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Introduction

0.1 Summary

This thesis records the results of an effort to understand the reduction process of
Courant algebroid, Dirac structures and generalized complex structures first discussed
in [6], the same process in the viewpoint of pure spinors first studied in [15] and the
decomposition of spinors of generalized complex structure analyzed in [16, 10, 9].
Further work is put into combining these theories into a particularly interesting ex-
ample, where the hypothesis that initiated this thesis is that the reduction process
"commutes" with the decomposition of spinors, in the sense that doing either first will
yield the same results, is tested. In the attempt at this example, although there was
no concrete pattern or trend, there are some encouraging signs. Some minor changes
suggested in the last Chapter of this thesis can be made which might yield concrete
results. Furthermore, this idea of relating reduction to other properties in generalized
complex geometry can be advanced, i.e. analyzing the relationship between reduction
and the Hodge decomposition of generalized complex manifold [17].

Generalized complex geometry, as introduced by Hitchin [18] and further studied
by Gualtieri [16], provides a unifying framework for both symplectic and complex ge-
ometry. The general idea of this unification is to treat classical geometric operations
on the sum of the tangent and cotangent bundle T ⊕ T ∗, also known as generalized
tangent bundle, instead of the usual tangent bundle. Notably, there exists an integra-
bility condition for such structures that, on one hand, specializes to the closure of the
symplectic form, and on the other hand, to the vanishing of the Nijenhuis tensor of a
complex structure. Both cases can be encompassed into a single unified integrability
condition with respect to a bracket called the Courant bracket, an extension of the
Lie bracket of vector fields to smooth sections of T ⊕ T ∗, first introduced by Courant
and Weinstein[13, 22], during which they delved deep into studying Dirac structures.
Dirac structures bridge the gap between Poisson bivector fields and closed 2-forms;
thus, generalized complex geometry can be viewed as analyzing complex Dirac struc-
tures.
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iv INTRODUCTION

Since generalized complex geometry encompasses the properties of symplectic and
complex geometry, entities and properties of complex geometry have their counter-
part in the generalized complex realm, for example properties such as the differential
operators ∂ and ∂̄ and the (p, q) decomposition of forms or subtopics such as Kähler
manifolds and Calabi-Yau manifolds. On a complex manifold, a complex k−form
can be decomposed uniquely into its sum of (p, q)−forms, these are wedge prod-
ucts of p differentials of holomorphic coordinates with q differentials of their complex
conjugates. Similarly,a generalized complex structure has an Lie algebra action on
differential form that decomposes differential forms into eigenspaces with respect to
action, as shown in [16] . Subsequently, an explicit description of the decomposition
of forms by constructing a formula for the subbundles is established in [10]. The
decomposition of forms is one of the two main area of focus of this thesis.

Analogous to known geometries such as symplectic or Poisson geometry, there is
the notion of obtaining a generalized complex structure via the process of reduction.
The framework for reduction on generalized complex structures has been formulated
by several authors, we will follow the procedure provided in [6] and [15]. As expected,
one can spot many resemblance between reduction of a symplectic structure [20] and
that of generalized complex structures [6]. In the former, one would need a compact
Lie group G acting on a symplectic manifold such that it preserves the symplectic
structure and a coisotropic submanifold such that it is compatible with the action.
This reduction formula is the well-known Marsden-Weinstein reduction. Analogously,
one can perform the reduction of Courant algebroids, Dirac structures and generalized
complex structures formulated in [6] with ingredients resembling of the symplectic
reduction such as a compact Lie group G by automorphisms on the Courant algebroid
E over M (this is similar to symplectic diffeomorphisms), an invariant submanifold
N ⊆ M , and an equivariant isotropic subbundle K ⊂ E. Subsequently, the reduced
exact Courant algebroid Ered over N/G [6] is constructed using the reduction data.
After that, a map can be defined by sending every invariant Dirac structure L ⊂ E,
such that L|N ∩K has constant rank to a reduced Dirac structure Lred ⊂ Ered, i.e.

L 7→ Lred. (1)

This procedure is then explored in a different language in [15], namely in the realm
of pure spinors. Suppose one has a Dirac structure L ⊂ E and an isotropic splitting
∇ : TM → E satisfying the invariance and closedness conditions, then a pure spinor
counterpart of 1, i.e. the following explicit map can be constructed

Γ(U∇(L)) → Γ(U∇red
(Lred)), φ 7→ φred (2)
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where U∇ and U∇red
are pure spinor line bundles of L and Lred respectively, establish-

ing a correspondence between pure spinors of L and Lred with an isotropic splitting
∇red associated to the reduced exact Courant algebroid Ered. The viewpoint of pure
spinors of the generalized reduction is the one of the main object of study in this thesis.

0.2 Outline of Thesis

Chapter 1 is dedicated to the discussion of the necessary machinery to define general-
ized complex structures. In particular, we review the properties of V ⊕ V ∗, maximal
isotropic subspaces and pure spinors.

Chapter 2 is a review of the necessary properties of Courant bracket which ulti-
mately leads to a brief introduction to Dirac structures. In particular, we introduce
Courant algebroids which serve as the bundle on which generalized complex struc-
tures are defined. We then discuss the symmetries of Courant algebroids which play
role in the reduction process. Subsequently, we briefly present Dirac structures and
some of their properties.

In Chapter 3, we begin by showing linear generalized complex structure and give
known examples that has the structure. We then introduce generalized almost com-
plex structure, similarly to almost complex structure, which, by Courant involutivity,
it turns into generalized complex structure.

Chapter 4 is where the first focus of the thesis begins, where we review the de-
composition of spinors for generalized complex structure of complex and symplectic
type.

Chapter 5 is a review of the reduction of Courant algebroids, Dirac structures
and generalized complex structures. We begin by introducing extended actions and
subsequently provide the reduction procedure for all the structures mentioned.

Chapter 6 is the second focus of the thesis, where we review the reduction process
in Chapter 5 in the viewpoint of pure spinors. The chapter emphasizes the formula
for reducing a pure spinor under certain conditions.

Chapter 7 is where we study the example of reducing a generlized complex struc-
ture of complex type into a symplectic type in the viewpoint of pure spinors and
record how the spinor decomposition changes after reduction.



vi INTRODUCTION

Chapter 8 discusses the problem faced and probable tweaks and solutions to fur-
ther the main ideas developed in this thesis.
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Chapter 1

Linear algebra on V ⊕ V ∗

In this chapter, we recall several important algebraic and differential geometric ma-
chinery required to understand and tackle the subject.

We first analyze the space of V ⊕ V ∗ and the complexification of it as a direct
sum of vector spaces where several of the properties are translated to T ⊕ T ∗. Next,
we present the idea of maximal isotropic subspaces which will be an ingredient in the
definition of a generalized complex structure. Another ingredient that is involved in
the definition are pure spinors which are also used in our reduction process later in
the thesis.

This chapter originates from and follows the structure of Chapter 2 of [16], while
we also look to [12] and [21] on the theory of spinors.

1.1 Symmetries of V ⊕ V ∗

Let V be a real vector space of dimension m and denote its dual space V ∗. As the
title of the chapter suggests, our focus will be concentrated on V ⊕ V ∗. We shall
furnish V ⊕ V ∗ with the following natural symmetric and skew-symmetric bilinear
forms:

⟨X + ξ, Y + η⟩ = 1

2
(ξ(Y ) + η(X)) (1.1)

where X, Y ∈ V and ξ, η ∈ V ∗. To show nondegeneracy; suppose it is degenerate,
i.e. there exists X + ξ non-zero such that ⟨X + ξ, Y + η⟩ = 0 for all Y + η. Now
take X = ei and ξ = fj (without the lost of generality) for 1 ≤ i, j ≤ n where {ei}
are the basis of V while the {fj} are basis of V ∗ dual to {ei}. However note that,
⟨ei+fj, ei+fj⟩ = 1 contradicting the degeneracy assumption. Lastly, this symmetric

1
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inner product is of signature (m,m)

Next, we move our discussion to special symmetries of V ⊕V ∗. We first note that
the following:

so(V ⊕ V ∗) = {T ∈ End(V ⊕ V ∗)|⟨Tx, y⟩+ ⟨x, Ty⟩ = 0,∀x, y ∈ V} (1.2)

is the Lie algebra of SO(V ⊕ V ∗). We may then decompose elements as follows via
the splitting of V ⊕ V ∗ to the following transformation:

T =

(
A β
B −A∗

)
(1.3)

where A being the endomorphism of V , B a linear map from V to V ∗, and β a
linear map from V ∗ to V such that B∗ = −B and β∗ = −β, i.e. they are skew.
Alternatively, we can take B as a 2-form while β a bivector. Due to this, we can
derive that so(V ⊕ V ∗) = End(V ) ⊕ ∧2V ∗ ⊕ ∧2V . subsequently, we can obtain
orthogonal symmetries of V ⊕ V ∗ that might play a role in this thesis.

Example 1.1. Let B be given as above, and consider X + ξ ∈ V ⊕ V ∗, we have that

eB(X + ξ) = (1 +B +
1

2
B2 + ...)(X + ξ)

= (1 +B)(X + ξ)

= X + ξ + iξB.

Note that the second line in the equation is due to B a 2-form, hence Bn is zero for
all n bigger than 2. Hence, we can view

eB =

(
1
B 1

)
(1.4)

as an orthogonal transformation sending X + ξ 7→ X + ξ+ iXB. This transformation
is referred as the B−field transform.

Example 1.2. Similarly, we let β as above. Then,

eβ =

(
1 β

1

)
(1.5)

an orthogonal transformation sendingX+ξ 7→ X+ξ+iξβ. It can again be regarded as
a shear transformation but now shearing in the T direction instead of T ∗. Similarly,
we also refer this as β− transform.
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1.2 Maximal isotropic subspace

In the journey of exploring symplectic geometry, one will definitely encounter the idea
of isotropic, coisotropic, and Lagrangian subspaces. Since generalized complex struc-
tures are innately and heavily influenced by symplectic geometry, we shall present
these analogous subspaces for V ⊕ V ∗. We first recall the some definitions for nota-
tional purposes.

Definition 1.3 (Complements). Let L be a subspace of V ⊕ V ∗ as a metric space.
We define the complement of L as follows:

L⊥ = {X + ξ ∈ V ⊕ V ∗ | ⟨X + ξ, Y + η⟩ = 0 ∀Y + η ∈ L} (1.6)

Definition 1.4 (Annihilator). Let E a subspace of a vector space V . We define the
annihilator of E as follows:

Ann(E) = {α ∈ V ∗ | α|E = 0} (1.7)

Here we present the first key definition of this section

Definition 1.5. A subspace L ⊂ V ⊕ V ∗ is

1. isotropic if L ⊂ L⊥

2. coisotropic if L⊥ ⊂ L

3. Lagrangian if L = L⊥

Definition 1.6. Let L be an isotropic subspace in V ⊕ V ∗ and the symmetric inner
product on V⊕V ∗ has siganture (m,m). If L is of maximal dimension, i,e, dim L = m,
then L is maximal isotropic.

Remark 1.7. A maximal isotropic subspace is also known as a linear Dirac structure.

It can be immediately deduced that V and V ∗ are maximal isotropic subspaces.
We then have the following important example that provides us a characterization of
maximal isotropic subspaces.

Example 1.8. Let E be a subspace of V and ϵ ∈ ∧2E∗. Treating ϵ as a map E → E∗

via X 7→ iXϵ, we can define subspace from the graph of ϵ

L(E, ϵ) = {X + ξ ∈ E ⊕ V ∗ : ξ|E = ϵ(X)}.
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where it is maximal isotropic. Indeed, let X + ξ, Y + η ∈ L(E, ϵ), then

⟨X + ξ, Y + η⟩ = 1

2
(ξ(Y ) + η(X))

=
1

2
(ϵ(Y,X) + ϵ(X, Y ))

= 0

(1.8)

Furthermore, if we let ϵ = 0 we obtain another example i.e. E⊕Ann(E) < V ⊕V ∗

is a maximal isotropic subspace. Note that, via Example 1.8, we obtain a general
formula in constructing maximal isotropic subspaces. First denote prV , prV ∗ to be
the canonical projections from V ⊕ V ∗ to V and V ∗ respectively.

Proposition 1.9. [16] Every maximal isotropic subspace in V ⊕ V ∗ can be written
as L(E, ϵ).

Proof. Let L be a maximal isotropic subspace. Define E := prV (L) ≤ V and let
W := L∩V ∗ a subspace of V ∗. It can be immediately deduced that W has dimension
m − dim E given that L is maximal isotropic and dim L = m. Take X, Y ∈ E and
ξ, η ∈ W , then we have that

⟨X + ξ, Y + η⟩ = 0

for all X, Y ∈ E if and only if ξ, η ∈ Ann(E) and L = E ⊕ Ann(E). Therefore, we
have that E ∼= V ∗/Ann(E) such that we can take the skew map ϵ : E → E∗ given by

e 7→ prV ∗(pr−1
V (e) ∩ L) ∈ V ∗/Ann(E).

Now, we give the definition of a type which a keen observer will realize it comes
from the proof above. This will provide another way of categorizing maximal isotropic
subspaces:

Definition 1.10. The type of a maximal isotropic subspace is the codimension k of
the projection L→ V , i.e.

k := dim Ann(E) = m− dim E

We can further determine more classifications of maximal isotropic subspaces via
End(V ⊕ V ∗), i.e. the transformations by B and β.

Proposition 1.11. [16] Let B and β defined as in the previous section.
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1. B−transform does not change the type of a maximal isotropic subspace

2. β−transform changes the type of L(E, ϵ) by an even number

The natural follow up question would be "how does one determine whether two max-
imal isotropic subspaces have the same type?". The following propositions provides
the answer.

Proposition 1.12. [12] Suppose that E is any maximally isotropic subspace of V
and define E

′
= L(E, ϵ)/E. If dim E = r and dim L ∩ V = h, then the types of E

and E
′
are equal if and only if

h ≡ r (mod2)

We end this section with the following useful remark on Lagrangian subspaces.

Remark 1.13. Lagrangian subspaces are exactly maximal isotropic subspaces.

The point of the remark is to show how all the definitions given in this section has
certain relation with each other and in this thesis, we might use the terms inter-
changebly.

1.3 Pure spinors and the Mukai pairing

In this section, we investigate the theory of spinors for our space V ⊕ V ∗. We first
introduce the Clifford algebra for a general vector space V .

Definition 1.14. Let V be a vector space. Cl(V, ⟨·, ·⟩) is defined by

Cl(V ) = T (V )/⟨v ⊗ v − ⟨v, v⟩1⟩

where T(V) denotes the tensor algebra.

Let Cl(V ⊕ V ∗) be the Clifford algebra defined by the relation

v2 = ⟨v, v⟩, ∀v ∈ V ⊕ V ∗ (1.9)

V ⊕ V ∗ has a natural representation on S = ∧•V ∗ given by

(X + ξ) · φ = iXφ+ ξ ∧ φ (1.10)
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where X + ξ ∈ V ⊕ V ∗ and φ ∈ ∧•V ∗. With the following calculation,

(X + ξ)2 · φ = (X + ξ) · (iXφ+ ξ ∧ φ)
= iX(iXφ) + ξ ∧ iXφ+ iX(ξ ∧ φ)
= iX(iXφ) + ξ ∧ iXφ+ iXξ ∧ φ− ξ ∧ iXφ
= iXξ ∧ φ
= ξ(X)φ

= ⟨X + ξ,X + ξ⟩φ.

(1.11)

This is the standard spin representation. Therefore, we shall take elements of ∧•V ∗

as spinors. Observe that this is where one can tell how differential forms are perfect
candidates to be taken as spinors.

Alternatively, we may consider the prospect of contravariant and covariant spinors.

Definition 1.15. Suppose we have V ⊕ V ∗ with the natural pairing ⟨·, ·⟩, then the
following

Cl(V ⊕ V ∗)/Cl(V ⊕ V ∗)V ∼= ∧•V ∗, Cl(V ⊕ V ∗)/Cl(V ⊕ V ∗)V ∗ ∼= ∧•V (1.12)

are the contravariant and covariant spinor modules respectively.

The spin representation decomposes according to helicity of the spinors due to
signature (m,m), i.e. the ±1 eigenspaces

S = S+ ⊕ S−.

which also coincides with the parity decomposition

∧•V ∗ = ∧evV ∗ ⊕ ∧odV ∗ (1.13)

Note that the above decomposition is not preserved by the whole Clifford algebra,
i.e. Cl(V ⊕ V ∗) · (S+ ⊕ S−) ̸= Cl(V ⊕ V ∗) · S+ ⊕Cl(V ⊕ V ∗) · S−, S± are irreducible
representation of the spin group, which lives in the Clifford algebra as

Spin(V ⊕ V ∗) = {v1...vk | vi ∈ V ⊕ V ∗, ⟨·, ·⟩ = ±1 and k even}

and is a double cover of SO(V ⊕ V ∗) via the homomorphism

ρ : Spin(V ⊕ V ∗) → SO(V ⊕ V ∗)

ρ(x)(v) = xvx−1, x ∈ Spin(V ⊕ V ∗), v ∈ V ⊕ V ∗

In the previous section, we put a good amount of our focus on the symmetries of
V ⊕ V ∗, i.e. the B− and β− transform. Note that both transforms are elements of
so(V ⊕ V ) = ∧2(V ⊕ V ∗) which in turn is a subset in CL(V ⊕ V ∗). Hence, we give
actions on spin representation.
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Example 1.16. Denote ei the basis of V and ei the dual basis. Then the spinnorial
action of a B−transform on a spinor φ ∈ ∧•V ∗ is given by:

B · φ =
1

2
Bije

j ∧ (ei ∧ φ) = −B ∧ φ

On the other hand, the β−transform is characterized by

eβφ = (1 + iβ +
1

2
i2β + ...)φ

These spinorial actions serve as an important role in determining the diffeomorphism
group of a generalized complex manifold. We will then observe later that generalized
complex geometry involves the specification of a maximal isotropic subbundle L and
that these bundles correspond to certain spinors called pure spinors.

What follows is the description of a particular bilinear form on spinors such that
they are well defined under spin representation too. For this mini section, we reli-
giously follow the text by Chevalley [12]. Since our environment is in V ⊕ V ∗, our
bilinear form corresponds to the Mukai pairing.

Definition 1.17. [12] The Mukai Pairing is defined as (·, ·) : S⊗S → detV ∗, (s, t) 7→
(α(s) ∧ t)top, where α is the anti-automorphism of the Clifford algebra Cl(V ⊕ V ∗)
defined by the map of v1⊗ ...⊗ vk 7→ vk⊗ ...⊗ v1 and the top indicates the top degree
of the form.

The following proposition provides some insights into the symmetries of V ⊕ V ∗

perform under this pairing.

Proposition 1.18. [12] The Mukai pairing is invariant under the identity component
of Spin(V ⊕ V ∗):

(g · s, g · t) = (s, t), ∀g ∈ Spin0(V ⊕ V ∗)

Now to define pure spinors, let φ be any nonzero spinor. Define Lφ < V ⊕ V ∗

given by:
Lφ = {v ∈ V ⊕ V ∗ : v · φ = 0}

where
Lg·φ = ρ(g)Lφ ∀g ∈ Spin(V ⊕ V ∗).

In other words, Lφ depends equivariantly on φ under the spin representation. We
call Lφ the null space. Now let e, f ∈ Lφ, then

2⟨e, f⟩φ = (ef + fe) · φ = 0

implying that ⟨e, f⟩ = 0 ∀e, f ∈ Lφ, i.e. null spaces are isotropic. Then,
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Definition 1.19. A spinor φ is pure if Lφ is maximally isotropic, i.e. of dimension
m.

Several interesting facts can be noted here: Let L be a maximal isotropic subspace
of V ⊕ V ∗

1. There exists a pure spinor φ that L annihilates it

2. Conversely, if there are two pure spinors φ, ψ that L annihilates, then they are
multiples of each other.

Combining the two statements shows that maximal isotropic subspaces are in 1 − 1
correspondence with lines of pure spinors. The following proposition by Chevalley
[12] willl be crucial in the later chapter.

Proposition 1.20. [12] Let φ1, φ2 be pure spinors. Lφ1 ∩Lφ2 = {0} ⇔ (φ1, φ2) ̸= 0.

Here are some examples of pure spinors and the maximal isotropic subspaces.

Example 1.21. [16] The identity spinor 1 ∈ ∧•V ∗ is a pure spinor. Indeed, note
that

L(V, 0) = {X + ξ ∈ V ⊕ V ∗ : (X + ξ) · 1 = 0} < V ⊕ V ∗

is a maximal isotropic subspace. We can also extend this further and claim that any
spin transformation applied to the identity spinor is also a pure spinor. To convince
the reader, let B be a 2-form then the spinor φ = eB also has a maximal isotropic
null space L(V,−B) = {X − iXB : X ∈ V }.

Example 1.22. [16] A nonzero 1-form α of ∧•V ∗ is also a pure spinor. The maximal
isotropic null space of α is the following

L(ker α, 0) = ker α⊕ ⟨α⟩

Similar to the identity spinor, any spin transformation on applied to α is also a pure
spinor.

Since any maximal isotropic subspace can be characterized by L(E, ϵ), it is natural
to utilise this to build the pure spinor line bundle. To end this section, we provide
a description of pure spinor lines associated to any maximal isotropics L(E, ϵ). We
begin from the simplest example of L(E, ϵ). Suppose that E is a subspace of V and
denote k its codimension.

Lemma 1.23. [12] L(E, 0) defined by

E ⊕ Ann(E)

is a maximal isotropic subspace of V . Its corresponding the pure spinor line is given
by det(Ann(E)).
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Proof. Let φ an element of det(Ann(E)) given by α1 ∧α2 ∧ ...∧αk. Then a straight-
forward calculation yields that the Clifford action (X+ξ) on φ is zero if and only if X
is an element of E and ξ is an element of Ann(E). The result follows immediately.

By Proposition 1.11, since B−field transform does not alter the type of a maximal
isotropic subspace, we may be able to write any L(E, ϵ) in the form of a combination
of a B− transform and L(E, 0) provided that i∗B = ϵ. Bluntly, we may write

L(E, ϵ) = eϵ(L(E, 0)) (1.14)

such that i∗B = ϵ. From this, we can form the pure spinor line UL of L(E, ϵ) and
provide an expression for the spinors in UL which will be important throughout this
thesis.

Proposition 1.24. [12] Let L(E, ϵ) be any maximal isotropic. Then

UL = eϵ(det(Ann(E))) (1.15)

is the pure spinor line of L(E, ϵ). Explicitly, suppose that α1, ..., αk is a basis of
Ann(E) and B be any 2-form satisfying i∗B = ϵ. Then any spinor φL (including
pure) corresponding to the maximal isotropic L(E, ϵ) can be expressed as follows

φL = CeBα1 ∧ ... ∧ αk (1.16)

where C is nonzero.

1.4 Complexification of V ⊕ V ∗

We end this chapter by providing the notion of real index. We first start with the
complexfixied version of the ideas from previous sections.

The natural inner product ⟨·, ·⟩ extends by complexification to (V ⊕ V ∗) ⊗ C.
Moreover, all our results regarding properties of V ⊕ V ∗ are also adapted to the
complexified version. The following theorem, took from [16], encapsulates this idea

Theorem 1.25. [16] Suppose dim(V ) = m. A maximal isotropic subspace L of
(V ⊕ V ∗) ⊗ C such that it is of type k where k ∈ {0, ...,m} is defined by any one of
the following

1. A complex subspace L < (V ⊕V ∗)⊗C, maximal isotropic with respect to ⟨·, ·⟩,
and such that E = prV⊗CL has complex dimension m− k;
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2. A complex subspace E < V ⊗ C such that dimC E = m − k, together with a
complex 2-form ϵ ∈ ∧2E∗;

3. A complex spinor line UL < ∧•(V ∗ ⊗ C) spanned by

φL = CeB+iωα1 ∧ ... ∧ αk, (1.17)

where α1, ...., αk are complex 1-covectors in V ∗ ⊗ C such that they are linearly
independent, B and ω are real and imaginary parts of a complex 2-covectors in
∧2(V ∗ ⊗ C), and C ∈ C is a nonzero scalar.

Due to the complexification, an additional feature that arises is the complex con-
jugate, which acts on all relevant structures L, E and UL. This is used to define real
index, which plays a role in defining generalized complex structure.

Definition 1.26. [16] Let L < (V ⊕ V ∗)⊗C be a maximal isotropic subspace. Then
L∩L is real, i.e. the complexification of a real space: L∩L = K⊗C, for K < V ⊕V ∗.
The real index r of the maximal isotropic L is defined by

r = dimC(L ∩ L) = dimRK.



Chapter 2

Courant Bracket

As mentioned in the introduction, to properly define generalized complex struc-
tures and also describe the reduction process, we require the notion of a bracket
on TM ⊕ T ∗M where M is a real smooth m−dimensional manifold.

Hence in this chapter, we review the notion of the Courant bracket. This bracket
will be used to formulate the integrability in generalized complex structures. On top
of that, we will also look into the symmetries of Courant algebroids which will be
part of the setup of the reduction process. We then provide the definition of a Dirac
structure and its properties. Subsequently, the chapter ends with the notion of con-
travariant and covariant pure spinors on exact Courant algebroids.

The material from this chapter originates from the sources, i.e. [16, 12, 13, 19].

2.1 Courant algebroid

We begin this section by introducing the canonical Courant bracket on T ⊕ T ∗. Let
M be a smooth n−dimensional manifold. Consider vector fields X, Y and differential
forms ξ, η on M , then X + ξ, Y + η are smooth sections of the generalized tangent
bundle Γ(T ⊕T ∗). The Courant bracket is then a skew-symmetric bracket defined on
smooth sections of T ⊕ T ∗, given by

[X + ξ, Y + η] = [X, Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ) (2.1)

An important fact to take into account is that the Courant bracket is not a Lie bracket
as it fails to satisfy the Jacobi identity. The following operator provides a concrete

11
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quantity of how Courant brackets fail satisfy the Jacobi identity:

Jac(A,B,C) = [[A,B], C] + [[B,C], A] + [[C,A], B],

where A,B,C ∈ Γ(T ⊕ T ∗). It is known as the Jacobiator operator and it can be
expressed as the derivative of a quantity which we will call the Nijenhuis operator.

Hence we present several properties of the Courant bracket relating to the ideas
of the Jacobiator and the Nijenhuis operator, which will lead us to the definition of
a Courant algebroid.

Proposition 2.1. [19] Nij is the Nijenhuis operator given by:

Nij(A,B,C) =
1

3
(⟨[A,B], C⟩+ ⟨[B,C], A⟩+ ⟨[C,A], B⟩).

We can then expressed the Jacobiator as follows:

Jac(A,B,C) = d(Nij(A,B,C)), (2.2)

⟨·, ·⟩ is the same inner product defined in Chapter 1.

Due to the Newlander-Nirenberg theorem where it specifies that an almost com-
plex structure I is integrable if and only if Nij(I, A,B) = 0, ∀A,B ∈ Γ(T ⊕ T ∗), we
are able to see a glimpse of how the Courant bracket plays a role in defining integra-
bility. This notion will be explored in the next chapter when we define generalized
complex manifolds. We can now give the definition of a Courant algebroid.

Definition 2.2. [19] A Courant algebroid over a manifold M is a vector bundle
E

π−→ M equipped with a fiberwise nondegenerate symmetric bilinear form ⟨·, ·⟩, a
bilinear bracket [·, ·] on the smooth sections Γ(E), and a bundle map p : E → TM
called the anchor. This induces a natural differential operator D : C∞(M) → Γ(E)

via ⟨Df, A⟩ =
1

2
π(A)f, ∀f ∈ C∞(M), A ∈ Γ(E). The following compatibility

conditions are required:
C1) p([A,B]) = [p(A), p(B)], ∀A,B ∈ Γ(E),
C2) Jac(A,B,C) = D(Nij(A,B,C)), ∀A,B,C ∈ Γ(E),
C3) [A, fB] = f [A,B] + (p(A)f)B − ⟨A,B⟩Df, ∀A,B ∈ Γ(E), f ∈ C∞(M),
C4) p ◦ D = 0,
C5) p(A)⟨B,C⟩ = ⟨[A,B] +D⟨A,B⟩, C⟩+ ⟨B, [A,C] +D⟨A,C⟩⟨, ∀A,B,C ∈ Γ(E),

where D =
1

2
p∗d : C∞(M) → Γ(E) (using ⟨·, ·⟩ to identify E with E∗.)
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The prime example of a Courant algebroid that will be utilised throughout this thesis
is T ⊕ T ∗ with π : T ⊕ T ∗ → TM as the anchor, ⟨·, ·⟩ as the bilinear symmetric form
given by the following

⟨X + ξ, Y + η⟩ = iXη + iY ξ (2.3)

and the bracket J·, ·K

JX + ξ, Y + ηK = [X, Y ] + LXη − iY dη. (2.4)

for X + ξ, Y + η ∈ Γ(T ⊕ T ∗)

Remark 2.3. Note that bracket 2.4 coincides with the expression of the bracket first
considered by and named after Dorfman [14]

JA,BK = [A,B] + d⟨A,B⟩, (2.5)

in the context of complexes over Lie algebras, in order to characterize Dirac structures.
It is often easier to calculate with the Dorfman bracket since it satisfies a Leibniz rule
which resembles the Jacobi identity

JA, JB,CKK = JJA,BK, CK + JB, JA,CKK.

One can obtain the Courant bracket 2.1 by skew-symmetrization of the Dorfman

bracket, i.e. they are related via 2.5. Hence we also obtain that [A,B] =
1

2
(JA,BK−

JB,AK).

Next. we introduce the notion of exact Courant algebroids which will be used
throughout this thesis.

Definition 2.4. A Courant algebroid E is described as exact if the sequence

0 −→ T ∗M
p∗−→ E

p−→ TM → 0 (2.6)

is exact

Remark 2.5. Often on an exact Courant algebroid, we can choose an isotropic split-
ting ∇ : TM → E such that the splitting provides us a curvature 3-form H ∈ Ω3

cl(M)
defined as follows, for X, Y ∈ Γ(TM):

H(X, Y, Z) = ⟨J∇X,∇Y K, Z⟩.

We then have the bundle isomorphism

∇+ p∗ : T ⊕ T ∗ → E (2.7)
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which can be used to endow the Courant algebroid structure onto T⊕T ∗. As before the
pairing is nothing but the natural pairing defined in chapter 1, and for X+ ξ, Y +η ∈
Γ(T ⊕ T ∗), the bracket thus turns into the following

JX + ξ, Y + ηKH = [X, Y ] + LXη − iY (dξ − iXH) (2.8)

which is then called theH−twisted Courant bracket on T⊕T ∗. Note that the isotropic
splitting derived from 2.6 differ by 2-forms B ∈ Ω2(M):

(∇+B)(X) = ∇X + p∗(iXB). (2.9)

Subsequently, this modifies the curvature H by the exact form dB, i.e. H + dB.

2.2 Symmetries of Courant bracket
In this section, we tackle the issue of determining the group of all transformation
under which an exact Courant algebroid remains invariant, particularly, the group of
bundle automorphisms such that the Courant algebroid structure is preserved. This
plays a crucial role in the setup for the reduction of Courant algebroids.

Definition 2.6. [6] The group of symmetries, or also known as automorphism group,
denoted Aut(E) of a Courant algebroid E, with an underlying manifold M , consists
of bundle automorphisms F : E → E covering a diffeomorphism ψ : M → M such
that

1. Orthogonality of F: ψ∗⟨F (·), F (·)⟩ = ⟨·, ·⟩,

2. Bracket Preservation of F: [F (·), F (·)] = F [·, ·],

3. Anchor Compatibility of F: p ◦ F = ψ∗ ◦ p

Let H ∈ Ω3
cl(M) and suppose we have T ⊕ T ∗ endowed with the structure of

a H−twisted Courant algebroid. Let ψ be a diffeomorphism as defined in Defini-
tion 2.6 such that it preserves H, meaning ψ∗H = H. We are able to observe that
ψ maintains the structure of T ⊕ T ∗ in the sense that the bundle automorphism
dψ⊕ (ψ−1)∗ : T ⊕T ∗ → T ⊕T ∗ is an automorphism of the Courant algebroid T ⊕T ∗.

Additionally, the Courant bracket possesses an extra symmetry induced by a
B−field transformation, explicitly eB : X + ξ 7→ X + ξ + iXB from 1.1. Indeed an
automorphism of an H−twisted Courant bracket must be the composition of a diffeo-
morphism ψ of M and a transformation defined by a 2-form B where H−ψ∗H = dB.
This fact is summarized in the following.
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Proposition 2.7. [6] The automorphism group of an exact Courant algebroid E is
an extension of the group of diffeomorphisms preserving the cohomology class [H] by
the abelian group of closed 2-forms:

0 → Ω2
cl(M) → Aut(E) → Diff[H](M) → 0 (2.10)

The infinitesimal version of an automorphism for an H-twisted exact Courant alge-
broid E is given by differentiating a 1-parameter family of automorphisms Ft = Ψte

tB,
F0 = id. Then we get that the Lie algebra Der(E) consists of pairs (X,B) ∈
Γ(TM)⊕ Ω2(M) such that LXH = dB, which acts via

(X,B) · (Y + η) = LX(Y + η) + iYB.

This leads to the following invariant presentation of derivations.

Proposition 2.8. [6] The Lie algebra of infinitesimal symmetries of an exact Courant
algebroid E is an abelian extension of the Lie algebra of smooth vector fields by the
closed 2-forms:

0 → Ω2
cl(M) → Der(E) → Γ(TM) → 0 (2.11)

2.3 Dirac Structures
Now that we have establish our notion of bracket, a natural follow-up question to ask
is "how does this bracket play a role in terms of involutivity". In realm of smooth
manifolds, an example can be obtained of involutivity, coming from the Lie bracket
where integrability is given by Frobenius’ theorem. We can then raise the question
whether is it possible to obtain a certain Courant involutive subbundles of T ⊕ T ∗ as
an integrable structure. This is where Dirac structure comes into play.

Definition 2.9. [13] A real maximal isotropic subbundle L < T ⊕ T ∗ is called an
almost Dirac Structure. If L is involutive with respect to the Courant bracket, then
the almost Dirac structure is said to be integrable or a Dirac structure. Similarly,
a maximal isotropic and involutive complex subbundle L < T ⊕ T ∗ ⊗ C is called a
complex Dirac structure.

We combine Proposition 3.26 and 3.27 from [16] in the following proposition which
justifies the hypothesis of real, maximal and isotropic.

Proposition 2.10. [16]

1. If L < T ⊕ T ∗ is involutive, then L can only be an isotropic subbundle or a
bundle of type U ⊕ T ∗ for U a nontrivial involutive subbundle of T .
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2. Given a maximal isotropic subbundle L of T ⊕ T ∗ then the following are equiv-
alent:

• L is involutive

• Nij|L = 0

• Jac|L = 0

Here are some examples of Dirac structures from well known areas of geometry.

Example 2.11. (Presymplectic Structure) A presymplectic structure on a manifold
M is defined by a closed 2-form ω ∈ Ω2(M). The underlying Dirac structure is the
graph of ω, denote by Lω:

Lω = (X, iXω) : X ∈ TM (2.12)

This subbundle Lω ⊆ TM ⊕ T ∗M is maximally isotropic and involutive with respect
to the Courant Bracket

Example 2.12. (Poisson Structure) A Poisson structure on a manifold M is given
by a bivector field π ∈ Γ(∧2TM) under certain involutivity conditions. We then have
the following Dirac structure:

Lπ = (iπα, α) : α ∈ T ∗M (2.13)

Similarly, this is a subbundle of TM ⊕ T ∗M where it is maximally isotropic and
involutive with respect to the Courant bracket.

2.4 Pure Spinors on exact Courant algebroid

In this section, we provide the description of pure spinors in the setting of exact
Courant algebroids E, where we obtain the notion of contravariant and covariant
pure spinors. This will lead us to several important results that will aid us in later
chapters particularly for the generalized reduction in the language of pure spinors.

Let E be an exact Courant algebroid over M and consider the Clifford bundle
Cl(E). Let ∇ : TM → E be an isotropic splitting as in the previous splitting then
consider the isomorphism F : E → TM⊕T ∗M . This isomorphism is the identification
map from E to TM ⊕ T ∗M . Define the following

ξ∇(e) = prT ∗M(F∇(e)). (2.14)
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for e ∈ E and F∇ is taken as the inverse of the map 2.7. We can obtain a Clifford
bundle Cl(E) representation corresponding to ∇, Υ∇ : Cl(E) → End(∧•T ∗M),
defined on e ∈ E by

Υ∇(e)ζ = ip(e)ζ + ξ∇(e) ∧ ζ (2.15)

for ζ ∈ ∧•T ∗M , where p is the anchor map of E. Now let φ be a section of Γ(∧•T ∗M)
and

L∇(φ) = {e ∈ E | Υ∇(e)φ = 0} (2.16)

The Clifford relation
⟨e1, e2⟩ = e1e2 + e2e1

where e1, e2 ∈ E implies that L∇(φ) is an isotropic subbundle of E provided that its
rank is constant. So

Definition 2.13. φ ∈ Γ(∧•T ∗M) is a contravariant pure spinor if L∇ is a maximal
isotropic subspace of E.

We then have that

Definition 2.14. Let L be a maximal isotropic subbundle of E. The following is the
pure spinor line bundle of L.

U∇(L) = {φ ∈ Γ(∧•T ∗M) | Υ∇(e)φ = 0, ∀e ∈ L}. (2.17)

On the other hand, we can also define the Clifford bundle representation on multi-
vector fields. The following

Υop
∇ : Cl(E) → End(∧•TM)

is defined on e ∈ E by
Υop

∇ (e)X = p(e) ∧ X+ iξ∇(e)X.

where X ∈ Γ(∧•TM)

Definition 2.15. A section X of Γ(∧•TM) is a covariant pure spinor if L∇(X) :=
{e ∈ E | Υop

∇ (e)X = 0 ∀e ∈ L} is a maximal isotropic subbundle of E.

The covariant pure spinor line bundle corresponding to a maximal isotropic subbun-
dle L of E is defined analogously U op

∇ (L) = {X ∈ ∧•TM | Υop
∇ (e)X = 0, ∀e ∈ L}.

There is a certain correspondence between the contravariant and covariant repre-
sentations, namely they are isomorphic when the underlying manifold is orientable.
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Remark 2.16. Let µ be a section of the corresponding determinant bundle det(T ∗M).
Define

Θµ : ∧•TM → ∧•T ∗M (2.18)

X 7→ iXµ.

One has
Θµ ◦Υop

∇ = Υ∇ ◦Θµ (2.19)

such that Υop
∇ and Υ∇ are isomorphic locally.

On the other hand, The inverse of Θµ, denoted by Θv

Θv : ∧•T ∗M → ∧•TM (2.20)

β 7→ iβv

where v ∈ det(TM) such that iµv = 1.

We end this section with a brief exposition into the symmetries of a Courant al-
gebroid E, Aut(E) as actions on the Clifford representation Υ∇.

First, let ∇ be an isotropic splitting and A = (F, ψ) ∈ Aut(E). Consider the
associated splitting defined by ∇A = F−1 ◦ ∇ ◦ ψ∗ and we may also identify that
A = (ψ,B) by Proposition 2.7 where ψ is in the diffeomorphism group and B a
closed 2-form such that ∇ = ∇A +B.

Given that the pairing ⟨·, ·⟩ is preserved by F , one can construct a bundle map
Cl(F ) : Cl(E) → Cl(E) covering ψ, such that it is an isomorphism of algebras on the
fibers. We can immediately identify that Cl(F ) provides a correspondence between
the representations Υ∇ and Υ∇A , In other words, we can construct the following
diagram

Cl(E) End(∧•T ∗M)

Cl(E) End(∧•T ∗M)

Υ∇A

Cl(F ) (ψ−1)◦(·)◦ψ∗

Υ∇

(2.21)

such that it commutes.

Let ΞA : ∧•T ∗M → ∧•T ∗M be a bundle isomorphism covering ψ by

ΞA = (ψ−1)∗ ◦ e−B. (2.22)
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If A preserves the splitting ∇, then ΞA = (ψ−1)∗. Note that if we exchange the
original splitting ∇ with ∇ + B where B is a 2-form, the spin representation Υ∇
modifies via

Υ∇+B ◦ eB = eB ◦Υ∇ (2.23)

The corresponding maximal isotropic subbundle L of E then change accordingly

U∇+B(L) = eB(U∇(L)) (2.24)

Because of this, we are able to relate Υ∇A and Υ∇, one may obtain

ΞA ◦Υ∇ ◦ Ξ−1
A = Υ∇ ◦ Cl(F ). (2.25)

Hence, the map 2.22 induces an action of Aut(E) on Γ(∧•T ∗M).

Remark 2.17. By equation 2.25, suppose φ ∈ Γ(∧•T ∗M) is a pure spinor, then
ΞA(φ) is also a pure spinor. Additionally,

L∇(ΞA(φ)) = F (L∇(φ)).

In particular, F leaves L∇(φ) invariant if and only if ΞA preserves the pure spinor
line generated by φ.

Finally, for the covariant version, A = (F, ψ) ∈ Aut(E) is an action on X ∈ ∧•TM
by ΞopA (X) = ψ∗(ie−BX). The isomorphism Θµ from 2.18 provides a correspondence
between ΞopA and ΞA as in 2.21 if ψ preserves a volume form µ ∈ det(T ∗M). Further
results follow similarly to the contravariant version.
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Chapter 3

Generalized Complex Structures

In this chapter, we begin our exploration into the realm of generalized complex struc-
tures, the central theme of this thesis. The general idea involves building on and
implementing notions from previous chapters such as Dirac structures and Courant
algebroids to include both complex and symplectic geometry into a single geometrical
definition.

We first define a generalized complex structure on V ⊕V ∗ and present some prop-
erties of it. This will all translate to a generalized complex manifold when we endow
a manifold with the structure. We then show that this structure induces a grading
which will play a role in the decomposition of spinors in the next chapter.

The materials of this chapter originates from Chapter 4 of [16].

3.1 Linear generalized complex structures

We start by defining the idea of generalized complex structure on a real vector space.
We first recall the definition of structures where generalized complex structures are
build upon, namely the complex and symplectic structures. Let V be a real, finite-
dimensional vector space.

Definition 3.1. A complex structure on V is an endomorphism I : V → V satisfying
I2 = −1.

On the other hand, one can utilize the following understanding of a symplectic struc-
ture

21
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Definition 3.2. A symplectic structure consists of a linear isomorphism ω : V → V ∗

via interior product
ω : v 7→ ivω, v ∈ V

such that ω∗ = −ω.

The goal is to include both definitions in a single higher algebra/geometrical struc-
ture. This is why we shift our focus on endomorphisms of V ⊕ V ∗. Therefore, we
provide the definition as follows:

Definition 3.3. [16] A generalized complex structure on V is an endomorphism J
of V ⊕ V ∗ satisfying the following condition:

1. it is complex, i.e. J 2 = −1

2. it is symplectic , i.e. J ∗ = −J

Alternatively,

Proposition 3.4. [16] A generalized complex structure on V can also be defined as
a complex structure on V ⊕ V ∗ such that it is orthogonal with respect to the natural
inner product as defined in chapter 1.

In the following, one can show that the usual complex and symplectic structures are
typical examples of generalized complex structures.

Example 3.5. [16] Consider the endomorphism

JI =
(
−I 0
0 I∗

)
where I is a complex structure on V . We can immedatiely deduce that J 2

I = −1
and J ∗

I = −JI , i.e. satisying the definition of a generalized complex structure.
Meanwhile, we also have the endomorphism,

Jω =

(
0 −ω−1

ω 0

)
where ω is a symplectic form and Jω also satisfies the condition of being a generalized
complex structure.

Furthermore, the following proposition provides another characterization of general-
ized complex structures in the language of maximal isotropic subspaces.
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Proposition 3.6. [16] A generalized complex structure on V can also defined by a
complexified maximal isotropic subspace L < (V ⊕ V ∗) ⊗ C such that L ∩ L̄ = {0}
(L has real index zero).

Hence, instead of analyzing the endomorphisms of generalized complex structures, we
can also study the corresponding complexified maximal isotropic subspaces with real
index zero.

Remark 3.7. It can be immediately deduced that a generalized complex structure
only exists on V if V is even dimensional. A detailed argument on this can be found
in [16].

So far we have encountered two ways of characterizing generalized complex struc-
tures, we now introduce the third way, which involves the notion of spinors from
Chapter 1. By propositions 3.6 and 1.25, generalized complex structures can equally
be characterized by the complex spinor line UL < ∧•V ∗ ⊗ C, spanned by

φL = eB+iωα1 ∧ ... ∧ αk (3.1)

where α1, ..., αk are linearly independent complex 1-covectors in V ∗⊗C, and B,ω are
the real and imaginary parts of a complex 2-covectors in ∧2(V ∗ ⊗ C). The complex
line UL is called the canonical line of the generalized complex structure. We also
require that L to be of real index zero which adds an extra condition on the line UL.
The following theorem by Gualtieri [16] provides an accurate description of this.

Theorem 3.8. [16] Every complexified maximal isotropic subspace L of (V ⊕V ∗)⊗C
can be determined by a pure spinor line spanned by φL = eB+iωΩ such that B,ω ∈
∧2V ∗ ⊗ C and Ω = α1 ∧ ... ∧ αk for (α1, ..., αk) ∈ ∧1V ∗ ⊗ C. k here denotes the type
of the maximal isotropic defined in Chapter 1. The maximal isotropic is of real index
zero if and only if

ωn−k ∧ Ω ∧ Ω̄ ̸= 0

or in other words

1. The 1-covectors (α1, ..., αk, ᾱ1, ..., ᾱk) are linearly independent

2. The 2-covector ω is nondegenerate when (2n− 2k)− dimensional subspace U ≤
V defined by U = Ker(Ω ∧ Ω̄).

Example 3.9. [16] The following is a generalized complex structure governed by a
symplectic structure ω

Jω =

(
0 −ω−1

ω 0

)
(3.2)
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has a maximal isotropic given by

L = {X − iω(X) : X ∈ V ⊗ C}

and a pure spinor line spanned by

φL = eiω

showing how the information of a symplectic structure is incorporated in a generalized
complex structure. Also, note that this example also presents the generalized complex
structure of type k = 0.

Note that the maximum type of a generalized complex structure is n since dim(V ) =
dim(V ∗) = n. Hence, we then have another example at the other extreme of the type:

Example 3.10. [16] The generalized complex structure consisting of a complex struc-
ture I.

JI =
(
−I 0
0 I∗

)
such that its maximal isotropic is given by

L = V0,1 ⊕ V ∗
1,0

where V1,0 = V0,1 is the +i−eigenspace of J . The pure spinor line is then spanned by

φL = Ωn,0

where Ωn,0 is the generator of (n, 0)−forms for the n−dimensional complex space
(V, I). Therefore, this shows how the information of a complex structure is embed-
ded in a generalized complex structure. This example gives a generalized complex
structure of type k = n.

3.2 Generalized complex structure on a manifold
In this section, we want to furnish manifolds with generalized complex structures.
Again, we look no further to building blocks of complex and symplectic manifolds for
guidance where we can summarise the process into the following two steps:

1. the description of an algebraic or ’almost’ structure on the generalized tangent
bundle,

2. an integrability condition from the Courant bracket on this structure.
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We begin tackling the above inquiries as follow with the following definition of an
’almost’ structure. Note that, from the previous section, we have three different ways
of defining generalized complex structures. We will utilize these ways accordingly in
defining our algebraic structure building block.

Definition 3.11. [16] A generalized almost complex structure on a real 2n−dimensional
manifold M is characterized by the following:

1. a maximal isotropic subbundle L < (T ⊕ T ∗)⊗ C such that L ∩ L̄ = 0, i.e. L is
of real index zero.

2. A pure spinor line subbundle U < ∧•T ∗ ⊗ C, also known as the canonical
line bundle, generated by the pure spinor line as in Theorem 3.8, satisfying
(φ, φ̄) ̸= 0 at each point x ∈M for any generator φ ∈ Ux.

3. An almost complex structure J on T⊕T ∗ such that it is orthogonal with respect
to the natural inner product ⟨·, ·⟩ from chapter 1.

Now, we tackle the second statement regarding the integrability condition on
generalized almost complex structures. Yet again, we refer to the conditions from
symplectic and complex geometry for inspiration such that our integrability condition
has to include both the symplectic ’closedness’ condition dω = 0 and the complex
integrability condition that [T1,0, T1,0] ⊂ T1,0. Our answer to this is simply the Courant
bracket.

Definition 3.12. The generalized almost complex structure J is integrable to a
generalized complex structure if its +i−eigenbundle L < (T ⊕ T ∗) ⊗ C is Courant
involutive. Due to this, a generalized complex structure is also a complex Dirac
structure of real index zero.

In the following examples, we show how our integrability condition on generalized
almost complex structures encompass both the symplectic and complex condition.

Example 3.13. [16] The generalized almost complex structure given by a symplectic
structure ω:

Jω =

(
0 −ω−1

ω 0

)
(3.3)

gives us the +i−eigenbundle

L = {X − iω(X) : X ∈ T ⊗ C}. (3.4)

We want that it is Courant involutive if and only if dω = 0. Indeed, letting X, Y ∈
T ⊗ C where X − iω(X), Y − iω(Y ) ∈ L, then we have

[X − iω(X), Y − iω(Y )] = [X, Y ]− iω([X, Y ])− idω(X, Y )
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where the last term reduces to zero as dω = 0 which gives us [X, Y ] ∈ L hence
involutivity follows.

Example 3.14. [16] The generalized almost complex structure governed by a complex
structure

JI =
(
−I 0
0 I∗

)
(3.5)

provides the +i-eigenbundle
L = T0,1 ⊕ T ∗

1,0. (3.6)

We can show that it is Courant involutive if and only if I is integrable as a complex
structure. Indeed, suppose I is integrable. Let X + ξ, Y + η ∈ Γ(T0,1 ⊕ T ∗

1,0) then we
can simplify the Courant bracket to the following:

[X + ξ, Y + η] = [X, Y ] + iX∂η − iY ∂ξ,

where the right hand side is a section of T0,1 ⊕ T ∗
1,0. Therefore, L is involutive with

respect to the Courant bracket. On the other hand, assume L is involutive under
the Courant bracket, then notice that only taking into consideration of the vector
part of the Courant bracket simplifies it to the Lie bracket, which in turn, makes T0,1
involutive under the Lie bracket. Therefore I is integrable and hence J as well.

3.3 Integrability and Spinors
Due to the fact that a generalized complex structure can be characterized by maximal
isotropic subbundles and the canonical line bundle, we obtain a alternative presenta-
tion of integrability and spinors. This can be seen as analogous to a complex structure
inducing a (p, q)−decomposition of forms and a splitting d = ∂ + ∂.

Notice that, given the condition L ∩ L̄ = 0 for L < (T ⊕ T ∗) ⊗ C, with L being
maximal isotropic means

L⊕ L∗ ∼= ((T ⊕ T ∗)⊗ C) (3.7)

via the pairing ⟨·, ·⟩ giving L̄ = L∗. This suggests an alternative grading on the
spinors with U < ∧•T ∗ ⊗ C being the canonical line bundle of J . i.e.

∧•T ∗ ⊗ C = Un ⊕ Un−1 ⊕ ...⊕ U0 ⊕ ...⊕ U−n

where Un = U and Uk = ∧n−kL · Un for k = 1, ..., 2n. Therefore, we obtain our first
characterization of integrability in the language of canonical line bundles:

Proposition 3.15. [16] Let Un be the canonical line bundle of the generalized almost
complex structure J .
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1. J is integrable if and only if d(Γ(Un−1)) ⊆ Γ(Un)

2. J is integrable if and only if every pure spinor φ of J satisfies the following:

dφ = iXφ+ ξ ∧ φ

where X + ξ ∈ T ⊕ T ∗

An important result by Gualtieri [16] then show that the integrability of J can be
characterized by the fact that the exterior derivative d splits into the sum d = ∂ + ∂
where for each k = 0, ..., 2n− 1,

Γ(Uk)
∂

⇄
∂
Γ(Uk+1)

Theorem 3.16. [16] Let J be a generalized almost complex structure, and define

∂̄ = prk+1 ◦ d : Γ(Uk) → Γ(Uk+1)

∂ = prk−1 ◦ d : Γ(Uk) → Γ(Uk−1)

where prk is the projection onto Uk, and Uk = {0} for k < 0, 2n. Then J is integrable
if and only if d = ∂ + ∂

Both proofs can be found in [16].
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Chapter 4

Decomposition of Spinors

Here we begin to present the first main object of the thesis where concrete descrip-
tion of the spinorial decomposition of generalized complex manifold of type 0 and n
is established. We begin the chapter with a description of how a generalized complex
structure can be seen as an action and provide the neccessary examples.

Then the following section is divided into two parts where we present the decom-
position for both extremal cases of generalized complex manifolds, i.e. the complex
case (type 0) and the symplectic case (type n). We will first recall how a generalized
complex structure on a manifold M induces a decomposition of spinors with respect
to the subbundles.

This chapter is heavily influenced by materials from [10, 9].

4.1 Action of J on spinors
In chapter 1, we have determined how ∧•V ∗ can be canonically taken as the space
of spinors, where the Lie algebra spin(n, n) acts on ∧•V ∗. Interestingly, this Lie
algebra action is established is also due to the fact that J ∈ spin(n, n) where J is a
generalized complex structure. We can then utilize J to act on differential forms, or
in our case, spinors. Therefore, we have the following complex and symplectic version
of J .

Definition 4.1. [9] Let J be of type 0 then J is the wedge product of 2-form ω and
bivector −ω−1, acting on a spinor ψ yields

Jψ = (−ω ∧ −ω−1)ψ

29
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Definition 4.2. [9] On the other hand, suppose J is of type n it is a Lie algebra
action represented by the traceless endomorphism −I. Hence, let γ be a (p, q) spinor,
we have that

J γ = I∗γ = i(p− q)γ

From Definition 4.1 and Example 3.14, we can deduce that suppose that a general-
ized complex structure is induced by a complex structure, the subspaces Uk ⊂ ∧•V ∗

are the ik−eigenspaces of the action J . We can extend this to every generalized
complex structure:

Proposition 4.3. [9] The spaces Uk are the ik-eigenspaces of the Lie algebra action
of J .

The proof of the proposition can be found in [9].

4.2 Spinor Decomposition
From Chapter 3, we will use the fact that for each k = 1, ..., 2n, the Uk can be
computed using Proposition 3.15 and Uk = ∧n−kL̄ · Un with Un being the canonical
line bundle of J .

4.2.1 Complex Decomposition

For a complex manifold (M, I) as a generalized complex structure, we have that,
from previous chapters, L = T1,0 ⊕ T ∗

0,1. Hence using Proposition 3.15 and the spinor
φL = Ωn,0 where Ωp,q is the (p, q)−decomposition of complex forms, we have that

Uk =
⊕
p−q=k

∧p,qT ∗M. (4.1)

Indeed, as a quick sanity check, if we take X + ξ ∈ L, then we obtain

(X + ξ) · Ωn,0 = iXΩ
n,0 + ξ ∧ Ωn,0 (4.2)

which yields a sum of (n− 1, 0) and (n, 1) form respectively. Therefore, we have 4.1
by using L to act on Ωn,0 k times inductively.

4.2.2 Symplectic Decomposition

The case for generalized complex structure induced by a symplectic form is not as
obvious as the complex case. In this section, we work on the symplectic vector space
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(V, ω) and subsequently, we can transfer this to a manifold as describe in Chapter 4 via
generalized complex structure. We require several notions before explicitly presenting
how the Uk spaces look like. Note that define Λ to be the interior product with the
bivector ω−1 where ω is the symplectic 2-form, then we have the following operator
due to Brylinski [4]:

dJ = [d,J ] = d(ω − Λ)− (ω − Λ)d = Λd− dΛ (4.3)

We then have the following theorem for the symplectic version of the decomposition.
We show how this lemma plays a role in giving the explicit expression for Uk.

Theorem 4.4. [9] The decomposition of ∧•V ⊗C for a symplectic vector space (V, ω)
is

Un−k = {eiω(e
Λ
2iα) | α ∈ ∧kV ⊗ C} (4.4)

We also have the natural isomorphism

φ : ∧•V ⊗ C → ∧•V ⊗ C φ(α) = eiωe
Λ
2iα (4.5)

such that φ : ∧kV ⊗ C ∼= Un−k

We will utilize the above theorem in the example used to test the main hypothesis of
this thesis. Finally, we present the operators ∂ and ∂̄ to complete the description of
the symplectic decomposition.

Theorem 4.5. [9] For any form α,

d(eiωe
Λ
2iα) = eiωe

Λ
2i (dα− 1

2i
dJα) (4.6)

Hence,

∂(eiωe
Λ
2iα) = −eiωe

Λ
2i
1

2i
dJα (4.7)

∂̄(eiωe
Λ
2iα) = eiωe

Λ
2idα. (4.8)

Therefore, the natural isomorphism φ of Theorem 4.4 is such that

φ(dα) = ∂̄φ(α) φ(dJα) = −2i∂φ(α). (4.9)
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Chapter 5

Generalized Reduction

The theory presented in this chapter have major similarity to the reduction of sym-
plectic manifolds via symplectomorphisms of which demonstrates the possibility of
needing to consider submanifolds in addition to the quotient by the G action in order
to obtain a manifold with the desired structure. This concept serves as a key aspect
in the reduction of structures presented in this chapter, prompting the need to define
an action notion that encompasses the inclusion of submanifolds.

The ultimate objective in generalized reduction is to establish a reduction process
on generalized complex structures. However a fundamental question that must be first
addressed is the reduction of the Courant algebroid E, a matter crucial to this theory.

In simplifying the concept, it is important to note that an action of a Lie group G
on a manifold M can be fully described by the infinitesimal action of its Lie algebra,
say, ϕ : g → Γ(TM), functioning as a Lie algebra morphism. Extending this notion
to a Courant algebroid E over M , the aim is to represent a G action on E that aligns
with the G action on M through a map Φ : a → Γ(E). This endeavor introduces two
challenges:

1. What is a? i.e. a Lie algebra?

2. How do we guarentee that E and M can be acted by the same group G

Question one prompts the consideration of Courant algebras in order for a to possess
the characteristics of a Courant algebroid. The second question directs our attention
towards extended actions.

Upon establishing an extended action on a Courant algebroid, a foliation is de-
termined on M with leaves that remain invariant under the G-action. The ’quotient’

33
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algebroid is an algebroid defined over the quotient of a leaf of this distribution by G
which results in the reduced manifold. The algebroid itself can be derived as the
quotient of a subspace of E, leading to the reduced Courant algebroid.

Once reduction on Courant algebroids is successfully completed, with Ered explic-
itly defined, the majority of the work is finished as Dirac structures and subsequently
generalized complex structures can be reduced from E.

The materials of this chapter originate from [6], focusing on ideas related to the
reduction of Courant algebroids, Dirac structures, and generalized complex structures
as these concepts will be explored further in studying the reduction process under the
viewpoint of pure spinors. Some contents including definitions and examples are also
from [8] and [15]

5.1 Courant Algebras and Extended Actions

In this section, we first address the question of "what is a by introducing the notion of
a Courant algebra, then the second question above by giving the ideas of an extended
action. We assume the setup regarding the symmetries of Courant algebroid from
Chapter 2.

When a Lie group G acts on a manifold M , we have the following Lie algebra
homomorphism:

ψ : g → Γ(TM)

The objective here is to adapt this notion of an action to a Courant algebroid E. This
section demonstrates the methodology for achieving this by selecting an extension g
as a Courant algebra, and identifying a homomorphism from this extension to the
Courant algebroid E.

Definition 5.1. [6] A Courant algebra over a Lie algebra g is a vector space a en-
dowed with a bilinear bracket J·, ·K : a× a → a and a map π : a → g, such that for all
a1, a2, a3 ∈ a:
c1) Ja1, Ja2, a3KK = JJa1, a2K, a3K + Ja2, Ja1, a3KK,
c2) π(Ja1, a2K) = Jπ(a1), π(a2)K.

A quick verification, we can see that letting a = Γ(E) provides us that a Courant
algebroid is an example of a Courant algebra over g = Γ(TM).
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Definition 5.2. [6] An Courant algebra is exact if π is surjective and h = ker π is
abelian. Alternatively, the following is satisfied: Jh1, h2K = 0 for all h1, h2 ∈ h

Remark 5.3. We can also immediately see that E is an exact Courant algebroid if
and only if Γ(E) is an exact Courant algebra.

Example 5.4. [6] Let g be a Lie algebra action on h as a vector space. Then by
letting a = g⊕ h we obtain our first non-trivial example of a Courant algebra over g
via the bracket

J(g1, h1), (g2, h2)K = (Jg1, g2K, g1 · h2), (5.1)

where g · h is the g−action. This example is also known as the hemisemidirect
product of g with h.

Now that we have briefly developed our structure, as always, the next issue to tackle
is a notion of mapping or relation in this structure. We then introduce the idea of
morphism between Courant algebra.

Definition 5.5. [8] A Courant algebra morphism sending (a
π−→ g, J·, ·K, θ) to (a′

π′
−→

g′, J·, ·K′, θ′) is a diagram of maps below:

a g

a′ g′

π

Ψ ϕ

π′

(5.2)

such that it is commutative, where ψ is a Lie algebra homomorphism, Ψ(Ja1, a2K) =
JΨ(a2),Ψ(a2)K′ and Ψ(θ(a1, a2)) = θ′(Ψ(a1),Ψ(a2)) for all ai ∈ a.

With the notion of morphism defined, we can proceed to introduce the idea of an
action on Courant algebroids, namely an extended action.

Definition 5.6. [6] Let G be a connected Lie group acting on a manifold M with
an infinitesimal action ψ : g → Γ(TM). An extended action on a Courant algebroid
E over M is an exact Courant algebra a over g with a Courant algebra morphism
ρ : a → Γ(E):

0 h a g 0

Γ(E) Γ(TM)

ρ ψ (5.3)

such that the following is satisfied:

• (ad ◦ ρ)(h) = 0
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• the induced action of g = a/h on Γ(E) integrates to a G−action on the total
space of E.

A crucial example of an extended action that we will use in this thesis is the
trivialy extended action , also known as the G−lifted action. This will leads us to the
notion of an equivariant form which will play a crucial role in deriving an important
component of the formula for the pure spinor reduction of Dirac and generalized
complex structures. Assume we have a Lie group G being compact and connected,
together with an exact Courant algebroid E.

Example 5.7. A G−lifted action on E is an extended action as in Definition 5.6
with the Courant algebra a is the Lie algebra g. i.e. the following diagram commutes

g g

Γ(E) Γ(TM)

ρ ψg (5.4)

Alternatively, supposed we have a homomorphism H : G → Aut(E) and a bracket-
preserving map λ : g → Γ(E). Note that if for g ∈ G, Hg covers a certain ψg ∈
Diff(M) and the infinitesimal action ρ : g → Der(E) corresponding to H factorizes
into the following

g Der(E)

Γ(E)

λ

ρ

ad (5.5)

then the pair (H, λ) also defines a G−lifted action. Furthermore, for a G−lifted
action to be isotropic, it has to satisfy ⟨λ(v), λ(v)⟩ = 0 for v ∈ g.

Definition 5.8. We say that an isotropic splitting is G−invariant if Hg preserves ∇
for all g ∈ G. We can always obtain a G−invariant splittings since G is compact.

Example 5.9. [15] Suppose that H ∈ Ω3(M), i.e. a closed 3-form. The following
map

H : g ∈ G 7→ Hg =

(
(ψg)∗ 0
0 ψ∗

g−1

)
(5.6)

takes values in Aut(T ⊕ T ∗, J·, ·KH) if and only H is invariant. Therefore, H defines
an homomorphism. The infinitesimal action ρ : g → Der(T ⊕ T ∗) corresponding to
H is given, for Y + η ∈ Γ(T ⊕ T ∗), by

ρ(a)(Y + η) = JaM , Y K + LaMη,
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where aM is the infinitesimal generator of the G−action on M corresponding to a ∈ g.
The existence of bracket preserving map λ : g → Γ(T ⊕ T ∗) such that ρ = ad ◦ λ is
equivalent to the existence of a linear map ξ : g → Ω1(M) such that

1. ρ(a) = JaM + ξ(a), ·K,

2. ξ([a, b]) = LaM ξ(b),

for every a, b ∈ g. In this case, λ(a) = aM + ξa. Furthermore, ⟨λ(a), λ(a)⟩ = 0 if and
only if

iaM ξ(a) = 0.

We call ξ : g → Ω1(M) the moment one-form for (H, λ).

Remark 5.10. The condition ρ(a) = JaM + ξ(a), ·K can also be rephrase to iaMH −
dξ(a) = 0 where it represents the obstruction to lift the action.

For a concrete way to compute the equivariant form ξ , we would need to turn our
attention to the theory of equivariant cohomology. We consult [3] for some details on
it. In a simplified manner, the Cartan model can be summarised with the following
data:

ΩG(M) = (Sg∗ ⊗ Ω(M))G (5.7)

where Sg∗ consists of G−equivariant polynomials on g as a vector space taking values
in Ω(M), i.e.

f : g → Ω(M).

together with the equivariant derivative dG : ΩG(M) → ΩG(M) is defined to be:

(dGf)(a) = d(f(a))− iaMf(a), (5.8)

for all a ∈ g. For further constructions, one can turn to the amazing source [3].

Analogous to the case of symplectic geometry, there is a notion of a moment map
of an extended action. We end this section with the following definition

Definition 5.11. A moment map for an extended action is a g−equivariant map µ
such that it factors ν through C∞

R (M), i.e.

h Ωcl(M)

C∞
R (M)

µ

ν

d (5.9)
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5.2 Reduction of Courant Algebroid

In this section, we begin our development of the reduction of Courant algebroids. An
initial realization that has to be taken account is that an extended action on an exact
Courant algebroid E over a manifold M may not result in an exact Courant algebroid
structure on M/G. One can take the crucial step of passing it over to a submanifold
P ⊂ M of a certain condition, then we have the reduced space P/G furnished with
the structure of an exact Courant algebroid.

Due to an extended action ρ : a → E, we can immediately obtain the following:

Definition 5.12. [6] Let K = ρ(a) and denotes the orthogonal space. Then big
distribution is defined as △b = π(K + K⊥) ⊂ TM and the small distribution
△s = π(K⊥) ⊂ TM . K⊥

Observe that

1. △s = Ann(ρ(h)) is locally integrable where ρ(h) is constant rank since ρ(h) is
spanned by closed 1-forms.

2. With a moment map µ :M → h∗, we can view

• △s is the tangential distribution of the level sets of µ

• △b is tangent to the orbit (with respect to G) of the µ−level sets.

Now suppose we have P ⊂ M be a leaf of △b, i.e. a big leaf where it is acted by G
freely and properly, and ρ(h) has constant rank along P . To carry our the procedure,
we require the following lemma and theorem from [6].

Lemma 5.13. [6] K and K⊥ has constant rank along P .

Proof. [6] Lemma 3.2

Theorem 5.14. [6] An exact Courant algebroid E reduces to Ered and it is a Courant
algebroid over Mred = P/G with a surjective anchor.

Proof. [6] Theorem 3.3

Furthermore, we obtain an exact Courant algebroid on the reduced structure if K is
isotropic.
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Example 5.15. [6] Let a Lie group G act on a manifold M freely and properly,
with infinitesimal action ψ : g → Γ(TM) and consider the Courant algebroid (TM ⊕
T ∗M, ⟨·, ·⟩, J·, ·KH). Utilizing the inclusion map from tangent bundle to the generalized
tangent bundle, we can obtain an action of the Courant algebra a = g. (which gives
us a trivially extended action and the splitting is preserved by 5.10). We then have
that K⊥ = TM⊕Ann(ψ(g)) and hence M is the only leaf of △b = π(K⊥+K) = TM .
Therefore, M/G is the reduced manifold structure and the following

Ered =
K⊥/G

K/G
= TM/ψ(g)⊕ Ann(ψ(g)) ∼= TMred ⊕ T ∗Mred.

defines the reduced Courant algebroid.

5.3 Reduction of Dirac Structures

We now move on to the reduction process of the Dirac structure. Analogous to our
previous goal, we would like to carry over Dirac structures under an extended action
from E to Ered such that the structure is preserved under the action.

Given an extended action of a connected Lie group G on the Courant algebroid E,
we utilised the following definition to open our discussion to the reduction of Dirac
structures:

Definition 5.16. [6] We say that a Dirac structure D ⊂ E is preserved by an
extended action ρ if and only if Jρ(a),Γ(D)K ⊂ Γ(D)

With the above, we proceed to present how to transport the structure from E to
Ered. We begin the process on a linear algebra level. With an isotropic subspace
K ⊂ V ⊕ V ∗, it provides a way to carry over linear Dirac structures from V ⊕ V ∗ to
the quotient K⊥/K. Let D ⊂ V ⊕ V ∗ be a Dirac structure, then we can define the
following

Dred =
D ∩K⊥ +K

K
. (5.10)

One can claim that Dred is a Dirac structure on K⊥/K which can be shown by:

D⊥
red =

(D ∩K⊥ +K)⊥

K
=

(D +K) ∩K⊥

K
=
D ∩K⊥ +K

K
= D.

Finally, here is the reduction procedure. Let ρ : a → Γ(E) be an extended action
such that the reduced Courant algebroid over a reduced manifold Mred is exact. If a
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Dirac structure D is preserved by ρ as in 5.16, then we can furnish the Dirac structure
onto the reduced Courant algebroid as follows:

Dred =
(D ∩K⊥ +K)G

KG
|Mred

⊂ Ered (5.11)

Now the remaining condition to verify is integrability of Dred. Given sections v1, v2 ∈
Γ(Dred), let ṽ1, ṽ2 ∈ Γ((D ∩K⊥ +K)|P ) be their respective G−invariant representa-
tives in K⊥G. Then, We can express

ṽi = ṽi
D + ṽi

K ,

such that ṽiD ∈ Γ(D ∩K⊥|P ) and ṽiK ∈ Γ(K|P ) are smooth sections.
Now extend ṽi

D to invariant sections of D ∩K⊥ and ṽi
K to invariant sections in K,

so that
Jṽ1, ṽ2K = JvD1 , v

D
2 K + JvD1 , v

K
2 K + JvK1 , v

D
2 K + JvK1 , v

K
2 K.

Observe that JvD1 , v
D
2 K ⊆ D ∩K⊥, by the fact that D and Γ(K⊥)G are closed under

the bracket and vDi are elements of Γ(D ∩K⊥)G. With the fact that this is an ideal
of Γ(K⊥)G The remaining terms are elements of Γ(K)G. Therefore,

Jv1, v2K = Jṽ1, ṽ2K +K ⊂ Γ(D ∩K⊥ +K)G

proving Dred is closed under the bracket in Ered, which completes our description of
a reduced Dirac struture.

Remark 5.17. The reduction of the complexified version of Dirac structures follows
the same procedure with the difference being K is replaced by its complexification.
This is important for the central theme of this thesis since generalized complex struc-
tures are defined to be complex Dirac structures.

5.4 Reduction of Generalized Complex Structures
Analogous to the issue encountered in the previous sections, the reduced Dirac struc-
ture Lred may not have a generalized complex structure as Lred ∩ Lred = {0} may
not be fulfilled. Thus, we have the following lemma that rephrases this particular
condition:

Lemma 5.18. [6] The reduced Dirac distribution Lred is of real index zero, i.e. Lred∩
Lred = {0} if and only if

JK ∩K⊥ ⊂ K over P. (5.12)

The following theorem subsequently completes the procedure:
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Theorem 5.19. [6] Consider ρ an extended G−action on an exact Courant algebroid
E. Suppose that P is a big leaf (i.e. over △b), over which K is isotropic and G acts
freely and properly on it. If the action preserves a generalized complex structure J
on E and JK = K over P then J reduces to Ered.

Proof. [6] Theorem 5.2.

Theorem 5.19 uses the compatibility condition JK = K for the reduction of J .
The following theorem shows that reduction also works in the extreme opposite case.

Theorem 5.20. [6] With the same setup as Theorem 5.19. If K is isotropic over P
and ⟨·, ·⟩ : K × JK → R is nondegenerate then J reduces.

Example 5.21. [6] Consider C2 equipped with its standard holomorphic coordinates
zj = xj + iyj for j = 1, 2, and let Ψ be the extended R2 action on C2 defined by:

Ψ(a1) = ∂x1 + dx2 , Ψ(a2) = ∂y2 + dy1

where {a1, a2} is the standard basis for R2. Note that K = Ψ(R2) is isotropic which
also implies that the reduced Courant algebroid over C2/R2 is exact. Since the natural
pairing between K and JIK is nondegenerate, Theorem 5.20 implies that JI can be
redued by this extended action. Hence, one can compute that

K⊥ = Span{∂x1 , dy1, ∂x2 − dx1, ∂y1 − dy2, ∂y2 , dx2}.

Thus

K⊥
C ∩ L = Span{∂x1 + i∂y1 − dx2 − idy2, ∂y2 − i∂x2 − dy1 + idx1},

and K⊥
C ∩L∩KC = {0}. As a result, we can write Lred ∼= K⊥

C ∩L. Then we have an
injection π : Lred → C2/R2 sending (x1, y1, x2, y2) to R2

[y1,x2]
, in other words we express

Lred = Span{∂y1 + idx2, ∂x2 − idy1} = Span{eiω(∂y1), eiω(∂x2)}

Therefore, we show that Lred = Γeiω ⊂ TR[y1,x2]⊕T ∗R[y1,x2], which gives us the spinor
ρred = eiω where we let ω = dx2∧dy1 hence the reduced generalized complex structure
Jred is of type zero, i.e. symplectic type.

The main obstacle in the above example lies in the computations of K⊥ and
K⊥

C ∩ L. The process is summarized as follows:

1. The steps to computing K⊥ involves trial and error. Since we know that the
elements ∂x1 + dx2 and ∂y2 + dy1 are in K, we test linear combinations of
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∂xj , dxj, ∂yj , dyj for j = 1, 2 with these two elements of K by using the skew-
symmetric bilinear form

⟨X + ξ, Y + η⟩ = 1

2
(ξ(Y ) + η(X))

from Chapter 1. Explicitly, as examples, take ∂x2 and ∂x2 − dx1, we then have
that

⟨∂x1 + dx2, ∂x2⟩ =
1

2
, ⟨∂x1 + dx2, ∂x2 − dx1⟩ = 0

By definition of K⊥ as an orthogonal complement of K, ∂x2 − dx1 is in K⊥ and
∂x2 is not.

2. For the search of K⊥
C ∩L, we have to find u ∈ K⊥ such that u− iJIu ∈ K⊥

C ∩L.
To do this, we first note that the linear complex structure I has the following
properties:

(a) −I(∂xj) = −∂yj , −I(∂yj) = ∂xj ,

(b) I∗(dxj) = −dyj, I∗(dyj) = dxj.

With this, again by trial and error, we obtain the span of K⊥
C ∩ L. Explicitly,

say u = ∂x1 − dx2 then

(∂x1 − dx2)− iJI(∂x1 − dx2) = (∂x1 − dx2)− i(−∂y1 + dy2)

= ∂x1 + i∂y1 − dx2 − idy2

which is the first element in of the span of K⊥
C ∩ L. The other element can be

computed similarly.



Chapter 6

Generalized Reduction via Pure
Spinors

In this chapter, we describe the reduction procedure under the viewpoint of pure
spinors. The general idea of this chapter is to establish an alternative link between
the pure spinor line bundle of L and Lred as a Dirac structure from the pure spinors
point of view.

Recalling our set up towards a reduction procedure, let G be a compact Lie group.
Similarly to coisotropic reduction, where we pick an invariant submanifold N ⊂ M
and an equivariant isotropic subbundle K ⊂ E|N , we can obtain a map L → Lred
involving every invariant Dirac structure L ⊂ E such that L ∩ K satisfying the
condition of a constant rank gets mapped to a reduced Dirac structure Lred ⊂ Ered,
where Ered is the reduced exact Courant algebroid over N/G. Here, with an invariant
Dirac structure L ⊂ E, together with an isotropic splitting ∇ : TM → E that is
invariant and closed, we want to derive a similar map that associates the pure spinor
line bundle of L with that of Lred. Ultimately, we will arrive at the following result,
letting φ be the pure spinor of L,

φred = q∗(e
B ∧ j∗φ),

where q∗ is the pushforward map on the pure spinors, j the inclusion map of the
submanifold, and B here is a 2-form obtained as a consequence of choosing a con-
nection θ from the submanifold. In this chapter, we focus more on introducing what
each symbol of the formula does. An example is provided in the next chapter on how
computation works. For detailed construction of the formula, see [15].

This content of this chapter are the materials from [15] and the structure of a
paper also follows [15].

43
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6.1 Final Ingredients

In this section, we derive the final ingredients to obtain the formula for the pure
spinor reduction. We will first compute the 2-form B due to the connection θ chosen
as mentioned before. The formula will require an equivariant form ξ (some authors
call it a moment 1-form). Following the setup from section 5.1, we will use the
equivariant form defined in Example 5.9 in defining the 2-form B. We look to [15]
for the lemma that provides the environment to compute B. This lemma essentially
offers a helpful tool in streamlining the explanation of an isotropic G−lifted action.

Lemma 6.1. [15] Supposed that N ⊂M is an invariant submanifold such that G acts
freely on it and j : N →M be the inclusion map. Let θ ∈ Ω1(N, g) be a connection.
Let H ∈ Ω3(M) be a 3-form and ξ ∈ S1g∗ ⊗ Ω1(M) an equivariant form such that
H + ξ ∈ Ω3

G(M). If dG(H + ξ) = 0, then

B(X, Y ) = ⟨ξ(θ(Y )), θ(X)N −X⟩+ ⟨ξ(θ(X)), Y ⟩, (6.1)

for X, Y ∈ TxN, x ∈ N , defines an element of Ω2(N)G such that

iaNB = j∗ξ(a), ∀a ∈ g

where aN is the infinitesimal generator. In this case, j∗H + dB = j∗(H + ξ) + dGB
is a basic 3-form on N .

Remark 6.2. A differential form α basic if and only if it satisfies iY α and LY α for
every vector field Y . A differential form that satisfies the first condition is called
horizontal and invariant for the second condition.

Definition 6.3. Let (H, λ) be an isotropic G−lifted action and ∇ : TM → E an
invariant isotropic splitting. λ∇ : g → Γ(TM ⊕ T ∗M) is purely tangent on N if

j∗ξ∇ = 0. (6.2)

Lemma 6.4. For any invariant splitting ∇ where λ∇ is purely tangent on N . j∗H is
basic on N .

Proof.
dG(j

∗H) = dG(j
∗(H + ξ∇)) = 0

Result follows from remark 6.3
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6.2 Relation between L and Lred

In this section, we provide an alternative way of presenting Lred from L. Assume
we have the same set up as before, and fix an isotropic G−lifted action (H, λ) on
E. Suppose we are given an invariant submanifold of M , j : N → M , on which
G acts freely. Let x ∈ N then we can take, on the fibers, Kx = {λ(a)(x) | a ∈
g} + p∗(Ann(TxN)) as a subbundle of Ex. Furthermore, if we are provided with a
splitting ∇ where it is invariant and λ∇ is purely tangent on N then we can take

K = {∇aM | a ∈ g}|N ⊕ p∗(Ann(TN)). (6.3)

as an equivariant isotropic subbundle (see [5]). Using this, following the procedure in
the previous chapter, we are also able to obtain an exact Courant algebroid over the
quotient manifold Mred = N/G.

Before presenting the alternate way of describing Lred, we start from the Courant
algebroid. Note that via reduction theorem from section 5.2, we have determined
that the reduced space thus indeed have a Courant algebroid structure. Hence, our
definition of a Courant algebroid, denote pred, ⟨·, ·⟩red, and J·, ·Kred the anchor, bilinear
form, and bracket corresponding to the reduced exact Courant algebroid Ered. With
the aid of these, we can now describe Lred in the language of spinor bundles.

We begin with q : N →Mred as the quotient map and x ∈ N . Suppose that k⊥ ∈ K⊥
x ,

then denote [k⊥ +K] the orbit (with respect to G) in Ered|q(x). Let k⊥1 , k
⊥
2 ∈ K⊥

x and
κ ∈ T ∗

q(x)Mred where Mred is the corresponding reduced manifold on Ered, then we
can deduce that

⟨[k⊥1 +K], [k⊥2 +K]⟩red = ⟨k⊥1 , k⊥2 ⟩ (6.4)

and
p∗redκ = [p∗dq∗xκ+K]. (6.5)

The equation 6.5 is well defined (see [15] Remark 2.12)From here on, we can ubiqui-
tously assume this splitting exists and chosen.

Now, we choose ∇ an invariant splitting such that λ∇ is purely tangent on N .
We claim that ∇(TN) ⊂ K⊥. Indeed let X ∈ TN and ξ∇ : g → Ω1(M) be the
equivariant form of (H∇, λ∇). An element of K can be described as

k = ∇aM + p∗(ξ∇(a) + κ)

for a ∈ g and κ ∈ Ann(TN). Hence,

⟨∇X, k⟩ = ⟨∇X,∇aM + p∗(ξ∇(a) + κ)⟩ = iX(ξ∇(a) + κ) = 0,
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as j∗(ξ∇(a) + κ) = 0. This proves that ∇X ∈ K⊥.

We can now provide an explicit description of ∇red.

Lemma 6.5. [15] Let θ ∈ Ω1(N, g) be a connection on N ⊂ M . Suppose that ∇ is
an invariant splitting, then we can define the reduced splitting ∇red : TMred → Ered
via:

∇reddq(X) = [∇X + p∗iXB +K], X ∈ TN, (6.6)

where B ∈ Ω2(N) as described in 6.1 for ξ = ξ∇. On top of that, ∇red is also an
isotropic splitting for Ered. Furthermore, its curvature Hred ∈ Ω3(Mred) is given by

q∗Hred = j∗H + dB, (6.7)

where H is the curvature of ∇.

We defer the reader to [15] for the complete proof of the lemma.

We can now provide a different interpretation of Lred for L ⊂ E an invariant Dirac
structure. Let ∇ be an invariant splitting, θ ∈ Ω1(N, g) a connection, and the 2-form
B ∈ Ω2(N) as in 6.1 for ξ = ξ∇. Fix x ∈ N and define

Bj(Lx) = {X + dj∗xβ − iXB ∈ TxN ⊕ T ∗
xN | ∇X + p∗β ∈ Lx} (6.8)

Proposition 6.6. [15] Let x ∈ N and Y + η ∈ Tq(x)Mred ⊕ T ∗
q(x)Mred. One has that

∇redY + p∗redη ∈ Lred|q(x) if and only if there exists X ∈ TxN such that

1. Y = dqx(X);

2. X + dq∗xη ∈ Bj(Lx).

Proof. The proof is given in [15] and paraphrased here. Suppose we have that X ′ ∈
TxN such that dqx(X ′) = Y . From the definition of pred 6.5, and ∇red 6.6, then

∇redY + p∗redη = [∇X ′ + p∗(iX′B + dq∗xη) +K].

where ∇X ′ + p∗(iX′B + d∗xη) = k⊥. From definition of Lred, the following statement
holds

∇redY + p∗redη ∈ Lred|q(x) ⇔ ∃k ∈ Kx such that k
⊥ + k ∈ Lx

By Remark 6.3, k = ∇uM |x + p∗(iXB + α), for some u ∈ g and α ∈ Ann(TxN) since
λ∇+B is purely tangent onN . DefineX ′ = X+uN(x) ∈ TxN and β = iXB+dq∗xη+α ∈
T ∗
xM . Then,

∇X + p∗β = k⊥ + k ∈ Lx

Observe that dqx(X) = dqx(X
′) = Y and as α belong to Ann(TxN), one has dj∗xβ −

iXB = dq∗xη as required.
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Remark 6.7. [15] Bj(Lx) can be characterized as a Dirac structure with respect to
the j∗H−twisted Courant bracket provided it is smooth as a vector bundle (see [13]).
In this way, Proposition 6.6 states that the map q can be defined as a forward Dirac
map (see [7] Definition 2.8) as follows

q : (N, j∗H,Bj(Lx)) → (Mred, Hred, F∇red
(Lred))

where Hred represents the curvature of ∇red and F∇red
is the inverse map of 2.7 on

the level of the reduced structure.

We now proceed to determine a relation between the pure spinor line bundle of
L and Lred. We begin by providing a description of U∇(Lx). As always, we start on
a linear algebra level of the problem. We recall several facts of from [12] regarding
the spinors. Let Sx ⊂ TxM be the image of Lx under the anchor map p. Define
ωS ∈ ∧2S∗ by

ωS(X, Y ) = ξ(Y ), (6.9)

where ξ ∈ T ∗
xM is such that ∇X+p∗ξ ∈ Lx. The fact that L is isotropic implies that

ω is antisymmetric.

Remark 6.8. 6.9 does not depend on the choice of ξ. Since, for every p∗η ∈ Lx ∩
p∗(T ∗

xM),
η(Y ) = 0,∀Y ∈ Sx

Recall that we can express any spinor of U∇(Lx) in the form of φx = e−ω∧Ω where Ω
is the wedge product of 1-forms such that the number of 1-forms is the codimension
of Lx. This can be summarised in the following proposition.

Proposition 6.9. [12] Let 0 ̸= Ω ∈ det(Ann(Sx)) ⊂ ∧•T ∗
xM . One has that

φx = e−ω ∧ Ω (6.10)

is a nonzero generator of U∇(Lx), where ω ∈ ∧2T ∗
xM is any extension of ωS.

Since L is isotropic, we have the following

Ann(Sx) = Lx ∩ p∗(T ∗
xM). (6.11)

In the case of covariant spinor, interchanging T ∗
xM with TxM will lead to the repre-

sentation of U op
∇ (Lx). The covariant pure spinor line of Lx is then spanned by e−π∧X,

where π ∈ ∧2TxM is a bivector and X ∈ det(Lx ∩∇TxM).

In the following theorem by Drummond [15], we present the result of obtaining a
link between the canonical line bundles of L and Lred.
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Theorem 6.10. [15] For φx ∈ U∇(Lx),

ωopx := dqx ◦Θv(e
B ∧ dj∗xφx) ̸= 0 ⇔ Lx ∩Kx = 0, (6.12)

where Θv : ∧•T ∗
xN → ∧•TxN is the map 2.20 corresponding to v ∈ det(TxN). In this

case, ωopx is a generator of the covariant canonical line bundle U op
∇ (Lred|q(x)).

Proof. [15] Theorem 3.3

On the other hand, we also have the contravariant version of Theorem 6.10, i.e. the
contravariant pure spinor line bundle of Lred is as follows

Θµ ◦ dqx ◦Θv(e
B ∧ dj∗xφx)

which lies in ∧•Tq(x)Mred. Note that it is the map from 2.19. Hence, since the spaces
of contravariant and covariant pure spinor line bundles are isomorphic, we can utilize
any one of them. Therefore, we will drop the U op notation and just use U .

Lastly, we provide the steps in computing the push-forward of the quotient map
q : N → Mred. The digression of this small but crucial part is summarised from [2].
We first provide a short comment on a particular description of differential forms.
Suppose G is compact and connected. Denote W an open subset of Mred such that
N |q−1(W) is trivial and let prG : N |q−1(W) → G be the projection onto the fiber. Any
forms on N from a local perspective is given by:

fq∗γ ∧ pr∗Gζ

where γ a form on Mred and f is a continuously differentiable function on q−1(W).
Furthermore, ζ belongs to two different types depending on whether or not ζ is top
form, i.e.

1. ζ ∈ Ωr(G), type (I)

2. ζ ∈ Ωk(G) where k < r, type (II)

where r is the dimension of the group G.

Proposition 6.11. [2] The push-forward is then

q∗ : Ω(N) → Ω(Mred)

given by:

τ = fq∗γ ∧ pr∗Gζ 7→

(

∫
G

f(·, g)ζ)γ, if τ is type(I);

0, if τ is type (II).
(6.13)

The integral symbol above denotes the fiber integration in [2].
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6.3 Reduction Process
With the neccessary background and setup, we can now present theorem for the
reduction of pure spinors. Most of the important derivation and work are shown in the
previous sections with details such as proofs can be consulted from [15]. Essentially,
the theorem provides a comprehensive formula to compute the pure spinor of a Dirac
structure after the process of "quotient-ing out" the symmetries via the ∇ an invariant
isotropic splitting and the associated lifted action. This process also require one to
pick a connection, due to the combination of pull-back of the inclusion j and push-
forward of the principal bundle q to achieve Lred from L. This connection then comes
at a cost of introducting a 2-form B which we can be obtained via Lemma 6.1. Then
the formula is as follows:

Theorem 6.12. [15] Suppose we have a connection θ ∈ Ω1(N, g) hence a 2-form B
given by 6.1 with ξ = ξ∇ an equivariant form. Let φ be a nowhere-zero invariant
section of U∇(L). Then

φred = q∗(e
B ∧ j∗φ) (6.14)

is a section of U∇(Lred).

Some important examples and applications can be found in [15], including the reduc-
tion of generalized Calabi-Yau structures and a reinvention of a result of T-duality
by Cavalcanti and Gualtieri [11]. In our case, we will immediately apply the result in
the following chapter. We end the chapter with a remark that potentially have a key
role to play in exploring further computations outside of the scope of this thesis.

Remark 6.13. Suppose we have connections θ1, θ2 ∈ Ω1(N, g), then we can also
derive that B1−B2 is a basic 2-form. Now letting B̃ ∈ Ω2(Mred) where q∗B̃ = B1−B2,
then we can show that,

φ1 = q∗ ◦ (eB1 ∧ j∗φ) = q∗(e
(B1−B2) ∧ eB2 ∧ j∗φ) = eB ∧ φ2.

We end this chapter with a short comment regarding the condition L ∩ K = 0.
It is known that there exists some cases where this condition may not be satisfied.
Hence, there is a version of Theorem 6.12, that engages with these cases. See [15] for
the complete details.
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Chapter 7

Decomposition and Reduction

As the title of the thesis suggest and mentioned in the introduction, we want to look
at the consequences of generalized reduction on the decomposition of spinors of gen-
eralized complex manifolds. The Example 5.21 is used as our experiment as it is an
interesting example in the sense where the reduction performed does not preserve the
same type on the generalized complex structure, i.e. from complex to symplectic type.

We first perform the spinor decomposition on both C2 as a generalized complex
structure of type n and R2 as a generalized complex structure of type 0.

Then we show the reduction in the sense of Theorem 6.12. There are several
steps to consider, i.e. we first have to choose a connection θ ∈ Ω1(N, g) and use this
together with ξ ∈ Sg⊗ Ω1(M) to compute B as described in Lemma 6.1. Note that
we refer to Theorem 6.12 since the condition of L|N ∩K = 0 is satisfied as described
in the example.

Finally, we combine both ideas of our example.

7.1 Decomposition

In this section we want to apply the the Decomposition Theorems in Chapter 4 to our
example of generalized complex structure of type 2 and type 0. We first determine
the spinors of complex type

Example 7.1. Recall we have the following grading

∧•T ∗C2 ⊗ C = U2 ⊕ U1 ⊕ U0 ⊕ U−1 ⊕ U−2

51
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and from 4.1, we have that Uk =
⊕
p−q=k

∧p,qT ∗. Let Ω(p,q) denote the (p, q)-forms.

Then we have that

1. U2 = Ω(2,0)

2. U1 = Ω(2,1) ⊕ Ω(1,0)

3. U0 = Ω(2,2) ⊕ Ω(1,1) ⊕ Ω(0,0)

4. U−1 = Ω(1,2) ⊕ Ω(0,1)

5. U−2 = Ω(0,2)

Locally, let {z1, z2} be a basis of C2 then a form in Ω(2,0) is a span of dz1∧dz2, which is
also the span of the canonical line bundle, hence the pure spinor of C2 as a generalized
complex structure of type 2.

Alternatively, this decomposition can be summarized in the following diamond dia-
gram:

Ω2,2

Ω2,1 Ω1,2

Ω2,0 Ω1,1 Ω0,2

Ω1,0 Ω0,1

Ω0,0

It can be observed that going from left to right coresponds to the change in eigenvalue
while going from bottom to top corresponds to the n−forms where n = p+ q.

Remark 7.2. It can be observed as well that the diagram resembles the Hodge
diamond.

In the case of the symplectic decomposition, the explicit expression of the spinors
in each Uk only requires simplifying the expression eiω(e

Λ
2iα) with different α based

on which Uk we are dealing with.

Example 7.3. Using Theorem 4.4, we can immediately determine the Uk decompo-
sition. Let ω be the canonical symplectic form on R2,

1. For k = 0, we take α to be smooth functions on R2, which gives us

U1 = {eiωf | f ∈ C∞(R2)}

2. For k = 1, we take α to be 1-forms on R2, which gives us,

U0 = {α | α ∈ Ω(R2)}
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3. For k = 2, we take α to be 2-forms on R2, which gives us

U−1 = {−fe−iω | f ∈ C∞(R2)}

7.2 Reduction

Recall that from Example 5.21, we managed to reduced the generalized complex struc-
ture of complex type on C2 to a generalized comples structure of symplectic type on
R2. In short, we obtain the complex Dirac structure Lred by identifying it with K⊥∩L
and this complex Dirac structure provided us the spinor of symplectic type ρ = eiω.

Now we begin the process of reduction using Theorem 6.12. The first step to this is
to compute the 2-form B of Lemma 6.1. To do this, let θ = dx1⊗ (1, 0)+dy2⊗ (0, 1),
ξ(t1, t2) = t1dx2 + t2dy1 and H = 0 there is no 3-forms in R2 by dimensionality.
Let {e1, e2} be basis of R2 then we have {e1, e2} the dual basis. A quick computation
confirms that

dG(H + ξ) = dGξ = dξ − iXei
ξ ⊗ ei

= 0− i∂x1ξ ⊗ e1 − i∂y2ξ ⊗ e2

= 0

(7.1)

which shows the ξ chosen is valid. Then the 2-form B can be computed using the
following formula from 6.1:

B(X, Y ) = ⟨ξ(θ(Y )), θ(X)N −X⟩+ ⟨ξ(θ(X)), Y ⟩,

We perform the computations case by case involving x1, x2, y1, y2:
For ∂x1 , ∂x2 , We have that

B(∂x1 , ∂x2) = ⟨ξ(θ(∂x2), X(θ(∂x1))− ∂x1⟩+ ⟨ξ(θ(∂x1))∂x2⟩
= ⟨0, 0⟩+ ⟨dx2, ∂x2⟩
= 1

(7.2)

For ∂y1 , ∂y2 , We have that

B(∂y1 , ∂y2) = ⟨ξ(θ(∂y2), X(θ(∂y1))− ∂y1⟩+ ⟨ξ(θ(∂y1))∂y2⟩
= ⟨dy1, ∂y1⟩+ ⟨0, ∂y2⟩
= −1

(7.3)
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For ∂x1 , ∂y1 , We have that

B(∂x1 , ∂y1) = ⟨ξ(θ(∂y1), X(θ(∂x1))− ∂x1⟩+ ⟨ξ(θ(∂x1)), ∂y1⟩
= ⟨0, ∂x1 − ∂x1⟩+ ⟨dx2, ∂y1⟩
= 0

(7.4)

For ∂x1 , ∂y2 , We have that

B(∂x1 , ∂y2) = ⟨ξ(θ(∂y2), X(θ(∂x1))− ∂x1⟩+ ⟨ξ(θ(∂x1)), ∂y2⟩
= ⟨dy2, ∂x1 − ∂x1⟩+ ⟨dx2, ∂y2⟩
= 0

(7.5)

For ∂x2 , ∂y1 , We have that

B(∂x2 , ∂y1) = ⟨ξ(θ(∂y1), X(θ(∂x2))− ∂x2⟩+ ⟨ξ(θ(∂x2)), ∂y1⟩
= ⟨0, 0− ∂x2⟩+ ⟨0, ∂y1⟩
= 0

(7.6)

For ∂x2 , ∂y2 , We have that

B(∂x2 , ∂y2) = ⟨ξ(θ(∂y2), X(θ(∂x2))− ∂x2⟩+ ⟨ξ(θ(∂x2)), ∂y2⟩
= ⟨dy1, 0− ∂x2⟩+ ⟨0, ∂y2⟩
= 0

(7.7)

Each of the above are coefficient of the 2-forms with respect to the local coordinates.
Hence we obtain B by summing over these coefficients together with the 2-forms.
Therefore we get

B = dx1 ∧ dx2 − dy1 ∧ dy2
Thus, we have all the ingredients to explicitly calculate the reduce pure spinor φred

of the reduction process stated in Theorem 6.12. First, recall from previous section
that, we have U2 as the canonical line bundle where spanned by the (2, 0) forms of
the decomposition,i.e. dz1 ∧ dz2 which can be expressed in terms x1, y1, x2, y2

dz1 ∧ dz2 = (dx1 + idy1) ∧ (dx2 + idy2)

= (dx1 ∧ dx2 − dy1 ∧ dy2) + i(dx1 ∧ dy2 + dy1 ∧ dx2)
(7.8)

which we denote φ as in the expression 6.14. Now in our case, we choose C2 itself to
be the invariant submanifold, hence j∗ is the identity map. Thus, we have to compute
the following

eB ∧ φ = (1 +B) ∧ φ
= φ+B ∧ φ
= φ+ (−2dx1 ∧ dx2 ∧ dy1 ∧ dy2)
= φ+ (−2dx2 ∧ dy1 ∧ dx1 ∧ dy2).

(7.9)
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where the last line is just interchanging the terms so that it is convenient when we
compute the pushforward q∗. Performing the pushforward on the above then yields

φred = q∗(φ+ (−2dx2 ∧ dy1 ∧ dx1 ∧ dy2))
= i− 2dx2 ∧ dy1
= i(1 + 2idx2 ∧ dy1)
= ieiω.

(7.10)

where ω = 2dx2 ∧ dy1 and ieiω lies in U1, the canonical line bundle of the general-
ized complex structure of type 0 on R2, which is what we expected from Example 5.21.

7.3 Decomposition+Reduction

To proceed to see how this reduction process affects the spinor decomposition, we
perform the same procedure on all Uk of generalized complex structure of type 2 on
C2 and see in which Uk it is in on the generalized complex structure of type 0 on R2.
To summarize it, We have the following to summarize the result:

1. A spinor in U2 of C2 reduces to ieiω which lies in U1 of R2;

2. A spinor in U1 of C2 reduces to dy1 which lies in U0 of R2;

3. A spinor in U0 of C2 reduces to −2ieiω whcih lies in U1 of R2;

4. A spinor in U−1 of C2 reduces to −dy1 which lies in U0 of R2;

5. A spinor in U−2 of C2 reduces to −ieiω which lies in U−1 of R2.

Indeed, for U1 = Ω2,1⊕Ω1,0 we choose dz1∧dz2∧dz̄1+dz1 as our spinor which locally
we can simplify

dz1 ∧ dz2 ∧ dz̄1 + dz1 = (dx1 + idy1) ∧ (dx2 + idy2) ∧ (dx1 − idy1) + (dx1 + idy1)

= (2idx1 ∧ dy1 ∧ dx2 + 2dy1 ∧ dx1 ∧ dy2) + (dx1 + idy1)

(7.11)

Denote this by φ, and we have that

eB ∧ φ = φ+B ∧ φ
= φ+ i(dx1 ∧ dx2 ∧ dy1)− dy1 ∧ dy2 ∧ dx1

(7.12)
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Subsequently the push-forward q∗ sends terms with dx2 ∧ dy1 to zero, we have that

q∗(φ) = dy1 (7.13)

which is in U0 of the symplectic decomposition. Repeat the same procedure to the
spinors of the remaining Uk yields the result above.

Remark 7.4. It can be seen that the reduction process could be seen collapsing the
diamond diagram 7.1 of the complex decomposition into a single line of Uk symplec-
tic decomposition. However this speculation is not concrete since U0 of the complex
decomposition did not reduce to the expected eigenbundle in the symplectic decom-
position. Suggestions on changes in computations is provided in the next chapter in
hope of noticing a trend in relating the reduction process to the decomposition of
spinors.



Chapter 8

Suggestions, Outlook and Potential
Future Work

As shown in the previous chapter, due to where the pure spinor of U0 of C2 reduces
to, it is not possible to conclude how the reduction process affects the decomposition
of spinors. The result is very close to a certain pattern however not fruitful at the
end. However, further attempts can be made, provided certain changes are made in
the computations.

First, note that, Remark 6.13 shows that the if a different 2-form B is used, the
overall reduced spinor φred could be different, subsequently the decomposition could
be different as well. Besides that, more examples could be explored using Theorem
6.12, which could provide a trend or pattern in terms of how the decomposition of
spinors will become after reduction. Furthermore, an attempt on developing a equiv-
ariant model for spinors might also be helpful.

Moreover, there are also several potential future work to be explored in terms of
how reduction process affects generalized complex structures. After spinor decom-
position, the next interesting topic to explore would be the Hodge decomposition of
generalized Kahler manifold [17]. It would be interesting to see how the reduction pro-
cess of generalized Kahler structure [6] affects the Hodge decomposition. Potentially,
a result similar to Proposition 6.14 of [1] is desired as it shows the commutativity of
performing reduction and decomposition in simple terms.

All in all, there are definitely more to explore in terms of both reduction and
decomposition.
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