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Abstract

This thesis aims to understand if the theorem prover LEAN positively in-
fluences students’ understanding of mathematical proving. To this end, we
perform a pilot study concerning freshmen students at the University of
Zurich (UZH). While doing so, we apply certain teaching methods and gather
data from the volunteer students enrolled in the “Foundations of Mathematics”
course. After eleven weeks of study covering some exercise questions imple-
mented with LEAN, we measure LEAN students’ performances in proving
mathematical statements, compared to other students who are not engaged
with LEAN. For this measurement, we interview five LEAN and four Non-
LEAN students and we analyze the scores of all students in the final exam.
Finally, we check significance by performing a t-test for independent samples
and the Mann-Whitney U -test.
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1 Introduction
Automated theorem provers and proof assistants have been around since the
1960s, when the first formal language AUTOMATH was developed [Geu09]. Since
then, many theorem provers have come forth, such as Agda, Isabelle and Coq.
Each of them has its own strengths and weaknesses. For example, Agda has no
proof automation and Isabelle has no dependent types in its underlying structure,
meaning that predicate logic can only be done in a challenging way [Pau86; AV24].
While automated theorem provers are more vulnerable to mistakes, proof assistants
are robust, but usually very difficult to use.

To take advantage of both systems, LEAN was introduced in 2013 by Leonardo de
Moura at Microsoft Research Redmond, and is one of the programming languages
that acts as a bridge between proof assistant and automated theorem prover
[Avi+23]. It differs from Coq, for instance, LEAN uses a more mathematician-
friendly syntax and is supported by a large community of mathematicians [Com18],
while Coq is still used more in computer sciences circles [AV19; Com24; Com23b;
AV23a]. Still, both are based on adaptations of the calculus of constructions.

The calculus of constructions is formed by two main topics: type theory and
λ-calculus. Type theory was developed by Bertrand Russell around 1908 to solve
paradoxes such as the Russell paradox by introducing a hierarchy of types and by
not allowing types of the same order to refer to themselves [Rus08]. Type theory
has been developed further since then, but set theory remains the foundation most
taught in universities.

Independently, Alonzo Church came up with the idea of λ-calculus in the 1930s.
It is a concept that allows us to abstract functions in such a way that we
can implement them in computers [Rod22]. When we add type theory to the
λ-calculus, we initially get a system that is Turing complete, but not restrictive
enough to do mathematical logic with. By adding restrictions and building new
structures for this system, we end up with the calculus of constructions. With this
constructive foundation, one can do first-order logic on a computer and verify proofs.

Even though LEAN is based on such a high level of abstract mathematics, it has
gained much popularity in teaching undergraduate students in recent years, and
even studies about the effects of teaching mathematics with LEAN are coming up
[Avi19; TI21]. While trends show that teaching with LEAN could have positive
learning effects, it remains a challenge to integrate teaching LEAN into current
university curricula.
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This thesis aims to provide further evidence of the positive effects of teaching
with LEAN concerning freshman students’ performance in the “Foundations of
Mathematics” course taught at the Institute of Mathematics of the University
of Zurich. To this end, we learn LEAN ourselves by implementing seven LEAN
exercise sheets based on the content of the course and we organise eleven sessions
over one semester in which volunteer students are taught the foundations of
mathematics with LEAN.

To be able to carry out such a study, we first consider certain teaching methods
like writing appealing goals for the students [Mag78], trying to turn extrinsic
motivation into intrinsic motivation [DR93], varying a lot between frontal teaching
and experimented learning [Wah13], choosing an appropriate difficulty level [VC78],
differentiating teaching for different skill levels [Wod14], embracing digital teaching
resources [Pet14] and creating a learn-efficient class climate [CMP14].

Secondly, we consider the data gathering. More explicitly, we follow the structure
of Thoma and Iannone by conducting interviews with LEAN and Non-LEAN
students to compare their proof writing and by checking whether LEAN students
perform better in the final exam [TI21]. To measure the significance of the results,
we perform two statistical tests, the t-test for independent samples and the Mann-
Whitney U -test [DAT24c; DAT24a]. We additionally use a questionnaire with
open and closed questions to better understand the motivation and contentment of
the LEAN students. It is important to mention that the names of the students
considered are all anonymised using Romansh language starting with L for LEAN
students and N for Non-LEAN students. The gender of the names does not
represent the gender of the actual students.

The structure of the thesis is as follows. In Section 2, we provide the necessary
background for the notions in the foundations of mathematics concerning the
readers at the bachelor level. We further introduce the necessary background on
type theory and λ-calculus as simply as possible, without affecting the core ideas.
Section 3 discusses the teaching methods considered for the meetings with the
volunteer students and explains how we collect our data. The results, supported
by sample solutions of students and statistical tests, are then presented in Section
4. In particular, we present an evaluation of the students’ proof structure, their
exam scores, and their progress. Finally, we discuss our experiences learning and
teaching (with) LEAN in Section 5.
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2 Preliminaries
Here we talk about the topics the students learn in the course “Foundations of
Mathematics” at UZH in the Fall semester of 2023 that are implemented and
discussed in LEAN. We also talk about LEAN’s logical foundations and the way
LEAN works.

2.1 Foundations of Mathematics

The course “Foundations of Mathematics” is a first-semester course at UZH, where
the students learn about logic and proofs, how sets and functions are defined and
categorized and how one can build up the natural numbers in an axiomatic way
using set theory. In the Fall semester of 2023, almost the whole course is based on
a book by Hammack [Ham18]. Only one of the last topics about natural numbers
relies on a different text by Stewart [ST15]. At the end of the course, the lecturer
introduces order relations, once again based on the latter reference. In the next
few subchapters, relating to these two references, we present the most important
results from each topic. Only the results we need for the interview questions are
explained here.

Propositional Logic

Propositional logic is the study of statements and logical connections. It gives rise
to the set-theoretic foundations of mathematics, as it gives us the possibility to
derive the truth value of a given statement from known statements by combining
them correctly.

Definition 2.1.1. A statement is a sentence or mathematical expression that is
either definitely true or definitely false.

Example 2.1.2. Here are some (non-)examples of statements.

• In summer, the weather is generally warmer.

• We have that 2 < 5.

• “add two to both sides of the equation” is not a statement.

Statements can be connected in certain ways. Depending on the truth value of
those statements, the truth value of their combination may vary. We can give an
overview of the corresponding truth values in so-called truth tables.
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Definition 2.1.3. The following truth table shows the truth values for the logical
connectives ∧ (and), ∨ (or), ¬ (not), → (implies) and ↔ (equivalent to), where P
and Q are both statements.

P Q ¬P P ∧ Q P ∨ Q P → Q Q → P P ↔ Q
T T F T T T T T
T F F F T F T F
F T T F T T F F
F F T F F T T T

Table 1: Truth table for simple logical connectives.

One can use more than one logical connective to combine statements. It is then
possible that we create two statements that “say the same thing”, even though they
look different.

Definition 2.1.4. Two statements are called logically equivalent if they have the
same truth value under all possible assignments of truth values to the statements
occuring in them.

The following is an example for two such logically equivalent statements. The
yellow marked truth values are the same for all cases.

Example 2.1.5. The statements P → Q and (¬Q)→ (¬P ) are logically equivalent
since they have the same truth values.

Proof. We compare the truth values of the two statements in a truth table.

P Q ¬P ¬Q P → Q (¬Q)→ (¬P )
T T F F T T
T F F T F F
F T T F T T
F F T T T T

Table 2: Logical equivalence proved by a truth table.

Remark 2.1.6. We denote two logically equivalent statements P and Q as follows
P = Q.

The so-called deMorgan laws are two examples of logical equivalence.
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Theorem 2.1.7 (deMorgan laws). Let P and Q be statements. Then the following
are logical equivalences

• ¬(P ∧Q) = (¬P ) ∨ (¬Q),

• ¬(P ∨Q) = (¬P ) ∧ (¬Q).

Proof. We can again prove this using truth tables.

P Q ¬P ¬Q P ∧Q ¬(P ∧Q) (¬P ) ∨ (¬Q)
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

Table 3: One of the deMorgan laws proved by a truth table.

P Q ¬P ¬Q P ∨Q ¬(P ∨Q) (¬P ) ∧ (¬Q)
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

Table 4: The second deMorgan law proved by a truth table.

Remark 2.1.8. In the interviews we ask the students to prove the deMorgan laws
differently, i.e. without a truth table.

In addition to the logical connectives, we have two so-called quantifiers. They tell
us if a statement holds for at least a single or for all “things”.

Definition 2.1.9. The symbols ∃ and ∀ are called quantifiers.

• The symbol ∃ stands for “there exists” or “there is”.

• The symbol ∀ stands for “for all” or “for every”.

We show both quantifiers used in a single example.

Example 2.1.10. Consider the expression ∀x ∈ R, ∃ c ∈ R, c · x = 0. This means
that for all real numbers x, there exists a real number c such that c · x = 0 holds.
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Basic Set Theory

In this topic, we give a better understanding of the “things” mentioned above. We
start by defining a set.

Definition 2.1.11. A set is a collection of things. This things are called the
elements of the set.

Let us see some explicit examples.

Example 2.1.12. The following are all examples of sets:

• S1 := {1, 2, 3, 4},

• S2 := {car, yellow, sky},

• S3 := {x | x is even},

• S4 := N (or Z,Q,R).

As one can see, the elements of a set can take on all shapes and sizes. In our
context, however, elements are mostly numbers. Independent of the type of these
elements, we can always say how many elements we have in a set.

Definition 2.1.13. The cardinality of a set S is the number of elements in that
set. We denote the cardinality of S with |S| or #S.

Relating to the example above, let us see some cases of different cardinality.

Example 2.1.14. The sets S1 and S2 from before have cardinality |S1| = 4 and
|S2| = 3 respectively.

Not all sets need to have a finite number of elements. We can define when a set is
finite or infinite as follows.

Definition 2.1.15. We say that the cardinality of a set S is finite if there exists
a natural number n such that |S| = n. If |S| > n holds for all natural numbers, we
say that S is an infinite set.

Similar to the logical connectives, we want to have a notion for when two sets are
equal.

Definition 2.1.16. Two sets are said to be equal if they contain exactly the same
elements.

The order of the elements is not relevant, as one can see in the example below.

Example 2.1.17. The sets {1, 2, 3, 4} and {4, 3, 2, 1} are equal.
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We are now at a point where we can explore more sophisticated set structures like
the ones below.

Definition 2.1.18. There are three “special” sets to consider:

• Empty set: The empty set ∅ is the set with no elements.

• Subset: Let A and B be sets. If every element of B is also an element of A,
then B is called a subset of A. We denote this by B ⊆ A.

• Power set: The set of all subsets of a set A is called the power set and it is
denoted by P(A).

We present an explicit example for the power set. With this example, it should
also become clear what subsets and the empty set are.

Example 2.1.19. Let A := {1, 2, 3}, then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A}

Like with statements, there are certain combinations we can do to create new sets
from given sets. These combinations are called operations.

Definition 2.1.20. We can define various operations with two sets A and B both
lying in a universal set S:

• The union of A and B is the set: A ∪B := {x | x ∈ A ∨ x ∈ B}.

• The intersection of A and B is the set: A ∩B := {x | x ∈ A ∧ x ∈ B}.

• The difference of A and B is the set: A \B := {x | x ∈ A ∧ x /∈ B}.

• The complement of either A or B is the set: A := {x | x /∈ A}.

• The cartesian product of A and B is the set: A×B := {(a, b) | a ∈ A∧ b ∈
B}.

We can use Venn diagrams to illustrate sets informally. In a Venn diagram, sets
are usually drawn as circles or ovals, while the universal set is a rectangle around
the sets.
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Figure 1: Venn diagram [Wet19]

We only have 26 alphabetical symbols, so if we want to have a huge number of sets
to combine, it is convenient to use indexed sets.

Definition 2.1.21. We can label sets with a subscript, for example i. The sets
A1, A2, A3, ... or simply Ai, i ∈ I are called indexed sets. The symbol I denotes
the set of the indexes.

Remark 2.1.22. We often use I = N, but I can be any kind of set.

Using these indexed sets, we can define bigger unions and intersections of sets.

Definition 2.1.23. Let Ai be indexed sets, where i ∈ I.

• The union of all Ai is the set:
⋃

i∈I Ai := {x | ∃ i ∈ I, x ∈ Ai}.

• The intersection of all Ai is the set:
⋂

i∈I Ai := {x | ∀ i ∈ I, x ∈ Ai}.

We have a look at two examples.

Example 2.1.24.

• Let I = {1, 2, 3} and A1 = {1}, A2 = {1, 2}, A3 = {1, 2, 3}. Then,⋃
i∈I

Ai = {1, 2, 3} and
⋂
i∈I

Ai = {1}.

• Now let J = N and Aj = {x | x divides j}. Then,⋃
j∈J

Aj = N and
⋂
j∈J

Aj = {1}.

8



Proofs

There are certain procedures one can follow when conducting a proof. The most
relevant ones are discussed here. We follow each definition with a proof example.

Definition 2.1.25. Direct proofs are the most intuitive ones, they start with the
sentence “suppose P ” and end with the sentence “therefore we have Q”. In between
those two, we try to get from one to the other using logical statements, definitions
and mathematical facts.

In [Ham18], it is said that while one can write each transformation or step during
the proof on a single line at the beginning, we should write a single paragraph at a
later point. In LEAN, we have exactly this line-by-line style of proof, as can be
seen in Chapter 2.2), which helps one see the small steps one should take to get to
the desired result. This is why we also use this step-by-step form in the examples.
Example 2.1.26. We want to prove that if we add two natural even numbers a and
b (x is even if there exists n ∈ N such that x = 2 · n), the resulting number will be
even again. The proof goes as follows.

Proof.
Suppose that a and b are even.
Then a = 2 · n and b = 2 ·m for some n,m ∈ N.
Let c = a+ b.
Then c = 2 · n+ 2 ·m. This means that c = 2 · (n+m), where (n+m) ∈ N.
Therefore, c is even.
That concludes our proof.

While we could prove conditional statements only with direct proofs, it is often
convenient to use the logical equivalence of P ⇒ Q and (¬Q)⇒ (¬P ) and prove
a statement the other way around. We proved this logical equivalence in the
Subsection 2.1.

Definition 2.1.27. Proofs starting with “Assume that Q does not hold.” and
ending with “Therefore P does not hold.”, are called contrapositive proof.

Example 2.1.28. We want to prove that for a natural number n, the statement “n2

is even” implies that “n is even” using a contrapositive proof. The proof looks like
this.

Proof.
Suppose that n is not even (i.e. n = 2 · c+ 1, for some c ∈ N).
Then, n2 = n · n = (2 · c+ 1) · (2 · c+ 1).
But this gives us n2 = 4 · c2 + 4 · c+ 1 = 2 · (2 · c · (c+ 1)) + 1.
And (2 · c · (c+ 1)) ∈ N.
Therefore, n2 is not even.
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There is a third important proof structure, which is often confused with the
contrapositive proof by undergraduate students.

Definition 2.1.29. When doing a proof by contradiction, we assume that the
statement is false and then do a direct proof until we end up in a contradiction.

Example 2.1.30. We prove the same statement as above but with a proof by
contradiction. In this case, the proof goes like this.

Proof.
Assume (wrongly) that n2 is even but n is not.
This means that n2 = 2 · c and n = 2 · k + 1 for some c, k ∈ N.
We have that n2 = n · n = (2 · k + 1) · (2 · k + 1).
Which leads to 2 · c = 4 · k2 + 4 · k + 1.
We rewrite this as 1 = 2 · (c− 2 · k2 − 2 · k).
Therefore, 1 is even.
But this is a contradiction. Which concludes that the original statement is true.

Carefully compare the examples given for the contrapositive proof and the proof
by contradiction and understand the fundamental differences between those two.

Mathematical Induction

When we want to prove that a statement holds for all natural numbers, we can do
a proof by induction.

Definition 2.1.31. Let S1, S2, . . . all be mathematical statements we want to
prove to be true. In a proof by induction, we prove this as follows.

• Prove that the first statement S1 is true (base case).

• Assume that the statement Sn is true for some n (induction hypothesis).

• Prove that Sn+1 holds (induction step).

One can then conclude that all statements Sk are true.

Let us see how we can use a proof by induction to prove a statement.

Example 2.1.32. We can prove the famous Gauss’ formula, which apparently, he
found when he was nine, using induction. We want to prove that 1+2+3+ ...+k =
(k · (k + 1))/2. We start with the base case:
Assume that k = 1. Then we have that 1 = (1 · (1 + 1))/2 = 1.
This concludes the base case.
Assume that that 1 + 2 + 3 + ...+ n = (n · (n+ 1))/2 holds for some n ∈ N.
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Our goal is to prove that 1 + 2 + 3 + ...+ n+ (n+ 1) = ((n+ 1) · ((n+ 1) + 1))/2.
We can rewrite the left-hand side using the induction hypothesis as
(n · (n+ 1))/2 + (n+ 1).
But this is equal to (n · (n+ 1))/2 + (2 · (n+ 1))/2 = (n2 + 3n+ 2)/2.
Which is the same as ((n+1)·((n+1)+1))/2 = (n2+2n+1+n+1)/2 = (n2+3n+2)/2
By induction we have now proved Gauss’ formula.

Relations and Functions

Using the notion of a subset, we can define all kinds of relations between elements.

Definition 2.1.33. A relation on a set A is a subset R ⊆ A × A. We write
(x, y) ∈ R or xRy.

Some relations have special properties that can be very useful.

Definition 2.1.34. A relation R can have the following characteristics:

• A relation is called reflexive if xRx, ∀x ∈ A.

• A relation is called symmetric if xRy ⇒ yRx, ∀x, y ∈ A.

• A relation is called transitive if xRy ∧ yRz ⇒ xRz,∀x, y, z ∈ A.

Definition 2.1.35. If a relation R is reflexive, symmetric and transitive, we say
that R is an equivalence relation.

We already know some relations that are equivalence relations and some that are
not.

Example 2.1.36. The relation = is an equivalence relation. The relations < and ≤
however are not, since they are both not symmetric and < is also not reflexive.

Similar to relations, we can define functions.

Definition 2.1.37. Suppose A and B are sets. A function f from A to B (denoted
f : A→ B) is a relation f ⊆ A× B, satisfying the property that for each a ∈ A
the relation f contains exactly one ordered pair of the form (a, b). The statement
(a, b) ∈ f is abbreviated as f(a) = b.

A function is a relation between two different sets. Similar to relations, a function
can have special characteristics.
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Definition 2.1.38. Let f be a function from A to B. Then,

• f is called injective if f(x) = f(y)⇒ x = y,∀x, y ∈ A.

• f is called surjective if ∀b ∈ B, ∃a ∈ A with b = f(a).

• f is called bijective if it is injective and surjective.

The sets A and B on which f is defined on play a role for whether f is injective,
surjective or bijective. There is an example of this below.

Example 2.1.39. The function f : R → R, f(x) = x2 is neither injective nor
surjective, as f(x) = f(−x) and as we never reach negative numbers.
The function f : R+ → R+, f(x) = x2 however is both injective and surjective and
is therefore a bijection.
A bijective function is the counterpart to an equivalence relation. We will see that
having a bijective function between two sets can be very powerful.

Cardinality

Earlier we have seen what it means for two sets to be equal. Now we would like
to talk about when two sets have equal cardinality. It can be shown that having
equal cardinality is an equivalence relation.

Definition 2.1.40. Two sets A and B (not necessarily finite) are said to have
equal cardinality, written |A| = |B|, if there exists a bijective function f : A→ B.
If no such function exists, then A and B are said to have unequal cardinality.

Let us see a bijection proving that N and Z have equal cardinality.
Example 2.1.41. The sets N and Z have equal cardinality, as the function

f : N −→ Z, f(n) =

{
n
2
, for n even,

−n+1
2
, for n odd

is a bijection.

We still have to talk about different kinds of infinite sets. It turns out that not all
infinities are the same.

Definition 2.1.42. Let A be a set. Then A is called countably infinite if there
exists a bijection f : N→ A. A is said to be countable if A is finite or countably
infinite. A is called uncountable if A is infinite and |N| ≠ |A| i.e., if there exists
no bijection f : N→ A.

12



Contrary to the set Z, the reals do not have the same cardinality as the set N.

Example 2.1.43. The real numbers R are uncountably infinite.

We see that using functions we can compare the cardinality of two sets.

Definition 2.1.44. Let A and B be sets. Then,

• |A| = |B| means that there is a bijection A→ B.

• |A| < |B| means that there is an injection A→ B, but no bijection A→ B.

• |A| ≤ |B| means that there is an injection A→ B.

The following example explains how we can argue about cardinalities like that.
The proof is left for the reader.

Example 2.1.45. A < P(A), since there only exists a injection from A to P(A).
One can also prove equal cardinality, without finding a bijection between two sets.

Theorem 2.1.46 (Cantor-Bernstein-Schröder). Let A and B be any sets. If there
exist injections f : A→ B and g : B → A, then there exists a bijection h : A→ B.

Remark 2.1.47. This is called the Cantor-Bernstein-Schröder theorem. It basically
says that (|A| ≤ |B|) ∧ (|B| ≤ |A|)⇒ (|A| = |B|).
Example 2.1.48. With the Cantor-Bernstein-Schröder theorem, we can prove that
R and P(N) have equal cardinality.

Natural Numbers

We already talked about natural numbers in the previous chapters. They are the
most intuitive numbers, namely the ones we use to count. One way to define the
natural numbers is explained below.

Definition 2.1.49. The Peano axioms are three axioms that describe the natural
numbers. Together with the existence axiom, they give us our known set N.
Suppose that there exists a set N and a function succ : N→ N such that

• (P1): the function succ is not surjective. There exists 0 ∈ N such that
succ(n) ̸= 0 for all n ∈ N.

• (P2): the function succ is injective.

• (P3): if S ⊆ N is such that 0 ∈ S and n ∈ S ⇒ succ(n) ∈ S for all n ∈ N,
then S = N.
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• (existence): There exists a set N and a function succ : N→ N satisfying the
above three axioms.

While we have seen the induction principle and the definition of natural numbers, we
still need to define recursive functions, to be able to define addition, multiplication
and so on.

Theorem 2.1.50. If X is a set, f : X → X a function, and c ∈ X, then there
exists a unique function ϕ : N→ X such that

(i) ϕ(0) = c.

(ii) ϕ(s(n)) = f(ϕ(n)),∀n ∈ N.

The proof of the recursion theorem is rather technical and will not be considered
in this thesis. Readers interested in the proof can find it in [ST15].

With the recursion theorem, we can now define three so-called recursive functions.

Definition 2.1.51. We mostly use the following three recursive functions from N
to N.

• (Addition) The function (n+m) : N→ N defined by:

·) n+ 0 = n for all n ∈ N,

·) n+ succ(m) = succ(n+m) for all n,m ∈ N.

• (Multiplication) The function (n ·m) : N→ N defined by:

·) n · 0 = 0 for all n ∈ N,

·) n · succ(m) = n ·m+ n for all n,m ∈ N.

• (Power) The function (nm) : N→ N defined by:

·) n0 = 1 for all n ∈ N,

·) nsucc(m) = nm · n for all n,m ∈ N.

Order Relations

Being an equivalence relation is rather strict. We can define different types of order
relations. Order relations can define an ordering on a set. Contrary to equivalence
relations, they do not have the notion of symmetry, as we want to define “smaller”
and “bigger” elements.
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Definition 2.1.52. A relation R is called a partial order if

• aRa (reflexivity),

• (aRb ∧ bRc)⇒ aRc (transitivity),

• (aRb ∧ bRa)⇒ a = b (anti-symmetry).

A partial order can only relate to some of the elements of the sets. If we want an
order relation relating to all elements, we need to ask for totality. Below one can
explicitly see what we mean.

Example 2.1.53. The relation a | b on the on the set N \ {0} is a partial order, since
not all a, b ∈ N satisfy this relation, e.g. 3 ∤ 5.

Definition 2.1.54. A relation R is called a weak order if

• (aRb ∧ bRc)⇒ aRc (transitivity),

• (aRb ∧ bRa)⇒ a = b (anti-symmetry),

• aRb ∨ bRa (totality).

There is yet a third order relation we consider.

Definition 2.1.55. A relation S is called a strict order if

• (aSb ∧ bSc)⇒ aSc (transitivity),

• (aSb ⊻ bSa ⊻ a = b) (trichotomy),

where ⊻ stands for exclusive or, i.e. only one of the three statements can be true at
once.

The two relations we saw before that were not equivalence relations can be shown
to be order relations.

Example 2.1.56. The most trivial examples of weak and strict order are ≤ and <
respectively. One can check that these two relations satisfy all required character-
istics.

There is a specific question one can ask when deciding if we have a weak or a strict
order. Just take an element a from the set and check whether aRa i.e. whether
(a, a) ∈ R or a = a, i.e. (a, a) /∈ R.

Example 2.1.57. If we consider < and ≤ on the natural numbers, we see that 5 ≮ 5
but 5 ≤ 5. So ≤ is indeed a weak order and < a strict order.
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2.2 LEAN

The LEAN project was launched by Leonardo de Moura at Microsoft Research
Redmond in 2013 [Avi+23]. It is a proof assistant written mainly in C++ and
in LEAN itself (its own programming language). With proof assistants, one can
usually describe the way computers help with proof writing in two ways: automated
theorem proving and interactive theorem proving. While the first helps one “find” a
certain aspect of a proof, the latter focuses on verifying if a given proof is correct.
LEAN aims to be the bridge between those two functions [Avi+23]. LEAN is based
on the calculus of constructions with inductive types. In the following, we explain
this foundation.

Type Theory and the Way to the Calculus of Constructions

Most foundational courses, as well as the one the students visited, build the
foundations of mathematics on set theory, a theory that studies sets as mathematical
objects and contains a list of axioms to conduct mathematical logic [FBL73]. While
it is a very common foundation, it has its weaknesses and it is certainly not the only
one. This subsection describes the way the foundations in LEAN are implemented
and it is mostly based on [Rod22], [Ret22] and [Pro13]. We talk about type
theory and λ-calculus to make our way up to a LEAN-specific type of calculus of
constructions. Since the complexity of these theories goes beyond the scope of this
thesis, we leave it to the readers to consult the references given for more details,
they are highly recommended for interested readers.

Type Theory

Bertrand Russell developed type theory around 1908, at a time when mathem-
aticians were investigating the paradoxes of set theory like the Russell paradox
which states that: if R = {x | x /∈ x}, then R ∈ R if and only if R /∈ R, which is a
contradiction. Russell was able to solve this by introducing the hierarchy of types
and stating that a statement in the same order of types could not refer to itself
[Rus08]. So in the example of Russell’s paradox, R would be of the same order
type as the sets {x | x /∈ x} and therefore one could not substitute x by R. We will
see how this type theory fundamentally betters computational mathematics soon.
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Untyped λ-calculus

A few years after Russell developed type theory, Alonzo Church came up with the
idea of λ-calculus. We first explain the untyped λ-calculus and state why it is
useful for computation. Only after that, will we see how powerful it becomes when
combined with type theory. For now, we refer to λ-calculus when talking about
untyped λ-calculus. The idea of λ-calculus is to write functions in an abstract form.
A very simple example would be the function f(x) = x+ 1, which is denoted as
λx, x+ 1 in λ-calculus. This is called a λ-term. Usually, we denote a λ-term with
λx. and not λx, but since λ-calculus is written with a comma in LEAN, we also
use this notation. We can now define the set of all λ-terms inductively as:

Λ = V | (λV,Λ) | (ΛΛ)

where V denotes a set of variable symbols. We usually write x, y or z for variables
and M,N for λ-terms. This special notation of the set Λ means that the set Λ is
built inductively using the following three rules:

• (Variable) If x ∈ V , then x ∈ Λ.

• (Application) If M,N ∈ Λ, then (MN) ∈ Λ.

• (Abstraction) If x ∈ V and M ∈ Λ, then (λx,M ∈ Λ).

The following example of some λ-terms explains what we mean.

Example 2.2.1. Let x, y ∈ V . Then,

• x, y ∈ Λ (by the variable rule),

• (xy) ∈ Λ (by the application rule),

• (λx, (xy)) ∈ Λ (by the abstraction rule),

• ((λx, (xy))(λx, (xy))) ∈ Λ (again by the application rule).

We have a special identity in this setting. The terms M and N are said to be
syntactically equal, denoted by M ≡ N , if they represent the same λ-term. Note
that the terms (λx, (xy)) and (λz, (zy)) are not syntactically equal, so our notion
of equality is quite restrictive. We can overcome this by introducing α-conversion,
but before we do this, we have to give a new definition, namely the notion of free
and bound variables. Intuitively one can say that the bound variables are like
the variables we know for example from functions, and the free variables can be
thought of as constants.
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Definition 2.2.2 (Set of free variables). The set of free variables of a λ-terms
is defined recursively as follows.

• (Variable) FV (x) = {x} for every x ∈ V .

• (Abstraction) FV (λx,M) = FV (M) \ {x} for every x ∈ V and M ∈ Λ.

• (Application) FV (MN) = FV (M) ∪ FV (N) for every M,N ∈ Λ .

• We say M ∈ Λ is closed if FV (M) = ∅.

Remark 2.2.3. The bound variables are then the non-free variables. For example in
the abstraction rule, x would be a bound variable.

With this, we are now able to define α-conversion:

Definition 2.2.4 (α-conversion). Let M ∈ Λ, let Mx→y denote the λ-term in which
each free occurrence of x in M has been replaced by y. We define α-conversion,
which we denote by =α, as the smallest equivalence relation over Λ in which the
following conditions hold:

• (Renaming) λx,M =α λy,Mx→y if y is neither a free nor a bound variable in
M .

• (Compatibility) If M =α N , then ML =α NL, LM =α LN and
λz,M =α λz,N , for every L ∈ Λ, z ∈ V .

Remark 2.2.5. The condition in the renaming part basically tells us that one cannot
substitute a free variable with another letter that looks the same as a bound variable
in the expression. For example, we cannot do this substitution:∫

(x+ c) dx ̸=α

∫
(c+ c) dc

We are now able to change variable names in λ-terms and let them still keep their
meaning. What we would like to do next is to see how to substitute values for
variables in λ-terms, i.e. how to apply a term to an expression.

Definition 2.2.6 (Substitution). Let M,N ∈ Λ and x ∈ V . We define M [x := N ]
(to be read as M in which x has been substituted by N) inductively as follows.

• (Variable) x[x := N ] ≡ N and y[x := N ] ≡ y if x ̸≡ y.

• (Abstraction) (λy, P )[x := N ] ≡ λz, (P y→z[x := N ]) where z ∈ V \ FV (N),
for every P ∈ Λ.
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• (Application) (PQ)[x := N ] ≡ (P [x := N ])(Q[x := N ]), for every P,Q ∈ Λ.

The reason we rename the variable y to z in the λ-term P for the abstraction rule
is to avoid a clash with occurrences of y in N .

We now introduce the notion of one-step β-reduction. This gives us a way to
evaluate lambda expressions.

Definition 2.2.7 (One-step β-reduction). We define one-step β-reduction,
denoted as →β, as follows.

• (Reduction) (λx,M)N →β M [x := N ], for every M,N ∈ Λ, x ∈ V .

• (Compatibility) If M →β N , then ML→β NL, LM →β LN and
λz,M →β λz,N for every L ∈ Λ, z ∈ V .

An explicit example helps us to understand how one-step β-reduction works.

Example 2.2.8. β-reduction just describes how we apply a “function” on “something”.
For example, the function λx, x+ x applied to the number 2 would be β-reduced
like this: (λx, x+ x)(2) →β (x+ x)[x := 2] = 2 + 2 (= 4). The second rule that
comes with β-reduction just tells us in which contexts we can still apply it.

Remark 2.2.9. A term of the form (λx,M)N is called redex and the reduced term
M [x := N ] is called contractum.

The problem with one-step β-reduction is that it is not transitive. For example,
while (λxy, x+ y)(z)(z)→β (λy, z + y)(z) and (λy, z + y)(z)→β z + z, we do not
have (λxy, x+ y)(z)(z)→β z + z. We introduce reduction paths to deal with this.

Definition 2.2.10 (Reduction path). Let M ∈ Λ.

• A finite reduction path from M is a finite sequence of λ-terms N0, N1, . . . , Nn

such that N0 ≡M and Ni →β Ni+1 for every 0 ≤ i ≤ n.

• An infinite reduction path from M is an infinite sequence of λ-terms
N0, N1, . . . such that N0 ≡M and Ni →β Ni+1 for every i ∈ N.

We arrived at a point where we can define an equivalence relation for β-reduction.

Definition 2.2.11 (β-reduction, β-conversion). Let M,N ∈ Λ. We write M ↠β N
if there exists a finite reduction path M ≡ N0, . . . , Nn ≡ N . We call this relation
β-reduction.

We define β-conversion as the smallest equivalence relation containing ↠β and
denote it by =β.
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Remark 2.2.12. We treat M =β N as two equivalent, but not equal terms. This
is also important during computation. For example, the terms (λx, x+ 2)(1) and
(λx, x− 1)(4) are equivalent by β-conversion, since they both reduce to 3, but they
are not equal and cannot be β-reduced into each other.

There is a name for fully reduced β-expressions, they are called β-normal forms:

Definition 2.2.13 (β-normal form, β-normalising). Let M ∈ Λ.

• We say that M is in β-normal form if M does not contain any redex.

• We say that M is β-normalising or that M has a β-normal form if there
exists N ∈ Λ in β-normal form such that M =β N . Such N is the β-normal
form of M

It can be shown that this β-normal form is unique. This follows directly from the
Church-Rosser theorem.

Theorem 2.2.14 (Church-Rosser). Let M,N1, N2 ∈ Λ such that M ↠β N1 and
M ↠ N2. Then, there exists N3 ∈ Λ such that N1 ↠β N3 and N2 ↠β N3.

Remark 2.2.15. We do not discuss this proof in this thesis. Our reference, [Rod22]
also forwards its readers to another source for the proof.

There remains one question: are all λ-terms β-normalising? For untyped λ-calculus,
the answer is no. For example, we can consider the term Ω := (λx, xx)(λx, xx).
We see that the only possible β-reduction is Ω→β Ω, which still has a redex. We
can do this infinitely, so we never find a β-normal form for Ω. We also want to
consider terms like (λu, v)(Ω). If we reduce this to (λu, v)(Ω)→β v, we have found
a β-normal form since v has no redex. If we try to reduce on Ω, we get the infinite
reduction path

(λu, v)(Ω)→β (λu, v)(Ω)→β . . .

which does not have a β-normal form. This calls for new definitions:

Definition 2.2.16 (Weakly normalising, strongly normalising). Let M ∈ Λ.

• We say that M is weakly normalising if there exists N ∈ Λ in β-normal
form such that M ↠β N .

• We say that M is strongly normalising if there do not exist any infinite
reduction paths from M .
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Remark 2.2.17. The λ-term (λu, v)(Ω) is only weakly normalising but not strongly
normalising, since while there exists a finite reduction path to a β-normal form,
there also exists an infinite reduction path that never reaches a β-normal form. An
example for a strongly normalising λ-term would be (λu, v)(x)→β v. β-normalising
is an umbrella term that contains weak and strong normalisation. Every weakly
and strongly normalising term is also β-normalising. But knowing that a term
is β-normalising does not tell us anything about whether it is weakly or strongly
normalising.

Let us briefly recap what we did exactly and why. We introduced α-conversion to
be able to change the name of bound variables. For that, we had to define free and
bound variables of terms. Then we wanted to apply terms on other terms the way
we apply functions to terms. We learned about one-step β-reduction to do this.
But since this was not enough to define an equivalence relation, we introduced
reduction paths and finally β-conversion. This allowed us to bring some terms into
the β-normal form, a term expression where there are no more redexes. It turned
out that not every term is β-normalising. We deal with this issue later.

The untyped λ-calculus was developed by Church to check which functions were
computable using an algorithm. It turned out that Church computability (or
λ-defineability), i.e. if a function could be written as a λ-term, was equivalent to
Turing computability, which became to be known as the Church-Turing thesis. It
turns out that the (untyped) λ-calculus is even Turing complete. However, there
are some discrepancies. For example, terms like (xx) or (MM), as seen in the
examples above, do not make much sense and there are terms which do not have a
β-normal form. Adding type theory to the λ-calculus can overcome these problems.
In the next section, we introduce the notion of simple types and step-by-step we
arrive at a typed λ-calculus system which we denote as λ→.

Simply typed λ-calculus

We start with the definition of simple types.

Definition 2.2.18 (Simple types). Let V = α, β, γ, . . . be an infinite set of type
variables. The set T of all simple types is defined as

T = V | (T→ T).

Remark 2.2.19. The set T therefore consists of types α and recursively constructed
arrow types as α→ β or α→ (α→ β).

To combine the simple types with the λ-terms, we need some new vocabulary.
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Definition 2.2.20 (Statement, declaration, context, judgement). The following
definitions are used to distinguish objects in type theory.

• A statement is of the form M :σ, where M ∈ Λ and σ ∈ T. In such a
statement, we call M the subject (or term) and σ the type.

• A declaration is a statement, where the subject is a variable, i.e. x :σ for
some x ∈ V .

• A context is a list of declarations. If we have no declarations, we call this
the empty context, ∅.

• A judgement is of the form Γ ⊢M :σ, where Γ is a context and M :σ is a
statement.

We see that there are some terms, for which we cannot define their type properly,
like the term (xx). It is therefore crucial that we do an extra step before defining
the simply typed lambda calculus. We define the set of the so-called pre-typed
λ-terms.

Definition 2.2.21 (Pre-typed λ-terms). The set of pre-typed λ-terms is defined
recursively as follows.

ΛT = V | (ΛT,ΛT) | (λV : T,ΛT).

Remark 2.2.22. Compare this definition to the definition of the untyped lambda
calculus.

The expression (xx) is still a pre-typed λ-term, but we now begin to restrict this
by introducing some derivation rules.

Definition 2.2.23 (Derivation rules in λ→). We have three derivation rules that
restrict the terms we allow.

(var) If x :σ ∈ Γ, then Γ ⊢ x :σ,

Γ ⊢M :σ → τ Γ ⊢ N :σ(appl)
Γ ⊢MN : τ

Γ;x :σ ⊢M : τ
(abst)

Γ ⊢ λx :σ,M :σ → τ

These rules are written in sequent calculus, a style of formal logic that is well known
for the ⊢ (turnstyle) symbol. We do not talk about sequent calculus in more detail,
we just want to mention that the turnstyle symbol can naively be read as “implies”.
For example, the application rule says that given a context Γ which “implies” that
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M :σ → τ and N :σ hold, then we can derive that under the context Γ, MN is of
type τ . We actually read sequent calculus from below to the top when we do a
derivation. So here we would argue that for MN : τ to hold under the context of Γ,
we need to prove that under this context, the other two statements hold too.

We use these derivation rules for the following definition.

Definition 2.2.24 (Legal terms). A pre-typed term M is called legal if there
exists a context Γ and a simple type σ such that Γ ⊢ M :σ, i.e. if we can find a
derivation, such that this holds.

Legal terms have the following special property.

Theorem 2.2.25 (Strong normalisation). Every legal term M is strongly normal-
ising.

Our system λ→ consists of all pre-typed terms that are legal. We started with
simple types, but they did not all make sense. So we introduced the notion of
pre-typed λ-terms and stated that a term M is legal if it has a derivation leading to
Γ ⊢M :σ. We then only allowed the legal terms in the (simply) typed λ-calculus
(λ→). This solved the two problems we had in the untyped λ-calculus mentioned
above, as terms like (xx) and (MM) are never legal and since all legal terms M
are strongly normalising by the strong normalisation theorem.

There are in general three types of problems that one would like to solve in λ→:

• (Well-typedness or Typability) ? ⊢ term : ?

• (Type Checking) context
?

⊢ term : type

• (Term Finding) context ⊢ ? : type

Well-typedness is simply the procedure to check whether a term is legal or not.
We see that a term is given and we are asking for a context and a type. In the
next case, Type Checking, we have a context and a term and would like to check
whether a term has a given type in a given context, i.e whether we can find a
valid derivation, under which the term has the given type. Last but not least,
Term Finding gives us a context and a type, and we would like to find a term
that given the context has the given type. Keep especially this last problem in mind.

One can show that all three problems are decidable in λ→, i.e. there exists a
general algorithm to solve them. If λ→ would be strong enough to implement all
the foundations of mathematics, we could build theorem provers that can solve
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any mathematical problem. However, this is not the case as we will see later. In
more complex systems, Well-typedness and Type Checking remain decidable, and
automated theorem provers like LEAN solve these problems all the time and give
feedback on whether the terms are legal or not and if the typing matches. The last
problem, Term Finding, is left for the mathematician and corresponds to finding
the proof of a theorem, as we see right now.

One of the greatest changes when using type theory instead of set theory, is that
the notion of sets and propositions are not two different things anymore. With that,
a logic (a set of derivation rules) is always inherently integrated into the theory
itself, unlike in set theory where logic must be defined separately. In the logic of
λ→, we can represent propositions as types and proof as terms of that type. Like
with sets, where a term a is of type A when we say that a ∈ A, we can say that
the term p is of type P when p is a proof of the proposition P . This is called the
PAT-interpretation, which is short for proposition as types or proofs as terms. We
now have a look at the proof that A⇒ B ⇒ B is true using the derivation rules of
λ→.

Example 2.2.26. The proof of A⇒ B ⇒ B in sequent calculus:

(1) a :A; b :B ⊢ b :B (var)
(abst)

(2) a :A ⊢ λb :B, b :B → B
(abst)

(3) ∅ ⊢ λa :A, λb :B, b :A→ B → B

We are now able to implement proofs of propositions using λ-calculus! However,
we do not stop here. The system λ→ is too restrictive. Since all terms in λ→
are strongly normalising, we lose Turing completeness, i.e. we cannot represent
all Turing computable functions. On a more concrete level, since we have no
self-application, we cannot define recursive functions or the factorial function. To
solve these problems, we can build the so-called λ-cube. It consists of extensions of
λ→, which ultimately lead to a powerful system called the calculus of constructions
(or CoC, λC for short), which is again Turing complete and less restrictive. In
this thesis, we just mention the extensions and talk about their advantages and
disadvantages. For more details on each extension, we recommend again the sources
stated for this chapter.
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λ2, λω and λP

When we take the identity function in λ→, it looks like this:

λx :α, x :α→ α.

This definition is only valid for x of type α. So if we would like to have the identity
function for some x : β, we would need to construct a new function. In the system
λ2, we add the type of all types, denoted as ∗. With this, we can write the identity
function as

λα : ∗, λx :α, x.

where we can insert any type α, β, (α → α) or (α → β) of type ∗. The problem
arises when trying to find the type of such terms with variable types. The type
∗ → α → α is not equal to ∗ → β → β. But since we want uniqueness of types
for terms, this is a problem. We solve it by introducing Π-types. One can write
Πα : ∗, α→ α. Then we have that (λα : ∗, λx :α, x) : Πα : ∗, α→ α, where the type
α can be substitute by any type in ∗. With this, we have added polymorphisms
to our system and as one can see for the term of the identity function, we have
introduced terms that depend on types. One should keep that in mind. In the
λ2 system, we can now do primitive recursion, but we still have a strongly norm-
alising system that is not Turing complete. So we need to further expand our system.

Let us investigate type structures next. Types like α → α, β → β or even
(α → β) → (α → β) all have the same structure of Type → Type, where the
type on both sides is the same. We can generalize this structure as λα : ∗, α→ α.
Since this is not a type itself, but it builds types, we call this a type constructor.
The type of this type constructor would be ∗ → ∗. In order not to confuse types
with types of types, we call types of the form ∗, (∗ → ∗), (∗ → ∗ → ∗) and so on
kinds. The set of kinds K consists of α : ∗ (type constructors) and (λβ : ∗, β : ∗ → ∗)
(proper constructors). The type of all kinds is denoted as ⋄. From now on we use
the letter s as a metavariable for either ∗ (types) or ⋄ (type constructors). In this
system, called λω (lambda weak omega), we were able to abstract more complex
types, however, we do not have the notion of Π-types here. We later start to
combine systems to get as many notions and abstractions as possible. But before
we do so, we have a look at a system that introduces types depending on terms.

By now we have seen that we can build terms depending on terms in λ→, terms
depending on types in λ2, with the general identity function, and types depending
on types as type constructors in λω. For predicate logic, it is crucial that we
can define types depending on terms. We have already talked about the PAT
interpretation of typed λ-calculus. If we have a predicate proposition P (x) that
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depends on an element x, we want to be able to build a type of the form P (x), i.e.
a type P depending on a term x, since finding a term is equivalent to finding the
proof of the proposition. A proof p of type P (x) (still denoted as p :P (x)) may
then only exist for certain values of x. We can do all that in the system called λP ,
which introduces the notion of dependent types, while it again contains Π-types, we
do not have proper kinds (proper type constructors) in this system. It is time we
start combining the three systems to get better results.

We have found three systems that can help us do the following things:

• With λ2, we can introduce the universal quantifier for types and we can build
terms that depend on the type given.

• With λω, we can build more complex type structures, so-called (proper)
type-constructors, which are types that depend on types. However, we do
not have universal quantifiers in this system.

• With λP , we can make types depending on terms. This is very important
to prove propositions that depend on a variable. In that system, we have
the universal quantifier for terms, i.e. we can show that a proposition P (x)
(type) holds for all x (term).

It would be convenient if we were able to combine these three systems to get a
system that inherits all of their characteristics. Fortunately, this is possible, and it
can be illustrated by the λ-cube.

Figure 2: λ-cube (or Barendregt cube) [Rod22]

We can see that we can build all three combinations out of two of the three
expansions of λ→. The system in the up-right-back corner is the combination
of all three systems. The so-called calculus of constructions (λC for short). The
formal system of LEAN is an adaption of this system. This is why we want to look
at it carefully.
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Calculus of Constructions

To not confuse ourselves with the notion of types and terms, we introduce the
notion of expressions for the system λC. Expressions are defined recursively as:

E = V | ∗ | ⋄ | (EE) | (λV : E , E) | (ΠV : E , E).

We have the following derivation rules for λC:

(sort) ∅ ⊢ ∗ : ⋄

Γ ⊢ A : s(var) , if x /∈ Γ.
Γ;x :A ⊢ x :A

Γ ⊢ A :B Γ ⊢ C : s(weak) , if x /∈ Γ.
Γ;x :C ⊢ A :B

Γ ⊢ A : s1 Γ, x :A ⊢ B : s2(form) , where B may depend on x.
Γ ⊢ Πx :A,B : s2

Γ ⊢M : Πx :A,B Γ ⊢ N :A
(appl)

Γ ⊢MN :B[x := N ]

Γ;x :A ⊢ b :B Γ ⊢ Πx :A,B : s
(abst)

Γ ⊢ λx :A, b : Πx :A,B

Γ ⊢ A :B Γ ⊢ B′ : s(conv) , if B =β B′.
Γ ⊢ A :B′

Let us start explaining the first and easiest rule. The sort rule simply states that,
even without any context, we have that a kind always has type ⋄. The var, appl
and abst rules were already introduced in the simply typed λ-calculus. Here, they
are just extended to also work for types and kinds. Keep in mind that s acts as a
placeholder for both ∗ (types) and ⋄ (kinds). The weak rule has its name from the
fact that if we expand a context, we weaken it. We see that we can add x :C to
the context, without changing A :B, if C is inhabitable, which we make sure by
the axiom C : s, which really just means that C should not be a variable, but a
type or kind. The form rule consists of four rules, as we can use all combinations
of ∗, ⋄ ∈ s.
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x :A : s1 b :B : s2 (s1, s2) λx :A, b
∗ ∗ (∗, ∗) term depending on a term
⋄ ∗ (⋄, ∗) term depending on a type
⋄ ⋄ (⋄, ⋄) type depending on a type
∗ ⋄ (∗, ⋄) type depending on a term

Table 5: The four cases of the form rule.

This rule just states how one can build more complex types (arrow types) or kinds,
considering the four cases, where we get different dependencies between terms and
types. We want to remark that the column on the right shows the term after using
the abst rule, which is why we write λx :A, b. Last but not least, with the conv
rule we make sure that if we have a term for an expression B, it is also a term for
any expression B′, such that B =β B′. Note that most of these rules can already
be introduced in lower systems, for example, the form rule is already part of λ2,
λω and λP , just for different contexts.

While these rules seem quite abstract, they are actually enough to do constructive
logic, and therefore fully implement natural deduction. We may state at this point
that the two classical principles of the excluded middle (P ∨ ¬P = True) and the
double negation (¬(¬P ) ⇐⇒ P ) cannot be derived from constructive calculus,
but fortunately, they can be added as a definition, without disrupting the logic or
leading to contradictions. With that, we have found a suitable system, on which we
can build our foundations of mathematics. We will not go much more into technical
details about the CoC, but we want to mention that CoC is Turing complete again,
and that while well-typedness and type checking are still decidable in CoC, term
finding is not anymore. By the Curry-Howard Isomorphism, if term finding was
decidable in CoC, we could write a program that finds a proof for any proposition
defined in predicate logic, which is not possible by Gödel’s incompleteness theorem.

We are now finally able to talk about the logical foundation of LEAN. In LEAN,
we use an extension of λC, namely the calculus of inductive constructions (CiC for
short). For our scope, it is enough to understand that this system expands CoC by
adding inductive types. More technical details can be found in [Pau15]. Another
extra we get with LEAN is definitions. For example, we can simply type P ∨Q
without having to know how the ∨ operator is defined in λC. The λ-term for “or”
would be:

∨ ≡ λP : ∗, λQ : ∗,ΠR : ∗, (P → R)→ (Q→ R)→ R
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It can be shown that all connectives and quantifiers used for first-order logic can
be implemented in LEAN using the calculus of constructions. We discuss the ∨
operator in detail, showing that it obeys the rules it should and then we list the
remaining connectives and quantifiers defined in type-theoretic terms without more
comments in Table 6. In the sequent calculus of predicate logic, “or” is defined
using the following rules:

Γ ⊢ P (∨-intro-left)
Γ ⊢ P ∨Q

Γ ⊢ Q
(∨-intro-right)

Γ ⊢ P ∨Q

Γ ⊢ P ∨Q P ⊢ R Q ⊢ R
(∨-elim)

Γ, P ∨Q ⊢ R

One can show that the λ-term which defines ∨, obeys all three rules. For instance,
the ∨-elim rule can be obtained by applying appl twice. As a consequence, any
proof involving ∨ can be derived using our definition.

Predicate logic λC
A is a set.
P is a proposition.

A : ∗
P : ∗

a ∈ A
p proves P .

a :A
p :P

P is a predicate on A. P :A→ ∗
P ⇒ Q P → Q (= Πx :P,Q)
⊥
¬P

Πα : ∗, α
P → ⊥

P ∨Q
P ∧Q

ΠR : ∗, (P → R)→ (Q→ R)→ R
ΠR : ∗, (P → Q→ R)→ R

∀x ∈ A, (P (x))
∃x ∈ A, (P (x))

Πx :A,Px
ΠR : ∗, ((Πx :A, (Px→ R))→ R)

Table 6: Predicate logic in λC.

The table above demonstrates how the logical connectives and quantifiers can be
implemented as λ-terms.

Finally, LEAN adds so-called tactics to the calculus of constructions, which allow
us to do proofs in a more relatable way. We talk about these tactics soon.
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Let us summarize what we did in this subchapter. We started by introducing
type theory as an alternative to set theory, and then we learned about the λ-
calculus. First, we only considered the untyped λ-calculus to understand the key
idea behind it, namely to find a language to write mathematical functions and
terms as programs. We soon realized that while this system is Turing complete, it
still had some problems with unsettling terms and terms without a β-normal form.
To solve this problem, we added types to the λ-calculus and found the system
λ→. With this new system, we solved old problems by introducing the notion
of legal terms, but we ran into new problems, like the restriction of the identity
function to a single type or the lack of more complex type structures. To tackle
these new problems, we introduced the independent systems λ2 and λω. We were
reaching the end, but as we wanted to be able to do some predicate logic, where we
would like to prove a predicate P (x) depending on its input x, we still needed yet
another system. As propositions P are considered as types and values x as terms
by the PAT interpretation, we needed a system that introduces types depending
on terms. We found that system to be λP . Our final step was to combine the
three systems (λ2, λω and λP ) to the calculus of constructions (λC). LEAN’s
logical foundation depends on an extended version of λC, where inductive types,
definitions and tactics are added.
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LEAN Interface

Now that we understand the foundation LEAN is based on, we would like to know
how it operates. But before we can do that, we have to explain its interface.

There are several digital platforms, online too, one can use to program with LEAN.
For this thesis, we downloaded and installed LEAN for Visual Studio Code (VS-
Code). Instruction on how to do that can be found online [Com23a], or on our
GitHub [Bot23]. Once we do this, we can start a LEAN project, and when we open
it in VS-Code, it looks something like this:

(a) LEAN interface at line 15.

(b) LEAN interface at line 16.

Figure 3: The LEAN interface in VS-Code with the helpful infoview on the right
side.

We do our proof writing on the left side of the interface. On top, in both figures, we
can see that some packages were imported to use the tactics mode and other things.
We talk about LEAN tactics later. Below, still in both figures of Figure 3 there is
an example of a short proof that we wrote. Notice the way a proposition is written
and how the following proof is constructed. On the right side, LEAN’s magic
happens. In the so-called infoview, we can see the state of the proof. In Figure 3,
one sees that, depending on which line we are on the left, we see a different proof
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state in the infoview on the right. This is very helpful compared to doing proofs
by hand, where one always needs to check what hypothesis we have and what still
needs to be proved. If one makes a mistake or tries a tactic that is not allowed, an
error message appears in the infoview, as can be seen Figure 4 below.

Figure 4: Error-message when trying to exact hP from the example above.

The error message not only says that there has been a mistake, but it can also say
what kind of mistake happened. Depending on one’s experience, these messages
can help correct mistakes directly. Imagine if a piece of paper could do such a
thing! The infoview can also show proposed theorems to solve a proof in certain
situations. We talk more about this when we have a look at LEAN’s tactics.

LEAN’s automation already helps us finish a proof by giving feedback on the
progress of the proofs, showing us the mistakes we made and even proposing
theorems of its rich theorem collection in Mathlib. We can even take it to the next
step when doing LEAN in VS-Code. With the rise of ChatGPT and other AIs,
an AI able to make code suggestions, called GitHub Copilot, has been developed,
which can be directly used in VS-Code. It is a VS-Code package that can be
installed but needs a login. Fortunately, using a UZH account, one can use it for
free.
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Figure 5: A suggestion for the next step generated by GitHub Copilot.

During the meetings with the students, the copilot was disabled, since it made
some exercises too easy. However, it was still very useful in developing the solutions
to the exercise sheets. It is important to mention that GitHub Copilot does not
always give helpful lines of code and sometimes even proposes code that results in
an error message, but it can help when one is stuck at a certain point in the proof,
even if only by sparking an idea with a not working line of code.

Tactics and Theorems

When proving statements in LEAN, one can use so-called tactics, which are similar
to instructions to proofs [Avi+23]. In this section, we list the most important
tactics used in the levels and directly show an example of the tactic used in LEAN.
In these examples, we often just show a small part of the whole proof. The complete
proofs can be found on GitHub [Bot23]. Some of the tactics presented are directly
related to natural deduction rules, and by the PAT interpretation, we can use
the derivation rules we have learned from the calculus of constructions to build
a term (the proof) corresponding to the given type (the proposition). For these
tactics, we always present the natural deduction rule the tactic corresponds to, the
proof using the tactics and the proof in term-style. Term-style proofs are the other
way to prove statements in LEAN and they are closely related to the calculus of
constructions. One can even use both methods combined to build a proof, but we
do not consider that in this thesis. Apart from tactics and derivations rules, LEAN
has also access to countless theorems and definitions which are implemented in a
huge library called Mathlib. We have summarized the most important addition,
subtraction, multiplication and division theorems in a “cheat sheet” that can be
found on [Bot23]. But we won’t list them all here since they would take up too
much space.
Remark 2.2.27. We would actually need to write the natural deduction rules in
sequent calculus since we introduced sequent calculus as the logical formalism
before. However, natural deduction rules are easier to read, and for our purpose, it
is enough to just give a proposition (type) P without giving it context and adding
turntables.

33



intro tactic

One of the very first things we want to do in a proof is to introduce the variables
and hypotheses that we have. We can do that if we have an implication type in
our goal. Written in natural deduction, introducing something looks like this.

Assume P
...
Q

(⇒ -intro)
P → Q

What we are doing here is introducing P and from P we want to derive Q, seen
above the line. This then gives the proof that P implies Q, seen below the line.

Definition 2.2.28. The intro or intros tactic can introduce variables or hypo-
theses.

Example 2.2.29.

(a) intro used in VS-Code. (b) LEAN infoview after using intro.

Figure 6: Using the intro tactic to prove that P ⇒ P holds for any proposition.

We see in the Figure 6 above, on the left, that the original goal is to prove that
∀P : Prop, P → P . Here, P : Prop means that P is of type Prop (propositions). In
the right picture, we see the remaining goal (⊢ P ) and the two hypotheses we now
have. They are P : Prop, i.e. we now have an arbitrary proposition and h :P . The
second means that we have a proof h for P independent of what proposition P is
exactly.
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exact tactic

To finish the proof in Figure 6, we need to somehow use the hypothesis h :P . We
can do this with the following tactic.

Definition 2.2.30. With the exact tactic we can apply a proposition or a proof
to the given goal.

Example 2.2.31.

(a) exact used in VS-Code. (b) LEAN infoview after using exact.

Figure 7: Using the exact tactic concludes the proof that P ⇒ P holds for any
proposition.

When we try to prove this without tactics, we do it as follows.

example : P → P := fun p : P => p

Here we introduce a function fun from P to P called p. When we are not in
LEAN’s tactic mode, this already finishes the proof.

apply tactic

Unfortunately it is not always that easy to prove a statement. We could for example
have two implications in the statement we want to prove, e.g. P ⇒ (P ⇒ Q)⇒ Q.
Here we cannot simply use the intro tactic to introduce P and P ⇒ Q and then
exact something. Because to use the exact tactic, we need to have the same thing
in the hypothesis and the goal. But we still have some tricks up our sleeves.

Definition 2.2.32. The apply tactic is used when a hypothesis with an implication
is given and the goal is of the exact same form as the conclusion of the hypothesis.

35



Example 2.2.33.

(a) Before we use apply. (b) LEAN infoview before using apply.

(c) apply used in VS-Code. (d) LEAN infoview after using apply.

Figure 8: Using the apply tactic to deal with hypotheses including implications.

The right-hand side of the hypothesis hPQ is Q, which is the same as the goal.
So we can use the apply tactic to change the goal to the left-hand side of the
hypothesis, namely P . The apply tactic works with the following principle: If we
have an implication, e.g. P ⇒ Q as a hypothesis, i.e. we know that the implication
holds, where hPQ is the proof for P ⇒ Q, then it is enough to show the left-hand
side of the implication to prove the right-hand side. So we might as well change
the goal from the right-hand side to the left-hand side. In natural deduction, this
rule looks like this.

P ⇒ Q P
(⇒ -elim)

Q

Remark 2.2.34. One can forget about the apply tactic and use exact hPQ hP
instead.
Proving this without tactics would look like this.
example : P → (P → Q) → Q :=

fun p : P =>
fun f : P → Q =>
f p
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One may have already noticed that the structure of the proof changes when we do
it without tactics. Tactics can only be used inside a by-done environment. We see
that in this case, we did not use apply explicitly.

rw tactic

We are a bit more in luck if we have if-and-only-if statements as hypotheses. Then
we can decide which side we would like to use.

Definition 2.2.35. When we have an if-and-only-if statement as a hypothesis or
in Mathlib, we can use the rw (rewrite) tactic to change the statement accordingly.
We can even use rw at to change something in a given hypothesis. If we want to
rw something several times, we can use repeat rw.

Example 2.2.36.

(a) Before we use rw. (b) LEAN infoview before using rw.

(c) rw used in the goal. (d) LEAN infoview after using rw in the
goal.
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(e) rw used in the hypothesis. (f) LEAN infoview after using rw in the
hypothesis.

Figure 9: Using the rw tactic to change between P and R.

In Figure 9 we show the difference between using the rw tactic in the goal or the
hypothesis. Note that for the first case, we need to add a left arrow (←), since we
want to change R to P and not the other way around. In this explicit example, we
would not recommend changing the hypothesis, since the name hPQ will not make
sense after changing P to R. We could also just name our hypothesis differently,
such that it does not depend on P or R.

constructor tactic

There are often if-and-only-if statements that we would like to prove. On paper,
we simply prove one implication and then the other. In LEAN, one can do the
same thing.

Definition 2.2.37. The constructor tactic is used to split an if-and-only-if goal
into two subgoals where we need to prove both implications.

Example 2.2.38.

(a) Before we use constructor. (b) LEAN infoview before using constructor.
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(c) constructor used in VS-Code. (d) LEAN infoview after using constructor.

Figure 10: The constructor tactic splits a goal into two subgoals for both implica-
tions.

The constructor tactic can also be used when we have a ∧ in the goal. Then this
tactic corresponds to the ∧-introduction rule:

P Q
(∧-intro)

P ∧Q

Example 2.2.39.

(a) Before we use constructor. (b) LEAN infoview before using constructor.
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(c) constructor used in VS-Code. (d) LEAN infoview after using constructor.

Figure 11: The constructor tactic splits a goal into two subgoals for both sides of
the ∧ operator.

After we split the proof into two subgoals, we can simply use exact hP and exact
hQ to finish the proof.

When we are not in the tactics mode, we use the same expression as in the sequent
calculus:

example : P → Q → (P ∧ Q) :=
fun p =>
fun q =>
And.intro p q

With the constructor tactic, we can already see a huge advantage that tactics have.
While the ∧-introduction rule only works for conjunction terms, the constructor
tactic can also split if-and-only-if statements. LEAN knows by itself which case is
treated.
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left and right tactics

Let us see what changes if we have a disjunction in the goal.

Definition 2.2.40. Contrary to proofs with ∧ in the goal, we only need to prove
one of the two propositions when combined with an ∨. We can decide ourselves
which side we want to prove using the left or right tactic.

In sequent calculus, the corresponding deduction rule is called the ∨-introduction-
left/right rule:

P (∨-intro-left)
P ∨Q

Q
(∨-intro-right)

P ∨Q

Example 2.2.41.

(a) Before we use the left tactic. (b) LEAN infoview before using left.

(c) left tactic used in VS-Code. (d) LEAN infoview after using the left tactic.

Figure 12: The left tactic lets us prove only the left side of a statement.
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Since we know that P has a proof, we choose left. We could use right if we would
know a proof for Q. We show this case for the term-style proof in LEAN.
example : Q → (P ∨ Q) :=

fun q : Q =>
Or.inr q

Again we see that if we do not use tactics, the names of the rules we use are similar
to the ones from sequent calculus.

cases’ tactic

Disjunction (∨) and conjunction (∧) terms can also appear as a hypotheses. Think
about how the two differ when the statements are split.

Definition 2.2.42. Whenever there is an ∧ or an ∨ in one of the hypotheses
instead of in the goal, we can use the cases’ tactic. For a logical “and”, this gives
the same proof term with two hypotheses. Whereas for the logical “or”, one has to
prove the same statement twice, once with the left-hand side of the hypothesis and
once with the right-hand side.

This tactic corresponds to two deduction rules at once, the ∧-elimination rules and
the ∨-elimination rule:

P ∧Q
(∧-elim-left)

P

P ∧Q
(∧-elim-right)

Q

P ∨Q P ⇒ R Q⇒ R
(∨-elim)

R

We see that with the ∧-elimination rule we can derive P and we can derive Q.
When using the cases’ tactic on a conjunction hypothesis, LEAN does both and we
get two hypotheses. The elimination rule for disjunction is a bit more complicated.
Assume that we have some statement R and a proof for P ∨Q. In order to show
that P ∨Q implies R, we need to prove that P implies R and that Q implies R.
We need to have them both imply R, as we want to be able to decide if we want to
use P or Q to imply R. This is why when we have P ∨ Q in the hypothesis, we
have to prove two statements. Namely P ⇒ R and Q⇒ R.

LEAN can decide from the context, which of the two deduction rules needs to be
applied.
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Example 2.2.43.

(a) Before we use cases’. (b) LEAN infoview before using cases’.

(c) cases’ used in VS-Code. (d) LEAN infoview after using cases’.

Figure 13: cases’ applied on a hypothesis with “or” gives us two subgoals to prove.

Obviously, we could just use exact hPQ, but this example is to illustrate the effect
that cases’ has on a logical or-statement. Note that we can give the two newly
created hypotheses individual names.

Without the tactics mode, we must differentiate between a conjunction and a
disjunction in the proof. For disjunction, we prove it as follows.
example : (P ∨ Q) → (Q ∨ P) :=

fun h : P ∨ Q =>
Or.elim h

(fun p : P => Or.inr p)
(fun q : Q => Or.inl q)

A big advantage of the tactic mode is that it shows what our current goal is. This
can help a lot in cases where we have to prove two things independently, like in
the example above.
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Example 2.2.44.

(a) Before we use cases’. (b) LEAN infoview before using cases’.

(c) cases’ used in VS-Code. (d) LEAN infoview after using cases’.

Figure 14: cases’ applied on a hypothesis with “and” gives us two hypotheses to
prove one goal.

Note how here we do not change the goal when using the cases’ tactic. Keep in
mind that ¬P and P ⇒ False are logically equal, as one can check this with
a truth table. In LEAN, ¬P is defined as P ⇒ False and can be used accord-
ingly. To finish the proof, we apply hnP , which turns the goal into P , and exact hP .

We can do the same without tactics. Notice that here we do not use apply again:

example : (P ∧ ¬P) → False :=
fun h : P ∧ ¬P =>
And.right h (And.left h)

While it is convenient that the rules are called And.right and And.left, it should be
mentioned that we never see the two hypotheses hP and hnP in this case, contrary
to when we use tactics.
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symm tactic

LEAN is very precise when checking proofs. For example, if the hypothesis is
h :x = 3, we cannot prove the goal ⊢ 3 = x using exact h. One needs to switch the
hypothesis or the goal.

Definition 2.2.45. The symm tactic lets us interchange the left- and right-hand
side of an equality in any goal or hypothesis.

Example 2.2.46.

(a) Before we use symm. (b) LEAN infoview before symm.

(c) symm used in VS-Code. (d) LEAN infoview after using symm.

Figure 15: Without symm, the proof cannot be concluded.

We could also change the equality in the hypothesis h, then the new hypothesis
would be h : 3 = x. Exactly like the goal.
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induction’ tactic

We talk about natural induction in Chapter 2.1. Natural induction is something
that LEAN knows how to do.

Definition 2.2.47. Using the induction’ tactic, we can start doing a proof by
induction over a variable. There is even the possibility of making a proof by strong
induction.

Example 2.2.48.

(a) A proof using natural induction. (b) LEAN infoview after using induction’.

Figure 16: Natural induction in LEAN.

Even though this is a trivial statement, we use quite specific theorems to prove it.
We elaborate on that in Chapter 5.2.

The proof by the strong induction method was used to solve a question from one
of the exercise sheets. Interested readers can have a look at that proof in Level 3,
Exercise 3.2 in [Bot23].

have and let tactics

Definition 2.2.49. With have and let we can construct our own functions or
hypotheses. We then have to prove those first before we can continue with our
proof.

In the scope of the derivation rules seen in the calculus of constructions before,
have and let would correspond to adding statements to the context Γ.
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Example 2.2.50.

/-Use the method of direct proof to prove the following statements.
Let x, y ∈ R. If x^2 + 5y = y^2 + 5x, then x = y or x + y = 5.-/
example (x y : R) : (x ^ 2 + 5 * y = y ^ 2 + 5 * x) → ((x = y) ∨ (x +

y = 5)) := by
intro h
have h3 : (x - y) * (x + y - 5) = 0
ring_nf
rw [← sub_eq_zero] at h
ring_nf at h
exact h
rw [mul_eq_zero] at h3
cases’ h3 with h1 h2
left
rw [sub_eq_zero] at h1
exact h1
right
rw [sub_eq_zero] at h2
exact h2
done

If we would not use the have tactic here, we would need to manually transform
x2 + 5y = y2 + 5x to (x− y) · (x+ y − 5) = 0, which needs a lot of rw tactics.

by_cases tactic

Sometimes we need to make a case distinction to solve a proof. LEAN has a tactic
for that.

Definition 2.2.51. If we want to make a case distinction in one of our proofs,
we can use the by_cases tactic to get two goals instead of one. Once with the
hypothesis h and once with the hypothesis ¬h.

The by_cases tactic corresponds to the law of the excluded middle, which is not
constructive! It states that P ∨ ¬P is a true statement. We cannot derive this
from the CoC deduction rules, but we can add it as an axiom and use it as a tactic
in LEAN.
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Example 2.2.52.

(a) Before we use by_cases. (b) LEAN infoview before by_cases.

(c) by_cases used in VS-Code. (d) LEAN infoview after using by_cases.

Figure 17: We need to make a case distinction to prove this.
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by_contra tactic

Definition 2.2.53. We can change our goal to False and add the goal as a negated
hypothesis using the by_contra tactic. This is particularly useful for proofs by
contradiction.

Example 2.2.54.

(a) Before we use by_contra. (b) LEAN infoview before by_contra.

(c) by_contra used in VS-Code. (d) LEAN infoview after using by_contra.

Figure 18: Assume that the implication does not hold and find a contradiction
proof.

What we have proven right here is the rule of double negation, which in fact goes
in both ways, which is not a rule in constructive logic.

In the following, we have three tactics that can prove numerical expression in the
blink of an eye.
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norm_num tactic

Definition 2.2.55. Whenever there is a numerical expression that needs to be
proved, we can use the norm_num tactic. This tactic can solve all kinds of
statements without variables.

Example 2.2.56.

--Prove that 2 + 2 = 4.
example: 2 + 2 = 4 := by
norm_num
done

We can copy-paste this code into VS-Code to see that it compiles correctly.

ring_nf tactic

Definition 2.2.57. As long as our goal contains expressions with only ring arith-
metic, we can use the ring_nf tactic to prove the statement.

Example 2.2.58.

--Prove that (x+y)^2 = x^2 + 2xy + y^2.
example: ∀x y : R, (x+y)^2 = x^2 + 2*x*y + y^2 := by
intros x y
ring_nf
done

linarith and nlinarith tactics

Definition 2.2.59. Inequalities which are trivial considering our hypotheses can
be proved with the tactic linarith. If the inequality contains non-linear terms, we
can use nlinarith instead.

Example 2.2.60.

--Prove that x ≥ 3 ⇒ x ≥ 2.
example: ∀x : R, x ≥ 3 → x ≥ 2 := by
intro x
intro h
linarith
done
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Example 2.2.61. This implication here cannot be proved by linarith. Instead, we
use nlinarith.
--Prove that x ≥ 3 ⇒ x^2 ≥ 9.
example: ∀x : R, x ≥ 3 → x^2 ≥ 9 := by
intro x
intro h
nlinarith
done

simp tactic

Sometimes we are in a situation where all looks lost. Our hypotheses and/or our
goals are a mess, but we are certain that we are very close. In that case, LEAN’s
automated theorem proving comes into play.

Definition 2.2.62. The most convenient tactic is the simp tactic. This tactic
checks all theorems in the Mathlib library with the @simp attribute and tries to
apply them. We can also use simp at to change a hypothesis or simp* to check
everything (hypotheses and goals). If we would like to know what the simp tactic
did, we just type simp?.

The possibility of using simp? to see what happened makes one feel less like a
cheater. The simp tactic is certainly something one should keep in mind.

exact? and apply? tactics

If we would like to be less careless with simplifying statements but still do not
know how to go on, we can use one of the following tactics.

Definition 2.2.63. Two other useful tactics to help us continue to finish a proof
are the apply? and exact? tactics. The first tries to find a theorem in the library
that has the goal of a conclusion. The latter searches for a theorem that can
directly prove the statement.

Example 2.2.64.

(a) Before we use exact?. (b) LEAN infoview before using exact?.
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(c) exact? used in VS-Code. (d) LEAN infoview after using exact?.

Figure 19: exact? used to find a theorem in Mathlib proving the desired statement.

Unfortunately there is not a theorem for each statement we want to prove, especially,
if we need to prove several steps. However, LEAN can also help us find these steps.

Example 2.2.65.

(a) Trying to use exact?. (b) LEAN infoview when using exact?.
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(c) apply? used in VS-Code. (d) LEAN infoview after using apply?.

Figure 20: apply? used to find a theorem in Mathlib that changes the goal.

LEAN gives many more suggestions than the ones shown in Figure 20. With one
of the suggestions shown, we can finish the proof.

use tactic

We have not talked a lot about quantifiers until now. What do we do when we
have an ∃ in our goal or a ∀ symbol in our hypothesis?

Definition 2.2.66. Whenever there is an ∃ quantifier, we can use the use tactic
to introduce the example we want to prove the statement with.

This tactic corresponds to the ∃-introduction rule:

a ∈ A P (a)
(∃-intro)

∃x ∈ A,P (x)
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Example 2.2.67.

(a) Before we use use. (b) LEAN infoview before using use.

(c) use used in VS-Code. (d) LEAN infoview after using use.

Figure 21: We use the number 4 to prove this statement.

There is no specific reason to choose four, one can choose any real number greater
or equal to three to prove this.

specialize tactic

Definition 2.2.68. On the contrary, when one has a ∀ quantifier in the hypothesis,
one wants to use the specialize tactic to use a certain value for the variable.

This also corresponds to a deduction rule, namely the ∀-elimination rule:

∀x ∈ A,P (x) N ∈ A
(∀-elim)

P (N)
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Example 2.2.69.

(a) Before we use specialize. (b) LEAN infoview before using specialize.

(c) specialize used in VS-Code. (d) LEAN infoview after using specialize.

Figure 22: We specialize the hypothesis to prove the desired result.

Only after specializing the hypothesis with x = 12, we could exact it to prove the
goal.

conv_rhs and conv_lhs tactics

Definition 2.2.70. We may want to change something in the goal or a hypothesis
but we just want to change one side of an equality. Then we can use the tactics
conv_rhs => or conv_lhs =>.
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Example 2.2.71.

--Show that Σ_{k=1}^{n+1} (2*k-1) = n^2.
example : Σ k in Finset.Ico 1 (n+1), (2*k-1) = n^2 := by --try it

yourself
induction’ n with d hd
simp
rw [sum_Ico_succ_top]
rw [hd]
rw [succ_eq_add_one]
ring_nf
rw [add_comm]
rw [add_left_inj]
rw [add_comm]
conv_rhs => rw [add_comm]
linarith
done

shortly before we finish the goal, we have to use commutativity of addition. The
problem is that LEAN always goes from left to right and tries to apply the theorems.
This is why we use conv_rhs => here.

push_cast tactic

One problem we have with type theory is that 2 : nat is not the same as 2 : int.
Now if we want to subtract something in LEAN while we have an expression of
type nat, we have to prove that we still get a positive result, even if it is clear to
us. The LEAN community developed a tactic that allows us to switch between
types to overcome this problem.

Definition 2.2.72. The push_cast tactic can “push” the type of an expression to
another one to help us solve a proof. It is an algorithmic tactic and quite technical.

Remark 2.2.73. The LEAN community was planning on integrating the push_cast
tactic into the simp tactic but decided to let it be its own tactic later.

Remark 2.2.74. The push_cast tactic is not easy to understand. We need to dig
deep into type theory to fully understand it. Since we only use it once in all the
LEAN exercise sheets, it is mentioned here but not discussed in further detail.
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Example 2.2.75. push_cast is used here, to prove that
∑n

i=0 i = (n · (n + 1))/2.
Since n is a natural number and division is not defined for natural numbers, we
need to somehow change the type of the variables.

(a) before we used push_cast. (b) LEAN infoview before using push_cast.

(c) push_cast used in VS-Code. (d) LEAN infoview after using push_cast.

Figure 23: Using the push_cast tactic to “push” k from N to Q.

We see that from Subfigure (b) to (d), the arrow before the brackets goes before the
k. Now LEAN thinks that k is a rational number, even though it would actually
be a natural number. This allows us to use ring_nf to finish the proof.

exfalso tactic

Whenever we have a hypothesis that is a contradiction, we can simply change the
goal to False and finish our proof.

Definition 2.2.76. The tactic exfalso changes the goal to False. This can be
useful when we have a hypothesis that is a contradiction.

exfalso has another nice property. From False (⊥), we can derive anything. In
natural deduction, this is called the ⊥-elimination rule.

⊥ (⊥-elim)
P
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Example 2.2.77.

(a) Before we use exfalso. (b) LEAN infoview before using exfalso.

(c) exfalso used in VS-Code. (d) LEAN infoview after using exfalso.

Figure 24: The hypothesis makes no sense, so we change the goal to False.

This is an example that actually uses one further derivation rule, namely the
¬-elimination rule, which states that having P and ¬P , we can derive absurdity
(⊥):

P ¬P (¬-elim)⊥
Using constructive logic, we can prove this statement like this.

example : P → (¬P) → Q :=
fun p : P =>
fun np : ¬P =>
False.elim (np p)

Here the False.elim rule is enough to solve the proof. LEAN seems to apply the
⊥-elimination rule automatically.
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haveI tactic

Definition 2.2.78. similar to the have tactic, there is the haveI tactic that can
give instances to objects like relations. Again, we first have to prove that this
instance is valid before we can use it.

Example 2.2.79.

Figure 25: We can use haveI to build instances that we can use later.

sorry tactic

If we do not know a part of a proof right now, we can skip this step and come back
to it later.

Definition 2.2.80. In LEAN, we can skip parts of the proof by typing sorry.
Keep in mind to prove these parts at a later time.
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Example 2.2.81. We can have a look at the same proof as before but leave out the
proof for reflexivity.

Figure 26: Using sorry, we can omit the proof for reflexivity.

Obviously, one would need to prove the missing part too to finish the proof. This
is why at the start of the exercise, where “example” is written, we have a yellow
underline showing us that the proof has not been concluded yet. It still is a useful
tactic as we never get stuck in parts of proofs.

There are countless important theorems to use in LEAN. We have summarized the
most important addition, subtraction, multiplication and division theorems in a
“cheat sheet” that can be found on my Github [Bot23]. But we will not list them
all here since they would take up too much space.

After seeing so many tactics that we can use in LEAN, and knowing how we can
build a LEAN project, it remains to state how to best start learning LEAN.
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Natural Number Game

The Natural Number Game (NNG) was originally developed by Kevin Buzzard
and Mohammad Pedramfar in 2019 [BP21]. At that time, it was written for LEAN
3. The reason we write about this game is because it was my first entrance to
LEAN and it had a great influence on my levels.

With the NNG one can introduce the natural numbers in LEAN step-by-step
starting with Peano’s axioms and proving all the addition, multiplication and
power rules as well as the ordering on the natural numbers. The game also gives
one first insights into propositional logic and functions. It is made up of 10 worlds
with 4 to 17 levels each covering the different topics. This gave me the idea to
structure my teachings in levels with exercises, i.e. my levels correspond to the
worlds of NNG and my exercises to the levels.

When we started to teach LEAN for this thesis, the LEAN community was just
changing from LEAN 3 to LEAN 4. We already planned on using the NNG
for the teachings when we would come to the natural numbers and were a bit
concerned that we would need to make the NNG in LEAN 3 after learning LEAN
4 with the students. Fortunately, a working version of NNG for LEAN 4 was fin-
ished by the time the students arrived at the natural numbers in their course [BE23].

We highly recommend starting with the NNG when trying to learn LEAN. It gives
a perfect first impression of what proving mathematical statements with LEAN
looks like.
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3 Methods
In this section, we consider the teaching methods and data gathering. The teaching
methods were used to prepare weekly sessions we had with five volunteer first-year
mathematics students.

3.1 Teaching Methods

One of the most important things to do in meetings with students is to show them
the goals for each session at the beginning. This helps the students to focus on the
essential topics and the teacher to reach his pedagogical goals. In [FF10] it is also
proven to heighten students’ achievements. In the meetings the goals were written
following Mager’s structure [Mag78]. Meaning that they would not only contain a
content but also a skill the students should acquire. In Figure 27 below, one can
see an example from one of the meetings.

Figure 27: The goals from our 4th meeting.

To prepare the sessions, the same table explained in Figure 28 below was always
used. Carefully preparing the lessons is the key to successful teaching, especially
for young teachers [Mey20].
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Figure 28: Preparation table for the 4th meeting.

This table is something picked up during substitute teaching in a high school. As
one can see in the table, directly after the goals, we showed the students some
motivations for why we are learning today’s topics. Giving them motivation and
not only goals is essential for successful and efficient learning [EW02]. Note that
the fourth row (HW) is empty because in this meeting, we did not discuss the
homework from the week before.

We differ between extrinsic and intrinsic motivation. The first one comes from
goals and expectations society has on a person, while the second one comes from
within and is fueled by individual interests and curiosities. Deci and Ryan argued
in [DR93] that extrinsic and intrinsic motivation are in fact not antagonists, but
that one can turn extrinsic motivation into intrinsic motivation. This process
consists of four stages, called: external regulation, introjected regulation, identified
regulation and integrated regulation. It describes how a motivation given from
outside, slowly becomes internalised until the student feels self-determined and
experiences intrinsic motivation. With the questionnaire in Section 3.2 we conduct,
we want to find out the motivation of the LEAN students to see if higher motivation
leads to better learning results.
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The meetings were structured in the sandwich method [Wah13]. This method relies
on a varied course of the lesson, meaning that one changes a lot between frontal
teaching and experimenting parts. We were taught this lesson structure in the
subject didactics course at UZH. It gives the students the possibility to work for
themselves for a great part of the lesson.

When choosing the exercises we wanted to discuss with them, it is very important
to have an appropriate difficulty level. If the content is too difficult, students are
overwhelmed and frustrated if the content is too easy, students get bored [Pet22].
As a teacher, one may try to reach the so-called “zone of proximal development”
[VC78]. It describes the difficulty level which is exactly a bit higher than the
knowledge students have, but not so high that they cannot reach it. This is one
of the reasons for the restructuring of the meetings in the last few weeks of the
semester, as elaborated in Chapter 5.2.

Heterogeneity is a frequently talked about topic in teaching [Wod14]. In each class,
one encounters a lot of different skill levels. While it would be the best to treat each
student individually, this is often not possible due to the big class sizes. Since we
did not have many students, we managed to treat the students according to their
needs, a privilege that is not often encountered. With Ladina, we had a student who
already knew very much about LEAN compared to the others and even to us. For-
tunately, having the extra meetings with her alone, allowed us to have differentiated
teaching [HS21], meaning that we could raise the difficulty level for her in particular.

That we need to adapt our teachings to the coming of new digital media should
be obvious. However, we are at a very slow change of heart and lack good tools
to teach subjects with digital tools [Pet14]. Admittedly, while digital technology
has been here for almost 40 years now, it takes time to research how to use this
technology well in classrooms. Some tendencies and methods are starting to arise,
and others are underlining the importance of digital teaching. We cannot allow
our schools to undergo zero changes while the world around us spins faster each
day. That is why some research papers call for media-aware teaching, where we
need to develop critical thinking towards information and the skill to deal with the
flow of information around us [HA+16]. Others warn that teaching with digital
media does not substitute good teaching, it should just evolve it [FBC17].
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In our case, we use the mix of both methods explained above. Teaching the students
digital affinity by expanding the teaching with digital resources, without losing its
meaning. However, we are certainly not alone in this. The term STEM teaching
(Science, Technology, Engineering and Mathematics) has been heard a lot in the
last years. [HA+16] and [FBC17] talk about the importance of integrating various
subjects in teaching, and LEAN does that very well, at least with technology and
mathematics. In summary, educational institutions need to evolve their teachings
to suffice the requirements of the digital world. Students need to have the chance
to learn information literacy, critical thinking towards information, creative work
with digital media, and interdisciplinary STEM teaching. LEAN gives us the
possibility to do that, and it is important to understand that this is not self-evident.

Finally, the class climate is essential for good learning and teaching. We had a very
informal and eye-to-eye relationship during our sessions. This helped build up a
strong connection with the students, which would later help us with the interviews
since most of them agreed to participate. It is important that a good climate does
not lead to lesser learning [CMP14]. After all, they were still students and not
colleagues. To provide this I would always sit next to a screen with the content on
it, while the students would build a half-circle around me. This secured a closed but
still distant relationship. Next to better learning, a good class climate can also lead
to an increase in self-confidence, willingness to perform, positive attitude toward
lessons and the school, social behaviour and the formation of interest [Mey21]. The
latter helps again to encourage intrinsic motivation.
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3.2 Data Gathering

The main goal of this thesis is to observe the effect that both teaching LEAN and
teaching with LEAN has on one’s proving skills. To do so, we need to find a way
to measure the quality of proof, and design suitable interviews and questionnaires
for LEAN and Non-LEAN students.

Proof Structure

Thoma and Iannone explain different points one can check to observe the quality
of a proof [TI21], and here we grade students’ performance by these criteria. The
grading tables can be found in Interviews and Questionnaire, and the results are
stated in Chapter 4.

• Definitions and their use: With this, we check if students understand the
definitions given and if they can apply them correctly in the proof.

• Mathematical symbols and their use: Mathematical symbols are omni-
present in mathematical proofs, understanding and applying them correctly
is necessary to provide a proof.

• Logical statements and their links: Students need to understand how
to deal with implications or equivalences. Dealing correctly with quantifiers
also falls into this criterion.

• High level ideas: Many proofs require this steep step, where one gets the
key idea with how one wants to go. Here we also consider if students find
links between mathematical theories such as set theory and first-order logic.
While doing grading in the criteria logic and definitions, we consider these
skills of students.

• Modular structure of the proof : This criterion checks the ability to split
up a proof into different sub-proofs and to put everything together at the
end. It is really about the skeleton of the proof.

• Use of examples: Students can use examples to find a pattern in the proof
that might help them finish it.
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Interviews and Questionnaire

For this thesis, we interview both groups, LEAN and Non-LEAN students, in a
quantitative test. To better understand the amount of time spent with LEAN, we
additionally prepared a questionnaire only for the LEAN students. In this section,
we present and justify the questions chosen for the interview and we discuss the main
focuses for each as well as the grading tables used to grade the interviews related to
the grading criteria explained above. Then we present the questionnaire. The results
for the interviews and the evaluation of the questionnaire can be found in Chapter 4.

The four interview questions are the following.

1. Prove the following deMorgan law without a truth table:

¬(p ∨ q) = (¬p) ∧ (¬q)

With this question we would like to check if LEAN students developed
additional skills to deal with propositional logic proofs and the way that
Non-LEAN students approach these kinds of proofs.

2. Using all axioms of addition and multiplication of natural numbers, prove:

∀a, b, c ∈ N, a · (b+ c) = a · b+ a · c

In this question, we want to measure the understanding of proof by induction
and the definition of the successor function. We also check their correct
handling with propositional equalities in the base case.

3. Recall that:

a ≡ b mod n⇔ (∃c, d, r ∈ N, a = c·n+r and b = d·n+r)⇔ (∃k ∈ Z, a−b = k·n).

Show that congruence mod n with n = 3 is an equivalence relation.
This question aims to see if students can apply the proof of an equivalence
relation in the context of modulo. We also check their understanding of the
definition of modulo.

4. If J ≠ ∅ and J ⊆ I, does it follow that
⋃

α∈J Aα ⊆
⋃

α∈I Aα? What about⋂
α∈J Aα ⊆

⋂
α∈I Aα?

For this last question, we want to know more about students’ under-
standing about set-theoretic proofs and the definitions of some more complex
set structures.
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The idea of the interview is to cover as many topics from the lecture as possible.
We see that there is a question about propositional logic, one about the natural
numbers and natural induction, one about the definition of an equivalence relation
and one on sets, namely on indexed sets and operations on sets. The questions in
the interviews can also be shown to be relevant, as similar topics were covered in
the exercise sheets, the final exam and even in [TI21], as one can see in the table
below.

Propositional
Logic

Basic
Set Theory Proofs Mathematical

Induction
Relations and
Functions Cardinality Natural

Numbers
Order
Relations

Thoma and
Iannone 2 1 2 1

Interview 1 1 1 1 1
Exercise
Sheets 2 2 1 3 2 1 2 1

Exam 1 2 1 2 1 1

Table 7: Overview of the topics asked about in various examinations.

Table 7 demonstrates how often a topic is covered in either the Thoma and Iannone
paper [TI21], the interviews we made, the exercise sheets of the course “Foundations
of Mathematics” and the final exam of that course. One can see that there is a
high overlap between the topics chosen.

Question 1 is specially conceived to give the LEAN students an advantage and
Exercise 4 is well suited for the students who did not learn LEAN. This is because
Non-LEAN students have never seen how to prove propositional logic without truth
tables and we have not spent much time on exercises like Question 4 with the
LEAN students. In these four questions, apart from the focuses mentioned above,
we check their proof writing based on the characteristics explained in Section 3.2.
The following tables show the grading criteria that are used to grade the exercises
of the students.

Question 1
0 Points 1 Point 2 Points

D
Needs help with the
definitions, even when
given.

Understands the
needed definitions, i.e.
“or”/“and”, but maybe
does not know them all.

Uses them in a
confident way.

MS Struggles with writing
mathematics.

Has a clean way of
writing mathematics.

No neglection
detected.

L Makes confusions with
the “not” operator.

Captures the meaning of
the “not” operator, but
needed help/made mistakes.

Applies all logical
connectives correctly
and without help.

HLI Does not split the
proof in two parts.

Splits the proof in two parts,
maybe with a bit help. Sees how to use

the “and” in the proof.

S
Bad approach of proof,
little to no structure
visible.

Basic structure detected,
maybe some parts not
formulated well enough.

Clean and confident
structure.

UE Never used an
example. Talks about examples. Uses examples

in a helpful way.

Table 8: Grading for Question 1.

Question 2
0 Points 1 Point 2 Points

D
Needs help with the
definitions, even when
given.

Understands the
needed definitions, i.e.
some axioms, but maybe
does not know them all.

Uses them in a
confident way.

MS Struggles with writing
mathematics.

Has a clean way of
writing mathematics.

No neglection
detected.

L Does not capture the
meaning of “for all’.

Captures the meaning of
“for all”, but
needed help/made mistakes.

Applies all logical
connectives correctly
and without help.

HLI

Needs to be told to
use induction and
did not manage to
apply mul_succ.

Understands to use
induction, maybe
with a bit help.

Sees how to use
mul_succ.

S
Bad approach of proof,
little to no structure
visible.

Basic structure detected,
maybe some parts not
formulated well enough.

Clean and confident
structure.

UE Never used an
example. Talks about examples. Uses examples

in a helpful way.

Table 9: Grading for Question 2.
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Question 3
0 Points 1 Point 2 Points

D
Needs help with the
definitions, even when
given.

Understands the
needed definitions, i.e.
refl, symm, trans, but maybe
does not know them all.

Uses them in a
confident way.

MS Struggles with writing
mathematics.

Has a clean way of
writing mathematics.

No neglection
detected.

L
Struggles with the
“if-and-only-ifs’.

Captures the meaning
of “if-and-only-ifs’, but
needed help/made mistakes.

Applies all logical
connectives correctly
and without help.

HLI Does not know how to
prove symm and trans.

Understands how to prove
symm and trans, maybe
with a bit help.

Sees how to prove
symm and trans.

S
Bad approach of proof,
little to no structure
visible.

Basic structure detected,
maybe some parts not
formulated well enough.

Clean and confident
structure.

UE Never used an
example. Talks about examples. Uses examples

in a helpful way.

Table 10: Grading for Question 3.

Question 4
0 Points 1 Point 2 Points

D
Needs help with the
definitions, even when
given.

Understands the needed
definitions, i.e. union and
intersection, but maybe
does not know them all.

Uses them in a
confident way.

MS Struggles with writing
mathematics.

Has a clean way of
writing mathematics.

No neglection
detected.

L
Does not capture the
“does-it-follow’
correctly.

Captures the meaning
of “how-it-follows’, but
needed help/made mistakes.

Follows through
correctly and
without help.

HLI Does not set x in
union over J .

Understands how to
prove the subset, maybe
with a bit help.

Sees how to use the
definition of union
and intersection.

S
Bad approach of proof,
little to no structure
visible.

Basic structure detected,
maybe some parts not
formulated well enough.

Clean and confident
structure.

UE Never used an
example. Talks about examples. Uses examples

in a helpful way.

Table 11: Grading for Question 4.

These grading tables are used as support for the marking of the interviews. Note
that after individual gradings, we had intense discussions about the scores given.
During these discussions, some criteria of the grading tables might have been
stretched a bit. This would, for example, be the case if a student did not write
down a definition correctly, but it was clear in the interview that he or she had
understood the definition well enough.

The questionnaire contains questions that give us insight into how LEAN affected
the students who worked with us during the semester. The answers are collected
using a Google form. Students are asked to answer the following questions.

• Did LEAN motivate you to spend more time on a proof than usual? That is,
would you spend more time trying to solve an exercise in LEAN or in the
Natural Number Game than on paper?

• Did LEAN improve your proving skills in general?

• Did LEAN influence how well you felt prepared for the final exam?

• How often did you use LEAN besides the meetings?

• Should students be taught mathematics with LEAN in the future?

• Open question: Do you plan to continue working with LEAN during your
studies? Why or why not?

• Open question: Would you have done something differently in the way we
held our meetings with you?
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The first few questions could be answered with “No/Never”, “Rarely/Hardly”,
“Sometimes/A bit” or “Yes/Often”. Question 5 has the options “No”, “No opinion”,
“That depends” or “Yes”. All non-open questions have the optional possibility
to leave a comment. This questionnaire helps us to better analyze the students’
progress. If a LEAN student does not perform so well in the exam and/or the
interview, we check how these students answer the questionnaire. If they answer
Question 3 with “Never” or “Rarely”, we know that the problem is not the meetings
themselves, but the lack of motivation to work with LEAN at home. The results of
this questionnaire can be found in Section 4.
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4 Interview Results
Based on [TI21], we first compare the performance of the students participating
in the interviews during the first exercise sheet and the exam, to make sure that
LEAN students are not already better students before the sessions start. Then,
the results from the interviews are shown and commented on. Finally, we discuss
some individual students or compare LEAN and Non-LEAN students with similar
performance and then present the significance of the results by considering an
independent t-test and a Mann-Whitney U -test.

Exercise Sheets and the Exam

In this section, we present the means and median scores from the exercise sheets
and the final exam of the course “Foundations of Mathematics”. We do this to
compare the performance between LEAN and Non-LEAN students. Contrary to
the results of the interviews, this data contains the scores from all Non-LEAN
students of the course.

Sheet 1 Sheet 2 Sheet 3 Sheet 4 Sheet 5 Sheet 6 Exam
LEAN
Median 19 16.5 20 20 18.5 17.3 47
Mean 18.7 17.3 19.8 19.9 19.1 17.6 46
Non-LEAN
Median 19 18.5 19 18.5 17.5 18 35
Mean 18.2 17.4 18.7 17.7 16.2 17.2 34.9
Total possible 20 20 20 20 20 20.0 60

Table 12: LEAN and Non-LEAN students exercise sheets and exam performance.

We have access to the anonymized scores of all the students, where just the LEAN
students are labelled as L. Since not all students handed in all the exercise sheets,
we always delete this data and just compute the mean and the median of the
students that have handed in the exercise sheets. That way, we consider around 35
Non-LEAN and five LEAN students. For the exam, we consider the final score,
but not the mark of the exam. That way, we do not have to consider the grading
key used. One can see that while in the first exercise sheet, LEAN and Non-LEAN
students performed fairly equally, in the exam, LEAN students scored over 10
points more on average than Non-LEAN students.
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Interviews

We start by stating the mean, lowest and highest score (points for all six criteria
summed) of each question, without comparing LEAN and Non-LEAN students.

Question Mean Score Lowest Score Highest Score
1 4.4 0 9
2 6.4 2 10
3 8.1 4 10
4 7.7 3 12

Table 13: Mean, lowest and highest score for each exercise of the interview.

Keep in mind that having six criteria, the highest possible score would be 12 points
per exercise. We talk about the results for each question more in detail later.

Before we discuss the results of each question, here are the results of the total
scores from the interviews:

Laurin Nevia Ladina Niculin Lavinia Nuot Linard Nicola Liun LEAN
Mean

Non-LEAN
Mean Mean

Definitions 4 3 8 4 6 2 7 8 4 5.8 4.25 5.1
Mathematical
Symbols 3 6 7 7 8 4 7 6 5 6 5.75 5.9

Logic 4 6 8 5 7 2 6 7 4 5.8 5 5.4
High Level
Idea 4 5 8 4 7 1 4 6 2 5 4 4.6

Structure of
the Proof 4 4 7 3 6 2 4 7 4 5 4 4.6

Use of Examples 0 0 1 2 2 0 2 2 1 1.2 1 1.1
Total 19 24 39 25 36 11 30 36 20 28.8 24 26.7

Table 14: Total scores in each criterion for all students.

General Mean Laurin Nevia Ladina Niculin Lavinia Nuot Linard Nicola Liun LEAN
Mean

Non-LEAN
Mean Mean

Definitions 1 0.75 2 1 1.5 0.5 2 1.5 1 1.45 1.06 1.3
Mathematical
Symbols 0.75 1.5 1.75 1.75 2 1 1.75 1.5 1.25 1.5 1.44 1.5

Logic 1 1.5 2 1.25 1.75 0.5 1.5 1.75 1 1.45 1.25 1.4
High Level
Idea 1 1.25 2 1 1.75 0.25 1 1.5 0.5 1.25 1 1.1

Structure of
the Proof 1 1 1.75 0.75 1.5 0.5 1 1.75 1 1.25 1 1.1

Use of Examples 0 0 0.25 0.5 0.5 0 0.5 0.5 0.25 0.3 0.25 0.3
Total Mean 4.75 6 9.75 6.25 9 2.75 7.5 9 5 7.2 6 6.7

Table 15: Mean scores in each criterion for all the students.

In Table 14 we see the total scores for each criterion and the total score for the
interview. We can see that the mean score for LEAN students is higher in each
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criterion. The highest difference in average is for the Definitions criterion, followed
by the Logic criterion. This could be due to the clean and precise structure LEAN
asks one to use.

Table 15 needs some clarifications. We see the mean scores for each criterion over
all four exercises. For example, Nevia scored 1.5 points on average in the logic
criterion over all four exercises. In the last row, we add the average points of
each criterion summed, which is the same as considering the mean score for each
question at the interview. So Tables 14 and 15 do not give us different results, they
just represent them in different ways.

From these tables one can already see that LEAN students performed slightly
better than Non-LEAN students. We now have a look at each question in detail,
to see if this is the case for each question.

Question 1

Prove the following deMorgan law without a truth table:

¬(p ∨ q) = (¬p) ∧ (¬q)

Question 1 Laurin Nevia Ladina Niculin Lavinia Nuot Linard Nicola Liun Averarge
LEAN

Mean
Non-LEAN Mean

D 0 0 2 0 0 0 2 2 1 1 0.5 0.8
MS 0 2 2 2 2 0 1 1 1 1.2 1.25 1.2
L 0 1 2 1 1 0 1 2 1 1 1 1
HLI 0 1 2 0 1 0 1 1 1 1 0.5 0.8
S 0 0 1 0 0 0 1 2 0 0.4 0.5 0.4
UE 0 0 0 1 0 0 1 0 0 0.2 0.25 0.2
Total 0 4 9 4 4 0 7 8 4 4.8 4 4.4

Table 16: Results from Question 1.

While Nicola manages to get eight points, he solves Question 1 using sets. He
is not the only one trying that approach. Linard tries using sets to prove the
statement too. While it is certainly not the same setting, one can argue that by the
PAT interpretation, an element of a set corresponds to a proof for a proposition,
meaning that we can prove DeMorgan’s law in an equivalent way using set theory.
Ladina is the only one able to solve this the intended way, just see Figure 29 below
for Ladina’s and Nicola’s solution. It turns out that solving Question 1 without
a truth table is too tough. Many make the mistake that they want to use the
statement to prove the statement. We can see that this mistake happens in a few
of the interviews. Indeed, we observe that two Non-LEAN students out of four,
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and one LEAN student out of five make this mistake. It is interesting to observe
that the LEAN student is one with a lower performance but the two Non-LEAN
students that make the mistake are average performers. While LEAN certainly
helps understand useful things like ¬P ⇐⇒ (P ⇒ False), proving with first-order
logic is an unfamiliar notation that cannot be learned quickly. It seems that one
needs to spend more time with LEAN to master the skills of propositional logic
proofs.

(a) Nicola’s solution. (b) Ladina’s solution.

Figure 29: Two solutions for Question 1. Once with sets and once with propositional
logic.

This figure shows the best LEAN and Non-LEAN performance of Question 1. As
we can see, the two students approach very differently.

Question 2

Using all axioms of addition and multiplication of natural numbers, prove:

∀a, b, c ∈ N, a · (b+ c) = a · b+ a · c

Question 2 Laurin Nevia Ladina Niculin Lavinia Nuot Linard Nicola Liun Averarge
LEAN

Mean
Non-LEAN Mean

D 1 0 2 0 2 0 1 2 1 1.4 0.5 1
MS 1 2 1 1 2 1 2 1 2 1.6 1.25 1.4
L 1 1 2 1 2 1 2 2 2 1.8 1.25 1.6
HLI 1 1 2 1 2 0 1 2 1 1.4 1 1.2
S 2 1 2 0 2 0 1 1 2 1.8 0.5 1.2
UE 0 0 0 0 0 0 0 0 0 0 0 0
Total 6 5 9 3 10 2 7 8 8 8 4.5 6.4

Table 17: Results from Question 2.

While most of the students are able to figure out that a proof by induction is
needed, some of them struggle with choosing the variable to do induction on. For
instance, in the following figure, Niculin want to do induction on all three variables.
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Figure 30: Niculin’s solution for Question 2.

We check if they use the propositional equality correctly. As we see in Figures 31
and 32 below, both LEAN and Non-LEAN students are dealing with it wrongly or
correctly.

(a) Lavinia’s solution. (b) Nevia’s solution.

Figure 31: The propositional equality used correctly.

While they both use the notion of propositional equality correctly, Nevia struggles
more with the definition of successor multiplication than Lavinia does. Having
played the Natural Number Game could have given Lavinia an advantage.

(a) Nicola’s solution. (b) Linard’s solution.

Figure 32: The propositional equality used incorrectly.

In Figure 32 above we see two students who wrongly use the propositional equality.
It could be that it is just a sloppy notation mistake, but such mistakes can lead to
problems understanding the logic behind proving a statement.
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Question 3

Recall that:

a ≡ b mod n⇔ (∃c, d, r ∈ N, a = c·n+r and b = d·n+r)⇔ (∃k ∈ Z, a−b = k·n).

Show that congruence mod n with n = 3 is an equivalence relation.

Question 3 Laurin Nevia Ladina Niculin Lavinia Nuot Linard Nicola Liun Averarge
LEAN

Mean
Non-LEAN Mean

D 2 2 2 2 2 1 2 2 2 2 1.75 1.9
MS 2 1 2 2 2 2 2 2 1 1.8 1.75 1.8
L 2 2 2 2 2 0 1 2 0 1.4 1.5 1.4
HLI 2 1 2 1 2 0 1 2 0 1.4 1 1.2
S 2 2 2 2 2 1 1 2 2 1.8 1.75 1.8
UE 0 0 0 0 0 0 0 0 0 0 0 0
Total 10 8 10 9 10 4 7 10 5 8.4 7.75 8.1

Table 18: Results from Question 3.

Apart from a few students, everybody can state the criteria one needs to show
that something is an equivalence relation correctly. We compare two LEAN and
Non-LEAN solutions for an adequate and a good proof of this statement.

(a) Liun’s solution. (b) Nuot’s solution.

Figure 33: These two students struggle a bit with proving this statement.

Nuot more or less knows the criteria for an equivalence proof, but he is not able to
prove the criteria. While Liun’s proof looks a bit more elaborate, he is not able to
prove symmetry correctly, as he tries to use the same method as for the transitivity.
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(a) Niculin’s solution. (b) Laurin’s solution.

Figure 34: Two good examples of a proof for Question 3.

Niculin’s and Laurin’s solutions are nice examples of the proof, but like other
students too, they struggle to choose two different integers in the symmetry proof.
They have it written in their proofs here, but they needed help to understand that
they should use different integers in the proof.
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Question 4

If J ̸= ∅ and J ⊆ I, does it follow that
⋃

α∈J Aα ⊆
⋃

α∈I Aα? What about⋂
α∈J Aα ⊆

⋂
α∈I Aα?

Question 4 Laurin Nevia Ladina Niculin Lavinia Nuot Linard Nicola Liun Averarge
LEAN

Mean
Non-LEAN Mean

D 1 1 2 2 2 1 2 2 0 1.4 1.5 1.4
MS 0 1 2 2 2 1 2 2 1 1.4 1.5 1.4
L 1 2 2 1 2 1 2 1 1 1.6 1.25 1.4
HLI 1 2 2 2 2 1 1 1 0 1.2 1.5 1.3
S 0 1 2 1 2 1 1 2 0 1 1.25 1.1
UE 0 0 1 1 2 0 1 2 1 1 0.75 0.9
Total 3 7 11 9 12 5 9 10 3 7.6 7.75 7.7

Table 19: Results from Question 4.

This is the only question in which Non-LEAN students perform (slightly) better
than LEAN students. As we stated in Section 3.2, we expect that Non-LEAN
students have an advantage over LEAN students in this question.

Below we see Lavinia’s approach to the proof. It is the best-scored question in all
the interviews, as she uses a very nice example to disprove the statement about
the intersection.

(a) Proof for the union. (b) Proof for the intersection.

Figure 35: Lavinia’s proof to Question 4.

Lavinia confidently proves the statement about the union and has no problem
defining where the chosen x should lie. For other students, both LEAN and
Non-LEAN, this could lead to a problem, as one can see in the following figures.
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(a) Liun’s solution. (b) Nuot’s solution.

Figure 36: Both students struggle with finishing the proof.

The main reason Nuot is confused, is because he thinks he remembers the first
statement from the exercise sheets to be true, a common mistake that first-year
students make, namely trying to remember the correctness of statements by heart.
While he chooses a certain index e once, to explain that x would lie in some Aα,
he then still struggles to define where x lies exactly in the next line. Liun on the
other hand cannot see the importance of choosing a specific label α0 to argue that
x would also lie in the union over the index set I. This is why he cannot finish the
proof.

This problem with using the variable name given in the statement and not defining
new labels is also seen in Question 3, where students get confused in the symmetry
proof when they have to choose a different k. While we expect LEAN students
to not make these kinds of mistakes, more time working with LEAN is needed
to fully get rid of such mistakes. We can see in the questionnaire that the more
LEAN students used LEAN at home, the less they would make mistakes like the
ones mentioned right now.

Students’ General Performance

Having a small data set allows us to now compare the students’ performances more
carefully. Sometimes we elaborate the students’ performance individually, and
sometimes we compare LEAN and Non-LEAN students who score similarly in the
interview to point out some differences or similarities.

We start discussing Ladina, as she is quite a special case. Ladina has already a lot of
experience with LEAN. She has a Bachelor’s in informatics and even implemented
some formalisations of mathematics in LEAN herself at some time. However, she
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started studying mathematics as a first-year student just like the others. Coming
from this computer science background, one can perfectly see on various occasions
that she sees mathematics differently than the other students (or even us).

Figure 37: Question 2 from Ladina’s interview.

At the end of Question 2, Ladina says that here she would just use ring_nf, one of
the LEAN tactics we discussed before. This is not the only time she mentions a
LEAN tactic she would use to solve the next step of a proof.

Even though he is a Non-LEAN student, Nicola scores better than most students in
the interview. We do not know much about him, as he did not come to the meetings,
but we find out at the beginning of the interview that he is a first-semester student.
There are always students who are really good at mathematics, and it should be
clear that the difference between LEAN and Non-LEAN students will never be
that all LEAN students perform better than all Non-LEAN students. Nicola has
a clean and structured proving style without ever having used LEAN. However,
he solves the first exercise in the interview with sets, i.e. using set theory, as can
be seen in Figure 29. While he solves it correctly, it would have been much easier
doing it with propositional logic, which he did not learn in the course “Foundations
of Mathematics”. In his example, we can see that no matter how well we are at
something, learning something new can never be bad.

Laurin and Nuot are the LEAN and Non-LEAN students respectively that score
the lowest mark during the interviews. As we understand from the feedback from
Laurin, this score may depend on his oral examination phobia. One can also see
that in the questionnaire, he is the one who answers with “never” when asked if
LEAN was used outside of the meeting, which is why we hesitate to say that LEAN
did not improve the mathematical skills in his case. Both Nuot and Laurin have
no academic background at the time of the interview.
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(a) Laurin’s solution. (b) Nuot’s solution.

Figure 38: A LEAN and Non-LEAN solution to Question 2.

Even though they both score a lower result during the interview than other students,
one can see the more structured way Laurin writes his proof in Question 2. This is
possibly due to the LEAN level treating natural induction.

Linard is one of the LEAN students with a very high score and has the second-best
Definitions rating after Ladina. Interestingly, he also tries to solve Exercise 1 from
the interview using set theory, as one can see in Figure 39 below. So it seems that
first-order logic is not very present in LEAN students too. We would not say that
this is due to LEAN not being a competent theorem prover, but rather to the little
time we have learning about first-order logic in LEAN.

Figure 39: Question 1 from Linard’s interview.

Linard starts Question 1 with a propositional logic approach but later finishes it
using sets. Note her clean proof structure and the example she uses at the bottom
right. It is one of the very few examples used over all interviews.
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Next we would like to discuss Nevia, a Non-LEAN student. Her Logical thinking
is remarkable, but she struggles a bit with Definitions of mathematical objects,
like the union of indexed sets (compare to Table 14). Having a bit of practice
doing LEAN exercises, she could profit and get a better understanding of those
definitions for sure.

Niculin is another Non-LEAN student who scores almost the same mark as Nevia,
but he seems a lot more confident. He spends more time in Exercises 1 and 3 than
the other students because he gets a bit confused there. But he is pretty secure
with definitions and proof structure over the whole interview in general.

A very enthusiastic LEAN student is Lavinia. While she is not as experienced as
Ladina, she did most LEAN at home compared to the other students. Her high
score in the interview shows the fruits of her commitment. Keep in mind that she
is the only student scoring the total 12 points in a question. Even though she
never studied another course of study before, she is a computer affine out of her
own interest. One can really see some LEAN-thinking during the interview, but
unfortunately, she struggles with Exercise 1 too. We would like to mention the
way she solves Exercise 4. She uses an excellent example to disprove Subquestion
4. b) and manages to solve this exercise in a more elegant way than others. It is
not possible to say if that is thanks to LEAN or not. Except for Ladina, Lavinia is
most likely to continue using LEAN regularly during her studies.

That leaves us with Liun, the last LEAN student. He is a very committed
student and learner, and he is the one who “praised” LEAN the most during the
questionnaire, mentioning that he uses our LEAN exercises often to understand a
proof he cannot figure out by himself. With a bit more experience, he can get as
good as Lavinia and Ladina. We are not sure if LEAN is more of a helping tool for
him or if his interest in proof assistants is also awakened by the sessions, but we
hope that he will continue to use LEAN either way.

If we compare the interviews in total, we can see that LEAN students perform
slightly better, with outliers in both directions. Our sample is too small to derive
a relevant effect of teaching with LEAN, but it is still nice to see that LEAN
students perform well in general. As already mentioned before, learning something
new that is meaningful is never wrong. But LEAN does not make a mathematical
superhero out of everybody, and some mathematicians are incredible without ever
having learned about theorem provers.
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Significance

In this chapter, we present the tests we do to check whether our results are
significant. Our null hypothesis is that the mean performances of LEAN and
Non-LEAN students are the same. We calculate the p-value to check if we reject
the null hypothesis. As a significance value, we choose α = 0.05.

For the interview results and the final exam mark, we do a t-test for two independ-
ent samples, LEAN and Non-LEAN students [DAT24c]. We assume the variances
to be heterogeneous, which influences the degrees of freedom.

The t-value is computed as

t =
x1 − x2√
s21
n1

+
s22
n2

,

where xk is the respective mean value for LEAN or Non-LEAN students, s2k is the
standard deviation and nk is the number of students per sample.

The standard deviation is computed as follows,

s2k =
1

nk − 1

nk∑
i=1

(xi − xk)
2.

Here, xi stands for the performance of each individual student.

To compute the p-value, we need the number of degrees of freedom. In our case,
this number is computed as

df =
(
s21
n1

+
s22
n2
)2

1
n1−1

(
s21
n1
)2 + 1

n2−1
(
s22
n2
)2
.
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In Tables 20 and 21 below, we present the given data.

x1 x2 n1 n2 s21 s22 t df
28.8 24 5 4 82.7 104.67 0.73 6.15

Table 20: Quantities from the interviews to find p-value.

x1 x2 n1 n2 s21 s22 t df
46 34.92 5 52 32.5 181.17 3.51 9.23

Table 21: Quantities from the exams to find p-value.

Using an online tool, we calculate the p-values. For this, we just have to type in
the t-values and the degrees of freedom for both tests [DAT24b].

The following p-values were found.

Interviews Exams
p-values 0.49 0.006

Table 22: p-values of interview and exam performances.

We now see that for the interviews, while the LEAN students do perform better on
average than the Non-LEAN students, the difference of the means is not significant.
For the exam, however, the p-value is smaller than the significance level. Therefore,
here we can reject the null hypothesis and state that LEAN students performed
significantly better on average in the exam than Non-LEAN students.

For the t-test, we assume the data to be normally distributed. To consider the case
where the data might not be normally distributed, we conduct the nonparametric
Mann-Whitney U -test for independent data [DAT24a]. This test needs a lot of
intermediate steps. These steps are explained next, and described for both data,
interviews and exam results, at the same time.

First, we rank all scores from 1 to n, where 1 is for the lowest score and n for
the highest. If there are some tied ranks, we consider the mean of the ranks. For
example, if the ranks 6, 7 and 8 all scored the same, they are all assigned the rank
7. We then compute the sum of the LEAN and Non-LEAN ranks respectively,
denoted as T1 and T2, and we compute a number needed later, which we will call
tR (tied ranks)
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tR =
k∑

i=1

t3i − ti
12

.

Here, k stands for the number of tied ranks and ti is the number of people sharing
the same rank.

T1 T2 n1 n2 tR
27.5 17.5 5 4 0.5

Table 23: Rank sums and tied rank number from the interviews.

T1 T2 n1 n2 tR
217.5 1435.5 5 52 26.5

Table 24: Rank sums and tied rank number from the exams.

Next, we calculate the U -values for LEAN and Non-LEAN students and then we
choose the smaller of the two to be our U -value. We also compute µU and σU

Uj = n1 · n2 +
nj · (nj + 1)

2
− Tj,

µU =
n1 · n2

2
,

σU =

√
n1 · n2

n · (n− 1)
·
√

n3 − n

12
− tR.

In these formulas, j can take the values 1 and 2 for LEAN and Non-LEAN students
respectively and n is the sum of both sample sizes.

U µU σU z
7.5 10 4.07 -0.61

Table 25: Quantities from the interviews to find p-value.

U µU σU z
57.5 130 35.42 -2.05

Table 26: Quantities from the exams to find p-value.
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The z-values in Tables 25 and 26 are calculated using z = U−µU

σU
. Once we have

that, we use an online calculator to find the p-value [Sta24].

Interviews Exams
p-values 0.54 0.04

Table 27: p-values of interview and exam performances.

The Mann-Whitney U -test returns the same conclusions as the t-test. The better
performance of LEAN students during the interviews is not relevant (p > α) but
for the exams, our results are significant (p < α).

Results from the Questionnaire

Here we present the results of the questionnaire from Chapter 3.2.

Did LEAN motivate you to spend more time on a proof than usual? i.e.
would you spend more time trying to solve an exercise in LEAN (or the
NNG) than on paper?

Figure 40: Question 1.

Comments:

• LEAN kind of forces your hand in this case. However, occasionally it also
happens by choice, as the exploration of the structure of the proof is more
in-depth with LEAN. This is not always the case, as some proofs pretty much
can be auto-generated and it also depends on my interest in the proof.

• Especially the NNG.
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Did LEAN improve your proving skills in general?

Figure 41: Question 2.

Comments:

• Absolutely, in typical proof patterns (inj/surj proofs, set equality, induction,
contradiction, etc.) I’ve learned to start out in a very mechanical way, almost
like mathematical muscle memory. I attribute this to LEAN.

• Helped with structure of proofs.

Did LEAN have an influence on how well you felt prepared for the final
exam?

Figure 42: Question 3.

Comments:

• I assumed that I would be able to do the aforementioned mechanical proofs
quite a bit faster than if I had not looked at LEAN. However, in general,
this was not the case and it showed in the exam. My time in the exam was
mostly taken up with annoying algebraic manipulations and manipulations
over summation symbols (stuff I use simp for). I blame this on the exam
though, as the hard part should not be those aspects.

87



How often did you use LEAN besides the meetings?

Figure 43: Question 4.

Comments:

• I try to formalize various theorems and am actively doing formal verification
of code. Sometimes, when a theorem from one of my modules is not clear, I
browse mathlib for it to see all the parameters it takes and the output, so I
get a very structured overview of what the theorem exactly does (and I get
to see applications of it in mathlib).

• Whenever I was stuck with an exercise I tried to compare with the code given
by you.
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Should students be taught mathematics with LEAN in the future?

Figure 44: Question 5.

Comments:

• Some people might also find it interesting but it is not integral to the courses
in my opinion.

• Yeah because if every student would have a module for lean at university I
think there would be more motivation to consult lean (as a help) for a proof
instead of using a website like stackexchange an coping a proof.

• Unfortunately, LEAN is a complicated programming language (compared
to Python or other imperative languages). While the basics of the tactic
language can be taught in a short amount of time, when students need to
push outside of those bounds or understand parts of the language itself (idea
of lambda calculus, etc.), good knowledge of functional programming and a
bit of type theory is required. These things are necessary when formalizing
harder theorems, most of the time. So if mathematics is taught with LEAN, it
should be taught in conjunction with a course that teaches the language itself.
Additionally, some things in mathlib might be too complicated for people just
starting out with mathematics (for example that there is no extensive notion
of a vector space there, everything is formulated in terms of semi-modules).

• I think it should be an option after the gymnasium level, and maybe it could
even be a nice optional subject at the (mathematical) gymnasium. But I do
not think that it should be mandatory.

• Yes, I think it would encourage students to work on their proofs more than
currently (since you don’t need to be able to do proofs to actually pass
analysis/linear algebra).
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Open question: Do you plan to continue working with LEAN during
your studies? Why or why not?

Comments:

• I hope so when I have more time.

• Probably not often but I can see myself using it in some instances where I think
that a lean proof would help my understanding of a certain mathematical
proof.

• Yes, I enjoy it a lot and it generally benefits my understanding of ideas and
concepts. It’s a lot of fun and it creates even more ’click’ moments than just
pen and paper (and hence a dopamine rush :D )

• No I do not think so, as I prefer not working with the computer and I want
to learn and be able to do the proofs by ’hand’.

• Yes, I will try to. For example for things based on set theory this seems very
effective. It’s easily understood and you get feedback whenever you’re stuck.

Open question: Would you have done something differently in the way I
held my meetings with you?

Comments:

• For exercises that needed some specific theorem to solve it would sometimes
have been useful to have a hint like ’use [theorem_something] in the proof’
as a comment because not knowing those was often the part that got me
stuck and had me just looking at the solutions.

• No I think the meetings where always something to look forward also regarding
the very relaxed and open atmosphere during them. The structure was also
very good and always matched with what was happening in “Foundations of
Mathematics”.

• It’s hard to really find fundamental improvements for the meetings with
the little amount of time we had. I’m not sure how it was with the other
students, but for me it was a nice experience, so I do not really have anything
to improve.

• Maybe a touch more theory, would have helped me for example.

• I don’t think so, but looking back I think if the lectures started off with
constructing the natural numbers (such that we could’ve started with the
NNG) it might’ve been easier to get into it.
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5 Discussion
We discuss some general results from the previous section here. This chapter also
contains the experience I had both with learning and teaching (with) LEAN. For
each of the two, we also write some pros and cons. For the latter part, we mostly
use the first-person singular perspective and write in past tense.

5.1 Interviews

Here we talk about general observations which are not that relevant for the results
section.

When reading the interview discussion, one can see that some students are more
nervous than others. Apart from Laurin, who mentions his oral examination
phobia, the Non-LEAN students are in general a bit more excited than the LEAN
students. While one can argue that learning LEAN makes one a more confident
mathematician, we are very careful here with making that assumption. The LEAN
students know the interviewer from the meetings they had in the past semester.
So Non-LEAN students may be more nervous because they do not know the
interviewer as well as the LEAN students.

Some of the criteria we observe in the interview are not generally performed better
by LEAN students, e.g. the use of Mathematical Symbols, Logic or Use of Examples.
Since LEAN requires these criteria to be done well, we assume that LEAN students
still profit from proving statements with LEAN, but that they need to spend
more time doing it to understand the importance of also working so precisely and
thoroughly on paper.

The Use of Examples criterion is performed weakly over almost all interviews. This
is nothing uncommon. As stated in [TI21], the Use of Examples is in general a
criterion of a good proof that neither LEAN nor Non-LEAN students use often. In
some cases, it does not even make much sense to use examples. But it would still
be a good thing to encourage students to use examples when they struggle with a
proof in the future.

We would also like to talk about students who came to one or two meetings and
then stopped. The feedback from them is always identical. They all say, that
they do not have enough time at the moment to learn LEAN, and although they
are interested in learning it, they cannot do it at the time, also due to the low
relevance to their studies. We discuss this issue in more detail in Section 5.2. If we
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cannot integrate learning theorem provers into the curriculum, we must at least
make students understand the benefits of studying them. We would never criticize
students for not coming to the meetings, as we know very well how stressful the
first semester can be, but we would recommend them all, to pick up learning a
theorem prover at some point during their studies.

5.2 My Experience

We start this section by discussing the experience I had learning LEAN in the
process of this thesis. After arguing about the pros and cons of using LEAN as a
theorem prover, we end this section talking about my experience teaching (with)
LEAN and reason why others should do that too.

Implementation - Learning LEAN

One of the main parts of my work was implementing the questions of the weekly
exercise sheets from the “Foundations of Mathematics” course into LEAN. There
were seven exercise sheets in total with 4 - 6 questions each. I would always get an
exercise sheet simultaneously with the students, which means that I always had
two weeks to finish implementing the whole sheet before the next came out. Since
the course topic changed a lot, as one can see in Chapter 2.1, implementing the
questions was quite challenging because I had to learn new notations in LEAN
each week. For example, between the 4th and the 6th week of the sessions, I had to
learn how to implement an induction proof, a strong induction proof, proofs for
relations and proofs for functions.

I started learning LEAN in February of 2023. At that time, I watched YouTube
lectures about Haskell and logic in Haskell [Fur23]. I was also reading the scripts
of a LEAN seminar that had been held at UZH a year before the beginning of
my thesis [ST22]. It was difficult to understand anything at that time. The best
introduction to LEAN was playing the Natural Number Game. I became addicted
to solving the levels, and although it was a bit difficult in the beginning, I learned
fast. A month later, I had mostly finished the NNG and I had tried to learn a
bit about first-order logic, although it did not make much sense at that time. I
watched a lot of Kevin Buzzard’s talks about how to teach with LEAN. From the
18th to the 20th of April 2023, I participated in an online seminar with people
who had experience teaching (with) LEAN [AV23c]. I do not want to explain in
detail what was discussed during the seminar, I just summarize the most significant
experiences I had. Interested readers can watch the talk here [Sch23]. A lot of
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the presenters talked about one problem teaching with LEAN. Namely, that the
theorem prover can be distracting and that first-year students are overwhelmed
when they have to learn new mathematics and LEAN. This is why Patrick Massot,
one of the presenters and an eminent authority in the LEAN community, prepared
his course without type theory, meaning that he developed his syntax based on
LEAN so that the students can do mathematics with LEAN while keeping their
known syntax. While this is certainly a good idea, it requires a lot of knowledge
and work to pull off. Another thing that was often mentioned was the use of
digital classrooms to hold the LEAN lessons. I talk about such possibilities and
everything from this seminar concerning my meetings in Chapters 5.2 and 5.2.
Some also explained how they do the grades of their courses. Since my meetings
were completely voluntary, this did not concern me. However, I think that with
an obligatory course, one would certainly encourage active work with LEAN. Dr.
Paola Iannone and Dr. Athina Thoma mentioned that two students in their study
using features of LEAN would engage very differently, which is an observation I
appreciate. I do not wish for students to become machine-like thinkers who all use
LEAN tactics in the same way. Individuality is key for the future of mathematics.
One last thing I want to mention is students’ input during the seminar saying
without voting against, that the NNG was a perfect introduction to LEAN, which
is something I thought so too. While I could not start with the NNG with my
students, since the natural numbers was one of the later chapters of their course,
unfortunately, I used it when we introduced the natural numbers on our own and
had great experiences with it. Over the summer I worked through formalising
mathematics in LEAN [Buz22]. It is a LEAN script that helps one get familiar
with some notations in LEAN. Unfortunately, it is written in LEAN 3. All the
scripts, YouTube tutorials and talks I had processed by summer were for LEAN 3,
as LEAN 4 was still developing. This led to a problem when I started teaching
(with) LEAN, as can be seen in Chapter 5.2. I also needed to learn how to install
LEAN on my device, and I wrote an instruction to do so. To make the material
accessible for my students, I had to teach myself basic GitHub since I never had
used it before. Finally, I was ready to teach some LEAN myself. On the 2nd

October of 2023, I had my first meeting.

The first two exercise sheets (Sheet 0 and Sheet 1) had a lot of questions where
one could just do logical thinking which did not make any sense to implement into
LEAN. For an example, see the Figure 45 below.
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Figure 45: Question 3 from Exercise sheet 0 [AW23a].

Therefore there were only two questions in total to implement for these exercise
sheets, which is why I added some introduction examples of my own to get used to
propositional logic in LEAN and both deMorgan laws since they fit well into this
environment. It was a good thing that the first two exercise sheets did not have
so many exercises, as it gave me the possibility to introduce the students to the
surroundings of LEAN.

Exercise sheet 2 already used some advanced theorems and surroundings of LEAN’s
Mathlib [AV23d]. Especially Question 1 in Figure 46 below.

(a) Question 1 of Exercise sheet 2 [AW23b]. (b) The proof and structure in LEAN.

Figure 46: The structure of unions and intersections in LEAN.

I was not able to finish the whole proof in LEAN in the two weeks I had, but it
turned out that having only a 45-minute meeting each week we could not cover all
the exercises anyway. That was the moment I decided to implement all possible
questions but cover only the simpler ones during the meetings. The students
would get the LEAN implementations with solutions as fast as possible to try and
understand them on their own. There were also exercises in this sheet that did not
make sense to implement into LEAN at all e.g. in Figure 47 below.
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Figure 47: Question 4.2 from Exercise sheet 2 [AW23b].

Teaching myself and the students how to work with trigonometric functions and
the number π in LEAN would have taken two sessions on their own.

Exercise sheet 3 was about mathematical induction. This topic works very well in
LEAN and helps the students understand the structure of a mathematical induction
proof clearly. However, the expressions that needed to be proved by induction in
the exercise sheet, were so complicated to deal with in LEAN, that I decided to
add some simple induction proofs at the beginning of my level. One exercise of this
sheet was to prove the binomial theorem. The expressions in this proof became so
long, that it was very difficult to even see the goal of the proof, as one can see here.

Figure 48: Question 3 from Exercise sheet 3 in LEAN.

Relations were covered at the end of Exercise sheet 3 and the beginning of Exercise
sheet 4. Once I figured out how to implement relations, the proofs were quite easy
to handle in LEAN. But right after relations came functions. To prove statements
about functions, the teaching assistant of the course chose explicit examples, as
seen in Figure 49 below.

Figure 49: Question 1 from Exercise sheet 4 [AW23c].
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Implementing the proof of explicit examples turned out to be a real challenge in
LEAN. I spent hours searching for the right theorems and notations to implement
the proof like I intended to do and it was only with the help of Ladina that I
managed to prove all of the statements I implemented.

Even harder than the questions of Exercise sheet 4 were some of the questions of
Exercise sheet 5 about the cardinality of sets. That is why I decided to skip one
meeting and implement a repetition level about relations, functions and cardinality
of sets with some simpler exercises that I chose. In the Chapter 5.2, I talk about
this decision more in detail. There was a ray of light though. During this exercise
sheet, the students started with the natural numbers, which are straightforward to
prove in LEAN. I could teach the students the natural numbers using the Natural
Number Game [BE23]. So half of the exercise sheet was a nightmare to implement
in LEAN and half was a piece of cake.

Finally, Exercise sheet 6 was simpler again [AW23d]. The first question was about
the multiplication of natural numbers, which was straightforward to implement.
Then there were three questions about order relations and after searching the
Mathlib library for the structure of some order relations, it was quite easy to
implement the proofs. However, they use a certain structure in LEAN which is not
trivial. I spent more time explaining to the students the LEAN structure of the
proof than for the proof itself. Below, one can see this structure.

def Div_by_n
(a b : N)
: Prop := a | b

example : IsPartialOrder N Div_by_n := by
haveI isrefl : IsRefl N Div_by_n := { -- a | a

refl := by
intro a
exact dvd_refl a
done

}
haveI istrans : IsTrans N Div_by_n := { -- a | b ∧ b | c → a | c

trans := by
intros a b c
intro hab
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intro hbc
exact dvd_trans hab hbc
done

}
haveI antisymm : IsAntisymm N Div_by_n := { -- a | b ∧ b | a → a = b

antisymm := by
intros a b
intro hab
intro hba
exact dvd_antisymm hab hba
done

}
haveI ispreorder : IsPreorder N Div_by_n := IsPreorder.mk --put together
exact IsPartialOrder.mk
done

The difficulty lies in knowing the several instances that one needs to prove for
example that something is a partial order. We need to use the haveI tactic, prove
all instances individually, and then put everything together to form a partial order.

After the semester, I spent three whole days going through all the questions
implemented, finishing their proofs and/or writing comments next to the exercises
so that the students had a chance to solve the levels without having to consider
the solutions all the time.

In the end, I programmed seven levels in total. One per each exercise sheet (Levels
1 to 6, with Exercises sheets 0 and 1 combined into one) and a repetition level. All
these levels are on my GitHub page [Bot23].
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Pros and Cons of Learning LEAN

In general, there is nothing wrong with learning something new. But we can ask
ourselves, why we should use LEAN instead of other interactive theorem provers
like Agda, Coq or Isabelle to learn assisted proof writing. Agda, released in 1999,
is a theorem prover based on Zhaohui Luo’s unified theory of dependent types
(UTT), which is similar to Martin-Löf Type Theory and is written in a way similar
to Haskell language [Aug+09]. The problem with Agda is that it has no proof
automation, which means that it does not have tactics that help us solve proofs
as well as LEAN does [AV24]. First released in 1986, Isabelle is a well-known
higher-order logic (HOL) theorem prover [Pau86]. The problem with Isabelle is
that it does not have dependent types. Without dependent types, one can just do
propositional logic, but not predicate logic. One still can build dependent types in
Isabelle, but this is complicated. This leaves us with Coq and LEAN, which both
share the same features [AV24]. They have some small interface and definitional
differences, but they are very technical and not worth deeper discussion in this
thesis. One can read some discussions about whether LEAN or Coq is preferable
in [AV19], [Com24], [Com23b] and [AV23a]. One notices, that opinions are quite
opposite and no favourable theorem prover can be decided. It is important to
mention that LEAN is not necessarily the best proof assistant. Depending on one’s
background, one might fancy another one. But it is true, that LEAN has found a
big hearing amongst mathematicians, also thanks to the LEAN community. I for
myself can say that as a mathematician with no computer science background had
little to no problems getting into LEAN.

Learning LEAN improves one’s structuring of mathematical proofs. This was
shown in [TI21] and could also be seen in the interviews, see Chapter 4. Its
interaction feature allows us to do the proof ourselves but with being in this strict
corset of the way through. So we have a very good mixture of standalone and
assisted proving. LEAN also teaches us to work thoroughly and consider all cases
that need to be checked. Even famous fields-medalist Terence Tao was able to spot
a missing case in one of his papers using LEAN [Tao23].

There is one problem though that can occur while learning LEAN. Since we do not
want to always prove everything from scratch, some tactics do several things at
a time, e.g. the simp tactic iteratively goes through all the identities in LEAN’s
Mathlib with the @simp attribute and tries to apply them [Avi+23]. While it
is possible to find out what was changed and what hypotheses were used by
adding a question mark after a tactic, there is a strong temptation to neglect
that and just go on simplifying without properly understanding what is going on.
Doing so could mean that we have not understood each step of our proof thoroughly.
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Even though that cannot necessarily be considered a con of LEAN, it is rather
difficult to learn how to efficiently find adaptable theorems. It takes time to master
a coherent procedure to find the right theorems and know what to do as a next
step. LEAN helps us with tactics like exact?, apply? or rw? that can show us the
next step. However, the proposed theorems do not always correspond to the one
we are looking for. Mathlib contains all of LEAN’s theorems. Some theorems have
a description that helps us figure out what they do. But most of the entries just
contain the mathematical definition. For undergraduate students, it might be hard
to keep the overview and actually understand what a theorem does and when it can
be used. Another difficulty that can occur is when we know what theorem we are
looking for but are not sure about what the name should be. I remember searching
very long for a theorem to change the third binomial formula (a−b)(a+b) = a2−b2.
I searched using names like “third_binom” or “binomial_formula”. The actual
name of that theorem was rw_sq_sub_sq. Fortunately, with more experience, it
gets easier to find the wished theorems.

Back when there was LEAN 3, Kevin Buzzard, being a lead role model in LEAN,
among others, pushed using LEAN for teaching. That way, a lot of teaching
material for students was created, simplifying learning LEAN. When I started this
thesis LEAN 4 was being developed and at the beginning, I did not see any teaching
material using LEAN 4. I thought that since LEAN 4 was in active development,
the mathematical community was focused on transferring Mathlib to LEAN 4 and
making it even bigger and that interest in providing useful material for learning
LEAN 4 would not be developed. In the meantime, however, numerous learning
materials have arisen, the LEAN webpage now even has a subpage where people
can contribute their teaching material [AV23e]. So LEAN remains a proof assistant
with a lot of beginner material, that helps one get into it.
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Studies with Students - Teaching (with) LEAN

For my thesis, I taught some students how to prove mathematical statements in
LEAN. We decided to work with students from the “Foundations of Mathematics”
course at UZH. I prepared a short presentation and introduced myself to the
students of the course, telling them my intentions. I then prepared a Doodle and
invited all students to participate in weekly sessions, where I would teach them
the topics from the “Foundations of Mathematics” course in LEAN. Out of the
twelve from 78 students of the course who showed interest in my sessions, seven
ever came to a meeting. One of these seven had to drop out of the sessions for
personal reasons, unfortunately. I still gave him access to my material, but I do
not think that he managed to look at it. Another hardly ever came to my sessions,
without stating any particular reasons. All students from the study group were
first-semester mathematics students.

In this group of five remaining students, there was one student who already had
prior knowledge of LEAN. After the first meeting, I realized that Ladina would
be strongly unchallenged next to the others. This is why I proposed to her that
we should meet on Mondays and talk about the harder proofs to implement in
LEAN. I would meet with the rest of the group on Wednesdays for 45 minutes and
teach them the necessary tactics and theorems to solve the exercise sheets from
the course and some extra questions with LEAN.

The meetings were all structured more or less the same. I would always start with
the goals of today’s meeting, show the students some motivations for why we would
be learning today’s topics, recap shortly the theory that we would be needing, show
them the questions from the exercise sheets that we would solve and then support
them solving the questions in LEAN. For simple questions, I would just give them
the question and they would need to try and prove it on their own. The harder
questions were given to them with the solutions and we would change between me
explaining some steps and them trying to recreate some steps on their own. The
sessions were held considering the teaching methods discussed in Chapter 3.1.

The room I could use for my meetings was perfect for teaching with digital media.
It had a large table where the students could sit left and right, I was at the top of
the table, where there was a big screen I could use to show the students the LEAN
code that I had written and the presentation. The students could perfectly see to
the front and at each other, which allowed a very learning-efficient environment. I
could always walk around the table to watch students progress. With such a small
group, it could have been a possibility to work in a shared digital classroom, where
we could have seen each other’s screens. My knowledge about this was not good
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enough to prepare something like this, unfortunately, but we still managed to have
a good time. As usual, teaching in a small group is always easier than with a lot
of students, since one can be “everywhere at once”. With a bigger group, shared
screening would probably be necessary to work efficiently.

During the first weeks, I wrote a document on how to install LEAN 3 and LEAN 4
on one’s device. I was planning to teach the students LEAN 3 since the community
was still just migrating to LEAN 4 at that time. Unfortunately, they had already
stopped supporting LEAN 3 by the time I had started my sessions [MW23], so
almost nobody of my students managed to install it. A huge part of the manual
I had written was useless, and I had to change two of my already implemented
levels to LEAN 4. After getting used to LEAN 4, rewriting the levels was not so
hard, fortunately. But it still took me some time to fix this. Other than this issue
with installing the software, I cannot recall any other troubles when teaching with
LEAN. My experience with media-based teaching was positive and satisfying.

There were eleven meetings and we met ten times in total, as I once had to just
send the students the presentation and the material because I had caught the flu.
We started in the third week of the semester and the first few weeks were all as
explained before. In week 11, when Exercise sheet 5 came out, I realized that the
students were overwhelmed with the large number of new tactics, structures and
theorems they had to learn. This can heavily influence their intrinsic motivation in
a bad way [EW02]. So I decided to skip a meeting and prepare a repetition level
for them instead. The week after, they started to study the natural numbers in
the course. For that, I taught using the Natural Number Game, as explained in
Chapter 2.2, since all the questions of the exercise sheets about natural numbers
were also levels of that game. My repetition level was postponed to the last meeting
in the last week of the semester.

Students in my study group were not obligated to join each meeting. The attend-
ance rate was about 80%. Most of the students had an excuse when they could not
join a meeting. Especially at the end of the semester, some were either sick, as was
I once, or were too busy with regular university stuff. I am happy to say that there
was never one week where I taught less than four students in my study group. The
atmosphere during the sessions was always great and we never had a single problem
or argument during our study time. I am very glad to have found these students
who were willing to learn LEAN with me voluntarily and without any compensation.
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As an ongoing mathematics teacher, I really enjoyed teaching the group. Even
though preparing for the meetings while also learning LEAN myself was stressful
sometimes, I would always be happy to hold the lesson I had prepared. I would
not change a lot about the sessions in general, except to find a way to use shared
screens during the meetings, and the students’ feedback was almost only positive,
as one can see in Chapter 4. Having more than 45 minutes a week would certainly
also increase the quality of the sessions. With that possibility, I would have done
more explorative teaching, where the students would have been given chances to
learn something on their own. My sessions were a bit too instructive in my opinion
and a good mix between instructive and explorative teaching is the key to good
education. Even though there were parts where the students could try things on
their own, it was still always clear what they should explore exactly, meaning it
was quite strict. One must not forget however, that explorative teaching takes time
and effort from the students, and with all the other demands university gives their
students, I could not have requested this effort from them even if I had wanted to.

In the next step the students of my study group were compared to the rest of the
class. I have received permission to compare the achievement in the exercise sheets
and the marks of the exam of the whole class. I also did some interviews with
students who did not participate in my sessions and students who did. More about
the interviews and the results of the meetings were discussed in Chapters 3.2 and 4.
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Pros and Cons of Teaching (with) LEAN

Teaching mathematics with LEAN surely has its benefits. I have seen this during
my sessions and the following interviews, as we see in Chapter 4 and other sources
state that too [TI21]. The structural component encourages clean working while
proving and the interactive theorem proving gives a fun twist that motivates us to
continue working on the proofs. Students seem to profit from this and generally
perform better in proving mathematical statements.

LEAN can make teaching more interesting and diverse, but the problem is that
it is neither suitable for current high school or university teaching. For high
school mathematics, LEAN is too advanced. Teachers in Switzerland are already
complaining about overcrowded curricula and many topics are being removed from
class [Wam20]. Trying to fit in abstract mathematics like first-order logic, natural
induction or the axiomatic building of natural numbers would just push the bound-
aries. On the contrary, the university way of teaching is so heavily based on frontal
teaching, that it would need a massive restructuring of teaching in universities to
teach with LEAN, especially on the undergraduate level. Some brave professors like
Kevin Buzzard or Patrick Massot have done that, but they stay a minority [AV23b].

In my opinion the important question is not if LEAN is good for teaching mathem-
atics but rather if LEAN is compatible with our current curriculum. The answer
to that is no. During implementation of the questions from the exercise sheets and
also in my meetings I could see that students were often overwhelmed with all the
theorems used. For example, when we needed to manipulate an equation to prove
something, it would take several lines of code just to bring the equation to the
desired form, considering that we do not want to use tactics like ring_nf or simp
all the time, as one can see below.

/-Use the method of direct proof to prove the following statements.
Let x, y ∈ R. If x^2 + 5y = y^2 + 5x, then x = y or x + y = 5.-/
example (x y : R) : (x ^ 2 + 5 * y = y ^ 2 + 5 * x) →
((x = y) ∨ (x + y = 5)) := by
intro h
rw [← sub_eq_zero] at h
rw [← sub_eq_zero] at h
rw [← sub_sub] at h
rw [add_comm] at h
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rw [← add_sub] at h
rw [add_comm] at h
rw [_root_.sq_sub_sq] at h
rw [sub_zero] at h
rw [sub_eq_add_neg] at h
rw [add_assoc] at h
rw [add_comm (5*y) (-(5*x))] at h
rw [← add_assoc] at h
rw [← sub_eq_add_neg] at h
rw [sub_add] at h
rw [← mul_sub] at h
rw [← sub_mul] at h
rw [ _root_.mul_eq_zero] at h
cases’ h with h1 h2
right
rw [sub_eq_zero] at h1
exact h1
left
rw [sub_eq_zero] at h2
exact h2
done

While we were able to overcome this using the have tacti, as seen in the example
at 2.2.49, one still needs tactics like ring_nf to prove the statement we want to have.

There is another problem students (and even I) struggled with. During Exercise
sheet 5, the students learn about the Cantor-Bernstein-Schröder theorem which
we already mentioned in Theorem 2.1.46). On paper, students would need to
find two injective functions and then they could finish their proof with: “Using
Cantor-Bernstein-Schröder theorem, we can prove that the sets A and B have equal
cardinality.”. But finishing the proof in LEAN we need to type this:

exact Function.Embedding.schroeder_bernstein f_5_3_is_injective
f_5_3_inv_is_injective

done

which is a lot less intuitive and difficult if one does not know LEAN’s name for
that theorem by heart. So we do not just have to teach how to do mathematics
with LEAN but also how to do LEAN itself. There is no way around that. This on
the other hand implies that we would need to change our curriculum at universities
in order not to overwhelm students. A whole restructuring of the study would be
needed, but maybe with an advantage that needs to be considered.
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Given this problem that we would need to also teach LEAN thoroughly, I concluded
that maybe we should teach LEAN hybrid. Meaning that some parts would be
solved in LEAN, and others would be solved on paper. In the case of the Cantor-
Berstein-Schröder theorem above, students would prove with LEAN that the two
functions are injective, and then they would write on paper that they now can finish
the proof using the Cantor-Berstein-Schröder theorem. That way one could profit
from the best of both ways. Using the sorry command in LEAN makes that possible.
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6 Conclusion and Future Works
In this thesis, we learned how to prove statements using the LEAN theorem prover,
taught five volunteer students from the “Foundations of Mathematics” course how
to use LEAN, and then compared their proof writing performance with the rest
of the class. The group of LEAN students was rather small, so the results are
not too relevant. We could still see a slightly better performance from the LEAN
students compared to the others. This suggests that teaching LEAN at the begin-
ning of a study of mathematics could indeed lead to a better understanding of proofs.

Teaching and learning LEAN at the same time allowed us to see both sides of
the coin. We would not recommend others to do the same in such a short time.
It is better to learn LEAN first, and then prepare material to teach it to others.
Learning LEAN takes time. All the new notations and the style of proof have
to be learned. One can certainly offer better teaching when having the time to
think about the best way to lead others to the new syntax. One of the things
to keep in mind is that the exercises given to the students should be tailored to
be solved with LEAN. This means that students should be taught more general
than explicit results. For example, the functions that students have to prove to be
bijective should be general functions such as compositions of functions, rather than
finding explicit functions like a bijection between R and (

√
2,∞). We think that

having students prove general results would even increase their understanding of
mathematical structures.

It is our opinion that teaching mathematics with LEAN would be beneficial.
However, we argue that in the current state of university teaching, it is just not
possible to do so. There needs to be a revision of studies and a modernisation of
teaching. We are talking about more flexible and transversal curricula and more
digital teaching. We do not mean that students should stay at home and teach
themselves on a digital platform, but rather that notebooks should be used more
often than just for taking notes in the classroom. This obviously cannot be done in
one day, but a good start would be to offer lectures about LEAN or other theorem
provers at the university and to integrate these lectures gradually into the main
courses.

Theorem provers are the future of mathematics, no question about it. So why
not prepare students for that future? Even if it sounds impossible right now, we
should consider moving away from set theory, at least after some time, and consider
other foundations such as the calculus of constructions. Our ultimate goal should
be to teach students homotopy type theory, a type theory that finds correlations
between types and homotopies and is currently much discussed between computer
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scientists and mathematicians. LEAN has even considered using homotopy type
theory as its foundation [AV17]. We do not discuss this theory in detail here, but
interested readers should definitely check out “Homotopy Type Theory: Univalent
Foundations of Mathematics” [Pro13].
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