number of steps i.e. limαXα = Y .
But then we get an isomorphism

πn(X)
∼=−→ πn(lim

α
(Xα)) = πn(Y )

i.e. f ∈ WTopQ . �

Lemma 7.19. ITop-inj ⊆ WTop.

Proof. Consider a map p : Y → x that has the RLP with respect to ITop i.e. there is a diagram
with a lift

Sn−1 Y

Dn X.

p

We will show that πk(Y )→ πk(X) is an isomorphism ∀ k ≥ 0.
For the case k = 0, the existence of a lift in the above diagram, says that each point of X is in
the image of p and therefore π0(Y )→ π0(X) is surjective (from n=0). Consider n = 1 and the
map ∗∐ ∗ → Y which chooses two connected components in Y . The existence of the lift above
again yields that if the two points have the same image in π0(X), then they were already in the
same connected component in Y , and hence π0(Y )→ π0(X) is injective and hence bijective.
Now the case for k ≥ 1. Let Sk → Y represent an element of πk(Y ) such that it will be trivialised
in πk(X). Consider the following diagram

Sn Y

Dn+1 X.

p
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which yields that it represents the trivial element (since Sn → Dn+1 is a trivial element in
πk(Dn+1) and by the commutativity of the upper triangle). Therefore πk(Y ) → πk(X) has
trivial kernel and hence it is injective.
Consider the commutative diagram

Sk−1 ∗ Y

Dk X

which is a representative for any element of πk(X). Indeed, this follows from the following
diagram

Sk+1 ∗

Sk

Dk X.

The above diagram together with the lift Dk → Y yields the following diagram.

Sk+1 ∗

Sk

Dk Y.

This gives the existence of a preimage in πk(Y ) hence πk(Y ) → πk(X) is surjective and hence
also bijective. �

Lemma 7.20. ITop-inj ⊆ FTop.

Proof. By Corollary 2.7 it follows, that an ITop-inj map also has the RLP with respect to all
relative cell complexes. Then by Lemma 7.17 it is also JTop-inj and hence in FTop. �

The proof of the next result is inspired from [nLab].

Lemma 7.21. WTop ∩FTop ⊆ ITop-inj.

Proof. Consider a map f : X → Y ∈ WTop ∩FTop. This means especially, that we have
isomorphisms πn(X)

∼=−→ πn(Y ) for any n ≥ 0. For n = 0 this menas we have isomorphisms on
connected components, which on the other hand yields a lift in any commutative solid arrow
square of the form
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S−1 X

D0 Y

f

(by the surjectivity of f), and another lift in every solid arrow square of the form

S0 X

D1 Y

(by injectivity of f), where by convention S−1 is the empty set and D0 is a point and D1 is an
interval.
Therefore, we are left to show for any n ≥ 2, that there is a lift in any solid arrow diagram of
the form

Sn−1 X

Dn Y.

α

f

κ

This will now be a bit more involved to show. We will try to construct this lift. Choose a
basepoint on Sn−1 and write x, y repsectively for the images in X and Y . But then by the above
diagram, f∗[α] = 0 ∈ πn−1(Y, y) and hence (since f ∈ WTop ∩FTop), [α] = 0 in πn−1(X, x).
This yields the existence of some map κ′ such that the following diagram commutes

Sn−1 X.

Dn

α

κ′

It is left to show that the lower triangle commutes. We have a commutative square

Sn−1 Dn

Dn Y.

f◦κ′

κ

Notice further, that there is a pushout

Sn−1 Dn

Dn Sn.
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From the two above diagrams we get (by the universal property of pushouts), a unique map
ϕ : Sn → Y . This map represents an element of the n-th homotopy group [ϕ] ∈ πn(Y, y). Since
f ∈ WTop, there is an element [ρ] ∈ πn(X, x) such that f∗[ρ] = [ϕ], which yields a lift ρ in the
following diagram which commutes only up to homotopy

X

Sn Y.

f
ρ

ϕ

We may choose this ρ in a more suitable way as a map ρ′ : Dn → X. Consider the unique map
from the above pushout (f ◦ ρ′, κ) : Sn → Y , but then we have the following

[(f ◦ ρ′, κ)] = [(f ◦ ρ′, f ◦ κ′)] + [(f ◦ κ′, κ)]
= f∗[(ρ′, κ′)] + [(f ◦ κ′, κ)]
= [ρ] + [(f ◦ κ′, κ)]
= [(κ, f ◦ κ′)] + [(f ◦ κ′, κ)]
= 0.

Therefore there is a homotopy Φ : f ◦ ρ′ ⇒ κ, which fixes the boundary of the n-disk.
We need to show, that Φ may be lifted to a homotopy of just ρ′ fixing the boundary, this will
yield a homotopy ρ′′ which will be the desired lift. For Φ : Dn × I → Y to fix the boundary of
the n-disk means that it extends to a morphism

Sn−1 ∐
Sn−1×I

Dn × I (f◦α,Φ)−−−−→ Y.

Out of the pushout that identifies in the cylinder over Dn all points lying over the boundary.
Hence we need a lift in the following diagram

Dn X

Sn−1∐
Sn−1×I D

n × I Y.

ρ′

f

(f◦α,Φ)

The left map is homeomorphic to Dn → Dn × I and hence we have a lift in the desired
diagram. �

This yields the following theorem. This is really the main result in order to conclude that TopQ
is a model category.

Theorem 7.22. Morphisms in Top which have the RLP with respect to ITop are in
WTop ∩FTop.

Proof. Lemma 7.19, Lemma 7.20 and Lemma 7.21. �
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We state some further helpful results.

Lemma 7.23 ([MHov91]). Let p : X → Y be a fibration and i : ∂Dn → Dn is the boundary
inclusion. Then the map Q(i, p) : XDn → XDn ×Y Dn Y Dn is a fibration.

Proof. By the same adjointness argument as before it suffices to show that the map

(Dm × Sn−1 × I)
∐

Dm×Sn−1×{0}
(Dm ×Dn × {0})→ Dm ×Dn × I

is in JTop-cof for all m,n ≥ 0. The pair (Dn, Sn−1) is homeomorphic to the pair (In, ∂In) where
In is the n-cube, and the boundary is the collection of points where at least one coordinate is
0 or 1. Therefore the map

f : (Sn−1 × I)
∐

Sn−1×{0}
(Dn × {0})→ Dn × I

is homeomorphic to the map

(∂In × I)
∐

∂In×{0}
(In × {0})→ In × I

which is in turn homeomorphic to the map Dn × {0} → Dn × I by flattening out the sides of
the box (∂In× I)∪ In×{0}. Thus the map f is in JTop-cof by definition and the map Dm× f
is homeomorphic to Dm+n × {0} → Dm+n × I so is also in JTop-cof. �

Corollary 7.24 ([MHov91]). Every object in Top is fibrant. Hence the map Y Dn → Y Sn−1 is
a fibration for all n ≥ 0.

Proof. Every map of JTop is an inclusion of a retract. Hence every map of the form Y → ∗
has the RLP with respect to JTop so is a fibration. It follows from Lemma 7.23 applied to the
fibration Y → ∗ that the map Y Dn → Y Sn−1 is a fibration. �

7.1 The Factorisations

These results are inspired from [nLab].

Proposition 7.25 (The First Factorisation). Every f : X → Y ∈ TopQ factors in the following
sense

f : X ∈CTop−−−→ X ′
∈WTop ∩FTop−−−−−−−−−→ Y.

Proof. As we have seen in Corollary 7.14 and from the fact, that Dn and ∂Dn are compact
(Indeed, Sn is compact, it is clearly bounded. Consider the continuous map f : Rn+1 → R, x 7→
‖x‖2, now Sn = f−1({1}) which means that Sn is closed and hence compact), ITop admits the
small object argument.
By the small object argument, we have a factorisation

f : X ∈CTop−−−→ X ′
∈ITop-inj−−−−−→ Y.

Now we just need to apply Theorem 7.22 and we are done. �
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Proposition 7.26 (The Second Factorisation). Every f : X → Y ∈ TopQ factors in the
following sense

f : X ∈WTop ∩CTop−−−−−−−−→ X ′
∈FTop−−−−→ Y.

Proof. As we have seen in Corollary 7.14 and from the fact, that Dn is compact, we get that
JTop admits the small object argument. This means there is a factorisation

f : X ∈JTop-cell−−−−−−→ X ′
JTop-inj−−−−→ Y.

But as pointed out earlier, JTop-inj are Serre fibrations, hence X ′ → Y ∈ FTop. By Lemma
7.17, a relative JTop-cell complex is a relative ITop-cell complex. This implies that X → X ′ is a
cofibration. Finally, by Lemma 7.18 X → X ′ is a weak equivalence. �

7.2 Liftings

This result is inspired from [nLab].

Proposition 7.27 (Lifting). Consider a commutative solid arrow diagram

• •

• •
g∈CTop f∈FTop

h

in TopQ, then the lift h (dotted line) exists, as soon as either g or f are in WTop.

Proof. For the first case, assume, that f ∈ WTop ∩FTop. Then we apply Theorem 7.22 and
conclude by the closure properties, that g has the LLP against f .
For the second case, assume that, g ∈ WTop ∩CTop. We may factor g as

g : X ∈WTop ∩CTop−−−−−−−−→ X ′
∈FTop−−−−→ Y.

Since g ∈ WTop we may apply the 2-3 property to conclude that X ′ → Y ∈ WTop. The first
case now yields, that X ′ → Y has the RLP against g. Applying the retract argument, yields
that g is a relative JTop-cell complex. Again by the closure properties, f has the RLP against
g. In both cases we have a lift in the desired diagram. �

7.3 The FWFS

The next result is inspired from [nLab].

Proposition 7.28. There are two FWFS (CTop,WTop ∩FTop) and (WTop ∩CTop,FTop) in
TopQ.
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Proof. The factorisation part follows from Proposition 7.25 and Proposition 7.26. We are left
to show, that the respective classes have the desired lifting properties against each other.
FTop has by definition the RLP against WTop ∩CTop, and WTop ∩FTop has the RLP against
CTop by Theorem 7.22. We show, that CTop has the LLP with respect toWTop ∩FTop. Consider
a morphism f : X → Y in ITop-cof, if this turns out to be a relative cell complex, then we are
done.
We apply the small object argument to get

f : X → Y ′
∈ITop-inj−−−−−→ Y.

Now f has the LLP with respect to Y ′ → Y i.e. we have the following commuting diagram.

X Y ′

Y Y.

f

id

We conclude by the retract argument that f is a retract of X → Y ′ by considering the following
diagram.

X X X

Y Y ′ Y.

f f

This is a retract by the commutativity of the diagram given by the LLP above.
If we apply the small object argument to JTop and factor f , we can conclude the same result for
WTop ∩CTop, showing that CTop has the LLP with respect to WTop ∩FTop and WTop ∩CTop
has the LLP with respect to FTop. �

Finally we have the first mandatory result of this section.

Theorem 7.29. (TopQ, ITop, JTop) is a cofibrantly generated model category. Every object in
Top is fibrant.

Proof. One has to show, that TopQ is bicomplete and equipped with a model structure. Bicom-
pleteness follows from Proposition 7.1. The model structure follows from Proposition 7.12, and
Proposition 7.28. The last statement follows from Corollary 7.24. �

We will now show, that the category Top is in addition a cellular, proper and simplicial model
category.
The next proposition is a slight generalisation of a result from [nLab].

Proposition 7.30. In Top the effective monomorphisms are the topological embeddings.
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Proof. With Proposition 2.39 we reduce to the case that regular monomorphisms are topological
embeddings. The equalisers in Top are topological subspace inclusions.
Conversely let i : X → Y be a topological space embedding, we want to show that it is the
equaliser of some pair of parallel morphisms. Consider the cokernel pair (i0, i1) by taking the
pushout of i against itself. By Proposition 2.39 the equaliser of that pair is the set theoretic
equaliser of that pair of functions endowed with the subspace topology. �

Theorem 7.31. TopQ is a cellular model category.

Proof. We use the recognition theorem for cellular model categories. Since we already know
that TopQ is a cofibrantly generated model category, we only need to verify conditions 3. and
5. of the theorem.
Condition 3. holds. For this we consider ITop and Corollary 7.16, which implies that every finite
cell complex is ω-compact relative to ITop, where ω is the countable ordinal. Similarly, if γ is an
infinite cardinal and X is a cell complex of size γ, then the corollary implies that X is γ-compact
relative to ITop. Which is precisely what we wanted to show.
Condition 5. holds. Indeed now with the help of Proposition 7.30 and Proposition 2.39 we get
that if a map is a topological embedding then it is also an effective monomorphism. We con-
clude by noticing that relative ITop-cell complexes are topological embeddings by construction
(transfinite composition) and hence an effective monomorphism. �

The next result can also be found as Theorem 13.1.11 in [PHir03].

Theorem 7.32. TopQ is a proper model category.

Proof. Since every object in Top is fibrant (Theorem 7.34) we get that TopQ is a right proper
model category. We are left to show, that TopQ is left proper.
We will use the definition of left proper. Let f : X → Y be a weak equivalenced in TopQ,
s : X → W cofibrant. Consider a pushout

X W

Y Z

s

f g

we want to show, that g is a weak equivalence. s must be a retract of a relative cell complex
t : X → U is a cofibration. If

X U

Y V

t

f h

is a pushout, then g is a retract of h, so we are left to show that h is a weak equivalence. We
write t as a transfinite composition of maps, each of which attaches a single cell. It is worth
noticing, that indeed it is also possible to add several cells at a time. Then one can argue by a
transfinite induction that h is a weak equivalence and hence g has to be a weak equivalence. �
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Theorem 7.33. TopQ is a simplicial model category.

proof (sketch). We give TopQ the structure of a simplicial category. If X and Y are objects in
Top, we let Map(X, Y ) be the simplicial set that in degree n is the set of continuous maps from
X × |∆n| to Y with face and degeneracy maps induced by the standard maps between the ∆n.
The cartesian product and the internal hom give TopQ the structure of a simplicial model
category. �

7.4 The Main Theorem

Theorem 7.34. (TopQ, ITop, JTop) is a cofibrantly generated, cellular, simplicial, proper
model category. Furthermore, every object in TopQ is fibrant.

Proof. This follows from Theorem 7.29, Theorem 7.31, Theorem 7.32 and Theorem 7.33. �

Proposition 7.35. TopQ is not a combinatorial model category.

Proof. From the definition it is enough to show that TopQ is not finitely presentable and we
may further reduce to just show that not every object in TopQ is small.
Indeed, consider for example the Sierpinski space. Take a limit ordinal λ, we put the order
topology on Y = λ ∪ {λ}. Xα := Y × {0, 1}/(x, 0) ∼ (x, 1) if x < α. Then Xα is a λ-sequence
in Top. Then X = colimXα and X = Y ∪ {(λ, 1)} with the same neighborhoods at λ.
These two points define a continuous map from the Sierpinski space into X which does not
factor continuously through any Xα. �

The inspiration for the above result and the idea of the example provided can also be found in
[MHov91].
A now immediate consequence is the existence of left Bousfield Localisations for TopQ.

Theorem 7.36. The left Bousfield localisation of TopQ exists, with respect to any class of
morphisms in Top.

Proof. This is now an immediate consequence of Theorem 7.34 as it fulfills any needed condition
for the existence of Bousfield localisations (Theorem 5.45). �

7.5 The Model Structure on Kelley Spaces

With the help of Kelley spaces it will be easier to deal with the Quillen equivalence needed for
the classical version of the homotopy hypothesis. Kelley spaces are particularly nice topological
spaces, and to no surprise they carry the same model structure as topological spaces.
We will follow [MHov91] and [Lew78] for this discussion.
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7.5.1 The Category of Kelley Spaces

Definition 7.37. Let X ∈ Top.
1. X is weak Hausdorff if for every continuous map f : K → X, where K is compact

Hausdorff the image f(K) is closed in X.
2. A subset U of X is compactly open if for every continuous map f : K → X, where K is

compact Hausdorff, f−1(U) is open in K. Similarly U is compactly closed if for every
such map f . f−1(U) is closed in K.

3. X is a Kelly space or a k-space if every compactly open subset is open, or equivalently if
every compactly closed subset is closed. We denote the full subcategory of Top consisting
of k-spaces by K.

4. The k-space topology on X denoted kX is defined by letting U be open in kX iff U is
compactly open in X.

Some basic facts about k-spaces are contained in the following proposition found in the appendix
of [Lew78], for example the next result formulated in [MHov91].
Proposition 7.38 ([MHov91]). 1. The inclusion functor i : K→ Top has a right adjoint j

and left inverse k : Top→ K that takes X to X with its k-space topology.
2. K has all small limits and colimits where colimits are taken in Top and limits are taken

by applying k to the limit in Top.
3. For X, Y ∈ K define C(X, Y ) to be the set of continuous maps from X to Y given the

topology generated by the subbasis S(f, U). Here U is an open set in Y . f : K → X is a
continuous map from a compact Hausdorff space K into X and S(f, U) is the set of all
g : X → Y such that (g ◦ f)(K) ⊂ U . Define Hom(X, Y ) to be kC(X, Y ). Then we have
a natural isomorphism K(k(X × Y ), Z)→ K(X,Hom(Y, Z)) for all X, Y, Z ∈ K.

7.5.2 The Model Structure on Kelley Spaces

It might come with no surprise that the model structure on K will be the same as for Top.
Theorem 7.39. There is a cofibrantly generated model category structure KQ on K, where a
map is a weak equivalence, cofibration or fibration iff it is so in TopQ.

Proof. This is very similar to the proof for topological spaces i.e. Theorem 7.34. �

Theorem 7.40. There is a Quillen equivalence
i : KQ

//
TopQoo _ : j

where i is the inclusion.

Proof. First we note that the inclusion functor reflects weak equivalences between cofibrant
objects. With Corollary 4.45 we have only to show that the map kX → X is a weak equivalence.
But if A is compact Hausdorff then Top(A,X) = Top(A, kX). It follows that kX → X is a
weak equivalence as required. �

The strategy will be to show, that there is also a Quillen equivalence between simplicial sets
and Kelley spaces. This will be done in the next section and in Part III.
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8 The Quillen Model Structure on Simplicial Sets

In this section - similar to the spirit of the last one - we will introduce the category of simplicial
sets. The first goal is to define the Quillen model structure on this category and show that it is
indeed a model category. At the same time we argue that it is indeed a cofibrantly generated
model category. Later on we further argue, that it is in addition also a cellular, combinatorial,
simplicial and proper model category.
As one will see, it is indeed very hard to show that this particular category is a cofibrantly
generated model category. There are a lot of involved results and technical finesse to it. Especially
due to the fact, that we also have to introduce a great amount of homotopy theory for simplicial
sets. The further we go through the attempt of proving the main result, the more we have to
deal with special concepts developed for this specific purpose, some of this machinery involves
anodyne extensions and the concept of minimal fibrations.
This section uses material from [MHov91], [PHir03], [GoJa09] and [nLab]. A lot of the material,
at least the whole discussion about the cofibrantly generated model structure on sSet follows
[MHov91] very closely.

8.1 The Category of Simplicial Sets

In a first step we define the category of simplicial sets, afterwards we discuss some of its prop-
erties.
Definition 8.1 (Category of Simplicial Sets). We define the category of simplicial sets to
be

sSet := Fun(∆op,Set).
Definition 8.2 (Set of n-Simplices). Let X• be a simplicial set, we denote X[n] by Xn and refer
to Xn as the set of n-simplices of X•. For X ∈ Xn, we say that n is the dimesnion of X.
Definition 8.3 (Yoneda Embedding). There is a functor Y : ∆ → sSet, called the Yoneda
embedding, defined by the functor ∆(−,−) : ∆op×∆ → sSet i.e. the functor ∆n : ∆op →
sSet which takes [k] to ∆([k], [n]).

Therefore, by the Yoneda embedding one may conclude that for X• ∈ sSet, Xn
∼= sSet(∆n, X•).

Dually to Definition 1.48, we may define the following.
Definition 8.4 (Face Maps, Degeneracie Maps and Simplicial Identities). We have

1. face maps di : Xn → Xn−1 for n ≥ 1 and 0 ≤ i ≤ n.
2. degeneracy maps si : Xn−1 → Xn for n ≥ 1 and 0 ≤ i ≤ n− 1.

Subject to the simplicial identities:
didj = dj−1di i < j

disj = sj−1di i < j

= id i = j, j + 1
= sjdi−1 i > j + 1

sisj = sjsi−1 i > j
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Remark 8.5. 1. A simplicial set X• is equivalent to a collection of sets Xn and maps di and
si as in Definition 8.4 satisfying the simplicial identities.

2. A map of simplicial sets f : X• → Y• is equivalent to a collection of maps fn : Xn → Yn
commuting with the face and degeneracy maps.

�

This is a rather nice remark, which we will use in several occasions throughout the present work.
It may help to give some thought about a graphical interpretation of simplicial sets, especially
in the terms of face and degeneracy maps. This especialy helps to clarify the above remark.

Example 8.6. Consider X• ∈ sSet. Assume that X• = ∆2 is the following simplicial set

∆2

Then, X0, X1 and X2 have the following graphical interpretation.

X0 X1 X2

The picture is to be seen in the following way. X0, X1 and X2 are all sets, X0 consists of
the three points depicted above, similarly X1 is a set consisting of the three lines in the middle
triangle. Finally the set X2 consists of one element which is the filling in the last triangle.
The picture shows how ∆2 is build with the following face and degeneracy maps. These maps
encapsulate the information how X• = ∆2 is build from X0, X1 and X2.
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X0 X1 X2

s0

d0

d1

d0

d1

d2

s0

s1

that is if we consider d0, d1 and d2 in the case of X2 we have the following picture

α

d 2
(α

)

d1(α)

d
0 (α)

0

1

2

This example should now clarify the above remark quite a bit. Now it should also be clear why
morphisms of simplicial sets are determined by the respective sets of n-simplices. J

8.1.1 Properties of Simplicial Sets

We give some properties about simplicial sets.

Lemma 8.7 ([MHov91]). Every object in sSet is small.

Proof. Let K• ∈ sSet and the cardinality of the set of simplices of K• is κ. κ is infinite. K•
is κ-small. Indeed, suppose λ is a κ-filtered ordinal and X : λ → sSet is a λ-sequence. Give a
map f : K• → colimXα in sSet there is an αn < λ such that fn factors through Xαn , hence
the set Kn is κ-small. Since κ is infinite, there is an α < λ such that f factors through a map
of sets g : K• → Xα. The map g may not be a map of simplicial sets. However for each pair
(x, i), where x is a simplex of K• and di is a face map applicable to x, there is a β(x,i) such that
g(dix) becomes equal to digx in Xβ(x,i) . There are κ such pairs (x, i), so there is a β < λ and a
factorisation of f through Xβ compatible with the face maps. A similar argument shows that
we can make the factorisation compatible with the degeneracy maps as well. This shows that
the map colim sSet(K•, Xα) → sSet(K•, colimαXα) is surjective. The κ-smallness of each Kn

shows this map is injective as well. �

Remark 8.8. sSet is bicomplete, since limits and colimits can be constructed levelwise. So it
is bicomplete, since Set is bicomplete. �
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Definition 8.9 (Face and Degeneracy). Let X• be a simplicial set and X a simplex of X•. Any
image of X under arbitrary iterations of face maps is called a face of X. Similarly any image
of X under arbitrary iterations of degeneracy maps is called a degeneracy of X.

Remark 8.10. A special case is the one of 0 iterations where X is both a face and a degeneracy
of itself. �

Definition 8.11 (Non degenerate). A simplex X ∈ X• is called nondegenerate if it is a
degeneracy only of itself.

Definition 8.12 (Finite). A simplicial set is called finite if it has only finitely many non-
degenerate simplices.

Remark 8.13. Let X be any simplex of a simplicial set X•. Then there is a unique non-
degenerate simplex Y of X• such that X is a degeneracy of Y . Indeed, take Y to be a simplex of
smallest dimension such that X is a degeneracy of Y . By the simplicial identities we have the
uniqueness of such a simplex, also we have that every simplex Z such that X is a degeneracy of
Z is in fact a degeneracy of Y . �

Remark 8.14. The simplicial set ∆n has
(
n
k

)
nondegenerate k-simplices corresponding to the

injective order-preserving maps [k] → [n] and in particular one nondegenerate n-simplex in.
There is a natural isomorphism sSet(∆n, K•) ∼= Kn (from the Yoneda embedding), which takes
f to f(in). �

Definition 8.15 (Boundary). We define ∂∆n to be the boundary of ∆n whose nondegenerate
k-simplices correspond to nonidentity injective order-preserving maps [k]→ [n].

Graphically, one may think of these in the following way.

∂ ∆2 ∆2

Definition 8.16 (Horn). By Λn
k ⊂ ∆n we denote the k-th horn, obtained from the simplex ∆n

by deleting the interior and the face opposite to the k-th vertex.

The next drawing really shows, why this definition is called a horn
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Λ2
1 ∆20

1

2 0

1

2

To be honest, the case for ∆3 would be better to see why we call this a horn, but the case of
∆2 is easier to draw.

Remark 8.17. Given some 0 ≤ r ≤ n the simplicial set Λn
r has nondegenerate k-simplices all

injective order-preserving maps [k] → [n] except the identity and the injective order-preserving
maps [n− 1] dr−→ [n] whose image does not contain r.
Consider the category D whose objects are nonidentity injective order-preserving maps [k]→ [n]
whose image contains r and whose morphisms are commutative triangles. Then Λn

r = colimD ∆k.
�

Definition 8.18 (Category of Simplices). Let X• ∈ sSet, then the category (∆ ↓ X•) will be
called the category of simplices.

Remark 8.19. A map X• → Y• of simplicial sets induces an obvious functor
(∆ ↓ X•) → (∆ ↓ Y•) so that this construction defines a functor from sSet to the category of
small categories Cat. �

We will make use of the next lemma in Part III, since it gives a nice way to deal with simplicial
sets in terms of ∆n.

Lemma 8.20. Let X• ∈ sSet. Consider the functor

F : (∆ ↓ X•)→ sSet
(∆n → X•) 7→ ∆n.

Then colim(F ) = X•.

Proof. This follows from the natural isomorphism Kn
∼= sSet(∆n, K•) provided by the Yoneda

embedding. �

What have we gained so far with this definitions. The advantage of this description of the
category of simplices is, that it is functorial in the simplicial set X•. Often it is more useful to
consider the nondegenerate simplices of a simplicial set. Anyway, this leads to a similar result
as above.
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8.2 Geometric Realisation and Singular Functor

In this section we will define the geometric realisation and singular functor. Not only are they
needed to prove the classical version of the homotopy hypothesis, saying that there is a Quillen
equivalence between the model category of simplicial sets and the model category of topological
spaces, but it is also heavily used in the next section in order to define the model category
structure on simplicial sets.
We follow [MHov91] and [nLab].

Definition 8.21 (Geometric Realisation). Let X• ∈ sSet. The geometric realisation is
defined as the functor

| | : sSet→ Top

X• 7→ |X•| :=
∫ [n]∈∆

∆n ×Xn.

Definition 8.22 (Singular Functor). Let X ∈ Top. The singular functor is defined as

Sing : Top→ sSet
X 7→ Sing(X)n := Top(|∆n|, X).

Now we will apply Theorem 6.6 to show that these functors give an adjunction pair.

Lemma 8.23. There is an adjunction

| | : sSet
//
Topoo _ : Sing .

Proof. Consequence of Theorem 6.6. �

Remark 8.24. |∆n| is a compact Hausdorff space so in particular is in K the category of k-
spaces. Since K is closed under colimits in Top it follows that the adjunction (| |, Sing) can be
thought as of an adjunction sSet→ K as well, indeed with the exact same functors. �

Lemma 8.25. The natural map

|∆m ×∆n| → |∆m| × |∆n|

is a homeomorphism.

Proof. This is shown in the proof of Lemma 3.1.8 in [MHov91]. The prove is very combinatorial
and technical, therefore there is no reason to replicate it here. �

Lemma 8.26. | | : sSet→ K preserves finite products.

Proof. Let X•, Y• ∈ sSet, by the co-Yoneda lemma (sometimes also referred to as the Yoda
lemma) we have

X• ∼=
∫ m

Xm ×∆(−,m), Y• ∼=
∫ n

Yn ×∆(−, n).
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Therefore,

|X• × Y•| ∼=
∣∣∣∣ ((∫ m

Xm ×∆(−,m)
)
×
(∫ n

Yn ×∆(−, n)
)) ∣∣∣∣

∼=
∣∣∣∣ (∫ m ∫ n

Xm × Yn × (∆(−,m)×∆(−, n))
) ∣∣∣∣

∼=
∫ m ∫ n

Xm × Yn × |∆(−,m)×∆(−, n)|

∼=
∫ m ∫ n

Xm × Yn × |∆(−,m)| × |∆(−, n)|

∼=
(∫ m

Xm × |∆(−,m)|
)
×
(∫ n

Yn × |∆(−, n)|
)

∼=
∣∣∣∣ ∫ m

Xm ×∆(−,m)
∣∣∣∣× ∣∣∣∣ ∫ n

Yn ×∆(−, n)
∣∣∣∣

∼= |X•| × |Y•|.

where we used, that the product preserves colimits (i.e. K is cartesian closed) and that | |
preserves colimits and Lemma 8.25. �

8.3 The Quillen Model Structure on Simplicial Sets

In this section we will define the model category structure sSetQ on the category sSet of
simplicial sets and show that it is a model category in the sense of Definition 2.16. We will be
following [MHov91] very closely as this discussion is rather involved.
We start with the definition of the classic model structure on simplicial sets, also called the
Quillen model structure, and prove that it will indeed be a model category, even more we show
that it is indeed a cofibrantly generated model structure.
Later on in the section we argue that sSet can be given the model structure of a simplicial,
cofibrantly generated, cellular, combinatorial and proper model category. For this we include
material from [MHov91] and [PHir03].
To show that the model category structure is cofibrantly generated, we will use Theorem 2.31,
hence we will need to define the sets of generating cofibrations and generating acyclic cofibra-
tions.

Definition 8.27 (Generating Cofibrations). The set

IsSet := {∂∆n → ∆n | n ≥ 0}

will be called the set of generating cofibrations for sSet.

Definition 8.28 (Generating Acyclic Cofibrations). The set

JsSet := {Λn
k → ∆n | n ≥ 0, n ≥ k ≥ 0}

will be called the set of generating acyclic cofibrations for sSet.

We will now give the definition of the model category structure for sSet.
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Definition 8.29 (Model Category of sSet). Let f be a morphism in sSet. We say that f is
1. a weak equivalence iff |f | is a weak equivalence in Top.
2. a fibration iff it is in JsSet-inj.
3. a cofibration iff it is in IsSet-cof.

We denote this model structure by sSetQ.

Remark 8.30. Notice that the fibrations in the above definition are Kan-fibrations and the
cofibrations are monomorphisms. This is a really nice fact to keep in mind (we will show this
in the process). �

We give the definition of Kan fibrations for comparison.

Definition 8.31 (Kan Fibration). A Kan fibration is a morphism π : Y → X in sSet with
the lifting property for all horn inclusions i.e. for a commutative square of solid arrows

Λn
k Y

∆n X

π

with n ≥ 1 and 0 ≤ k ≤ n, there always exists a lift (dotted arrow) making the above diagram
commute.

Definition 8.32 (Kan Complex). Let X• ∈ sSet. We say that X• is a Kan complex, if the
unique map X• → ∗ is a Kan fibration, i.e. any solid arrow diagram of the form

Λn
k X•

∆n

has a lift (dotted line) making the diagram commute.

Definition 8.33 (Anodyne Extension). The maps in JsSet are called anodyne extensions.

Here comes a little fun fact. I was not sure what the word anodyne means, so according to the
Cambridge dictionary it means: ”intended to avoid causing offence or disagreement, especially
by not expressing strong feelings or opinions”. Let us just hope that this holds true in this case
as well.
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Remark 8.34. Consider a fibration p : X• → Y• and a vertex v : ∆0 → Y•. We will often refer
to the pullback ∆0 ×Y• X• as the fiber of p over v i.e. as a diagram

∆0 ×Y• X• X•

∆0 Y•.

p

v

�

We now classify the cofibrations in sSet, they turn out to be the injective maps.

Proposition 8.35 ([MHov91]). A map f : X• → Y• in sSet is in CsSet iff it is injective. In
particular, every simplicial set is cofibrant. Furthermore, every cofibration is a relative IsSet-cell
complex.

Proof. The maps of IsSet are injective. Injections are closed under pushouts, transfinite com-
position and retracts therefore every element of IsSet-cof is an injection as well. Conversely,
suppose that f : X• → Y• is injective. We write f as a countable composition of pushouts
of coproducts of maps of IsSet, thereby showing that f ∈ IsSet-cell. Define A0 = X•. Having
defined An and an inclusion An → Y• which is an isomorphism on simplices of dimension less
than n, let Sn denote the set of n-simplices of Y• not in the image of An. Each such simplex s
is necessarily non-degenerate and corresponds to a map ∆n → Y•. The restriction of s to ∂∆n

factors uniquely through An. Define An+1 as the pushout in the diagram
∐
S ∂∆n An

∐
S ∆n An+1.

Then the inclusion An → Y• extends to a map An+1 → Y•. This extension is surjective on
simplices of dimension ≤ n by construction. It is also injective since we are only adding non-
degenerate simplices. The map f : X• → Y• is a composition of the sequence An, so f is a
relative ITop-cell complex. �

Remark 8.36. We have that JsSet-cof ⊆ IsSet-cof. Indeed this follows since the maps in JsSet
are injective and so we follow that JsSet ⊆ JsSet-cof which then gives the desired claim. �

Remark 8.37. |∆n| is homeomorphic to Dn and the homeomorphism takes |∂∆n| to Sn−1.
Furthermore Dn is homeomorphic to Dn−1 × I and this homeomorphism can be chosen to take
|Λn

r | to Dn−1. �

Proposition 8.38 ([MHov91]). Every anodyne extension is an acyclic cofibration of simplicial
sets.

Proof. We use the above remark and Lemma 1.34. The lemma implies that |IsSet-cof| consists
of cofibrations of k-spaces. Furthermore, it implies that the singular functor takes fibrations of
k-spaces to Kan fibrations and acyclic fibrations of k-spaces to maps of IsSet-inj. �
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Lemma 8.39 ([MHov91]). The functor | | : sSet → K preserves all finite limits and in
particular preserves pullbacks.

Proof. In Lemma 8.26, we showed that | | preserves finite products. We are now left to show,
that it also preserves equalisers. Consider the equaliser diagram

K• L• M•

f

g

in sSet. Let Z be the corresponding equaliser in Top. The map ∅ → M• is an injection and
hence is in IsSet-cell by Proposition 8.35. Thus |M•| is a cell complex.
It is in fact true that every cell complex is Hausdorff. This can be shown by transfinite induction
using the fact that cells themselves are normal and that the inclusion of the boundary of a cell is
a neighborhood deformation retract (for more details see the proof of Lemma 3.2.4 in [MHov91]).
It follows that Z is a closed subspace of |L•|. In particular Z is a k-space so is also the equaliser
in K. Now |K•| is also homeomorphic to a closed subspace of |L•|. Indeed, K• → L• is an
injection and so is in IsSet-cell by Proposition 8.35. Thus |K•| → |L•| is a relative cell complex
in K and any such is a closed inclusion by Lemma 2.4.5 in [MHov91].
Since the image of |K•| in |L•| is contained in Z it suffices to show that every point of Z is in
the image of |K•|. So take a z ∈ Z. The point z must be in the interior of an |x| for a unique
nondegenerate simplex x of L•, where we consider x as a simplicial set itself. By definition of
the geometric realisation the only way for |f |(z) to equal |g|(z) is if fx = gx. Hence x is a
necessarily nondegenerate simplex of K• and so z is in the image of |K•| as required. �

The proof of the next two result is inspired by [MHov91].

Lemma 8.40. Let f : K• → L• ∈ IsSet-inj then |f | ∈ FTop.

Proof. Since f has the RLP with respect to IsSet, f has the RLP with respect to all inclusions of
simplicial sets by Proposition 8.35. In particular we can find a lift (dotted line) in the following
solid arrow diagram

K• K•

K• × L• L•

(id,f) f

p1

where p1 is the projection of the second coordinate. The lift (dotted arrow) makes f into a
retract of p1. Hence |f | is a retract of |p1|, which is a fibration since the geometric realisation
preserves products by Lemma 8.26. Thus |f | ∈ FTop. �

Proposition 8.41. Let f : K• → L• ∈ IsSet-inj. Then f ∈ WsSet ∩F sSet.
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Proof. Since JsSet ⊆ IsSet it follows that f ∈ F sSet. We are therefore left to show, that f ∈
WsSet.
Let F• = f−1(v) be the fiber of f over some vertex v ∈ L• i.e. there is a pullback diagram

F• K•

∆0 L•.

f

v

Since | | preserves pullbacks and since |f | ∈ FTop, |f | has fiber |F•|.
Now the map F• → ∆0 has the RLP with respect to IsSet and hence with respect to all inclusions
by Proposition 8.35.
In particular F• is nonempty so we can find a 0-simplex w in F•. We denote the resulting map
F• → ∆0 w−→ F• by w as well. We can then find a lift H in the following commutative solid arrow
diagram

F• × ∂∆1 F•

F• ×∆1 ∆0.

(id,w)

H

Since the geometric realisation preserves products, |H| is a homotopy between the identity map
of F• and a constant map so |F•| is contractible.
By the long exact homotopy sequence of the fibration |f |, it is enough to show that |f | is
surjective on path components.
But any point in |L•| is in the same path component as the realisation of some vertex x of L•.
Since f has the RLP with respect to all inclusions, f is surjective and in particular surjective
on vertices. Thus there is a vertex y of K• such that f(y) = x and so the path component
containing y goes to the path component containing x. �

We would now of course also like the converse of the above proposition, but in order to prove
that we first have to develope some homotopy theory in the category sSet.

Anodyne Extensions

The main goal of this section is to prove the following theorem. We will again follow [MHov91],
but only provide the proof of the main theorem here, for details the reader may have a look in
the above mentioned work.
This result is needed for the next section, where we will deal with homotopy groups in sSet.

Theorem 8.42 ([MHov91]). Suppose that i : K• → L• is an inclusion of simplicial sets and
p : X• → Y• is a fibration of simlpicial sets. Then the induced map

Map�(i, p) : Map(L•, X•)→ Map(K•, X•)×Map(K•,Y•) Map(L•, Y•)
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is a fibration.

Remark 8.43. The simplicial sets in the above theorem are defined according to the description
given in the proof of Theorem 8.83.
If X• is a fibrant simplicial set and K• → L• is an inclusion. The theorem gives us that the
induced map Map(L•, X•)→ Map(K•, X•) is a fibration. �

In order to prove the above theorem we will show the following theorem, which is indeed equiv-
alent to the above statement as pointed out in [MHov91].

Theorem 8.44 ([MHov91]). For every anodyne extension f : A• → B• and inclusion i : K• →
L• of simplicial sets, the induced map

i�f : P (i, f) = (K• ×B•)
∐

K•×A•
(L• × A•)→ L• ×B•

is an anodyne extension.

We will construct some anodyne extensions in order to be able to prove the theorem. The
following lemma can be found as Lemma 3.3.3 in [MHov91].

Lemma 8.45 ([MHov91]). Let i : ∂∆n → ∆n denote the boundary inclusion for n ≥ 0 and
let f : Λ1

ε → ∆1 denote the obvious inclusion, for ε = 0, 1. Then the map i�f : P (i, f) =
(∂∆n ×∆1)∐∂∆n×Λ1

ε
(∆n × Λ1

ε)→ ∆n ×∆1 is an anodyne extension.

With this in mind we state the following result which can be found in this form as Proposition
3.3.4 in [MHov91].

Proposition 8.46 ([MHov91]). Let i : K• → L• be an inclusion of simplicial sets and let
f : Λ1

ε → ∆1 be the usual inclusion where ε = 0, 1. Then the map i�f : P (i, f) → L• × ∆1 is
an anodyne extension.

Definition 8.47. Let J ′sSet denote the set of maps JsSet�f , where f is one of the maps Λ1
ε → ∆1.

With this definition we may give a different characterisation of an anodyne extension. This is
Proposition 3.3.5 in [MHov91].

Proposition 8.48 ([MHov91]). A map g : K• → L• of simplicial sets is an anodyne extension
iff it is in J ′sSet-cof.

We now finally have all ingredients to show the main theorem of this section, the proof follows
[MHov91].

Proof of Theorem 8.44. The goal is to prove that i�f is an anodyne extension for all inclusions
i and anodyne extensions f . First we show that i�J ′sSet consists of anodyne extensions. Indeed,
we have i�J ′sSet = i�(JsSet�g), where g is one of the maps Λ1

ε → ∆1 for ε = 0, 1. A beau-
tiful property of the box product is that it is associative (up to isomorphism at least), so we
have i�(JsSet�g) ∼= (i�JsSet)�g. i�JsSet consists of inclusions. Proposition 8.46 then implies
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that (i�JsSet)�g consists of anodyne extensions and hence that i�J ′sSet consists of anodyne
extensions.
We now show that this implies that i�f is an anodyne extension for all anodyne extensions f
by a similar argument to Proposition 8.46. Indeed, we have just seen that the maps of i�JsSet
have the LLP with respect to JsSet. Adjointness implies that the maps of J ′sSet have the LLP
with respect to Map�(i, JsSet-inj). But then the maps of J ′sSet-cof must also have the LLP with
respect to Map�(i, JsSet-inj). Applying adjointness again, we find that i�f has the LLP with
respect to JsSet-inj and is therefore an anodyne extension for all f ∈ J ′sSet-cof. Since every
anodyne extension is in J ′sSet-cof by Proposition 8.48 we are done. �

Homotopy Groups

We want to give a notion of homotopy groups in the category sSet of simplicial sets. Therefore
we want to construct the homotopy groups of a fibrant object in sSetQ using the results of the
previous section.
One should keep in mind that at some point we would also be glad to show that an acyclic
fibration has the RLP with respect to IsSet. In this section we will show something close to
this desired version, namely that if X• is a fibrant object in sSet with no nontrivial homotopy
groups then the map X• → ∆0 has the RLP with respect to IsSet.
We again follow [MHov91] very closely but will not provide every of proof here.

Definition 8.49 (Homotopic). Suppose that X• is a fibrant object in sSetQ and x, y ∈ X0 are
0-simplices. Define x to be homotopic to y, written x ∼ y, by definition iff there is a 1-simplex
z ∈ X1 such that d1z = x and d1z = y.

The next lemma states that homotopy is an equivalence relation.

Lemma 8.50 ([MHov91]). Suppose X• is a fibrant object in sSetQ. Then homotopy of vertices
is an equivalence relation. The set of equivalence classes is denoted by π0(X•)

Proof. Reflexivity: This is obvious from the homotopy of vertices.
Symmetry: Say x ∼ y, then we have a 1-simplex z such that d1z = x and d0z = y. Therefore,
there is a map f : Λ2

0 → X• which is s0x on d1i2 and z on d2i2, as a picture one may imagine
the following.

f :

0

1

z

s0x
2 x

y

x

d2i2 d0i2

d1i2

i2
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X• is fibrant and hence there exists an extension of f to a 2-simplex w of X2. Then d0w is the
required homotopy from y to x, as we may see from the above picture, and hence y ∼ x.
Transitivity: Let x ∼ y and y ∼ z. We have 1-simplices a and b such that d1a = x, d0a =
d1b = y and d0b = z. Then a and b are defined by a map f : Λ2

1 → X•. Pictorially it looks as
follows.

f :

x

y

z

X•
a b

Since X• is fibrant, there is an extension of g to a 2-simplex c of X2. But then d1c is the required
homotopy from x to z and hence x ∼ z. �

Lemma 8.51 ([MHov91]). Let X• ∈ sSetQ be a fibrant object. Then there is a natural isomor-
phism π0(X•) ∼= π0(|X•|).

Proof. Consider the natural map π0(X•)→ π0(|X•|), taking a vertex v to the path component
of |X•| containing |v|.
Now as |∆n| is path connected for n > 0, the above map is surjective. This indeed holds, since
every point of |X•| is in the path component of a vertex.
On the other hand, define for α ∈ π0(X•) the sub-simplicial set Xα of X• to consist of all
simplices x of X• with vertex in α. Therefore X• = ∐

α∈π0(X•) Xα. As | | preserves coproducts we
are done, since coproducts in TopQ are disjoint unions. That is, applying | | to X•, tells us that
if we consider two vertices α and β which coincide, they will be mapped to the same connected
component. �

The above lemma motivates the following definition.

Definition 8.52 (Path Components). We call the elements of π0(X•) path components.

Remark 8.53. It is worth pointing out, that π0 is a functor from fibrant simplicial sets to sets.
If v is a vertex of a fibrant object X• in sSetQ, π0(X•, v) is the pointed set π0(X•) with basepoint
the equivalence class [v] of v. �

We will now extend the notion of homotopy.

Definition 8.54 (Homotopy Group). Let X• ∈ sSetQ be fibrant and v ∈ X0 a vertex. For any
Y• ∈ sSetQ let us denote the map Y• → ∆0 v−→ X• by v as well and refer to it as the constant
map at v.
Let F• denote the fiber over v of the fibration Map(∆n, X•) → Map(∂∆n, X•). The map is a
fibration by Theorem 8.44.
Then we define the n-th homotopy group πn(X•, v) of X• at v to be the pointed set π0(F•, v).
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It is certainly nice to call this the definition of homotopy groups but it is also interesting to
note that at this point we do not even know if they really are groups. There will be no direct
proof of this fact though. Instead we show that πn(X•, v) ∼= πn(|X•|, |v|) for a fibrant object X•
in sSetQ, i.e. πn(X•, v) is indeed a group for n ≥ 1 and in fact abelian for n ≥ 2.

Remark 8.55. There is also another way of stating the above definition. πn(X•, v) is the set
of equivalence classes [α] of n-simplices α : ∆n → X• that send ∂∆n to v under the equivalence
relation defined by α ∼ β if there is a homotopy H : ∆n × ∆1 → X• such that H is α on
∆n × {0}, β on ∆n × {1} and the constant map v on ∂∆n ×∆1.
Let f : X• → Y• ∈ sSetQ and v be a vertex of X• there is an induced map f∗ : πn(X•, v) →
π(Y•, f(v)) making the homotopy groups functorial. (More about this may be found in [MHov91]).

�

The following lemma gives an alternative characterisation of when an n-simplex is homotopic
to the constant map.

Lemma 8.56 ([MHov91]). Let X• ∈ sSetQ be fibrant, v a vertex of X• and α : ∆n → X• an
n-simplex of X• such that diα = v for all i.
Then [α] = [v] ∈ πn(X•, v) iff there is an (n + 1)-simplex x of X• such that dn+1x = α and
dix = v for i ≤ n.

Proof. Assume that [α] = [v], i.e. there is a homotopy H : ∆n ×∆1 → X• from α to v which is
v on ∂∆n ×∆1.
Define a map G : ∂∆n+1 ×∆1 → X• byG ◦ (di × 1) = v for i < n+ 1

G ◦ (dn+1 × 1) = H.

Then G is v on ∂∆n+1 × {1} and we have a commutative diagram

(∂∆n+1 ×∆1)∐∂∆n+1×{1}(∆n+1 × {1}) X•

∆n+1 ×∆1 ∆0.

G
∐
v

Since X• is fibrant, there is a lift F : ∆n+1 ×∆1 → X•. The (n + 1)-simplex F (∆n+1 × {0}) is
the desired x such that dn+1x = α and dix = v for i ≤ n.
Conversely, let x be an (n + 1) simplex such that dn+1x = α and dix = v for i ≤ n. Define a
map

G : (Λn+1
n+1 ×∆1)

∐
Λn+1
n+1×∂∆1

(∆n+1 × ∂∆1)→ X•

as v on Λn+1
n+1 ×∆1 and ∆n+1 × {1}; and x on ∆n+1 × {1}.

Since X• is fibrant there is an extension of G to a map F : ∆n+1 × ∆1 → X•. Let H =
F ◦ (dn+1 × 1). Then H is the desired homotopy between α and v. �
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Definition 8.57 (Homotopy). Let f, g : K• → X• ∈ sSetQ. We refer to a map H : K•×∆1 →
X• such that H is f on K• × {0} and g on K• × {1} as a homotopy from f to g.

The resulting homotopy relation will not always be an equivalence relation but it is one if
X• ∈ sSetQ is fibrant. Indeed, then f and g are homotopic iff they are homotopic as vertices of
the fibrant simplicial set Map(K•, X•). One should now think back when we discussed homotopy
for model categories in part I, where the homotopy relation is an equivalence relation if we
considered fibrant and cofibrant objects.
The next lemma provides an important example of a homotopy, it can be found as Lemma 3.4.6
in [MHov91].

Lemma 8.58 ([MHov91]). The vertex n is a deformation retract of ∆n in the sense that there
is a homotopy H : ∆n ×∆1 → ∆n from the identity map to the constant map at n which sends
n × ∆1 to n. Furthermore, this homotopy restricts to a deformation retraction of Λn

n onto its
vertex n.

Corollary 8.59. ∆n is not fibrant in sSetQ.

Proof. If we consider the homotopy provided by the above lemma, then there is no homotopy
in the other direction. Indeed, it would have to be induced by a map of ordered sets that takes
(0, k) to n and (k, 1) to k but there is no such map.
Therefore homotopy is not an equivalence relation on self-maps of ∆n proving that ∆n is not
fibrant. �

We are now able to state the main result of this section.

Proposition 8.60 ([MHov91]). Let X• be a non-empty fibrant object in sSetQ with no non-
trivial homotopy groups. Then the map X• → ∆0 is in IsSet-inj.

Proof. We want to show, that any map f : ∂∆n → X• has an extension to ∆n → X•. Since X•
is non-empty we may assume, that n > 0.
If f and g are two homotopic maps, and g has in addition an extension g′ : ∆n → X•, then f
may also be extended to ∆n → X•. Indeed, there is a homotopy H : ∂∆n ×∆1 → X• between
f and g. With the help of g′ we may define a map

(∂∆n ×∆1)
∐

∂∆n×{1}
(∆n × {1})→ X•.

X• is fibrant and therefore there is an extension for this map to a homotopy G : ∆n×∆1 → X•.
Then G(∆n × {0}) is the desired extension for f .
Consider the composite

H ′ : Λn
n ×∆1 H−→ Λn

n

f−→ X•,

where H is the deformation retraction of Λn
n onto n as in Lemma 8.58 and f is the restriction

of itself. Then H ′ and f define a map

(Λn
n ×∆1)

∐
Λnn×{0}

(∂∆n × {0})→ X•.
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Again since X• is fibrant, there is an extension G : ∂∆n×∆1 → X•. This map G is a homotopy
from f to g such that g ◦ di = f(n) for i < n. In particular, g ◦ dn represents a class in
πn−1(X•, f(n)). Therefore we have by assumption [g ◦ dn] = [f(n)]. By Lemma 8.56, there is an
n simplex g′ such that dig′ = f(n) for i < n and dng′ = g ◦ dn. Thus g′ is an extension of g, but
then f is also an extension. �

Minimal Fibrations

In a first step, we will point out that the main result in the last section provides us with a lifting
result for some locally trivial fibrations (see for instance the next definition).
Finally, we show that any fibration is locally fiberwise homotopy equivalent to a locally trivial
fibration. We want to point out what is needed for this locally fiberwise equivalence to actually
be an isomorphism, this is where the notion of minimal fibrations show up.
In a last step we then show, that minimal fibrations are locally trivial and - yet more important
- that any fibration is closely approximated by a minimal fibration.
To sum up, minimal fibrations provide us with a nice tool to handle fibrations.
This part is - as one may imagine - very technical which is why we will not provide every proof
for all the results. Again we follow [MHov91] very closely and refer to his work for more details
on proofs.

Definition 8.61 (Locally Trivial). Let p : X• → Y• ∈ F sSet. We say that p is locally trivial if,
for every simplex ∆n y−→ Y• of Y•, the pullback fibration y∗X• = ∆n×Y•X•

y∗p−−→ ∆n is isomorphic
over ∆n to a product fibration ∆n × Fv•

π1−→ ∆n.

Corollary 8.62 ([MHov91]). Let p : X• → Y• ∈ sSetQ be a locally trivial fibration such that
every fiber of p is non-empty and has no non-trivial homotopy groups. Then p ∈ IsSet-inj.

Proof. This is a consequence of Proposition 8.60. �

The next result states, that any fibration over ∆n is homotopy equivalent to a product fibration.
The reason for this idea comes from the fact that ∆n is contractible (in a simplicial way) onto
its vertex n. This is Proposition 3.5.3 in [MHov91].

Proposition 8.63 ([MHov91]). Let p : X• → Y• ∈ sSetQ and f, g : K• → Y• be maps such
that there exists a homotopy from f to g. Then the pullback fibrations f ∗p : f ∗X• → K• and
g∗p : g∗X• → K• are fiber homotopy equivalent.
That is there are maps θ∗ : f ∗X• → g∗X• and ω∗ : g∗X• → f ∗X• such that g∗p ◦ θ∗ = f ∗p and
f ∗p ◦ω∗ = g∗p and there are homotopies from θ∗ω∗ to the identity of g∗X• and from ω∗θ∗ to the
identity of f ∗X• that cover the constant homotopy of K•.

Corollary 8.64 ([MHov91]). Let p : X• → Y• be a fibration in sSetQ and ∆n y−→ Y• a simplex
of Y•. Then the pullback y∗X• → ∆n is fiber homotopy equivalent to the product fibration
∆n × Fn•

π1−→ ∆n where Fn• is the fiber of p over the vertex y(n).

Proof. Combine Lemma 8.58 and Proposition 8.63. �

Gian Deflorin September 1, 2019 119



The Homotopy Hypothesis

One could ask the question, when this homotopy equivalence could be an isomorphism and
which restrictions one would need to put on the fibration p. We consider the following situation.
We consider two fibrations p : X• → Y• and q : Z• → Y• over the same base and two maps
f, g : X• → Z• covering the identity map of Y• such that g is an isomorphism. Further we
assume them to be fiber homotopic so that there is a homotopy from f to g which covers the
constant homotopy.
Given a fiber homotopy equivalence we would take g to be the identity map and f to be the
composite of one of the maps with a homotopy inverse. We would like to conclude that f is an
isomorphism.
In order to show that f is an isomorphism on vertices, let z be a vertex of Z•. Then there is
a vertex x of X• such that gx = z since g is an isomorphism. From the homotopy we get a
path from fx to gx which covers the constant path of qgx = qfx. Meaning that fx and gx are
vertices of a fiber of q which are in the same path component of that fiber.
Now if we knew that every path component of every fiber of q has only one vertex, we could
actually conclude that fx = z.
Similarly suppose that fx = fy, then the homotopy yields a path from fx to gx and from fy
to gy in the fiber of q over qfx. Again if we would know that every path component of every
fiber of q had only one vertex we could conclude that gx = gy and so x = y.
One may try to extend this approach to n-simplices for positive n. Then we would like to assume
that we had already proven the above.
This discussion motivates the following definitions.

Definition 8.65 (Minimal Fibration). A fibration p : X• → Y• ∈ sSetQ is called a minimal
fibration by definition iff for all n ≥ 0 every path component of every fiber of the fibration
Map�(i, p) : Map(∆n, X•)→ Map(∂∆n, X•)×Map(∂∆n,Y•) Map(∆n, Y•) has only one vertex.

Definition 8.66 (p-related). We define two n-simplices x and y of X• ∈ sSetQ to be p-related
if they represent vertices in the same path component of the same fiber of Map�(i, p). We write
x ∼p y if x and y are p-related. Where for any n we consider the map i : ∂∆n → ∆n.

The above relation is an equivalence relation due to Lemma 8.50. Further p is a minimal fibration
iff x ∼p y implies x = y. Also, x ∼p y iff p(x) = p(y), dix = diy for all i such that 0 ≤ i ≤ n and
there is a homotopy ∆n ×∆1 H−→ X from X to Y such that pH is the constant homotopy and
H is constant on ∂∆n. Therefore we have the next result, which is Lemma 3.5.6 in [MHov91].

Lemma 8.67 ([MHov91]). Let p : X• → Y•, q : Z• → Y• ∈ F sSet such that q is a minimal
fibration. Let f, g : X• → Z• be two maps such that qf = qg = p. Suppose H : X ×∆1 → Z• is
a homotopy from f to g such that qH = pπ1. Then if g is an isomorphism, so is f .

Corollary 8.68 ([MHov91]). Let p : X• → Y• be a minimal fibration in sSetQ. Then p is locally
trivial.

Proof. This follows from Corollary 8.64 and Lemma 8.67. �
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The next result is Lemma 3.5.8 in [MHov91].

Lemma 8.69 ([MHov91]). Let p : X• → Y• ∈ F sSet and x and y are degenerate n-simplices of
X• such that x ∼p y, then x = y.

Now we can finally state the result, that any fibration is closely related to a minimal fibration
in sSetQ. This is Theorem 3.5.9 in [MHov91].

Theorem 8.70 ([MHov91]). Let p : X• → Y• ∈ F sSet. Then we can factor p as

p : X• r−→ X ′•
p′−→ Y•,

where p′ is a minimal fibration and r is a retract onto a subsimplicial set X ′• of X• such that
r ∈ IsSet-inj.

Corollary 8.71 ([MHov91]). Let p be a fibration in sSet such that every fiber of p is non-empty
and has no non-trivial homotopy groups. Then p is IsSet-inj.

Proof. A consequence of Theorem 8.70, Corollary 8.68 and Corollary 8.62. �

By the looks of the last corollary, we are now indeed very close to the desired result. Anyway,
it does not imply that every acyclic fibration has the RLP with respect to IsSet. This will be
worked out in the next section.

Fibrations and Geometric Realisation

We will finally conclude the proof that simplicial sets form a model category. In a first step
we show that the geometric realisation preserves fibrations and use this fact to show that the
homotopy groups of a fibrant object in sSetQ are isomorphic to the homotopy groups of its
geometric realisation i.e. in TopQ.
Furthermore we show that the geometric realisation is part of a Quillen equivalence from sSet
to Top.
We again follow [MHov91] very closely. An equivalent formulation to next result can be found
as Proposition 3.6.1 in [MHov91].

Proposition 8.72. Let p : X• → Y• be a locally trivial fibration in sSetQ. Then |p| ∈ FTop.

Corollary 8.73. Let p ∈ F sSet. Then |p| is a fibration of compactly generated topological spaces.

Proof. A consequence of Theorem 8.70, Proposition 8.72 and Lemma 8.40. �

The next result may be found as Proposition 3.6.3 in [MHov91].

Proposition 8.74 ([MHov91]). Let X• ∈ sSetQ and fibrant and v a vertex of X•. Then there
is a natural isomorphism

πn(X•, v) ∼= πn(|X•|, |v|).

We now state our main result. It will also be the result which concludes the proof that sSetQ
is a cofibrantly generated model category.
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The proof of the next theorem is inspired by [MHov91].

Theorem 8.75. Let p ∈ WsSet ∩F sSet. Then p has the RLP with respect to IsSet.

Proof. Corollary 8.71 tells us, that it suffices to show, that the fibers of p are non-empty and
have no non-trivial homotopy groups.
Let F• be a fiber of p over a vertex v. Then, by Corollary 8.73 |F•| is the fiber of the fibration
|p| over |v|. Since |p| ∈ WTop, |F•| has no non-trivial homotopy groups and is non-empty.
Finally, Proposition 8.74 implies that F• has no non-trivial homotopy groups and is non-empty.

�

With the help of this statement we conclude.

8.3.1 The Factorisations

Proposition 8.76 (The First Factorisation). Every f : X• → Y• ∈ sSetQ factors in the
following sense

f : X•
∈CsSet−−−−→ X ′•

∈WsSet ∩FsSet−−−−−−−−−→ Y•.

Proof. IsSet admits the small object argument. Therefore we have a factorisation

f : X•
∈CsSet−−−−→ X ′•

∈IsSet-inj−−−−−→ Y•.

Now we apply Theorem 8.75 and we are done. �

Proposition 8.77 (The Second Factorisation). Every f : X• → Y• ∈ sSetQ factors in the
following sense

f : X•
∈WsSet ∩CsSet−−−−−−−−−→ X ′•

∈FsSet−−−−→ Y•.

Proof. JsSet admits the small object argument. Therefore, there is a factorisation

f : X•
∈JsSet-cell−−−−−−→ X ′•

JsSet-inj−−−−−→ Y•.

But since the JsSet-inj are Kan fibrations we have X ′• → Y• ∈ F sSet. Then since every relative
JsSet-cell complex is a relative IsSet-cell complex, X• → X ′• ∈ CsSet and therefore it is also a
weak equivalence. �

8.3.2 Liftings

Proposition 8.78. Consider a commutative solid arrow diagram

• •

• •
g∈CsSet f∈FsSet

h
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in sSetQ, then the lift h (dotted line) exists, as soon as either g or f are in WsSet.

Proof. Assume, that f ∈ WsSet ∩F sSet. Then by Theorem 8.75 and the closure properties, we
conclude that g has the LLP against f .
On the other hand, assume that g ∈ WsSet ∩CsSet. g can be factored as

g : X•
∈WTop ∩CsSet−−−−−−−−→ X ′•

∈FsSet−−−−→ Y•.

Since g ∈ WsSet we may apply the 2-3 property to conclude that X ′• → Y• ∈ WsSet. The first
case now yields, that X ′• → Y• has the RLP against g. Applying the retract argument yields
that g is a relative JsSet-cell complex. Again by the closure properties, f has the RLP against
g. In both cases we have a lift in the desired diagram. �

8.3.3 The FWFS

Proposition 8.79. There are two FWFS (CsSet,WsSet ∩F sSet) and (WsSet ∩CsSet,F sSet) in
sSetQ.

Proof. The factorisation part follows from Proposition 8.76 and Proposition 8.77. We are left
to show, that the respective classes have the desired lifting properties against each other.
F sSet has the RLP against WsSet ∩CsSet by definition, and WsSet ∩F sSet has the RLP against
CsSet by Theorem 8.75. We show, that CsSet has the LLP with respect toWsSet ∩F sSet. Consider
a morphism f : X• → Y• in IsSet-cof, if this turns out to be a relative cell complex, then we are
done.
We apply the small object argument to get

f : X• → Y ′•
∈IsSet-inj−−−−−→ Y•.

Now f has the LLP with respect to Y ′′• → Y•, we conclude by the retract argument that f is a
retract of X• → Y ′• .
If we apply the small object argument to JsSet and factor f , we can conlcude the same result for
WsSet ∩CsSet, showing that CsSet has the LLP with respect to WsSet ∩F sSet and WsSet ∩CsSet
has the LLP with respect to F sSet. �

Now we can finally state the main result of the whole section.

Theorem 8.80. (sSetQ, IsSet, JsSet) is a cofibrantly generated model category. Every object in
sSetQ is cofibrant.

Proof. We have to show, that sSetQ is bicomplete and equipped with a model structure. Bicom-
pleteness follows from Remark 8.8. The model structure follows from the fact that WsSet has
the 2-3 property and Proposition 8.79. The last statement follows from Proposition 8.35. �
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Theorem 8.81. sSetQ is a cellular model category.

Proof. Since sSetQ is a cofibrantly generated model categry (Theorem 8.85) we only need to
verify condition 3. and 5. in the recognition theorem for cellular model categories.
Condition 3. holds. From the definition of simplicial sets, a compact subset of a cell complex in
sSetQ is contained in a finite subcomplex of the cell complex. From this fact every simplicial
set is ω-compact relative to IsSet, where ω is the countable cardinal. Similarly, if γ is an infinite
cardinal and X is a simplicial set of size γ, then by the above fact it follows that X is compact
relative to IsSet, which is precisely what we wanted.
Condition 5. holds. This case is very similar as the case for topological spaces. In the sense that
relative IsSet-cell complexes turn out to be embeddings and hence effective monomorphisms. �

The next goal is to show properness, which really follows from properness of topological spaces
due to all the work we have done before.

Theorem 8.82. sSetQ is a proper model category.

Proof. Since every object in sSetQ is cofibrant we automatically get that sSetQ is left proper.
We are left to show right properness. This follows from the right properness of Top, Corollary
8.73 and Lemma 8.39. �

Theorem 8.83. sSetQ is a simplicial model category.

proof (sketch). We give sSetQ the structure of a simplicial model category by saying: If X• and
Y• are objects in sSet we let Map(X•, Y•) be the simplicial set that in degree n is the set of
maps of simplicial sets from X• × ∆n to Y•, with face and degeneracy maps induced by the
standard maps between the ∆n.
The cartesian product together with this internal hom give sSetQ the structure of a simplicial
model category. �

Theorem 8.84. sSetQ is a combinatorial model category.

proof (sketch). This follows, since sSetQ is defined as a functor category via Set i.e. sSet =
Fun(∆op,Set). �

8.4 The Main Theorem

Theorem 8.85. (sSetQ, IsSet, JsSet) is a cofibrantly generated, cellular, simplicial, combi-
natorial, proper model category. Furthermore, every object in sSetQ is cofibrant.

Proof. This follows from Theorem 8.80, Theorem 8.81, Theorem 8.82, Theorem 8.83, Theorem
8.84 and Proposition 8.35. �

A now immediate consequence is the existence of left Bousfield localisations.
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Theorem 8.86. The left Bousfield localisation of sSetQ exists with respect to any class of
morphisms in sSet.

Proof. This is now an immediate consequence of Theorem 8.85 as it fulfills any needed condition
for the existence of Bousfield localisations. �

For completeness we state another very useful result, though we will not make use of it in the
present work, it can be found as Proposition 3.6.8 in [MHov91].

Proposition 8.87. Let C be a model category and F : sSetQ → C a functor which pre-
serves colimits and cofibrations. Then F preserves acyclic cofibrations (and weak equivalences)
iff F (∆n)→ F (∆0) is a weak equivalence for all n ≥ 0.
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Part III

The Homotopy Hypothesis
This last part is really the core of the whole thesis. It consists of two sections descussing the
homotpy hypothesis in different cases.
The first section is dedicated to the case of the classical homotopy hypothesis, which relies on
the work done in the previous part. The main result will be, that there is a Quillen equivalence

| | : sSetQ
//
TopQoo _ : Sing .

The second section is far more involved. We will introduce the concept of truncations for TopQ
and sSetQ and give yet another Quillen equivalence between this truncated model categories in
the sense that there is a Quillen euqivalence

| | : sSet≤nQ
//
Top≤nQoo _ : Sing .

The latter category may be seen as a model for ∞Grpd, so that the Equivalence gives a way
to relate ∞Grpd with the model category of n-truncated simplicial sets.
In a next step we will give an analysis about the category sSet≤nQ . This discussion uses a lot of
rather involved theory. At the end we have a result which will tell us exactly how the localisation
for this respective category behaves. It will use the concepts of fibrant replacements and the
machinery of the coskeleton functor, which will also be introduced and discussed in this section.
The final part will now try to conclude three Quillen equivalences with three different settings.
The first one, which is more of a warm-up exercise will yield that there is a Quillen equivalence

Π0 : sSet≤0
Q

//
SetToo _ : N 0 .

The next case is already more involved and will show, that there is a Quillen equivalence

Π1 : sSet≤1
Q

//
GrpdM1oo _ : N 1

which says, that the homotopy of GrpdM1 may be described with the homotopy of 1-truncated
simplicial sets.
Finally, the last equivalence will state that there is a Quillen equivalence

Π2 : sSet≤2
Q

//
bi-GrpdsM2oo _ : N 2

which then says that 2-truncated simplicial sets are a good model for bi-GrpdsM2 (bi-groupoids
with strict 2-functors). A special case will also give a Quillen equivalence

Π2 : sSet≤2
Q

// 2- GrpdM2oo _ : N 2 .

Furthermore, we will also argue, that the homotopy theories of 2- Grpd and bi-Grpd are closely
related to each other and therefore also to the homotopy theory of sSet≤2

Q . Unfortunately this
can not be done directly with a Quillen equivalence of the respective categories, as we will see.
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9 The Homotopy Hypothesis

In this short section, we give the proof of the ”classical” version of the homotopy hypothesis,
which makes for a nice introduction for this part. We use material from [MHov91] for the proof
of the main theorem, there is also some inspiration from [nLab].
The model categories TopQ and sSetQ are Quillen equivalent and encapsulate much of “clas-
sical” homotopy theory. From a higher-categorical viewpoint, they can be regarded as models
for ∞-groupoids (in terms of CW complexes or Kan complexes, respectively).
Remember that we already showed, that there is an adjunction

| | : sSet
//
Topoo _ : Sing,

which was the content of Lemma 8.23, of course with the exact same argument there is an
adjunction between sSet and K with the exact same functors.

Proposition 9.1. There is a Quillen pair

| | : sSetQ
//
TopQoo _ : Sing .

Proof. This follows from Lemma 2.33 and the discussions in part II. �

Theorem 9.2 (The Homotopy Hypothesis). There is a Quillen equivalence

| | : sSetQ
//
TopQoo _ : Sing .

Proof. We will first show, that there is a Quillen equivalence between the model categories
sSetQ and KQ. Proposition 9.1 with the same proof also yields a Quillen pair for sSetQ and
KQ.
By Corollary 4.45 it suffices to show that the map | Sing(X)| → X is a weak equivalence for all
X ∈ K. By definition of weak equivalence it suffices to show that the map πi(| Sing(X)|, |v|)→
πi(X, v) is an isomorphism for every point v of X (since such points are in 1-1 correspondence
with vertices of Sing(X) and every point of | Sing(X)| is in the same path component as a
vertex).
Since Sing(X) is fibrant by Corollary 8.73, we have an isomorphism πi(Sing(X), v) →
πi(| Sing(X)|, |v|) from Proposition 8.74. The composite map πi(Sing(X), v) → πi(X, v) is the
map induced by the adjunction that is, an element of πi(Sing(X), v) is represented by a map
∆i → Sing(X) sending ∂∆i to v. This map is adjoint to a map Di ∼= |∆i| → X sending Si−1 to
v and a map Si → X sending the basepoint to v. This represents an element of πi(X, v). We can
also run this adjunction backwards and we can apply it to homotopies as well. Thus the map
πi(Sing(X), v) → πi(X, v) is an isomorphism as required. This gives us a Quillen equivalence
| | : sSetQ

//
KQoo _ : Sing.

To conclude the proof consider the following. From Lemma 4.34 we know that Quillen adjunc-
tions are closed under composition and hence Quillen equivalences are closed under composition
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(it also follows from the fact that they satisfy the 2-3 property). Now we just need to combine
Theorem 7.40 and Theorem 9.2. The adjunction will consist of the composition of the respective
adjunctions which turns out to be the geometric realisation and the singular functor (see for
instance Remark 8.24). �

10 The n-Truncated Homotopy Hypothesis

We consider further cases of Quillen equivalences between certain categories. In any case the
model category sSetQ will play a central role. We will use a left Bousfield localisation with
respect to a specific set and call this the n-truncated simplicial sets. To better grasp what
will happen in this case we first give a discussion about topological spaces, where we give
such quillen equivalences for any n. There the idea becomes clear, that an n-truncation kills off
higher homotopy groups, precisely those greater than n. The other cases will include a discussion
about sets followed by groupoids and bigroupoids, for the corresponding dimensions 0, 1 and 2
respectively.

10.1 The Case of Topological Spaces

We give the main theorem for this subsection.

Theorem 10.1. Let S := {∂∆n+2 → ∆n+2}. There is a Quillen equivalence

| | : LBS sSetQ
//
LB|QS|TopQoo _ : Sing .

Proof. First of all, we notice that the left Bousfield localisation of TopQ and sSetQ exist for
any class of morphisms in Top and sSet respectively. This follows from Theorem 8.85 Theorem
7.34 and Theorem 5.45.
Now we localise sSetQ with respect to S to get the model category LBS sSetQ. Since | | :
sSetQ

//
TopQoo _ : Sing is a Quillen equivalence an application of Theorem 5.37 yields the

desired result. �

We introduce some convenient notations for the following subsections.

Definition 10.2 (n-truncations). Let S := {∂∆n+2 → ∆n+2}.
1. We will denote LBS sSetQ by sSet≤nQ , and call it the model category of n-truncated

simplicial sets.
2. We will denote LB|QS|TopQ by Top≤nQ , and call it the model category of n-truncated

topological spaces.
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10.2 Analysis of the Bousfield Localisation LB
S sSetQ

We will discuss some properties about this category, which we will need in the discussion later
on. We will give the localisation functor for this particular Bousfield localisation, which will
turn out to be the coskeleton functor applied to the fibrant replacement of some simplicial set.
We start with the definition of the coskeleton functor and some properties about it.
We use material from [ERie14], [WDDK84] and [nLab].

Definition 10.3 (Category of Finite Ordered n-Ordinals). Denote the full subcategory of ∆ on
the objects [0], . . . , [n] by ∆≤n and call it the category of finite ordered n-ordinals.

There is an inclusion functor jn : ∆≤n →∆ which induces a functor

trn : Fun(∆op,Set)→ Fun(∆op
≤n,Set)

which we call the truncation functor. We denote the category Fun(∆op
≤n,Set) by sSet≤n.

Remark 10.4. Notice the similarity in notation of sSet≤n and sSet≤nQ , but mathematically
seen there is quite some difference as we will see in the process. Furthermore the index n does
not correspond in the two notions. This comes from the fact of the map ∂∆n+2 → ∆n+2, to
which we localise. �

Proposition 10.5. The functor trn has a left adjoint trL
n and a right adjoint trR

n i.e.

trL
n : sSet≤n

//
sSetoo _ : trn : sSet

//
sSet≤noo _ : trR

n .

Proof. Since Set is a bicomplete category, we are allowed to apply Corollary A.27. This gives
us a right and left adjoint to the truncation functor trn. The left adjoint trL

n is given by the left
Kan extension and trR

n is given by the right Kan extension as described in Theorem A.26. �

With the help of Theorem A.26, we are able to give a description of the left and right adjoint
of the truncation functor trn. That is, they are defined as in the following diagrams.

∆≤n ∆ sSet

Fun(∆op
≤n,Set)

jn

Yn

in

Y

trL
n

∆≤n Fun(∆op
≤n,Set)

∆

sSet

jn

Yn

in
trR

n

Y

Hence the functors are of the following form.

trL
n =

∫ C∈∆≤n
i(C)×K(C), trR

n =
∫
C∈∆≤n

K(C)i(C)

with K ∈ Fun(∆op
≤n,Set).

Gian Deflorin September 1, 2019 129



The Homotopy Hypothesis

Definition 10.6 (Skeleton and Coskeleton). We define skn := trL
n ◦ trn (the composite

comonad) and call it the n-skeleton functor, similarly we let coskn := trR
n ◦ trn (the com-

posite monad) and call it the n-coskeleton functor.

Corollary 10.7. There is an adjunction

skn : sSet
//
sSetoo _ : coskn .

Proof. Immediate from Proposition 10.5. �

Remark 10.8. We will give an intrinsic idea, of how the skeleton and coskeleton functor will
behave. The description follows [WDDK84] as it gives a nice description.
For every X• ∈ sSet and every integer n ≥ 0, the n-skeleton of X• is the smallest subcomplex
skn(X•) ⊂ X• containing all the n-simplices of X• and the n-coskeleton of X• is the simplicial
set coskn(X•) which has as its j-simplices the maps skn(∆j) → X• ∈ sSet. The map X• →
coskn(X•) is a bijection in dimension ≤ n and hence induces isomorphisms of the homotopy
groups in dimension < n.
The k-th coskeleton for X• ∈ sSet may also be given by

coskk(X•)n := sSet(skk(∆n), X•).

�

Example 10.9. The skeleton functor does what may be known from algebraic topology. That is
to say, if we for an example consider a geometric cube C, then sk0(C) = 8 vertices, sk1(C) =
8 vertices and 12 edges, sk2(C) = 8 vertices and 12 edges and 6 faces.
Another example may be attained from the 2-sphere S2 constructed from two points and two
disks glued along the equator. Then we have sk0(S2) = S0, sk1(S2) = S1, sk2(S2) = S2.
We give somewhat of an example for the coskeleton. We wand to consider cosk2(X•) and describe
the 3-simplices. The 3-simplices of the 2-coskeleton are all four possible triangles in X• that one
can arrange in a tetrahedron shape. J

Definition 10.10 (Coskeletal). Let X• ∈ sSet. X• is said to be n-coskeletal, if there exists
some Y• ∈ sSet such that X• ∼= coskn(Y•).

We will state two lemmata, which will turn out to be very useful.

Gian Deflorin September 1, 2019 130



The Homotopy Hypothesis

Lemma 10.11. Let X• ∈ sSet. The following are equivalent.
1. X• is n-coskeletal.
2. X• → coskn(X•), the unit of the adjunction, is an isomorphism.
3. For k > n and a solid arrow diagram

∂∆k X•

∆k

there is a unique dotted arrow making the diagram commute.

Proof. We will first establish the equivalence of 1. and 2. Assume that X• ∈ sSet is n-coskeletal,
but then there is a simplicial set Y• such that X• ∼= coskn(Y•). coskn is idempotent, indeed since

sSet(∆j, coskn(coskn(X•))) ∼= sSet(skn(∆j), coskn(X•)) ∼= sSet(∆j, coskn(X•)).

But then we have that coskn(X•) ∼= coskn(coskn(Y•)) ∼= coskn(Y•) and hence X• ∼= coskn(X•).
The other implication follows from the same argument.
Now we show the implication 2. implies 3. Let k > n, since

sSet(∂∆k, coskn(X•)) ∼= sSet(skn(∂∆k), X•) ∼= sSet(skn(∆k), X•) ∼= (∆k, coskn(X•)).

This gives an isomorphism

φ : sSet(∂∆k, coskn(X•))→ sSet(∆k, coskn(X•)).

From this we get the following commutative diagram.

∂∆k coskn(X•)

∆k

∃!

which concludes this implication.
The last step is to show, that 3. implies 2. Let k > n and consider the diagram given in 3. For
k ≤ n we have skn(∆k) ∼= ∆k. For k > n, we have the following isomorphisms.

sSet(∆k, cosk(X•)) ∼= sSet(skn(∆k), X•) ∼= sSet(skn(∂k−n∆k), X•)

∼= sSet(∂k−n∆k, X•) ∼= sSet(∆k, X•).

Where we used the adjointness of skn and coskn, in the last step we assumed the condition given
in the diagram in 3. Therefore, we have an isomorphism X• ∼= coskn(X•) which then implies
that X• is n-coskeletal. Hence all equivalences are established. �

Gian Deflorin September 1, 2019 131



The Homotopy Hypothesis

Lemma 10.12. The functor coskn preserves Kan complexes, i.e. preserves fibrant objects in
sSetQ.

Proof. We assume, that X• ∈ sSetQ is a Kan complex, and will argue, that coskn(X•) is a Kan
complex in that we will show, that it has the desired lifting properties. For this we consider the
map

Λm
k → ∆m

for different cases of m.
We first assume, that m > n + 1, then the the morphism skn(Λm

k → ∆m) is an isomorphism.
Therefore, coskn(X•) has the RLP with respect to Λn

k → ∆m (here we also used that skn and
coskn are adjoint functors). Interestingly enough, for this case it is not even necessary to assume
that X• is a Kan complex. For the next cases this will be crucial, though.
Next we address the case for m ≤ n. Here, the map skn(Λm

k → ∆m) is isomorphic to the map
Λn
k → ∆m itself. Therefore, coskn(X•) has the RLP with respect to Λm

k → ∆m iff X• has the
RLP with respect to Λn

k → ∆m. But since we assume, that X• is a Kan complex, this is clearly
satisfied.
The last case is the case, where m = n+ 1. Here we have that skn(Λm

k → ∆m) is isomoprhic to
the map Λm

k → ∂∆m. Therefore, we need to show that coskn(X•) has the RLP with respect to
Λm
k → ∆m iff X• has the RLP with respect to the map Λm

k → ∂∆m.
Since X• is a Kan complex by assumption, it certainly has the RLP with respect to Λm

k → ∆m.
But we also have the sequence of inclusions

Λm
k → ∂∆m → ∆m.

The lift in the diagram

Λm
k X•

∆m

∃

can be extended to the following diagram

Λm
k X•

∆m

∂∆m

But this means, that X• has the RLP with respect to Λm
k → ∂∆k and therefore (from the above

argument), coskn(X•) musst have the RLP with respect to Λm
k → ∆m.

The combination of all these cases yields, that coskn(X•) has the RLP with respect to Λm
k → ∆m

iff X• has the RLP with respect to the same maps for an arbitrary m. Finally this yields that
coskn(X•) is indeed a Kan complex. �
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It is a fact (see for instance [WDDK84]) that if coskn(X•) is fibrant, then its homotopy groups
are all trivial in dimension ≥ n. Consequently the sequence

X• = lim
i

(coski(X•))→ · · · → coskn+1(X•)→ coskn(X•)→ . . .

is, at least up to homotopy, a Postnikov decomposition of X•.
We want to determine a localisation functor for the category sSet≤nQ .
The next result is inspired from a discussion in [PHir03].

Proposition 10.13. Consider the map f : ∂∆n+2 → ∆n+2 in sSet. X• ∈ sSet is f -local iff the
map X• → ∗ has the RLP with respect to every element of the set of augmented f -horns.

Proof. Starting with a simplicial set X•, we want to construct an f -local space X̂ together with
an f -local equivalence X → X̂. For X̂ to be f -local it has to be fibrant, therefore the map
X̂ → ∗ must have the RLP with respect to the inclusions Λn

k → ∆n for all n > 0 and 0 ≤ k ≤ n.
If X̂ is fibrant, then f ∗ : Map(∆n+2, X̂) → Map(∂∆n+2, X̂) is already a fibration of simplicial
sets i.e. if X̂ is fibrant, then the assertion that X̂ is f -local is equivalent to the assertion that
f ∗ is an acyclic fibration in sSetQ. Since a map in sSetQ is an acyclic fibration iff it has the
RLP with respect to the inclusion ∂∆n → ∆n for n ≥ 0, this implies that a fibrant space X̂ is
f -local iff the dotted arrow exists in every solid arrow diagram of the form

∂∆n Map(∆n+2, X̂)

∆n Map(∂∆n+2, X̂)

this is true iff (from the isomorphism sSet(X• ×K•, Y•) ∼= sSet(K•,Map(X•, Y•))) the dotted
arrow exists in any solid arrow diagram of the following form

∂∆n+2 ×∆n∐
∂∆n+2×∂∆n ∆n+2 ×∆n X̂

∆n+2 ×∆n ∗.

Thus, a space X̂ is f -local iff the map X̂ → ∗ has the RLP with respect to the maps Λn
k → ∆n

for all n > 0 and 0 ≤ k ≤ n and the maps ∂∆n+2 ×∐∂∆n+2×∂∆n ∆n+2 × ∂∆n → ∆n+2 ×∆n for
all n ≥ 0 ie.e the set of augmented f -horns. �

The next two results can be found for a different case in [PHir03].

Proposition 10.14. Consider the map f : ∂∆n+2 → ∆n+2 for n ≥ 0. A fibrant X• ∈ sSetQ is
f -local iff πi(X•) = 0 for i > n and every choice of basepoint in X•.
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Proof. We prove this in the case of topological spaces, this is fine, since we are dealing with
fibrant objects. If k ≥ 0 then the inclusion Sn+1 ×∆k∐

Sn+1×∂∆k Dn+2 × ∂∆k → Dn+2 ×∆k is
a relative CW complex that attaches a single cell of dimension n + k + 2. Therefore any map
Sn+1 ×∆k∐

Sn+1×∂∆k Dn+2 ×∆k → X can be extended over Dn+2 ×∆k iff πn+k+1(X) = 0 for
every choice of basepoint in X. The result follows from Proposition 10.13. �

Proposition 10.15. Consider the map f : ∂∆n+2 → ∆n+2 for n ≥ 0. If a map g : X• → Y•, for
X•, Y• ∈ sSetQ fibrant, induces isomorphisms g∗ : πi(X•) ∼= πi(Y•) for i ≤ n and every choice
of basepoint in X•, then it is an f -local equivalence.

Proof. As above, we will prove the statement in the case of topological spaces. If g : X → Y
induces isomorphisms g∗ : πi(X) → πi(Y ) for i ≤ n we can choose a cofibrant approximation
g̃ : X̃ → Ỹ to g such that, Ỹ is a CW-complex, g̃ is the inclusion of a subcomplex that contains
the n-skeleton of Ỹ and every (n+ 1)-cell of Ỹ − X̃ is attached via a constant map of Sn.
If k = 0, then the map X̃ × ∆k∐

X̃×∂∆k Ỹ × ∂∆k → Ỹ × ∆k is just the map X̃ → Ỹ , and if
k > 0 it is the inclusion of a subcomplex that contains the (n + k)-skeleton. Thus, if Z is an
f -local space, then Proposition 10.14 implies that every map X̃ × ∆k∐

X̃×∂∆k Ỹ × ∂∆k → Z

can be extended over Ỹ × ∆k and so g is an f -local equivalence (see for instance Proposition
9.3.10 in [PHir03]). �

Finally we have the following result.

Theorem 10.16. Let S = {∂∆n+2 → ∆n+2} and X• ∈ sSetQ. f : X• → coskn+1(X̃•) is an
S-localisation map i.e. coskn+1(X̃•) is S-local and f is an S-local equivalence.

Proof. First we notice, that we are able to take the fibrant replacement for some X• ∈ sSetQ.
The result then follows from Proposition 10.14 and Proposition 10.15. The first result yields,
that the n-th Postnikov approximation has the desired properties, but since the coskeleton
functor, in this context, is up to homotopy itself a Postnikov approximation we are done. �

In other words, this theorem says, that in the Bousfield localisation sSet≤nQ of sSetQ, every
object X• ∈ sSet≤nQ is weakly equivalent to coskn+1(X•) i.e. X• ∼ coskn+1(X•). This will turn
out to be a key fact for the proof of the desired Quillen equivalences later on.
An immediate consequence of the above discussion is now the following Proposition.

Proposition 10.17. The weak equivalences in sSet≤nQ are precisely the maps which induce
isomorphisms on πk for all 0 ≤ k ≤ n, for any basepoint.

Proof. Let S = {f : ∂∆n+2 → ∆n+2} and g : X• → Y• in sSetQ be an S-local equivalence, that
is to say, a weak equivalence in sSet≤nQ . But then the induced map via the coskeleton functor
coskn+1(g) : coskn+1(X̃•)→ coskn+1(Ỹ•) is a weak equivalence. Indeed, consider the diagram
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X• Y•

coskn+1(Xf
• ) coskn+1(Y f

• )

∼

∼ ∼

the vertical maps are weak equivalences by Theorem 10.16 and the horizontal top map is a weak
equivalence by assumption. We conclude by the 2-3 property for weak equivalences, that the
horizontal bottom map is a weak equivalence (see also Theorem 1.2.29 in [PHir03]).
Then for any 0 ≤ k ≤ n and any choice of basepoint of X• we get a diagram

πk(X•) πk(Y•)

πk(coskn+1(X̃•)) πk(coskn+1(Ỹ•)).

∼= ∼=

∼=

The horizontal maps are isomorphisms from the definiton of the coskeleton functor and the fact
that we consider the case k < n+ 1. �

10.2.1 A Case Analysis for Topological Spaces

This section is more like an alternative viewpoint of the above discussion. It is more for the
understanding than anything else and can be skipped without regret.
Since sSetQ is a simplicial model category, we have that

sSet(X × Y, Z) ∼= sSet(X, [Y, Z])

for [X, Y ]n = sSet(X ×∆n, Y ) in other words, there is an adjunction

X ×− : sSet
//
sSetoo _ : [X,−].

Similarly, since TopQ is a simplicial category, we have

Top(X × Y, Z) ∼= Top(X,Map(Y, Z)).

Let X, Y be topological spaces, then from the adjunction Sing(X) × − : sSet
//
sSetoo _ :

[Sing(X),−] in combination with the adjunction | | : sSetQ
//
TopQoo _ : Sing we get an

adjunction
X ×− : Top

//
Topoo _ : Map(X,−).

Furthermore we have

| Sing(X)× Sing(Y )| ∼= | Sing(X)| × | Sing(Y )| ∼−→ X × Y

and therefore
Map(X, Y ) ∼−→ |[Sing(X), Sing(Y )]|

or equivalently, Sing(Map(X, Y )) ∼−→ [Sing(X), Sing(Y )].
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Let C be a simplicial model category. For X in C cofibrant it follows with Proposition 5.18
that the cosimplicial resolution of X is X̃n := X ⊗∆n.
Now we consider C = sSet, we know that every object in sSet is cofibrant, hence the cosimplicial
resolution of such an object X looks like X̃n = X ×∆n. But then we have

L sSet(X, Y )n = sSet(X̃n, Ŷ ) = sSet(X ×∆n, Ŷ ) = [X, Ŷ ]n

i.e. L sSet(X, Y ) = [X, Ŷ ].
From the Quillen pair | | : sSetQ

//
TopQoo _ : Sing, we have

|X̃|n = |X ×∆n| ∼= |X| × |∆n|

also, in Top we have that Ŷ = Y since every object is fibrant. Therefore

LTop(|X|, Y )n = Top(|X̃|n, Y ) = Top(|X ×∆n|, Y ) ∼= sSet(X ×∆n, Sing(Y ))

i.e. LTop(|X|, Y ) = [X, Sing(Y )], hence

|LTop(|X|, Y )| = |[X, Sing(Y )]| ∼−→ Map(|X|, Y ).

A very similar argument, shows a similar statement for the right homotopy function complex
instead of the left homotopy function complex. One can also show that it does hold for the
two-sided homotopy function complex.
This aside we will now show, that if we Bousfield localise TopQ with respect to a specific map
i.e. |∂∆n+2 → ∆n+2|, this map will kill off higher homotopy groups.
We define S := {∂Dn+2 → Dn+2}, further let Y be a topological space which in addition is S-
local and fibrant. Then by definition the induced map of ∂Dn+2 → Dn+2 of homotopy function
complexes

map(Dn+2, Y )→ map(∂Dn+2, Y )
is a weak equivalence in sSetQ, therefore we also have a weak equivalence

|map(Dn+2, Y )| → |map(∂Dn+2, Y )|

in TopQ, which follows from the Quillen equivalence between sSetQ and TopQ.
Since Dn+2 → ∗ is a weak equivalence in TopQ (since Dn+2 ∼h ∗) we have by Theorem 5.26
that

map(∗, Y )→ map(Dn+2, Y )
is a weak equivalence in sSetQ and with the same argument as before we therefore get a weak
equivalence

|map(∗, Y )| → |map(Dn+2, Y )|
in TopQ.
We remember that Sing(X)n = Top(|∆n|, X) and therefore (with the observations about inner
Homs we did before)

map(∗, Y )n = Top(∗,Map(|∆n|, Y )) ∼−→ Top(|∆n|, Y ) = Sing(Y )n.
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But then it follows
|map(Dn+2, Y )| ∼−→ | Sing(Y )| ∼−→ Y.

In a similar fashion we also deduce that |map(∂Dn+2, Y )| ∼−→ Map(∂Dn+2, Y ) in TopQ, indeed
since Y is fibrant and S-local in sSet≤nQ we have that ∂Dn+2 → Dn+2 is a weak equivalence.
Then by Theorem 5.26 we have a map map(Dn+2, Y ) ∼−→ map(∂Dn+2, Y ) and hence we get a
weak equivalence

Y
∼−→ Map(∂Dn+2, Y )

in TopQ. We have a diagram

Ωn+1(Y ) Map(∂Dn+2, Y )

Y.

This gives rise to a long exact sequence in homotopy

· · · → πk(Ωn+1(Y ))→ πk(Map(∂Dn+2, Y ))→ πk(Y )→ . . .

· · · → π0(Ωn+1(Y ))→ π0(Map(∂Dn+2, Y ))→ π0(Y )→ 0.
Since we have a section, this long exact sequence splits, i.e.

πk(Map(∂Dn+2, Y )) ∼= πk(Ωn+1(Y ))⊕ πk(Y ), k ≥ 2.

A case analysis for k = 0, 1 also yields desired isomorphisms for these cases respectively. There-
fore we have that

πk(Ωn+1(Y )) ∼= 0 ∀ k ≥ 0.
Since πk(Ωn+1(Y )) ∼= πk+n+1(Y ) we have that πk+n+1(Y ) has to be 0 for all k ≥ 0 i.e. it is 0 iff
k ≥ n+ 1, which is precisely what we wanted to achieve.
As explained before, with the Bousfield localisation with respect to this specific map we are
able to kill off homotopy in dimension greater than n.

10.3 The Quillen Equivalences

This subsection is really the core of the thesis. It is here, where we provide the promised Quillen
equivalences using all the work we have done so far in the whole present paper. At the end we
will have a bunch of Quillen equivalences, growing in difficulty to prove.
The first case will be the one of 0-truncations, where we will provide a Quillen equivalence
between the model category sSet≤0

Q and SetT .
The second case is the one of 1-truncations, where we give a Quillen equivalence between the
model category sSet≤1

Q and GrpdM1 .
Finally the last case provided here discusses a Quillen equivalence between the model cate-
gory sSet≤2

Q and bi-GrpdsM2 and an equivalence of categories between the homotopy category
Ho(sSet≤2

Q ) and the homotopy theory bi-Grpd[W−1], which can unfortunately not be done as
elegantly as in the previous cases i.e. with a Quillen equivalence.
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10.3.1 0-Truncations

As kind of a warm up exercise we discuss the Quillen equivalence between the model category
of 0-truncated simplicial sets sSet≤0

Q and the category SetT , which is the category Set with the
trivial model category structure. Remember that the trivial model category for a category is
the model structure in which the weak equivalences are the isomorphisms of the category and
the fibrations and cofibrations consist of any morphism of the category.
We would first like to establish an adjunction

sSet
X• 7→coeq(X1⇒X0)

//
Set

const.
oo _ ,

where const. is the constant simplicial functor. To do so, we state some useful lemmata.

Lemma 10.18. The coequaliser of the pair X1 ⇒ X0 for a simplicial set X• corresponds to
π0(X•) the set of connected components of X•.

Proof. First we notice that

coeq

 X1 X0

i0

i1

 = X0/∼

with i0 ∼ i1 by definition (since we are in Set).
Define a map

X0/∼ → π0(|X•|) = π0(X•)
[v] 7→ α

where α is a path connected component of |X•| such that v ∈ α.
We will show that this map is an isomorphism. First we argue that it is indeed well-defined. Let
[v] = [v′] then there exists some e ∈ X1 such that i0(e) = v and i1(e) = v′. But then there is a
path γ : v → v′ and hence v, v′ ∈ α.
Next we argue injectivity. Assume that α = β for α, β some path connected components of
X•. But then there is some path connecting α and β call it ξ. Such a path is of the form
|ξ| : |∆1| → |X•| i.e. ξ : ∆1 → X• which means that ξ ∈ sSet(∆1, X•) = X1 (notice that this is
not true in general but we only need this up to homotopy and in that case it holds).
Finally we show surjectivity. Every connected component must have a pre-image, since if not,
they must have had the same identification in the coequaliser (by definition). �

We can now show the adjunction. From now on we denote π0(X•) by Π0(X•) and const. by N 0.
These notations are only for aesthetical reasons, such that it fits better for the other cases. The
functor const. should remind us of something like a trivial nerve functor (also called nerve of a
discrete category) hence the notation.
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Lemma 10.19. There is an adjunction

Π0 : sSet
//
Setoo _ : N 0 .

Proof. We want to show, that there is an isomorphism

Set(Π0(X), Y ) ∼= sSet(X,N 0(Y )).

Choose some morphism f : Π0(X)→ Y ∈ Set(Π0(X), Y ), this morphism gets send to

(f : Π0(X)→ Y ) 7→



f0 : X0 → Π0(X) f−→ Y i.e. f0 : X0 → Y

f1 : X1
i0−→ X0 → Π0(X) f−→ Y i.e. f1 : X1 → Y

...
fn : Xn → Y

the map consists of such a collection as above. Also notice that there is no choice involved here,
i.e. it does not matter which map we choose (i0 or i1 etc..) since they will all be equalised.
To conclude we construct an inverse map for the above map. Let f : X → N 0(Y ) be a morphism
in sSet(X,N 0(Y )) and we construct

(f : X → N 0(Y )) 7→

f1 : X1 Y

f0 : X0 Y

Π0(X) Y = Π0(N 0(Y ))

id

and everything commutes on the right hand side. This now establishes our isomomrphism,
showing that there indeed is an adjunction. �

Lemma 10.20. There is a Quillen pair

Π0 : sSetQ
//
SetToo _ : N 0 .

Proof. We will show, that Π0 : sSetQ → SetT preserves cofibrations and acyclic cofibrations.
Since any map in SetT is a fibration and a cofibration (by definition of the trivial model
structure), we are left to show that it preserves weak equivalences.
Let f : X → Y be a weak equivalence in sSetQ, but then we must have

πn(|X|) ∼= πn(|Y |)

(by definition of weak equivalence in TopQ). But then we have as a special case, that π0(X) ∼=
π0(Y ) as isomorphism of sets, which is precisely a weak equivalence in SetT . This concludes the
proof. �

For the final step it is now crucial to work with 0-truncations.
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Theorem 10.21. There is a Quillen equivalence

Π0 : sSet≤0
Q

//
SetToo _ : N 0 .

Proof. From the above discussion, we have that Y = Π0(N 0(Y )), for any Y ∈ SetT . We are
left to show, that N 0(Π0(X•)) ∼−→ X• is a weak equivalence. First we notice, that πi(X•) = 0 for
all i > 0, since X• ∈ sSet≤0

Q . To be very precise it should actually say, that since every object
X• ∈ sSet≤0

Q is weakly equivalent to cosk1(X•) this implies an isomorphism on homotopy groups
and hence the above follows (see for instance Theorem 10.16 and Proposition 10.17).
We conclude by showing, that | N 0(Π0(X•))| → |X•| is a weak equivalence in Top≤0

Q .
πi(| N 0(Π0(X•))|) = ∗ for all i > 0 and hence we get that N 0(Π0(X•)) ∈ sSet≤0

Q . Further-
more

Π0(| N 0(Π0(X•))|) = Π0(X•) = Π0(|X•|)

and so πi(X•) = ∗ for all i > 0. This implies, that we indeed have a weak equivalence in
Top≤0

Q and hence a weak equivalence in sSet≤0
Q . This now establishes the Quillen equivalence

we claimed. �

10.3.2 1-Truncations

In this section, we aim to prove that there exists a Quillen equivalence between 1-truncated
simplicial sets and groupoids. First we will introduce some basic definitions in order to set up
the machinery we need. We will try to use the definitions, which we stated in the section about
the general geometric nerve and general geometric realisation.
This section uses material from [GoJa09], [JLur09], [ShHo07], [NStr00], [DeCi] and [nLab].

Basic Definitions

Definition 10.22. We define the category Cat to consist of all small categories and morphisms
given by functors between such categories.

Definition 10.23 (Groupoid). A category C ∈ Cat is called a groupoid, if every morphism
in C is invertible. The category of all such categories is denoted Grpd.

Theorem 10.24. Cat and Grpd are bicomplete.

Proof. Let {Ci}i∈I be a small diagram of categories. We define the limit C as the following
category.

ob(C ) := lim
i

ob(Ci)

mor(C ) := lim
i

mor(Ci)
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with the induced source, target and identity maps induced by the ones of the Ci and the func-
toriality of the limit. That is, composition is defined componentwise. Therefore C is a category
and C → Ci satisfies the universal property of the limit and hence we have completeness.
Cocompleteness will be more involved. Consider the functor

Cat→ Set
C 7→ lim

i
Cat(Ci,C ).

We want to show, that this functor is representable using Freyd’s representability theorem
(Theorem A.24). As seen above, Cat is complete and the functor is clearly continuous (since
defined as a hom-set), therefore we are left to show the solution set condition. Consider the
cardinal

κ = ℵ0 ·
∑
i∈I

card(mor(Ci)).

Let S be the set of all categories whose object and morphism sets are subsets of κ. Therefore
any category C with card(mor(C )) ≤ κ is isomorphic to some category in S.
Let {Fi : Ci → C } be a compatible family of functors. We define a subcategory C ′ ⊆ C in the
following way. The objects of C ′ are Fi(X) with X object of Ci for some i ∈ I. A morphism in
C ′ is a morphism in C which can be factored as Y0 → Y1 → · · · → Yn, where each Yj → Yj+1 lies
in the image of some Fi. The case n = 0 will correspond to the identity morphism. Therefore
C ′ is a subcategory of C .
But then, card(mor(C ′)) ≤ ∑

n∈N κ
n = κ. Hence C ′ is isomorphic to some object in S and we

are done.
This last part will construct the cocones needed for the colimits, and the colimit is given by the
representability i.e. from the isomorphism limi Cat(Ci,C ) ∼= Cat(D ,C ). The proof for Grpd
is similar. �

This proof is particularly nice, since it avoids the tiresome construction of coequalisers. It is
inspired by a discussion from Stackexchange [2].
If we remember Definition 6.2 and Definition 6.4 about the general nerve and general realisation
construction, we may adapt these for this specific case.
There is a natural choice of inclusion functor i : ∆ → Cat, sending objects to objects and
adding composition of morphisms in Cat for strings of morphisms in ∆ (i.e. objects of ∆ are
posets and posets are categories). Graphically one should have the following picture in mind.

∆

Cat

0 1 2 n

0 1 2 n

. . .

. . .
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Therefore, we define the geometric 1-nerve to be the functor N 1 : Cat → Fun(∆op,Set) =
sSet, induced by the inclusion i : ∆→ Cat.
From this, define the geometric 1-realisation Π1, to be the left Kan extension of the diagram

∆ Cat .

sSet

i

Y
Π1

Since Cat has all limits and colimits, i.e. is a bicomplete category, the left Kan extensions
for the definition of the geometric 1-realisation always exists (actually only cocompleteness is
needed here). This gives us the following adjunction.
Lemma 10.25. There is an adjunction

Π1 : sSet
//
Catoo _ : N 1 .

Proof. Immediate from Theorem 6.6. �

Notice, that one may obtain a groupoid from some category C ∈ Cat by localising with respect
to the class of morphisms mor(C ) in C . See for instance the section about the localisation of a
category for more details. Hence there is a canonical functor Loc : Cat→ Grpd. There is also
the forgetful functor U : Grpd→ Cat. Not surprisingly, they form an adjunction.
Lemma 10.26. There is an adjunction

Loc : Cat
//
Grpdoo _ : U.

Proof. We have to show that Grpd(Loc(C ),G ) ∼= Cat(C , U(G )). Consider a functor C →
U(G ). Then by the universal property of the localisation and since every morphism of C is
mapped to an isomorphism in U(G ) (hence also in G ) we have a unique map

C U(G )

Loc(C )
∃!

and therefore also a unique map Loc(C )→ G which we claimed. �

Since composition of adjunctions gives again an adjunction, we have the following chain of
adjunctions

sSet
Π1 //

Cat
N 1
oo _

Loc //
Grpd

U
oo _ .

By abuse of notation and more for aesthetic reasons, we will from now on denote with Π1
the composition Loc ◦Π1 and similarly by N 1 we mean U ◦ N 1 (which actually is N 1 itself).
Therefore, we have the following result.
Corollary 10.27. There is an adjunction

Π1 : sSet
//
Grpdoo _ : N 1 .
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Properties of the 1-Nerve

It actually turns out, that the 1-nerve is a very nice functor with good properties.

Remark 10.28. Let C be a category, the geometric nerve N 1(C ) is the following simplicial
set.

1. Its vertices are the objects of C .
2. 1-simplices are the arrows C0

f−→ C1 in C , with faces d0(f) = C1 and d1(f) = C0.

0 1
f

3. 2-simplices are the diagrams ∆ = (g, h, f ;α) of the form

0 2

1

h

f g

α

α : g ◦ f ⇒ h

with α a 2-cell in C , and faces which are the 1-simplices opposite to the indicated vertex,
that is d0(∆) = g, d1(∆) = h and d2(∆) = f .

4. At higher dimensions N 1(C ) is 2-coskeletal.

�

Remark 10.29. Let F : C → D be a functor between categories. Then N 1(F ) : N 1(C ) →
N 1(D) is the simplicial map given by:

1. for 0-simplices C ∈ N 1(C )0, N 1(F )0(C) = F (C)
2. for 1-simplices f ∈ N 1(C )1, N 1(F )1(f) = F (f)
3. At higher dimensions N 1(F ) is defined in the unique possible way, using the fact that in

dimension 2 and above any simplex is determined by its faces (1-simplices).

�

Proposition 10.30. Let X• ∈ sSet and G ∈ Grpd. Then N 1(G ) ∼= X• iff X• is a Kan
complex with unique horn fillers for n > 1 i.e. Xn → sSet(Λn

i , X•) are bijective for all n > 1.

Proof. Since X• is a Kan complex, there exists a lift

Λn
k X•

Λn ∗.
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Define a groupoid G in the following way:

• ob(G ) = X0.

• For any X, Y ∈ G , G (X, Y ) = {e : ∆1 → X• | e|{0} = X, e|{1} = Y }.

• (Identities) For X ∈ G we have idX : ∆1 → ∆0 → X•, which maps to X. Since ∆0 is
terminal, ∆1 → ∆0 is unique.

• (Composition) Let f, g be composable morphisms in G i.e. X f−→ Y
g−→ Z ∈ C . Then

f : ∆1 → X• and g : ∆1 → X•, composition is defined (uniquely defined since we will be
dealing with groupoids) according to

Λ2
1 X•

∆2
”g◦f”

i.e. this corresponds to

f g

g ◦ f

This indeed gives a category. Indeed, for any Y ∈ G , the identity idY is a unit with respect
to composition i.e. for any morphism f : X → Y ∈ G and any morphism g : Y → Z ∈ G ,
we have idY ◦ f = f and g ◦ idY = g. This equations are characterised by the 2-simplices
s1(f), s0(g) ∈ sSet(∆2, X•).

Composition is associative. Indeed, for any sequence of composable morphisms W f−→ X
g−→ Y

h−→
Z, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f . To show this, consider the following 2-simplices

W

X

Y X

Y

Z.

f g g h

g ◦ f h ◦ g
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Next, we choose a 2-simplex of the form

W

Y

Z.

hg ◦ f

h ◦ (g ◦ f)

These three 2-simplices define a map τ0 : Λ3
2 → X•. Since X• is a Kan complex, we can extend

τ0 to a 3-simplex τ : ∆3 → X•. The composition ∆2 ∼= ∆{0,1,3} ⊆ ∆3 τ−→ X•, which corresponds
to

W

X

Z

h ◦ gf

h ◦ (g ◦ f)

This then gives the associativity axiom h ◦ (g ◦ f) = (h ◦ g) ◦ f .
We now argue, that we end up with a groupoid. Let f ∈ mor(G ), f : X → Y , X, Y ∈ X•.
Consider the following map Λ2

0 → X•, where

0 1.

2

f

idX

By the lifting property (since X• is a Kan complex), there exists a map ∆2 σ−→ X• such that
f−1 is defined as f−1 : ∆1 ∼= ∆{0,1} ⊆ ∆2 σ−→ X•. Hence f ◦ f−1 = idX . Similarly one may argue,
that f−1 ◦ f = idX i.e. every morphism in G is invertible.
We are left to show, that N 1(G ) ∼= X•. There is a canonical map Φ : X• → N 1(G ) (defined
levelwise and by construction of G ). We want that Φ is a bijection i.e. we need to show that
Φn : Xn → N 1(G )n is bijective for any n ≥ 0. For n = 0, 1 this is by construction. Let n ≥ 2.
Consider the following diagram
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Xn
∼= sSet(∆n, X•) sSet(∆n,N 1(G ))

sSet(Λn
k , X•) sSet(Λn

k ,N 1(G )).

(∗∗)

∼= ∼=

(∗)

The vertical maps are isomorphisms because of the lift. (∗) is an isomorphism, since the horn
consists only of (n − 1) simplices hence it follows by the induction hypothesis. Therefore, (∗∗)
is an isomorphism and so we indeed have that N 1(G ) ∼= X•. �

Proposition 10.31. The functor N 1 is 2-coskeletal. That is, for a category C ∈ Cat the
simplicial set N 1(C ) is 2-coskeletal.

Proof. We want to show, that N 1(C ) is 2-coskeletal for some C ∈ Cat. As usual we can restrict
ourselves to the case of simplicial sets of the form ∆n, since any simplicial set may be considered
as a colimit of such simplices. Any simplicial map

f : ∆n → N 1(C )

can be identified with a functor f : [n]→ C . This functor is completely determined by its vertices
(f0), morphisms (f1) and the requirement that f respects composition (f2 and dif2 = f1di).
Hence, since X• is the colim of some ∆n, we have that N 1(C ) is 2-coskeletal. �

Proposition 10.32. The nerve functor N 1 is fully faithful.

Proof. First we define the spine of a simplex ∆n to be spn := ⋃
0≤i<n ∆{i,i+1}. We have a chain

of natural inclusions spn → ∂∆n → ∆n. If X = N 1(C ) and C ∈ Cat, then the objects and
morphisms of X are exactly the objects and diagrams of C respectively. Also commutative
triangles in X are commutative triangles in C . This corresponds to the following bijection

sSet(∆2,N 1(C )) ∼= sSet(sp2,N 1(C )).

This actually also follows since we have unique fillers for n > 1 for horns and the spine is a
particular kind of horn. So sp2 = Λ2

1, so pictorially this corresponds to

∆2Λ2
1

1

0 2

1

0 2
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So this tells us that there is a unique arrow turning the left diagram into the right one.
In general, since an n-simplex of the nerve N 1(C ) is a string of arrows of length n in C , means
that for any n ≥ 2, the restriction along the inclusion spn → ∆n induces a bijective map

sSet(∆n,N 1(C )) ∼= sSet(spn,N 1(C )).

This actually also follows from the fact about the unique horn fillers. Therefore, for any X• ∈
sSet and any small category C , a map from X• to N 1(C ) is completely determined by a map
f : X1 → mor(C ) such that

• For any X ∈ X•, f(idX) is the identity.

• For any commutative triangle (g, h, l) ∈ X• we have f(l) = f(h) ◦ f(g).

We have N 1(C )n = Fun([n],C ) ∼= sSet(∆n,N 1(C )) ∼= sSet(spn,N 1(C )).
Let f ∈ sSet(N 1(C ),N 1(D)) then we get maps

fn : sSet(∆n,N 1(C )) sSet(∆n,N 1(D))

sSet(spn,N 1(C )) sSet(spn,N 1(D)).

∼= ∼=

We construct a functor F : C → D , The map fn behaves like (spn → N 1(C )) 7→ (spn →
N 1(C ) f−→ N 1(D)). So on objects (n = 0) we have

F : C → D

(X : sp0 → N 1(C )) 7→ (f0(X) : sp0 → N 1(D))

and on morphisms (n = 1) we have

F : C → D

((X → Y ) : ∆1 = sp1 → N 1(C )) 7→ ((f1(X → Y )) : ∆1 = sp1 → N 1(D)).

Now, we have to verify, that this construction indeed defines a functor. It preserves identities,
since

(idX : ∆1 → ∆0 → N 1(C )) 7→ (∆1 → ∆0 → N 1(C )→ N 0(D)) = idF (X).

We are left to show, that F (f ◦ g) = F (f) ◦ F (g). Indeed, we have that (f, g) : sp2 → N 1(C ),
also f ◦ g : ∆2 → N 1(C ), this corresponds to a commutative triangle

f g

g ◦ f
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Consider F (f ◦ g) = f2(f ◦ g) : ∆2 → N 1(C )→ N 1(D), furthermore F (f) : sp1 → N 1(D) and
F (g) : sp1 → N 1(D). Then F (f) ◦ F (g) corresponds to a diagram

F (f) F (g)

F (g ◦ f)

Finally, we have a diagram

∆2 N 1(C ) N 1(D)

Λ2
1 N 1(C ) N 1(D).

F (f◦g)

F (f)◦F (g)
id

Hence, F (f ◦g) = F (f)◦F (g) and therefore F is a full functor. Since F depends uniquely on fn
and it is determined by f0 and f1 we also have that F is faithful, which we wanted to show. �

The Model Structure

As a preparation to eventually prove that there is a Quillen equivalence we first need to define
a model category structure on the category of groupoids. It will turn out to be a cofibrantly
generated one, which will make our live much easier in order to argue the Quillen pair and later
on the Quillen equivalence.

Definition 10.33 (Generating Cofibrations). The set

IGrpd := {Π1(∂∆n → ∆n) | n ≥ 0}

will be called the set of generating cofibrations for Grpd.

Definition 10.34 (Generating Acyclic Cofibrations). The set

JGrpd := {Π1(Λn
k → ∆n) | n ≥ 0, n ≥ k ≥ 0}

will be called the set of generating acyclic cofibrations for Grpd.

Lemma 10.35. The groupoids Π1(∂∆k) and Π1(∆k) are isomorphic for k ≥ 3. Similarly, the
groupoids Π1(Λk

l ) and Π1(∆k) are isomorphic for k ≥ 2.
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proof (sketch). This holds by the definition of a groupoid. Indeed, a groupoid only yields infor-
mation about 0-cells and 1-cells, hence all the higher information is not taken into consideration
i.e. under the functor Π1, ∂∆k and ∆k yield the same information for k ≥ 3 and similarly for
the horn inclusions. �

In the next step we give the definition of the different classes of maps for a model structure.

Definition 10.36 (Isofibration). We call a morphism F : G → H ∈ Grpd an isofibration,
if for any A ∈ G and for any h : F (A)→ B ∈ H there exists some g : A→ A′ ∈ G such that
F (g) = h.

Definition 10.37 (Model Structure on Grpd). Let F : G →H ∈ Grpd. Then F is a
1. weak equivalence, if it is an equivalence of categories.
2. fibration, if it is an isofibration.
3. cofibration, if it is injective on objects.

We denote this model structure by GrpdM1.

Remark 10.38. One can see, that if we have an equivalence of categories, this functor is a
fibration iff it is surjective i.e. elements in WGrpd ∩FGrpd are surjective. More details can be
found in [MaBe18]. �

Theorem 10.39. GrpdM1 is a model category structure for Grpd turning it into a model
category.

Proof. A proof can be found in [NStr00]. One can also show this with Theorem 2.32. That is
we transfer the cofibrantly generated model category structure from sSet to Grpd. �

It turns out, that it is possible to turn the above model structure into a cofibrantly generated
one. We will now attempt to argue this.

Lemma 10.40. 1. F ∈ FGrpd iff F has the RLP with respect to JGrpd.
2. F ∈ WGrpd ∩FGrpd iff F has the RLP with respect to IGrpd.

Proof. 1. This is from the definition of isofibration. Consider the case k, n = 1

Π1(Λ1
1) = [0] G

Π1(∆1) = Π1([1]) H .

F

For n ≥ 2 we have that Π1(Λn
k) ∼= Π1(∆n) (basically since every morphism is invertible in

a groupoid).
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2. Assume that F has the RLP with respect to IGrpd. Then we have the following diagram

Π1(∂∆n) G

Π1(∆n) H .

F

For the case n = 0, this diagram tells us, that for any B ∈H , there is some A ∈ G such
that F (A) = B, in other words F is essentially surjective (actually even surjective).
For n = 1 we have the following situation

[0]∐[0] G

Π1([1]) H .

F

h

The lower commuting triangle says, that for any morphism in H there is one in G , that
is the functor F is full. The upper commuting triangle tells us that target and source get
mapped via F (i.e. for any map g : B → B′ ∈ H , there is a map f : A → A′ such that
F (f) = g, F (A) = B and F (A′) = B′). We consider the case n = 2. There is a diagram

Π1(∂∆2) G

Π1(∆2) = Π1([2]) H .

(∗)

(∗∗) F

Consider further G (A,A′) → H (F (A), F (A′)) and assume that F (g) = F (g′) for some
g, g′ ∈ G (A,A′). The morphism in (∗) corresponds to some diagram

F (g)

F (g′)

idF (A)

F (A)

F (A) F (A′)

On the other hand, the morphism (∗∗) corresponds to

Gian Deflorin September 1, 2019 150



The Homotopy Hypothesis

g

g′

idA

A

A A′

Now the lift in the original diagram assures us a way to fill this diagram (by the commu-
tativity of the left triangle). Hence F is faithful.
Furthermore we have that Π1(∂∆k)→ Π1(∆k) are isomorphisms for k ≥ 3 this concludes
the other direction and concludes the proof.

�

Remark 10.41. With the above proof, we are able to refine the definitions of the generating
cofibrations and generating acyclic cofibrations for Grpd. That is

IGrpd := {Π1(∂∆n → ∆n) | n = 0, 1, 2}
JGrpd := {Π1(∆0 → ∆1)}.

�

Just for the sake of completeness we get the following corollary. This statement also appears in
[ShHo07].

Corollary 10.42. GrpdM1 is a cofibrantly generated model category structure on Grpd turning
it into a model category.

Groupoids and the Fundamental Groupoid

We may define the path category of a simplicial set in the following way.

Definition 10.43. Let X• ∈ sSet, the category generated by the graph X1 ⇒ X0 of 1-simplices
d1(x) → d1(x) subject to the relations d1(σ) = d0(σ) ◦ d2(σ) given by the 2-simplices σ of X•.
This category will be called the path category of the simplicial set X•, and is denoted by
P(X•).

Unwrapping the above definition should remind us of the pictures given by Remark 10.28.
Therefore, with this definition there is a natural bijection as described in the following lemma.
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Lemma 10.44. There is a bijection Cat(P(X•),C ) ∼= sSet(X•,N 1(C )).

Proof. Consider the map f : X• → N 1(C ) in sSet, this associates to each n-simplex X of X•
a functor f(X) : [n] → C which is completely determined by the 1-skeleton of X• and the
composition relations arising from 2-simplices of the form

∆2 → ∆n X−→ X•.

It follows, that f can be identified with the graph morphism

X1 mor(C )

X0 ob(C )

f

f

subject to the relations f(d1σ) = f(d0σ) ◦ f(d2σ) arising from all 2-simplices σ of X•. Since
P(X•) is the category freely associated to the graph

X1 X0

and the 2-simplex relations, there is an isomorphism Cat(P(X•),C ) ∼= sSet(X•,N 1(C )) as
desired. �

Hence, from the above lemma there is an adjunction

P : sSet
//
Catoo _ : N 1 .

We are now able to turn the path category of a simplicial set into a groupoid for this specific
simplicial set. We achieve this by localising the path category with respect to all morphisms.
We denote the resulting category by PG(X•).
Similarly there is also an adjunction with this functor

PG : sSet
//
Grpdoo _ : N 1 .

Lemma A.14 now yields, that the functors Π1 and PG are naturally isomorphic.
We introduce the fundamental groupoid for a topological space.

Definition 10.45 (Fundamental Groupoid). The fundamental groupoid of a topological
space X ∈ Top, is a groupoid, where objects are the points of X and whose morphisms are
paths in X identified up to endpoint-preserving homotopy. We denote this groupoid by Π≤1(X).

A nice property is the following.

Remark 10.46. For any point x ∈ X of a topological space X, the fundamental group π1(X, x)
arises as the automorphism group of x in Π≤1(X) i.e.

π1(X, x) = AutΠ≤1(X)(x).

�
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Unfortunately we will need this later for the proof of the Quillen adjunction, but for the setting of
simplicial sets. But fear not, since Goerss and Jardine ([GoJa09]) provide help for such helpless
situations. That is, in the form of the following theorem.

Theorem 10.47. Let X• ∈ sSetQ. The groupoids Π≤1(|X•|) and PG(X•) are naturally equiva-
lent as categories.

Proof. First we notice, that the groupoids PG(Sing(|X•|)) and Π≤1(|X•|) are isomorphic. Indeed,
let X• ∈ sSetQ and consider the following map.

γX• : Π≤1(|X•|)→ PG(Sing(|X•|))
[f : I → |X•|] 7→ [Sing(f) : ∆1 → Sing(|X•|)].

The relation on the left side is equivalence up to homotopy and the one on the right side comes
from the following simplex

α

0

1

2

d 2
(α

)

d1(α)

d
0 (α)

such that [d1α] = [d0α] · [d2α] for some 2-simplex α : |∆2| → |X•| of Sing(|X•|).
This map is indeed well defined. Let f, f ′ ∈ [f : I → |X•|] i.e. f and f ′ are homotopy equivalent
to each other. Mapped under γX• , this corresponds to the following picture.

α

id
sing(f)

sing(f ′)

Hence, Sing(f) ∼ Sing(f ′). Therefore our map is indeed well defined.
This map is also an isomorphism, for this observe the following. If we are to map some morphism
from the left hand side to the right hand side and then back again this is a composition which is
related to the identity (equivalent to it). But for us to have an isomorphism this should actually
be an equality. This can be fixed with the following Quillen equivalence already proven earlier
in the thesis

| | : sSetQ
//
TopQoo _ : Sing .

Gian Deflorin September 1, 2019 153



The Homotopy Hypothesis

Since the composition we are interested in will be weakly equivalent to the identity which is
in the equivalence class of the identity in Π≤1(|X•|). This shows that our map is indeed an
isomorphism.
We have to show, that PG sends weak equivalences in sSetQ to weak equivalences in GrpdM1 .
Let f ∈ WsSet then f = q ◦ j for some q ∈ WsSet ∩F sSet and j ∈ WsSet ∩CsSet (from the
properties of FWFS and the 2-3 property). The map q is a left inverse to an acyclic cofibration
and every acyclic cofibration is a retract of a map which is a filtered colimit of pushouts of maps
of the form Λn

k → ∆n. Therefore it suffices to show, by Ken Brown’s lemma, that PG sends
pushouts of maps Λn

k → ∆n to equivalences of categories.
The map PG(Λn

k) → PG(∆n) is an isomorphism of groupoids for n ≥ 2 and PG(Λ1
i ) is a strong

deformation retract of PG(∆1) for i = 0, 1. Indeed, this can be seen in the following way.

∆1 × PG(∆1) PG(∆1)

0 1

(0, 0) (1, 0)

(0, 1) (1, 1)'

'

' '

H

(colors will be mapped to colors) and with the morphisms

∗ PG(∆1)
p

r

we let H|0 = id and H|1 = r ◦ p. This gives us the desired strong deformation retractions.
Isomorphisms and strong deformation retracts of groupoids are closed under pushouts and so
PG sends weak equivalences to weak equivalences in the respective categories. Finally, this yields
that PG(X•) and Π≤1(|X•|) are naturally equivalent as categories. �

This theorem, together with the fact that the functors PG and Π1 are naturally isomorphic, give
the following corollary.

Corollary 10.48. Let X• ∈ sSetQ be fibrant, then we have an isomorphism

π1(X•, x) ∼= AutΠ1(X•)(x) ∼= AutΠ≤1(|X•|)
∼= π1(|X•|, x).

Proof. We will show, that there is an isomorphism of groups

AutΠ1(X•)
∼= AutΠ≤1(|X•|).
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First of all, since the above notions describe fundamental groups in the setting of simplicial sets
and topological spaces respectively, a first condition to be satisfied is, that we consider a fibrant
object. Therefore, let X• ∈ sSetQ be fibrant.
The claimed isomorphism basically follows from the fact, that the groupoids PG(X•) and
Π≤1(|X•|) are naturally equivalent as categories (see Theorem 10.47). In addition, we will use
the fact, that the functors PG and Π1 are naturally isomorphic.
Therefore we have a functor F : Π1(X•) → Π≤1(|X•|) which is fully faithful and essentially
surjective. But if we restrict this to the groups AutΠ1(X•) and AutΠ≤1(|X•|) respectively, we
indeed get the desired result. Surjectivity follows from the essential surjectivity of the functor
and fully faithfulness implies injectivity. This gives us isomorphisms �

Notice that the condition to be fibrant i.e. a Kan complex is indeed necessary here, as we
can only relate the homotopy groups between simplicial sets and topological spaces if they are
fibrant.
This observation will become crucial later on, in the proof of the main theorem.

The Quillen Equivalence

We are now ready to take on the final steps towards the desired Quillen equivalence.

Proposition 10.49. There is a Quillen pair

Π1 : sSetQ
//
GrpdM1oo _ : N 1 .

Proof. Lemma 10.40 and Corollary 10.42 provide all needed conditions to apply Lemma 2.33,
which then implies the result. �

Furthermore, there is the following result i.e. the above Quillen pair still remains a Quillen pair
in the truncated case.

Proposition 10.50. There is a Quillen pair

Π1 : sSet≤1
Q

//
GrpdM1oo _ : N 1 .

Proof. As we have seen , any object in sSetQ is cofibrant. Proposition 5.35 now states, that if
Π1 : sSetQ → GrpdM1 is a left Quillen functor, which holds by the above Proposition, and
Π1(QS) ∈ WGrpd for S = {∂∆3 → ∆3}, then Π1 : sSet≤1

Q → GrpdM1 is also a left Quillen
functor.
In fact, QS is just S itself, and as pointed out before, there is an isomorphism Π1(∂∆3) →
Π1(∆3) in GrpdM1 and hence also a weak equivalence. Therefore, the functor Π1 : sSet≤1

Q →
GrpdM1 is indeed a left Quillen functor and therefore we get a Quillen pair

Π1 : sSet≤1
Q

//
GrpdM1oo _ : N 1 .

�
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This is actually a very good example, why we want our model categories to be cofibrantly gener-
ated. They usually make it quite a bit easier to deal with Quillen pairs and Quillen equivalences.
Now is a good time to remember that we showed, that the functor N 1 is fully faithful and
combine it with Lemma A.15.
Finally, after a lot of work (pain?), we can state the main result.

Theorem 10.51. There is a Quillen equivalence

Π1 : sSet≤1
Q

//
GrpdM1oo _ : N 1 .

Proof. We have to show, that the derived unit and counit are weak equivalences, but since
every object in sSetQ is cofibrant and from the definition of isofibration one can deduce that
every object in GrpdM1 is fibrant, it will be enough to show, that the maps ε : Π1(N 1) →
idGrpdM1

and η : idsSet≤1
Q
→ N 1(Π1) are weak equivalences. Since the nerve N 1 is fully faithful

by Proposition 10.32 and hence by Lemma A.15 we have that Π1(N 1) → idGrpdM1
is an

isomorphism and therefore also a weak equivalence.
We are left to show, that η : idsSet≤1

Q
→ N 1(Π1) is a weak equivalence in sSet≤1

Q i.e. that we
have isomorphisms πi(X•) ∼= πi(N 1(Π1(X•))) for i = 0, 1. This condition is enough, according
to Proposition 10.17.
Now for the next idea to work, we need to restrict ourselves to the case where we consider
fibrant simplicial sets. Therefore we choose the fibrant replacement of the simplicial set X• i.e.
X•

∼−→ Xf
• , which is a weak equivalence such that Xf

• is a Kan complex. We will use the notation
Xf
• instead of QX• for convenience.

Now the case for i = 0 follows by construction. The case i = 1 is a bit more involved. Since we
work with the fibrant replacement we may apply Theorem 10.47. This yields an isomorphism

π1(Xf
• , x) ∼= AutΠ1(Xf

• )(x)

for any x ∈ Xf
• .

But then we have the following isomorphismsπ1(Xf
• , x) ∼= AutΠ1(X•)(x) ∀ x ∈ Xf

•

π1(N 1(Π1(Xf
• )), x) ∼= AutΠ1(N 1(Π1(Xf

• )))(x) ∀ x ∈ Xf
• .

If we apply Π1 to the isomorphism Π1N 1 → idGrpdM1
we end up with an isomorphism

Π1(Xf
• )
∼=−→ Π1(N 1(Π1(Xf

• ))).

But this yields the following isomorphisms (by Corollary 10.48 and the fact, that N 1 is fully
faithful)

π1(Xf
• , x) ∼= AutΠ1(Xf

• )(x) ∼= AutΠ1(N 1(Π1(Xf
• )))(x) ∼= π1(N 1(Π1(Xf

• )), x).
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Therefore we end up with isomorphismsπ0(Xf
• , x) ∼= π0(N 1(Π1(Xf

• )), x) ∀ x ∈ Xf
•

π1(Xf
• , x) ∼= π1(N 1(Π1(Xf

• )), x) ∀ x ∈ Xf
• .

Finally by Proposition 10.17, the map Xf
• → N 1(Π1(Xf

• )) is a weak equivalence in sSet≤1
Q .

Time to address the problem with the fibrant replacement, since we want this to hold for any
simplicial set. In such cases one applies Ken Brown.
First, notice that the weak equivalence X• ∼−→ Xf

• implies that Π1(X•) −→ Π1(Xf
• ) is also a weak

equivalence, due to the fact that the first map is actually an acyclic cofibration and the left
adjoint preserves acyclic cofibrations. Finally the map N 1(Π1(X•)) → N 1(Π1(Xf

• )) is also a
weak equivalence due to Ken Brown’s lemma.
The final step involves enjoying the following commutative diagram.

X• N 1(Π1(X•))

Xf
• N 1(Π1(Xf

• ))

∼ ∼

∼

Since weak equivalences have the 2-3 property the horizontal map must also be a weak equiva-
lence, which concludes the proof. �

10.3.3 2-Truncations

The goal of this section is to show -similarly to the previous section- that there is a Quillen
equivalence between sSet≤2

Q and bi-GrpdsM2 , where the latter is the model category structure
discussed in [MaBe18], the strict case can be found for example in [StLa], which will be stated
here as a theorem. Furthermore, we want to show, that there is an equivalence of categories
Ho(sSet≤2

Q ) and bi-Grpd[W−1]. In the following we use material from [JoDu02], [BuFaBl04],
[MaBe18], [IeMoJaSv93], [StLa06] and [StLa].
The desired nerve functor in this context is the so called Duskin nerve, developed in [JoDu02].
As pointed out in [BuFaBl04] this Duskin nerve is equivalent to the geometric nerve defined in
[BuFaBl04].
But before we give the definition we need to clarify some notions and give additional definitions.

Basic Definitions

We will start with the definition of a bi-category and from this definition also give, as a special
case, the definition of a 2-category, which is sometimes also referred to as a strict 2-category.
After that we give the definition of a lax 2-functor and as special cases also the notion of weak
2-functor and the one of (strict) 2-functor. For these definitions we will follow [ToLe98], which
are based on the ones given by Bénabou in [JeBe67] and is quite elegant but that is a question
of personal taste.
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Definition 10.52 (Bi-Category). A bi-category B consists of the following data.
1. A set of objects ob(B) called 0-cells.
2. For any A,B ∈ B we have that B(A,B) ∈ Cat, called the category of morphisms.
3. For any A,B,C ∈ B there are functors

CABC : B(B,C)×B(A,B)→ B(A,C)
(g, f) 7→ g ◦ f
(β, α) 7→ β ◦h α

(called horizontal composition operator) and for any A ∈ B a map IA : 1 → B(A,A),
thus IA is a 1-cell A→ A.

4. For any A,B,C,D ∈ B natural isomorphisms

B(C,D)×B(B,C)×B(A,B) B(C,D)×B(A,C)

B(B,D)×B(A,B) B(A,D)

1×CABC

CBCD×1 CACD

CABD

aABCD

B(A,B)× 1

B(A,B)×B(A,A) B(A,B)

1×IA
∼=

CAAB

rAB

1×B(A,B)

B(B,B)×B(A,B) B(A,B)

IB×1
∼=

CABB

lAB

and thus 2-morphisms (called 2-cells)

ahgf : (h ◦ g) ◦ f
∼=−→ h ◦ (g ◦ f)

rf : f ◦ IA
∼=−→ f

lf : IB ◦ f
∼=−→ f.

Such that the following axioms hold.
• (Pentagon Law) The following diagram commutes.

((k ◦ h) ◦ g) ◦ f (k ◦ (h ◦ g)) ◦ f

(k ◦ h) ◦ (g ◦ f) k ◦ ((h ◦ g) ◦ f)

k ◦ (h ◦ (g ◦ f))

a◦h1

a a

a 1◦ha

• (Triangle Identity) The following diagram commutes.

(g ◦ I) ◦ f g ◦ (I ◦ f)

g ◦ f

a

r◦h1 1◦hl
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Remark 10.53. The map a is usually referred to as the associator and the maps l and r are
usually referred to as unitors, for more or less obvious reasons. Furthermore, the map IA is
often called pseudo identity. �

Remark 10.54. The definition of a bi-category B gives three types of cells:

0-cells : A ∈ ob(B) = 0- mor(B)
1-cells : f : A→ B ∈ 1- mor(B)
2-cells : α : f ⇒ g ∈ 2- mor(B).

So a 2-cell may be thought of as the following diagram

A B.

f

g

α

Furthermore, properties 2. and 3. give two kinds of composition for 2-cells, which as diagrams
look the following way.
Vertical composition:

A B
α

β
becomes A B.β ◦v α

This is the composition that comes from the internal structure of the categories of morphisms
(therefore it is also called internal composition).
Horizontal composition:

A B Cα β becomes A C.β ◦h α

This is also referred to as external composition, in contrast to the above composition. �

Notation 10.55 (Composition). We use the notation − ◦h − for horizontal composition
and −◦v− for vertical composition of 2-cells. The symbol ◦ will usually just denote standard
composition i.e. composition of 1-cells.

Definition 10.56 (2-category). A (strict) 2-category is a bi-category, in which a, l and r are
identities i.e. (h ◦ g) ◦ f = h ◦ (g ◦ f) and I ◦ f = f = f ◦ I and similar for composition 2-cells.
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Actually one could just define a (strict) 2-category to be a category enriched over Cat, which
is the same as the above definition.

Definition 10.57 (Equivalence). A 1-cell w : A→ B in a bi-category B is called equivalence
when there exists a 1-cell v : B → A and invertible 2-cells η : w ◦ v ⇒ 1B and ε : 1A ⇒ v ◦ w
satisfying the triangle identities. Such a v is called a quasi inverse of w.

Next we give the definition of a bi-groupoid. This definition should correspond with the one
provided in [MaBe18].

Definition 10.58 (bi-groupoid). A bi-groupoid is a bi-category in which every 1-morphism
is an equivalence and every 2-morphism is an isomorphism.

Definition 10.59 (2-groupoid). A 2-groupoid is a 2-category in which every 1-morphism is
an equivalence and every 2-morphism is an isomorphism.

Since we like ridiculously long definitions here comes another one. We first define lax 2-functors
and then weak 2-functors and (strict) 2-functors as special cases.

Definition 10.60 (Lax 2-Functors). A lax 2-functor (F, φ) : B → B′ between bi-categories,
consists of the following data.

1. A function F : ob(B)→ ob(B′).
2. For any A,B ∈ ob(B), functors FAB : B(A,B)→ B′(FA, FB).
3. For any A,B,C ∈ ob(B) natural transformations

B(B,C)×B(A,B) B(A,C)

B′(FB,FC)×B′(FA, FB) B′(FA, FC)

C

FBC×FAB FAC

C′

φABC

1 B(A,A)

1 B′(FA, FA)

IA

FAA

I′FA

φA

and thus 2-cells

φgf : Fg ◦ Ff ⇒ F (g ◦ f)
φA : I ′FA ⇒ FIA.

Such that the following axioms are satisfied i.e. the following diagrams commute.

(Fh ◦ Fg) ◦ Ff F (h ◦ g) ◦ Ff F ((h ◦ g) ◦ f)

Fh ◦ (Fg ◦ Ff) Fh ◦ (F (g ◦ f)) F (h ◦ (g ◦ f)).

φ◦h1

a′

φ

Fa

1◦hφ φ

Ff ◦ I ′FA Ff ◦ FIA F (f ◦ IA)

Ff Ff

1◦hφ

r′

φ

Fr

I ′FB ◦ Ff FIB ◦ Ff F (IB ◦ f)

Ff Ff

φ◦h1

l′

φ

F l
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Definition 10.61 (Weak 2-Functor). A weak 2-functor is a lax 2-functor, such that Fg◦Ff ∼=
F (g ◦ f) and FI ∼= I ′.

Definition 10.62 (2-functor). A (strict) 2-functor is a lax 2-functor, such that Fg ◦ Ff =
F (g ◦ f) and FI = I ′.

Remark 10.63. From the above definitions we have that weak 2-functors have isomorphisms
and strict 2-functors have identities. This is the important thing to keep in mind when we are
working with these notions.
Therefore, any (strict) 2-functor is a weak 2-functor and every weak 2-functor is a lax 2-functor.
Sometimes a weak 2-functor is also called pseudo functor.
Some people also refer to a weak 2-functor as homomorphism of bi-categories and to a lax
2-functor as a morphism of bi-categories or strict homomorphism of bicategories. �

Notice, that bi-groupoids together with weak 2-functors form a category (see for instance Corol-
lary 2.12 in [MaBe18]) and similar for bi-categories. We denote the category of all bi-categories
together with weak 2-functors by bi-Cat, similarly we denote the category of all bi-groupoids
and weak 2-functors by bi-Grpd. Furthermore, we denote by 2- Cat the strict two categories
with strict 2 morphisms, similar for 2- Grpd.
If we speak of a strict 2 category with lax 2-functors we will often use the subscript ”lax” i.e.
2-Catlax and if we speak about a bi-category with strict 2-functors we use a subscript ”s” i.e.
bi-Cats etc. In fact we will use the latter one for quite some time throughout the following
discussion, though for the case of bi-groupoids.
There is reason for the above discussion as we will see, the categories bi-Cat and bi-Grpd are
neither complete nor cocomplete. Therefore we can not apply our machinery as we are used to
(see for instance as in the last section). Hence, we will adapt everything for the case known to
be working, that is the case of bi-groupoids with strict 2-morphisms, since this is a bicomplete
category. Bicompleteness is very important for our constructions, as one may be convinced from
the last section, it is needed in the definition of a model category and more important it is
crucial for our definition of the geometric realisation (at least cocompleteness is needed there).
At the end of this section we will still relate the homotopy theories of 2-truncations and
bi-Grpd, since this will still work, though not via a Quillen equivalence.

Proposition 10.64. bi-Cat and bi-Grpd are neither complete nor cocomplete.

Proof. We will actually show, that 2- Catw does not have equalisers and coequalisers. This
example can be adapted to the case of bi-Grpd and bi-Cat according to [MaBe18]. The
example was provided in [StLa06].
We consider the ordered set 3 = {0 < 1 < 2} as a 2-category with no non-identity 2-cells.
Consider a 2-category K with designated arrows f : A → B, g : B → C and h : A → C and
invertible 2-cell ϕ : g ◦ f → h. These determine a weak 2-functor F : 3→ K sending 0, 1 and
2 to A,B and C; sending 0 < 1 to f , 1 < 2 to g and 0 < 2 to h; strictly preserving identities
and with ϕ the pseudofunctoriality constraint. Suppose that there is a different h′ : A → C
and ϕ′ : g ◦ f → h′ and write F ′ : 3 → K for the induced weak 2-functor. If F and F ′ had
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an equaliser it would have to contain the objects 0, 1 and 2 and the arrows 0 < 1, 1 < 2 but
not 0 < 2. This is impossible, therefore we do not have equalisers. Furthermore, the inclusions
{1} → {0 < 1} and {1} → {1 < 2} have no pushout in 2- Catw, and so there are also no
coequalisers. Finally there is no bicompleteness. �

In fact if we consider the proof, one can say that there is only hope for the case with strict
functors, which turns out to be true. This result is well known and will not be proven.

Proposition 10.65. 2- Cat and 2- Grpd are bicomplete.

According to [StLa] we also have the following slightly more general result.

Proposition 10.66 ([StLa]). bi-Cats and bi-Grpds are bicomplete.

Finally we may give the definition of the geometric bi-nerve and geometric bi-realisation. We
modify the definition of the nerve given in [BuFaBl04] for the case of bi-Grpd. According
to them and as pointed out in [JoDu02], this turns out to be the same nerve as defined in
[JoDu02], section 6. Furthermore, there is indeed also a remark in [JoDu02], which confirms this
assumption.
As already done in the last section we consider a certain case of Definition 6.2 and Definition
6.4.
First we consider the inclusion functor i : ∆ → bi-Cat. First we include ∆ in Cat in the
same way as described in the last section. Then we are able to turn the resulting category into
a bi-category. Indeed, the only things we have to add for this to work are 2-cells. We add an
identity 2-cell for between any composition of morphisms. It might be easier to see this as a
picture to clarify what is actually going on.

∆

bi - Cat

0 1 2 n

0 1 2 n

. . .

. . .

The above idea can also be seen in the following way. Sets define discrete categories, therefore
a category (here a set enriched category) determines a strict 2-category in a canonical way.
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We define the geometric bi-Nerve to be the functor N 2 : bi-Cat → sSet, induced by the
inclusion i : ∆→ bi-Cat, i.e. N 2(B) = Fun(i(−),B).
The definition works in such generality, that one could use bi-Cat with normal lax functors,
these are lax functors which strictly preserve identities. For our purpose, we will restrict ourselves
to strict functors.
Therefore we may define the geometric bi-Realisation to be the functor Π2 defined as the
left Kan extension of

∆ bi-Cats

sSet

i

Y
LY i

i.e. Π2 := LY i, where Y is the Yoneda embedding.
Of course this is only well-defined, if these Kan extensions actually exist in any case. This
holds, since bi-Cats is a bicomplete category (keep in mind that actually only cocompleteness
is needed here).
The following question may come up now. Why do we define this in such generality, when we
just need the special case of bi-groupoids? Well, of course this is preference but, as we will see,
the bi-nerve as defined in such generality has some very good and helpful properties. It is very
similar as in the setting of 1-truncations (but of course way more complicated). To spoil the
fun, it will turn out that the bi-nerve is again fully faithful just as for the other case, which will
again be an appreciated tool for the Quillen equivalence at the end of the section.
A first consequence is the following result.

Lemma 10.67. There is an adjunction

Π2 : sSet
//
bi-Catsoo _ : N 2 .

Proof. This follows from Theorem 6.6. �

As pointed out before, we need an adjunction between sSet and bi-Grpds. So instead of
restricting definitions, we may use some similar argument as in the last section. Actually, there
exists a generalisation of the idea of localising a category for this more general setting. This idea
is introduced in [DoPr96]. We will just very briefly discuss the idea (since the argument is very
similar as in the case discussed in the section about localisations. Already there these proofs
were very technical so it will be even more involved for this case). The idea is a generalisation of
the original work on such structures called ”calculus of fractions” first introduced in [GaZi67],
which treats the case for Cat (which we also discussed in the present work).
In order to localise with respect to a subclass of a bi-category, this subclass has to admit a right
calculus of fractions, as defined in [DoPr96].
Anyway, since we want to localise with respect to any morphism of the bi-category all these
conditions should be satisfied.
Here comes the main theorem.
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Theorem 10.68 ([DoPr96]). Let C ∈ bi-Cat and W be a class of 1-morphisms in C such that
W admits a right calculus of fractions. There is a bi-category C [W−1] and a homomorphism
Loc : C → C [W−1] such that

1. Loc sends elements of W to equivalences (see Definition 10.57).
2. Loc is universal with this property i.e. composing with Loc gives an equivalence of bi-

categories (see Definition 10.79)

bi-Cat(C [W−1],D)→ bi-CatW(C ,D)

where the latter is the sub-bi-category of those cells which send the elements of W to
equivalences.

Proof. The idea is much like the case for Cat discussed earlier. Of course this is more involved
as we have to deal with higher morphisms. A full proof may be found in [DoPr96] in section
2. �

There are a lot more useful properties about this construction in [DoPr96].
We will now give a way to turn a bi-category into a bi-groupoid using the above theorem and
the localisation used to turn categories into groupoids. This will work in the following way.
Let B ∈ bi-Cat but then B(X, Y ) ∈ Cat for any X, Y ∈ ob(B). Further let W2

X,Y :=
mor(B(X, Y )) and W1 := 1- mor(B). So the collection of all the W2

X,Y are precisely the 2-cells
of B, we denote this whole collection by W2 i.e. W2 = ⋃

X,Y ∈ob(B)W2
X,Y .

We will now apply the localisation given by the above theorem with respect to W1 and denote
it by B[W−1]. Notice that this is not yet a bi-groupoid. We indeed have that every 1-morphism
is an equivalence but not every 2-morphism is invertible.
In a next step we apply the known localisation construction to B[W−1] in the following
sense. For any X, Y ∈ ob(B[W−1]) we localise B[W−1](X, Y ) with respect to W2

X,Y i.e.
B[W−1](X, Y )[(W2

X,Y )−1] ∈ Grpd. We do this for all objects in B[W−1] such that all
B[W−1](−,−)[(W2

−,−)−1] ∈ Grpd. This now finally gives us a bi-groupoid, since all 1-
morphisms are equivalences and every 2-morphism is invertible.
We denote this procedure of turning a bi-category into a bi-groupoid by B[(W2)−1, (W1)−1].
This gives a functor which we also denote by Loc : bi-Cat → bi-Grpd, we also have the
forgetful functor U : bi-Grpd → bi-Cat. As for the other case they also form an adjunction
with the same argument (the argument is a bit more involved here as we are dealing with
different localisations, but essentially they are the same).

Lemma 10.69. There is an adjunction

Loc : bi-Cat
//
bi-Grpdoo _ : U.

Proof. This comes from the universal properties of the localisations used above. �
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And of course, this can be adapted for the strict case.
Since composition of adjunctions gives an adjunction, we have the following adjunctions

sSet
Π2 //

bi-Cats
N 2
oo _

Loc //
bi-Grpds

U
oo _ .

By abuse of notation and more for aesthetic reasons, we will from now on denote with Π2 the
composition Loc ◦Π2 and similar by N 2 we mean U ◦ N 2 (which is already the same functor).
Finally this yields the following result.

Corollary 10.70. There is an adjunction

Π2 : sSet
//
bi-Grpdsoo _ : N 2 .

Properties of the bi-Nerve

We give some nice properties about the bi-nerve. According to [BuFaBl04] one may give an
explicit description of the nerve in the following way. This whole section holds for the more
general case of bi-Cat or bi-Grpd.

Remark 10.71. Let C be a bi-category, the geometric bi-nerve N 2(C ) is the following simplicial
set.

1. Its vertices are the objects of C .
2. 1-simplices are the arrows C0

f−→ C1 in C , with faces d0(f) = C1 and d1(f) = C0.

0 1
f

3. 2-simplices are the diagrams ∆ = (g, h, f ;α) of the form

0 2

1

h

f g

α

α : h ⇒ g ◦ f

with α : h ⇒ g ◦ f a 2-cell in C , and faces which are the 1-simplices opposite to the
indicated vertex, that is d0(∆) = g, d1(∆) = h and d2(∆) = f .

4. 3-simplices are ”commutative” tetrahedral Θ of the form
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0

1

2

3

f g

h

k

l

m

β

λ ρ

φ

φ : k ⇒ m ◦ h (front face)
β : h ⇒ g ◦ f (lower face)
λ : k ⇒ l ◦ f (left face)
ρ : l ⇒ m ◦ g (right face)

where by commutativity of Θ we mean that the following square of 2-cells commutes

k mh

lf mgf.

φ

λ mβ

ρf

The face operators for such Θ are, as in the case of a 2-simplex, the 2-simplices opposite
to the vertex indicated by the operator, i.e.

d0(Θ) = ∆0 is the right face (ρ)
d1(Θ) = ∆1 is the front face (φ)
d2(Θ) = ∆2 is the left face (λ)
d3(Θ) = ∆3 is the lower face (β)

5. At higher dimensions N 2(C ) is 3-coskeletal (we will argue this later).

�

The above description also corresponds to the way that the bi-nerve is defined for example in
[JoDu02] adapted for the case of bi-categories or bi-groupoids.
We may also give a description of the simplicial map associated to a weak functor by the binerve
N 2.

Remark 10.72. Let F : C → D be a weak 2-functor between bi-categories, with structure map
σ. Then N 2(F ) : N 2(C )→ N 2(D) is the simplicial map given by:

1. for 0-simplices C ∈ N 2(C )0, N 2(F )0(C) = F (C)
2. for 1-simplices f ∈ N 2(C )1, N 2(F )1(f) = F (f)
3. for 2-simplices ∆ ∈ N 2(C )2, as above, N 2(F )2(∆) is obtained from the diagram
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F (C1)

F (C0) F (C2)

F (g)F (f)

F (h)

F (gf)

by the vertical composite of deformations: σ(f,g)F (α), that is N 2(C )2(g, h, f ;α) =
(F (g), F (h), F (f);σ(f,g)F (α)).

4. At higher dimensions N 2(F ) is defined in the unique possible way, using the fact that in
dimension 3 and above any simplex is determined by its faces.

�

When we work with bi-groupoids, we actually want the two cells described in the above two
remarks to go the other way. This is not a problem since in that case they will all be invertible,
and hence we will just choose the inverse of the respective two cell.
The next notion is just a more compact way to address a certain important property which will
appear a lot in this context, so it is just for convenience.

Definition 10.73 (Hypergroupoid). An n-hypergroupoid is a Kan complex K• in which the
horn fillers are unique in dimension greater than n i.e. there is a unique dotted arrow in the
following diagram

Λk
i K•

∆k

∃!

making it commute for k > n.

Remark 10.74. So a special case of the above definition, say for n = 1 they are nerves of
groupoids. Equivalently the above definition reads in the following way. The n-hypergroupoids
are those Kan complexes which are (n+ 1)-coskeletal and such that (n+ 1)-horns and (n+ 2)-
horns have unique fillers. �

The first two properties of the following propositions are taken from Theorem 8.6 in [JoDu02].
This is the main theorem of the paper and working it out is very involved, therefore we will not
give a proof.
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Proposition 10.75. The bi-nerve has the following properties.
1. Let X• ∈ sSet. X• is the nerve of a bi-groupoid iff X• is a 2-hypergroupoid.
2. The functor N 2 is 3-coskeletal. That is, for a bi-category C , the simplicial set N 2(C ) is

3-coskeletal.
3. The functor N 2 : bi- Cat→ sSet is fully faithful.

Proof. This proof works essentially in the same way as discussed in the last section. The argu-
ments will be the same, we just need to take care of one more dimension. The main idea is again
to use the idea of the spine to deduce fully faithfulness and also that it is indeed 3-coskeletal.
For more details, the first two properties can be found as part of Theorem 8.6 in [JoDu02]. The
last one is for instance argued as Proposition 4.3 in [BuFaBl04]. �

The Model Structure

Now it is time to introduce the model category structure on bi-Grpd following [MaBe18]. We
will conclude that there is indeed a model structure, further with the same technique as in the
previous section, we will show that this model structure is also cofibrantly generated. This will
then again help with the Quillen pair. Finally we show the main result of the present thesis,
which is the Quillen equivalence between 2-truncated simplicial sets and bi-groupoids with their
respective model category structures.
If we speak about bi-categories and bi-groupoids in the following sections we usually mean
-unless otherwise claimed- elements of bi-Cats and bi-Grpds respectively.

Definition 10.76 (Generating Cofibrations). The set

Ibi-Grpd := {Π2(∂∆n → ∆n) | n ≥ 0}

will be called the set of generating cofibrations for bi-Grpds.

Definition 10.77 (Generating Acyclic Cofibrations). The set

Jbi-Grpd := {Π2(Λn
k → ∆n) | n ≥ 0, n ≥ k ≥ 0}

will be called the set of generating acyclic cofibrations for bi-Grpds.

Lemma 10.78. The bi-groupoids Π2(∂∆k) and Π2(∆k) correspond up to isomorphism for k ≥ 4.
Similarly, the bi-groupoids Π2(Λk

l ) and Π2(∆k) correspond up to isomorphism for k ≥ 3.

proof (sketch). This holds by the definition of a bi-groupoid. Indeed, a bi-groupoid only yields
information about 0-cells, 1-cells and 2-cells, hence all the higher information is not taken in
consideration i.e. under the functor Π2, ∂∆k and ∆k yield the same information for k ≥ 4 and
similarly for the horn inclusions. �

In the next step we will define the different classes of morphisms needed for the model structure,
as given in [MaBe18].
The � in the next definition is a placeholder for the different categories, which we will use for
our purpose. It can stand for bi-Cat, bi-Grpd, bi-Cats, bi-Grpds, 2- Cat or 2- Grpd.
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Definition 10.79 (Model Structure on �). A morphism F : A → B is called a
1. weak equivalence, if the following conditions are satisfies.

(a) For every 0-cell B ∈ B, there is a 0-cell A′ ∈ A and a 1-cell b : B → FA′ in B.
(b) For any 0-cells A,A′ in A , the functor FAA′ : A (A,A′)→ B(FA, FA′) is an equiv-

alence of categories.
This morphisms are usually referred to as equivalences of bi-categories.

2. cofibration, if the following conditions are satisfied.
(a) The function F : A0 → B0 is injective.
(b) For any 0-cells A,A′ in A , the functor FAA′ : A (A,A′)→ B(FA, FA′) is injective

on objects.
3. fibration, if the following conditions are satisfied.

(a) For any 0-cell A′ in A and every 1-cell b : B → FA′ in B, there is a 1-cell a : A→ A′

in A such that FA = B and Fa = b.
(b) For any 1-cell a′ : A→ A′ in A and every 2-cell β : b⇒ Fa′ in B, there is a 2-cell

α : a⇒ a′ in A such that Fa = b and Fα = β.
We denote this model structure by �M2.

Remark 10.80. The above model structure is really a generalisation of the one for Grpd,
provided in the last section. This is seen by the property (b) for any of the three classes of
morphisms of the above definition.
To sum up the conditions a bit, we say that a morphism is a cofibration, if it is injective on
0-cells and locally injective on 1-cells, it is a fibration, if it lifts 1-cells and 2-cells and finally it
is a weak equivalence if it is a biequivalence.
It is also worth pointing out, that the acyclic fibrations may be seen as those weak equivalences,
which are surjective on 0-cells and locally surjective on 1-cells. �

The next result is Theorem 3.5 in [MaBe18].

Theorem 10.81 ([MaBe18]). bi-GrpdM2 is a model category structure for bi-Grpd.

The proof provided in [MaBe18] is elementary in the sense, that no heavy machinery (like the
small onject argument) is used in order to verify all the conditions needed for a model category.
Though elementary, the proof is still involved and quite long.
Notice, that we do not claim that the resulting model structure is a model category (this would
be wrong, since we do not have bicompleteness in this case).
The next result can for example be found in [IeMoJaSv93] and [StLa]. The case for 2- Grpd
can also be deduced from Theorem 10.81.

Theorem 10.82. 2- CatM2 is a model category structure for 2- Cat turning it into a model
category, and similar for 2- Grpd.

Luckily, this can also be generalised slightly in the following way, it is also due to [StLa]. The
case for bi-Grpds can also be deduced from Theorem 10.81.
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Theorem 10.83. bi-CatsM2 is a model category structure for bi-Cats turning it into a model
category, and similar for bi-Grpds.

The next result is very useful, as it will help us with the verification of the Quillen pair needed
later on.

Lemma 10.84. 1. F ∈ Fbi-Grpds iff F has the RLP with respect to Jbi-Grpd.
2. F ∈ Wbi-Grpds ∩Fbi-Grpds iff F has the RLP with respect to Ibi-Grpd.

Proof. This is very similar as for the case discussed in the last section. The first equivalence is
established by the definition of a fibration in bi-GrpdsM2 and Lemma 10.78. The right direction
of the second equivalence is also by definition of acyclic fibration and Lemma 10.78.
The other direction needs to consider the liftings for n = 0, 1, 2, 3 of the following commutative
diagrams

Π2(∂∆n) C

Π2(∆n) D .

F

The case n = 0, corresponds to surjectivity on 0-cells. n = 1 gives locally surjectivity on 1-cells.
Finally the cases n = 2, 3 give the property of being a weak equivalence in bi-GrpdsM2 . That
is, the functors FX,Y : C (X, Y )→ D(F (X), F (Y )) are fully faithful. Furthermore if we consider
the functor (FX,Y )f,g : C (X, Y )(f, g) → D(F (X), F (Y )) → D(F (X), F (Y ))(F (f), F (g)) and
choose some α and α′ in C (X, Y )(f, g) such that F (α) = F (α′) : F (f) ⇒ F (g), then we may
conclude (n = 3) that α = α′. And hence F ∈ Wbi-Grpds ∩Fbi-Grpds . �

Remark 10.85. With the above proof, we are able to refine the definitions of the generating
cofibrations and generating acyclic cofibrations for bi-Grpds respectively. That is

Ibi-Grpd := {Π2(∂∆n → ∆n) | n = 0, 1, 2, 3)}
Jbi-Grpd := {Π2(Λn

k → ∆n) | n = 0, 1;n ≥ k ≥ 0}.

�

Hence we get the following result.

Corollary 10.86. (bi-GrpdsM2 , Ibi-Grpd, Jbi-Grpd) is a cofibrantly generated model category
structure for bi-Grpds turning it into a model category. A similar statement can be made for
the case of 2- Grpd.

The statement above can be shown essentially in the same way as Theorem 3 and Theorem 4
in [StLa]. It uses Lemma 10.84 and one can further show that the generating cofibrations and
generating acyclic cofibrations provide the samll object argument. Since we do not really need
this result but only Lemma 10.84, the proof is left as an exercise for the interested reader.
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Bi-groupoids and the Fundamental Bi-groupoid

Definition 10.87 (Fundamental Bi-groupoid). We define the fundamental bi-groupoid for
a topological space X in the following way. The objects are the points in the space X. The
1-morphisms are continuous paths in X and the 2-morphisms are homotopy classes between
continuous paths up to higher homotopy. There exist two notions of homotopy in this category,
homotopy between continuous paths and homotopy between 2-morphisms. We denote this bi-
groupoid by Π≤2(X).

Remark 10.88. The above category consists of the following kinds of homotopies. Homotopies
between 1-morphisms are the usual ones i.e. [f ] = [f ′] per definition iff there exists a 2-morphism
α : I × I → X such that α(0, t) = f(t) and α(1, t) = f ′(t) for any t ∈ I. The homotopies
between the two cells work in the following way. [α] = [α′] per definition iff there is a 3-cell
H : I × (I × I)→ X such that H(0, s, t) = α(s, t) and H(1, s, t) = α′(s, t) for any (s, t) ∈ I × I.

�

Let B ∈ bi-Grpds and X, Y ∈ bi-Grpds, then we can define an equivalence relation in the
following way.

X ∼ Y :⇔ B(X, Y ) 6= ∅.

The equivalence class [X] is called path component of B at X. We call π0(B) the class of
all equivalence classes of objects in B.

Definition 10.89 (Groupoid of 1-automorphisms). Let B ∈ bi-Grpds and X ∈ ob(B). Then
we denote by AutB(X) := B(X,X) the groupoid of 1-automorphisms of B at X.

Definition 10.90 (Automorphism Group of 2-morphisms). Let B ∈ bi-Grpds and f ∈
mor(B) such that f : X → Y . Then we denote by AutB(X,Y )(f) := B(X, Y )(f, f) the au-
tomorphism group of 2-morphisms of B at f : X → Y .

Definition 10.91 (Group of Isomorphism Classes). Let B ∈ bi-Grpds and X ∈ ob(B). We
will denote the group of isomorphism classes of AutB(X) by [AutB(X)]. This carries a
group structure via concatenation of 1-morphisms.

We often write AutB(f), instead of AutB(X,Y )(f) to have a somewhat shorter way to write down
everything.
The following remark, tells us, that with the above definitions we can retrieve information about
the first and second homotopy groups and π0, if we consider a topological space.

Remark 10.92. For X ∈ Top and some x0 ∈ X we have that AutΠ≤2(X)(x0) ∼= Π≤1(Ωx0(X)).
Let cx0 ∈ Ωx0(X) be the constant path at x0, then

AutΠ≤2(X)(cx0) ∼= π1(Ωx0(X), x0) ∼= π2(X, x0),

since [S1,Ωx0(X)] ∼= [S2, X]x0 = π2(X, x0).
Therefore Π≤2(X) provides information about π0, π1 and π2. �
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One may construct a bicategory from a simplicial set and call it the bi-path category of
a simplicial set in the following sense (it is just an alternative construction for Π2). Let
X• ∈ sSet. The bi-category will be generated from the following graphs.

X3 X2 X1 X0

d1
0

d1
1

d2
0

d2
1

d2
2

d3
0

d3
1

d3
2

d3
3

such that
(d2

1(d3
0(θ))d3

3(θ)) ◦ d3
1(θ) = d3

0(θ) ◦ (d2
2(d3

2(θ))d3
2(θ))

for some 3-cell θ of X•. This ugly expression should encapsulate commutativity of the following
graphical interpretation

0

1

2

3

f g

h

k

l

m

β

λ ρ

φ

φ : k ⇒ m ◦ h (front face)
β : h ⇒ g ◦ f (lower face)
λ : k ⇒ l ◦ f (left face)
ρ : l ⇒ m ◦ g (right face)

where by commutativity of θ we mean that the following square of 2-cells commutes

k mh

lf mgf.

φ

λ mβ

ρf

And every triangle in the above diagram has to satisfy the following condition (adapted for the
specific case of any triangle)

X2 X1 X0

d1
0

d1
1

d2
0

d2
1

d2
2
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such that
d2

1(α) = d2
0(α) ◦ d2

2(α)
for some 2-cell α of X•. We denote this construction by P2(X•).
Notice, that this construction yields a picture very similar to the one given in Remark 10.71.
Therefore, we have the following adjunction. The proof is very much in the same spirit as the
one given in the last section.

Lemma 10.93. There is an adjunction

P2 : sSet
//
bi-Catsoo _ : N 2 .

We can turn the above construction into a bi-groupoid. We will call this functor P2
G , hence we

have the following corollary.

Corollary 10.94. There is an adjunction

P2
G : sSet

//
bi-Grpdsoo _ : N 2 .

The proof is very similar as in the last section and will not be provided in detail here, the only
difference will be more degeneracy maps encapsulating the same information about morphisms
of simplicial sets.
The functor P2

G is naturally isomorphic to the functor Π2.

Theorem 10.95. Let X• ∈ sSetQ. The bi-groupoids Π≤2(|X•|) and P2
G(X•) are biequivalent as

bi-categories.

Proof. First we notice, that the bi-groupoids P2
G(Sing(|X•|)) and Π≤2(|X•|) are naturally

biequivalent as bi-categories. Indeed, let X• ∈ sSetQ and consider the following map.

γX• : Π≤2(|X•|)→ P2
G(Sing(|X•|))

f : I → |X•| 7→ Sing(f) : ∆1 → Sing(|X•|)
[α : I × I → |X•|] 7→ [Sing(α) : ∆2 → Sing(|X•|)].

As for the last case, the relation on the left side is equivalence up to homotopy (for the case of the
fundamental bi-groupoid) and the right side comes from the relation given by the commutativity
of the tetrahedron i.e. (d2

1(d3
0(θ))d3

3(θ)) ◦ d3
1(θ) = d3

0(θ) ◦ (d2
2(d3

2(θ))d3
2(θ)) for some 3-simplex

θ : |∆3| → |X•| of Sing(|X•|). Notice, that in the case of 1-morphisms if we map a 1-morphism
under γX• and then back again we will end up with something weakly equivalent to the identity.
The above map is an isomorphism for 2-morphisms, the argument here is very similar as in the
last section. It is indeed also well defined. Choose some α and α′ in [α : I × I → |X•|], that is
α and α′ are homotopy equivalent. Mapped under γX• , this can be arranged in a tetrahedron,
such that we may relate those two faces of the tetrahedron via identities. Therefore α ∼ α′ and
the map is indeed well defined.
Next we argue that the above defined map is an isomorphism in the case of 2-morphisms. If we
are to map some 2-morphism from the left hand side to the right hand side and then back again
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this is a composition which is related to the identity (equivalent to it). But for us to haven an
isomorphism this should actually be an equality. This can be fixed with the following Quillen
equivalence already used in the proof for the statement in the last section

| | : sSetQ
//
TopQoo _ : Sing .

Since the composition we are interested in will be weakly equivalent to the identity which is
in the equivalence class of the identity in Π≤2(|X•|). This shows that our map is indeed an
isomorphism.
We have to show, that P2

G sends weak equivalences in sSetQ to weak equivalences in
bi-GrpdsM2 . Let f ∈ WsSet then f = q ◦ j for some q ∈ WsSet ∩F sSet and some
j ∈ WsSet ∩CsSet (from the properties of FWFS and the 2-3 property).
The map q is inverse to an acyclic cofibration and every acyclic cofibration is a retract of a map
which is a filtered colimit of pushouts of maps of the form Λn

k → ∆n. Therefore it suffices to
show, by Ken Brown’s lemma, that P2

G takes pushouts of maps Λn
k → ∆n to biequivalences of

bi-categories.
The map P2

G(Λn
k) → P2

G(∆n) is an isomorphism of bi-groupoids if n ≥ 3. Unfortunately the
argument with strong deformation retracts, which we used in the last section, will not work
here. But there is still a way to show the desired result. We are able to give pushouts of the
following form for i = 0, 1, 2.

P2
G(Λ2

i ) P2
G(X•)

P2
G(∆2) P2

G(X•).

Indeed, Since P2
G(X•) provides the information about the composition for P2

G(Λ2
i ) such that

P2
G(∆2) gets glued onto the image of P2

G(Λ2
i ). Therefore such a pushout may always be con-

structed, if we consider the identity on the right hand side.
Isomorphisms of bi-groupoids are closed under pushouts, therefore P2

G takes weak equivalences to
weak equivalences. Hence we especially have that P2

G(X•) and Π≤2(|X•|) are naturally biequiva-
lent as bi-categories, i.e. X• → Sing(|X•|) is a weak equivalence and hence sent to a biequivalence
of bi-groupoids. �

From a similar argument as in the last section, adapted for this slightly more complicated case
(it is just more complicated, because there is more notation, the argument is exactly the same)
we have the following corollary.

Corollary 10.96. Let X• ∈ sSetQ be fibrant, then we have the following isomorphisms

π1(X•, x) ∼= [AutΠ2(X•)(x)] ∼= [AutΠ≤2(|X•|)(x)] ∼= π1(|X•|, x)
π2(X•, x) ∼= AutΠ2(X•)(cx) ∼= AutΠ≤2(|X•|)(cx) ∼= π2(|X•|, x).
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Proof. We first establish the isomoprhism of groups

[AutΠ2(X•)(x)] ∼= [AutΠ≤2(|X•|)(x)].

By Theorem 10.95, the bi-groupoids P2
G(X•) and Π≤2(|X•|) are biequivalent as bi-categories,

denote this bifunctor with F . Furthermore, since we want to establish isomorphisms of homotopy
groups in the settings of simplicial sets and topological spaces with one another, we want X•
to be a fibrant simplicial set. We also use the fact, that the functors P2

G and Π2 are naturally
isomorphic.
From the above biequivalence we get an equivalence of categories between the following
groupoids

G : AutΠ2(X•)(x) ' AutΠ≤2(|X•|)(x).

Then, there is also a map between groups

f : [AutΠ2(X•)(x)]→ [AutΠ≤2(|X•|)(x)].

We will now argue, why f is actually an isomorphism. Surjectivity follows directly from the
essentially surjectivity of G, since essentially surjective is considered up to isomorphism. Injec-
tivity follows from the fully faithfulness of G and the fact, that we work with strict 2-functors.
Therefore

[AutΠ2(X•)(x)] ∼= [AutΠ≤2(|X•|)(x)].

Next we establish the isomorphism of groups

AutΠ2(X•)(cx) ∼= AutΠ≤2(|X•|)(cx).

This is now very similar as in the proof given in the last section. Again we may conclude by
the equivalence of categories G : AutΠ2(X•)(x) ' AutΠ≤2(|X•|)(x). Indeed, our case is just a
special case for the constant path cx. That is, AutΠ2(X•)(cx) and AutΠ≤2(|X•|)(cx) are the sets
of morphisms with respect to cx respectively. The key point is now, that our bifunctor sends
identities to identities, but since we work with strict 2-functors this is indeed the case. Therefore,
the isomorphism follows from the fully faithulness and essentially surjectivity of our bifunctor
and hence

AutΠ2(X•)(cx) ∼= AutΠ≤2(|X•|)(cx).

�
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The Quillen Equivalence

As it turns out, we can now already show that there is a Quillen pair. Again, as in the last
section, we use Lemma 2.33 to conclude.

Proposition 10.97. There is a Quillen pair

Π2 : sSetQ
//
bi-GrpdsM2oo _ : N 2 .

Proof. The above lemma and corollary provide all needed ingredients to apply Lemma 2.33,
which then implies the result. �

A last step before we show the main result is, to argue that this also yields a Quillen pair for
the truncated case.

Proposition 10.98. There is a Quillen pair

Π2 : sSet≤2
Q

//
bi-GrpdsM2oo _ : N 2 .

Proof. As we have seen , any object in sSetQ is cofibrant. Proposition 5.35 now states, that if
Π2 : sSetQ →M2 is a left Quillen functor, which holds by the above Proposition, and Π2(QS) ∈
Wbi-Grpds for S = {∂∆4 → ∆4}, then Π2 : sSet≤2

Q → bi-GrpdsM2 is also a left Quillen functor.
In fact, QS is just S itself, and as pointed out before, there is an isomorphism Π2(∂∆4) →
Π2(∆4) in bi-GrpdsM2 and hence also a weak equivalence. Therefore, the functor Π2 : sSet≤2

Q →
bi-GrpdsM2 is indeed a left Quillen functor and therefore we get a Quillen pair

Π2 : sSet≤2
Q

//
bi-GrpdsM2oo _ : N 2 .

�

Behold, it follows one of the main theorems of the thesis.

Theorem 10.99. There is a Quillen equivalence

Π2 : sSet≤2
Q

//
bi-GrpdsM2oo _ : N 2 .

Proof. We have to show, that the derived unit and counit are weak equivalences, but since
every object in sSetQ is cofibrant and with the definition of fibration for 2-groupoids, every
object in bi-GrpdsM2 is fibrant and therefore it suffices to show, that the maps ε : Π2(N 2)→
idbi-GrpdsM2

and η : idsSet≤2
Q
→ N 2(Π2) are weak equivalences. Since the nerve N 2 is fully

faithful by Proposition 10.75 and hence by Lemma A.15, we have that Π2(N 2)→ idbi-GrpdsM2
is an isomorphism and hence also a weak equivalence.
We are left to show, that η : idsSet≤2

Q
→ N 2(Π2) is a weak equivalence in sSet≤2

Q i.e. that we
have isomorphisms πi(X•) ∼= πi(N 2(Π2(X•))) for i = 0, 1, 2. This condition is enough, according
to Proposition 10.17.
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Now for the next idea to work, we need to restrict ourselves to the case, where we consider
fibrant simplicial sets. Therefore we choose a fibrant replacement of the simplicial set X• i.e.
X•

∼−→ Xf
• , which is a weak equivalence such that Xf

• is a Kan complex. We will use the notation
Xf
• instead of QX• for convenience.

Now the case for i = 0 follows by construction. The cases i = 1, 2 are a bit more involved. Since
we work with the fibrant replacement we may apply Theorem 10.95. This yields isomorphisms

π1(Xf
• , x) ∼= [AutΠ2(Xf

• )(x)]
π2(Xf

• , x) ∼= AutΠ2(Xf
• )(cx)

But then we have the following isomorphisms

π1(Xf
• , x) ∼= [AutΠ2(X•)(x)] ∀ x ∈ Xf

•

π1(N 2(Π2(Xf
• )), x) ∼= [AutΠ2(N 2(Π2(Xf

• )))(x)] ∀ x ∈ Xf
•

π2(Xf
• , x) ∼= AutΠ2(X•)(cx) ∀ x ∈ Xf

•

π2(N 2(Π2(Xf
• )), x) ∼= AutΠ2(N 2(Π2(Xf

• )))(cx) ∀ x ∈ Xf
• .

If we apply Π2 to the isomorphism Π2N 2 → idbi-GrpdsM2
we end up with an isomorphism

Π2(Xf
• )
∼=−→ Π2(N 2(Π2(Xf

• ))).

But this yields the following isomorphisms (by Corollary 10.96, and the fact that N 2 is fully
faithful)

π1(Xf
• , x) ∼= [AutΠ2(Xf

• )(x)] ∼= [AutΠ2(N 2(Π2(Xf
• )))(x)] ∼= π1(N 2(Π2(Xf

• )), x)
π2(Xf

• , x) ∼= AutΠ2(Xf
• )(cx) ∼= AutΠ2(N 2(Π2(Xf

• )))(cx) ∼= π2(N 2(Π2(Xf
• )), x).

Therefore we end up with
π0(Xf

• , x) ∼= π0(N 2(Π2(Xf
• )), x) ∀ x ∈ Xf

•

π1(Xf
• , x) ∼= π1(N 2(Π2(Xf

• )), x) ∀ x ∈ Xf
•

π2(Xf
• , x) ∼= π2(N 2(Π2(Xf

• )), x) ∀ x ∈ Xf
• .

Finally by Proposition 10.17, the map Xf
• → N 2(Π2(Xf

• )) is a weak equivalence in sSet≤2
Q .

Time to address the problem with the fibrant replacement, since we want this to hold for any
simplicial set. In such cases one applies Ken Brown.
First, notice that the weak equivalence X• ∼−→ Xf

• implies that Π2(X•) −→ Π2(Xf
• ) is also a weak

equivalence, due to the fact that the first map is actually an acyclic cofibration and the left
adjoint preserves acyclic cofibrations. Finally the map N 2(Π2(X•)) → N 2(Π2(Xf

• )) is also a
weak equivalence due to Ken Brown’s lemma (since all bi-groupoids are fibrant).
The final step involves enjoying the following commutative diagram.
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X• N 2(Π2(X•))

Xf
• N 2(Π2(Xf

• ))

∼ ∼

∼

Since weak equivalences have the 2-3 property the horizontal map must also be a weak equiva-
lence, which concludes the proof. �

Of course essentially the same arguments also give us the following Quillen equivalence for the
more restricted case. It can for instance also be found in [IeMoJaSv93], but with a different
approach and a different proof.

Theorem 10.100. There is a Quillen equivalence

Π2 : sSet≤2
Q

// 2- GrpdM2oo _ : N 2 .

Theorem 10.99 gives an equivalence of categories between the homotopy category Ho(sSet≤2
Q )

and the homotopy category Ho(bi-GrpdsM2), the remark after the theorem relates the two
homotopy categories Ho(bi-GrpdsM2) and Ho(2- GrpdM2). Following [StLa06] there is also an
equivalence of categories between the homotopy category bi-Grpd[W−1] and Ho(2- Grpd).

Proposition 10.101 ([StLa06]). The inclusions 2- Cat→ 2- Catw and 2- Cat→ bi-Cat have
left adjoints. Furthermore, the inclusions 2- Grpd→ 2- Grpdw and 2- Grpd→ bi-Grpd have
left adjoints.
Therefore, there are adjoint equivalences of categories Ho(2-Cat) ' Ho(2-Catw) and
Ho(2-Cat) ' bi-Cat[W−1]. Furthermore there are adjoint equivalences of categories
Ho(2- Grpd) ' Ho(2- Grpdw) and Ho(2- Grpd) ' bi-Grpd[W−1].

Notice, that even though bi-Grpd is not a model category, we can still consider its homotopy
category - though it may not at all be as well behaved in this case - bi-Grpd[W− 1]. The
category is created via a localisation with respect to all weak equivalences where by a weak
equivalence we mean one of the model category structure M2. I will not use the notation
Ho(bi-CatM2) on purpose to avoid confusion, since bi-Grpd is not a model category. With
this in mind we are able to give a possible way of comparing to compare the desired homotopy
theories.
Still, the situation is not too bad though. The localisation adjunction is actually a Quillen
equivalence in the sense that the derived unit and counit are equivalences of categories. The
lack of bicompleteness is not so much of a problem in the end, since all other properties of being
a model category are satisfied.
Furthermore the lack of limits and colimits can not really be carried out in the weak setting
but they can be carried out in the strict setting which is just as good. Also we still have finite
products and coproducts in the weak case.
This then yields the following concluding result.
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Theorem 10.102. There is an equivalence of categories

Ho(sSet≤2
Q ) ' bi-Grpd[W−1].

Proof. Combine Theorem 10.99, Theorem 10.100 and Proposition 10.101. �
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11 Conclusion

We actually managed to show, that there are some nice Quillen equivalences relating the ho-
motopy theories of these categories and giving us nice models for such theories. In the end we
also argued, that the homotopy theory for the 2-truncated simplicial sets is somewhat related
to the one for bi-groupoids.
All in all some pretty nice results indeed. Unfortunately it is not possible to to give the last
result in the form of a Quillen equivalence, i.e. it would have been really beautiful to give and
prove the following Quillen equivalence

Π2 : sSet≤2
Q

//
bi-GrpdM2oo _ : N 2 .

But unfortunately this is simply not possible, and it is actually amazing that it fails because of
bicompleteness. As we have seen, there is no hope that the category bi-Grpd is complete and
cocomplete.
Nonetheless, the main goal - to relate the homotopy theories of 2-truncated simplicial sets and
the homotopy theory given by bi-groupoids - was successful. Of course the other way would
have been a lot more elegant, but nice things do not always happen in real life.
Anyway, this should teach a very valuable lesson about intuition and that it is often very
important to work out claims and ideas, even if they seem very obvious or make a lot of sense
on first or even second glance.
But it also teaches us that sometimes, there can be different ways of achieving ones goals. Maybe
just not as one has expected something to work, but at least it shows that the intuition was
correct up to some extend.
Since we apparently like to generalise things, let me say the following. From the experience
gathered in this present work, I personally do not think, that this approach can be generalised
for higher cases. For instance, in the case n = 3 it is not possible to relate the strict and weak
cases in such a way (i.e. it is known that strict tricategories and weak tricategories are not
always equivalent), which saved us this time for n = 2. For such ideas, one would need to come
up with a different approach or theory.
Finally, let me say that I could enjoy myself quite a bit working with this theory. I was able
to accumulate a lot of new knowledge about very interesting topics in mathematics. However
frustrating it got at times, I am still thankful for the chance that I was able to work with this
theory.
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-J.R.R. Tolkien, The Fellowship of the Ring
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A Category Theory

A nice work on category theory can be found in [SMcl97], [ToLe16] and [ERie14]. We follow all
of them and give the most important concepts and ideas, this will be very brief and for more
details one is asked to read one of the above citations.

A.1 Categories

We start with the definition of a category.

Definition A.1 (Category). A category C consists of the following data.
1. A collection of objects ob(C ).
2. For each A,B ∈ ob(C ), a collection C (A,B) of maps or arrows or morphisms from A to

B.
3. For each A,B,C ∈ ob(C ), a function

C (B,C)× C (A,B)→ C (A,C)
(g, f) 7→ g ◦ f,

called composition.
4. For each A ∈ ob(C ), an element 1A of C (A,A) called the identity of A.

Such that the following axioms are satisfied.
1. (Associativity) For each f ∈ C (A,B), g ∈ C (B,C) and h ∈ C (C,D) we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

2. (Identity Laws) For each f ∈ C (A,B), we have

f ◦ 1A = f = 1B ◦ f.

For convenience, one often writes A ∈ C for A ∈ ob(C ) and similarly f : A → B for f ∈
C (A,B).
Every category C also has a dual category denoted C op, in which the arrows are reversed.
There is also the principle of duality in category, which is quite important. Basically it states
that, every categorical definition, theorem and proof has a dual statement, obtained by reversing
all the arrows.
A category C is called locally small if the classes C (A,B) are proper sets for any A,B ∈ C .
Furthermore, we call a category C small if it is locally small and in addition ob(C ) is a proper
set rather than a class.
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A.2 Functors

We will now define functors, which are the ”maps” between categories.

Definition A.2 (Functor). Let C and D be categories. A functor F : C → D consists of the
following data.

1. A function ob(C )→ ob(D), written as A 7→ F (A).
2. For each A,A′ ∈ C , a function C (A,A′)→ D(F (A), F )(A′)), written as f 7→ F (f).

Satisfying the following axioms.

1. F (f ′ ◦ f) = F (f ′) ◦ F (f), whenever A f−→ A′
f ′−→ A′′ ∈ C .

2. F (1A) = 1F (A), whenever A ∈ C .

Definition A.3. Let C and D be categories. A contravariant functor from C to D is a
functor C op to D .

Definition A.4 (Full, Faithful). A functor F : C → D is faithful/full, if for any A,A′ ∈ C ,
the function

C (A,A′)→ D(F (A), F (A′))
f 7→ F (f)

is injective/surjective.

If a functor is full and faithful we often call it fully faithful.

Definition A.5 (Subcategory). Let C be a category. A subcategory A of C consists of a
subclass ob(A ) of ob(C ), and for each A,A′ ∈ ob(A ) a subclass A (A,A′) of C (A,A′) such
that A is closed under composition and identities.
It is called full subcategory, if in addition A (A,A′) = C (A,A′) for any A,A′ ∈ ob(A ).

Since this may arise, when one thinks about functors. It is not true, that the image of a functor
is a subcategory in general.

A.3 Natural Transformations

Next comes the concept of natural transformations.

Definition A.6 (Natural Transformation). Let C and D be categories and let

C D

F

G

be functors. A natura transformation α : F ⇒ G is a family (F (A) σA−→ G(A))A∈C of maps
in D such that for every map f : A→ A′ ∈ C , there is a commuting square
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F (A) F (A′)

G(A) G(A′).

F (f)

αA αA′

G(f)

The maps αA are called the components of α.

For two categories C and D we may build a new category, in which the objects are functors
between C and D and the morphisms are the natural transformations between functors. It is
left as an exercise to show that this is indeed a category. We will call this category functor
category and denote it with Fun(C ,D).

Definition A.7 (Natural Isomorphism). Let C and D be categories. A natural isomorphism
between functors from C to D is an isomorphism in Fun(C ,D).

So if we are given functors F,G : C → D , we say that F (A) ∼= G(A) naturally in A if F and
G are naturally isomorphic.

Definition A.8 (Equivalence). An equivalence between categories C and D consists of a pair
of functors F : C � D : G together with natural isomorphisms

η : 1C → G ◦ F ε : F ◦G→ 1D .

Definition A.9 (Essentially Surjective). A functor F : C → D is called essentially surjec-
tive if for all D ∈ D , there exists a C ∈ C such that F (C) ∼= D.

A nice result is the following.

Proposition A.10. A functor is an equivalence iff it is fully faithful and essentially surjective.

A.4 Adjoints

We introduce the concept of adjointness.

Definition A.11 (Adjoint). Consider some categories and functors F : C � D : G. We say
that F is left adjoint to G, and G is right adjoint to F , and write

F : C
//
Doo _

if
D(F (A), B) ∼= C (A,G(B))

naturally in A ∈ C and B ∈ D .

For what naturally exactly means here one is referred to read p. 41,42 in [ToLe16].
Adjunctions can be composed to again get an adjunction.
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A.5 The Yoneda Lemma

The following is one of the most important results in category theory.

Theorem A.12 (Yoneda). Let C be a locally small category. Then

Fun(C op,Set)(C (−, A), X) ∼= X(A)

naturally in A ∈ C and X ∈ Fun(C op,Set).

Corollary A.13. For any locally small category C , the Yoneda embedding

H• : C → Fun(C op,Set)

if fully faithful.

Proposition A.14. If F a G,G′, then G and G′ are naturally isomorphic. Furthermore, if
F, F ′ a G, then F and F ′ are naturally isomorphic.

Proof. Assume, there are two adjunctions

F : C
//
Doo _ : G and F : C

//
Doo _ : G′.

But then, for any X ∈ D and Y ∈ D we have C (F (X), Y ) ∼= D(X,G(Y )) and C (F (X), Y ) ∼=
D(X,G′(Y )). Then D(X,G(Y )) ∼= D(X,G′(Y )). We conclude by the Yoneda lemma. �

Lemma A.15. Let F : C
//
Doo _ : G be an adjunction. Then G is fully faithful iff the counit

is an isomorphism. A similar result holds if F is fully faithful.

Proof. Consider the natural isomorphism of the adjunction

φ : D(F (X), A) ∼= C (X,G(A)).

Also, the isomorphism

D(A,B) G−→ C (G(A), G(B)) φ−1
−−→ D(F (G(A)), B)

associates to each f ∈ D(A,B) the morphism εB ◦ F (G(f)) ∈ D(F (G(A)), B). Indeed, since
φ−1(g) = ε ◦ F (g).
By naturality of ε we get εB ◦ F (G(f)) = f ◦ εA i.e. the natural isomorphism is given by
precompositon with εA i.e. it is representes by εA via the Yoneda embedding. The Yoneda
embedding is actually an embedding and since embeddings reflect isomorphisms, we have that
εA is an isomorphism. �
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A.6 Limits and Colimits

We will discuss limits in a category C . A colimit will be a limit in C op. First we introduce three
important special cases of limits.
We start with the definition of products and coproducts.

Definition A.16. Product, Coproduct Let C be a category, I a set and (Xi)i∈I a family of
objects of C . A product of (Xi)i∈I consists of an object P and a family of maps

(P pi−→ Xi)i∈I

with the property, that for all objects A and families of maps in C

(A fi−→ Xi)i∈I

there exists a unique map f : A→ P such that pi ◦ f = fi for all i ∈ I.
A product in C op is called coproduct in C .

Next we define equalisers and coequalisers. A fork in a category consists of objects and mor-
phisms

A X Y
f

s

t

such that s ◦ f = t ◦ f . There is also the dual concept called a cofork.

Definition A.17 (Equalisers, Coequalisers). Let C be a category and let s, t : X ⇒ Y be objects
and morphisms in C . An equaliser of s and t is an object E together with a morphism E

i−→ X
in C such that

E X Yi

s

t

is a fork and with the property that for any fork

A X Y
f

s

t

in C , there exists a unique map f : A→ E such that

A

E X

f
f

i
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commutes.
A coequaliser in C is an equaliser in C op.

Finally we define pullbacks and pushouts.

Definition A.18 (Pullbacks and Pushouts). Let C be a category and consider the objects ans
morphisms

X Z Ys t

in C . A pullback of this diagram is an object P in C together with maps p1 : P → X and
p2 : P → Y such that

P Y

X Z

p2

p1 t

s

commutes and with the property that for any commutative square

A Y

X Z

f2

f1 t

s

in C , there exists a unique morphism f : A→ P such that the following diagram commutes

A

P Y

X Z.

f2

f

f1

p2

p1 t

s

A pushout in C is a pullback in C op.

From the discussion so far, we will now be able to state the definition of limits and colimits.

Definition A.19 (Limit, Colimit). Let C be a category, I a small category and D : I → C
a diagram in C .

1. A cone on D is an object A in C (the vertex of the cone) together with a family

(A fi−→ D(I))I∈I

of morphisms in C such that for all maps u : I → J in I , the trinagle
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A

D(I) D(J)

fI fJ

Du

commutes.
A cocone in C is a cone in C op.

2. A limit of D is a cone (L pI−→ D(I))I∈I with the property that for any cone on D (see
1.), there exists a unique map f : A→ L such that pI ◦ f = fI for all I in I . The maps
pI are called projections of the limit.
A colimit in C is a limit in C op.

A nice result is the following.

Proposition A.20. Let C be a category. If C has all products and equalisers, then C has all
limits. Of course the dual statement also holds.

Definition A.21. Let C be a category. C is called complete, if C has all limits and C is
called cocomplete if C has all colimits. Finally, C is called bicomplete if it is complete and
cocomplete.

It should be clear from the context and the definitions, but since it is rather important we will
still point it out. Just because a category is complete does not meant that it is immediately
bicomplete. One can not argue by duality here, duality merely implies, that C op is cocomplete
which exactly means that C is complete but does not say anything about the cocompleteness
of C .
Usually it iss easier to verify that a category is complete. Cocompleteness is often a challenge,
especially the construction of coequalisers is a tough one.

Definition A.22 (Monic, Epic). Let C be a category. A morphism f : X → Y in C is monic
(or a monomorphism) if for all objects A and morphisms x, x′ : A⇒ X,

f ◦ x = f ◦ x′ ⇒ x = x′.

The dual concept is called epic (or epimorphism).

A.7 Adjoint Functor Theorems and Representability

The following can be fount in part V of [SMcl97].

Theorem A.23 (Genreal Adjoint Functor Theorem (GAFT)). Let C be a small-complete cat-
egory with small hom-sets, a functor G : A → X has a left adjoint iff it preserves all small
limits and satisfies the following solution set condition.
For any object x ∈ X there is a small set I and an I-indexed family of arrows fi : x → Gai
such that every arrow h : x→ Ga can be written as a composition h = Gt ◦ fi for some index i
and some t : ai → a.
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The above theorem is often also called Freyd adjoint functor theorem.

Theorem A.24 (Representability Theorem). Let D be a small complete category with small
hom-sets. A functor K : D → Set is representable iff K preserves all small limits and satisfies
the following solution set condition.
There exists a small set S of objects of D such that for any object D ∈ Dand any element
X ∈ KD, there exists an s ∈ S, an element Y ∈ Ks and an arrow f : s→ D with (Kf)Y = X.

The above theorem is also known as Freyd’s representability theorem.

Theorem A.25 (Special Adjoint Functor Theorem (SAFT)). Let C be a small complete cat-
egory with small hom-sets and a cogenerating set Q, while every set of subobjects of an object
a ∈ C has a pullback. Let the category X have all small hom-sets. Then a functor G : C →X
has a left adjoint iff G preserves all small limits and all pullbacks of families of monics.

A.8 Kan Extensions

The following is from [ERie14], originally it was stated in [SMcl97].

Theorem A.26. Given a functor F : C → E and K : C → D , if for every d ∈ D the colimit

LanK F (d) := colim(K ↓ d Πd−→ C
F−→ E )

exists, then they define the left Kan extension LanK F : D → E , in which case the unit transfor-
mation η : F ⇒ LanK F ·K can be extracted from the colimit cone. Dually, if for every d ∈ D
the limit

RanK F (d) := lim(d ↓ K Πd−→ C
F−→ E )

exists, then they define the right Kan extension RanK F : D → E , in which case the counit
transformation ε : RanK F ·K ⇒ F can be extracted from the limit cone.

Recall, that K ↓ d is the category of elements of the functor D(K−, d) : C op → Set, and as
such comes with a canonical projection functor Πd : K ↓ d→ C .
This theorem is particularly nice, especially the following corollary which may be deduced from
it. Also it gives a possibility to determine the left and right adjoints given in the next corollary.

Corollary A.27. If K : C → D is a functor so that C is small and D is locally small then we
have the following.

1. If E is cocomplete, then the left Kan extensions

LanK : Fun(D ,E ) // Fun(C ,E )oo
_ : K∗

exist and are given by the colimit formula in Theorem A.26.
2. If E is cocomplete, then right Kan extensions

K∗ : Fun(D ,E ) //
Fun(C ,E )oo _ : RanK

exist and are given by the limit formula in Theorem A.26.
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B The Classical Axiomatic Definition of a Model Cate-
gory

The following is the ”classic” axiomatic definition of a model category as it is for example stated
in [DwSp95].

Definition B.1 (Model Category). A model category is a category C with three classes of
maps

1. weak equivalences ∼−→,

2. fibrations �,

3. cofibrations ↪→.

Each class is closed under composition and contains all identity maps.
A map which is a fibration and a weak equivalence is called an acyclic fibration or trivial
fibration, similarly a map which is a cofibration and a weak equivalence is called an acyclic
cofibration or trivial cofibration.
Furthermore the following axioms have to be satisfied.
Axioms:

MC1: All small limits and colimits exist in C .

MC2: (2 out of 3 property) Let f, g ∈ C such that g ◦ f ∈ C is defined. If two of f, g or g ◦ f
are weak equivalences, then so is the third.

MC3: (Retract property) If f ∈ C is a retract of g ∈ C and g is a fibration, cofibration or weak
equivalence, then so is f .

MC4: (Lifting property) Given a commutative diagram

A B

C D

f

i p

g

in C , a lift h : C → B exists in either of the following situations:

1. i is a cofibration and p is an acyclic fibration.
2. i is an acyclic cofibration and p is a fibration.

MC5: (Factorization property) Any f ∈ C can be factorized in two ways:

1. f = p ◦ i for i a cofibration and p an acyclic fibration,
2. f = p ◦ i for i an acyclic cofibration and p a fibration.
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C Suggested Reading

Here I shall provide a list of material, which helped me to accumulate knowledge about the
different topics and theories discussed in the present thesis. In my opinion it is especially helpful
for people who are new to a certain kind of theory to be provided with enough material in order
to learn something in an efficient way.
For an introduction about category theory and some of its important results, my suggestion
would be to read [ToLe16] and [SMcl97].
When it comes to the topics about model categories and homotopy theory and even more
interesting topics building on top of it, one should really start with [MHov91]. In my opinion
there is no other book which provides so much detail about everything. After that one can give
[GoJa09] a try. Though slightly more involved, it gives a lot of properties about simplicial sets
and in general simplicial homotopy theory.
As soon as one feels safe with all this theory one may try to take on [PHir03]. It will be hard
at the beginning but it is clearly one of the best books about the whole theory of localisations
of model categories, especially about Bousfield localisations. Though, one should expect an
overwhelming effort and addiction to cross referencing, like really obsessive cross referencing.
This is my suggestion to learn the basic and also a lot more advanced theory in this field, I hope
that someone may take advantage of this list.
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cofibrant simplicial resolution, 76
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fibrant approximation, 61
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fibrant cosimplicial resolution, 76
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hypergroupoid, 167
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left homotopy function complex, 78
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left Quillen functor, 65
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lifting property, 190
lifting/lift, 6
limit, 187
limit ordinal, 3
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locally small, 182
locally trivial, 119
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matching map, 74
matching object, 74
minimal fibration, 120
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spaces, 128
model structure, 19
model structure on Grpd, 149
model structure on �, 169
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monomorphism, 188
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natural transformation, 183
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normal lax functor, 163

objectwise cofibrant, 74
objectwise cofibration, 74
objectwise fibrant, 74
objectwise fibration, 74
objectwise weak equivalence, 74
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partially ordered set, 2
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path component, 171
path components, 116
path object, 33
permitting the small object argument, 22
preordered set, 2
presentation, 9
presentation of Y , 9
presentation ordinal, 10
presented I-cell complex, 9
presented relative I-cell complex, 9
product, 186
projections, 188
proper, 31
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pseudo identity, 159
pullback, 187
pushout, 187

quasi inverse, 160
Quillen adjunction, 65
Quillen equivalence, 69
Quillen functors, 65
Quillen pair, 65

recognition theorem for cellular model cate-
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recognition theorem for cofibrantly generated
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recognition theorem for combinatorial model
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relative matching map of f at α, 74
retract, 12
retract argument, 17
retract property, 190
right adjoint, 184
right derived hom-space, 80
right homotopy, 35
right homotopy function complex, 78
right lifting property, 6
right proper, 31
right Quillen functor, 65
right-cofinal, 3

Serre fibration, 92
set of n-simplices, 103
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simplicial identities, 103
simplicial model category, 31
simplicial resolution, 76
singular functor, 108
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skeleton functor, 130
small, 5, 182
small relative to D, 5
strict 2-functor, 161
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successor, 2

tensored, 86
terminal object, 20
the small object argument, 22
topological interval, 90
total derived functors, 67
total derived natural transformation, 67

total left derived Quillen functor, 67
total right derived functor, 67
totally ordered set, 2
transfinite composition, 5
trivial cofibration, 21, 190
trivial fibration, 21, 190
truncation functor, 129
two-out-of-three property, 19
two-soded derived hom-space, 80

unitors, 159

vertical composition, 159
very good cylinder object, 33
very good left homotopy, 35
very good path object, 34
very good right homotopy, 36

weak 2-functor, 161
weak equivalence, 190
weak factorisation system, 13
weak Hausdorff, 102
well ordered set, 2
WFS, 13

Yoneda Embedding, 103
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