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Introduction

We analyze the finite dimensional mathematical framework for Batalin Vilko-
visiky (BV) formalism also called antifield formalism as suggested in [Schw]. In a
general procedure for quantization of lagrangian field theories, called BV quantiza-
tion one obtains an odd poisson algebra and an odd laplacian. But although the
antibracket of the algebra is defined intrinsically there is no such coordinate inde-
pendend definition of the laplacian. This leads to the general problem of describing
all the generators of a fixed bracket and characterizing a special one.

The first three sections are the main part of the text. The fourth section tries to
explain the physical backround. The first appendix is intended to be an elementary
introduction to super mathematics and a second appendix lists some properties of
the exponential function on supermanifolds.

This survey was written in the Summer Semester 2004 as a term project under
guidance of Professor Alberto Cattaneo. The aim of the author was to understand
the main ingredients of the BV formalism and more concretely certain results from
the papers of Khudaverdian and Voronov [KV]. I would like to thank Prof. Cattaneo
for helpful comments and explanations.

1 BV Algebras

Conventions: Linear differential operators are sometimes simply referred to as dif-
ferential operators. The elements of a graded commutative algebra A are sometimes
called functions in analogy to the situation where A = C∞(M). Derivations of such
algebras are sometimes called vector fields etc.

Let A be the function algebra of a supermanifold. By a bracket on A we will
mean in the most general sense a R bilinear map

( , ) : A×A→ A

A bracket is called symmetric if for homogeneous f, g ∈ A one has

(f, g) = (−1)|f ||g|(g, f)

a bracket shall be called co-symmetric if

{f, g} = −(−1)(|f |+1)(|g|+1){g, f}

Symmetric and co-symmetric brackets can be easily related to one another: given
a symmetric bracket ( , ) one can define a co-symmetric bracket by {f, g} :=
(−1)|f |(f, g). Conversely given an co-symmetric bracket { , } one defines a sym-
metric one by (f, g) := (−1)|f |{f, g}. These operations are inverse to another and
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so symmetric and co-symmetric brackets can be considered as the same notions by
this correspondence.

Recall that there is also the notion of even and odd brackets, depending on
wether the bilinear map is even or odd.

Definition 1.1. A graded algebra A supplied with an odd co-symmetric bracket
{ , } is called odd Poisson algebra or Gerstenhaber algebra if the bracket
satisfies:

G1. {f, {g, h}} = {{f, g}, h}+ (−1)(|f |+1)(|g|+1){g, {f, h}}

G2. {f, gh} = {f, g}h+ (−1)(|f |+1)|g|g{f, h}

Using the co-symmetry of the bracket one finds that property G1 is equivalent
to the ”Jacobi” identity:

(−1)(|f |+1)(|h|+1){f, {g, h}}+(−1)(|g|+1)(|f |+1){g, {h, f}}+(−1)(|h|+1)(|g|+1){h, {f, g}} = 0

The odd poisson bracket has several names in the literature like, Gerstenhaber
bracket, Buttin bracket or antibracket.

Our main interest is in Gerstenhaber algebras supplied with an additional piece
of data.

Definition 1.2. A Gerstenhaber algebra A, {·, ·} supplied with a R linear map

∆ : A→ A

which squares to zero ∆2 = 0 is called a BV-Algebra if the bracket is generated
from the operator in the following sense:

{f, g} = (−1)|f |[[∆, f ], g]1

This operator is sometimes called (odd) Laplace operator.

The bracket [ , ] in the definition above is the graded commutator of linear op-
erators, where f, g are considered as linear operators acting by multiplication from
the left. The BV stands for Batalin and Vilkovisky and the name odd Laplacian
will become clearer further on. Our motivations are the following questions (which
will only be answered partially): Given a Gerstenhaber algebra
Does there always exist an operator ∆ which makes the algebra into a BV algebra?
How many of these operators exist and how can we describe this set of generators?
Is there in some sense a canonical generator?

To make computations easier we first turn our bracket into a symmetric one and
see how conditions G1 and G2 translate. The new bracket denoted by (f, g) :=
(−1)|f |{f, g} is then odd, symmetric and satisfies

G’1 (−1)|f ||h|((f, g), h) + (−1)|g||f |((g, h), f) + (−1)|h||g|((h, f), g) = 0

G’2 (f, gh) = (f, g)h+ (−1)(|f |+1)|g|g(f, h)

Note that G2 remained unchanged. We also note that the symmetrized bracket
is now related to the odd laplacian by

(f, g) = [[∆, f ], g]1

We shall sometimes speak of a symmetric Gerstenhaber or BV algebra. Let’s also
give the set of Square Zero Generators of a fixed symmetric bracket the name

SZG(,) := {∆ ∈ EndR−Vect(A) | ∆2 = 0, [∆, f ], g]1 = (f, g)}
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2 Derived brackets and their generators

In a general setting a generator of some bracket ( , ) is an R linear map ∆ : A→ A
which generates the bracket in the sense that:

(f, g) = [[∆, f ], g]1

(No requirement of ∆2 = 0) Let’s denote the set of all generators of a fixed bracket
with

Gen(,) := {∆ ∈ EndR−Vect(A) | [∆, f ], g]1 = (f, g)}

Given any linear operator ∆ one can always construct a bracket by the above
formula and calls it the derived bracket of the operator.

Proposition 2.1. The derived bracket ( , ) : A × A → A of a linear operator is
always R bilinear and symmetric. If ∆ is even (odd) then the derived bracket is
even (odd). If two operators ∆ and ∆̃ differ by a differential operator of order less
than 1 i.e. ∆− ∆̃ ∈ Diff1(A) then they generate the same bracket.

Proof. The claim about the bilinearity and the parity of the bracket follows directly
from the properties of the commutator [ , ]. For the symmetry note that if ∆ is
homogeneous its derived bracket can be written more explicitly as

(f, g) = ∆(fg)− (∆f)g − (−1)|∆||f |f(∆g) + (∆1)fg

and here one can check the symmetry directly. For non-homogeneous ∆ we split
it into even and odd part ∆ = ∆0 + ∆1 and thereby split our bracket in even and
odd part ( , ) = ( , )0 + ( , )1 and these homogenous parts are symmetric. Finally
the last property is a direct consequence of the definition of first order differential
operators, since if ∆− ∆̃ is a first order differential operator then [[∆− ∆̃, f ], g] = 0
for all f, g ∈ A and so (f, g)∆ = (f, g)∆̃.

The next proposition shows that if we want to generate a bracket which is a
bi-derivation the generator must to be a second order differential operator.

Proposition 2.2. The derived bracket satisfies the derivation property G2:

(f, gh) = (f, g)h+ (−1)(|f |+|∆|)|g|g(f, h)

if and only if ∆ is a differential operator of order less than 2 i.e. [[[∆, f ], g], h] =
0,∀f, g, h ∈ A

Proof. Suppose ∆ is a second order differential operator then G := [∆, f ] is a
differential operator of order 1 and so G − G(1) is a derivation. If ∆ and f are
homogeneous then the parity of G is |f |+ |∆|. So we get:

(f, gh) = [[∆, f ], gh]1 = [G, gh]1
= G(gh)− (−1)(|g|+|h|)|G|ghG(1) = (G−G(1))gh
= (G−G(1))(g)h+ (−1)|g||G|g(G−G(1))(h)
= (f, g)h+ (−1)|g|(|∆|+|f |)g(f, h)

The converse statement is proven in [Kosz]

So from now we restrict our search of generators to second order linear differen-
tial operators.

Proposition 2.3. Two second order operators ∆ and ∆̃ generate the same bracket
if and only if they have the same symbol (i.e. they differ by a first order operator).
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Proof. ” ⇐ ” was already proven. For the other direction suppose two second
order operators generate the same bracket then [[∆− ∆̃, f ], g]1 = 0 for all f, g ∈ A.
Notice that [[∆−∆̃, f ], g] is a differential operator of order 0, and for any zero order
operator Z ∈ Diff0(A): Z(f) = Z(1) · f , so it follows that [[∆− ∆̃, f ], g] = 0 which
implies that ∆− ∆̃ is a differential operator of first order.

So we could say that the bracket generated by a second order operator ”is” its
symbol.

Since we want to generate an odd bracket the symbol of our generator must be
odd and so its even part is of order ≤ 1 and by the last proposition we may forget
about it. So from now on we only look for purely odd second order operators. We
will also narrow our search by demanding that ∆(1) = 0 which only means that we
drop any part of order 0 in our generator. So we redefine the set SZG(,) to be

SZG(,) := {∆ ∈ Diff2(A) | ∆2 = 0, [∆, f ], g]1 = (f, g), ∆ odd, ∆(1) = 0}

and
Gen(,) := {∆ ∈ Diff2(A) | [∆, f ], g]1 = (f, g), ∆ odd, ∆(1) = 0}

It can also be shown that demanding the Jacobi identity for our derived bracket
is equivalent to asking the square of our generator ∆ ∈ Gen(,) to satisfy ord(∆2) ≤ 2
see [Vor] for a proof. Note that in general the order of ∆2 is less than 4 but since
∆ is odd ∆2 = 1

2 [∆,∆] and so the order is certainly less than 3.
A useful fact we shall prove is that ord(∆2) ≤ 1 is equivalent to ∆ being a

derivation of the Gerstenhaber bracket.

Proposition 2.4. Let ∆ ∈ Gen{,} be a generator of an odd cosymmetric bracket.
∆ is a derivation of the bracket:

∆{f, g} = {∆f, g}+ (−1)|f |+1{f,∆g}

if and only if ∆2 ∈ Der(A)

Proof. Using repeatedly the relation

(−)|f |{f, g} = ∆(fg)− (∆f)g − (−)|f |f(∆g)

we get
(−)|f |∆{f, g} = ∆2(fg)−∆((∆f)g)− (−)|f |∆(f(∆g))

(−)|f |+1{∆f, g} = ∆((∆f)g)− (∆2f)g + (−)|f |(∆f)(∆g)

{f,∆g} = (−)|f |∆(f(∆g))− (−)|f |(∆f)(∆g)− f(∆2g)

adding the last two equation to the first one we have

(−)|f |
(
∆{f, g} − {∆f, g} − (−1)|f |+1{f,∆g}

)
= ∆2(fg)− (∆2f)g − f(∆2g)

Since we are interested in generators which square to zero (so ∆2 is a differential
operator of order 0) the last two properties are automatically fulfilled. Next we
explore in which way two square zero generators of the same bracket can differ.
But first some definitions.

4



Definition 2.5. By a Poisson vector field of a Gerstenhaber algebra A we mean
a derivation D ∈ Der(A) which in addition satisfies:

D{f, g} = {Df, g}+ (−1)|D|(|f |+1){f,Dg}

Every element f ∈ A generates a poisson vector field of opposite parity by

Xf := {f, }

this is called the Hamiltonian vector field of f . A function f ∈ A is called a
Casimir if Xf = 0.

From the last proposition we immediately get the following

Corollary 2.6. If {, } is Gerstenhaber bracket and ∆, ∆̃ ∈ SZG{,} then ∆− ∆̃ is
a poisson vector field. Spoken out: square zero generators of a gerstenhaber bracket
can at most differ by a poisson vector field. Further if we add an odd poisson vector
field X to a square zero generator ∆ then (∆ +X)2 = 0 if and only if

[∆, X] +
1
2
[X,X] = 0

Proof. To show the last equation we use the fact that in general [F, F ] = 2F 2 for
odd operators:

(∆ +X)2 =
1
2
[∆ +X,∆ +X] = [∆, X] +

1
2
[X,X]

If we only consider hamiltonian vector fields instead of poisson vector fields the
last result can be formulated as:

Theorem 2.7. Let ∆ be a square zero generators of a Gerstenhaber bracket and
f ∈ A an even fuction. Then ∆ +Xf is of square zero if and only if the function

∆f +
1
2
{f, f}

is a casimir

In particular if f ∈ A satisfies the Maurer Cartan (or quantum master) equation

∆f +
1
2
{f, f} = 0

then ∆ +Xf is also a generator.
Before we proof this we need a fact about Xf

Proposition 2.8. X{f,g} = [Xf , Xg]

Proof.

X{f,g}(h) = {{f, g}, h}
= {f, {g, h}} − (−)(|f |+1)(|g|+1){g, {f, h}}
= [Xf , Xg](h)
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Proof of the theorem. Using the derivation property of ∆ with respect to the bracket
we first get

[∆, Xf ](h) = ∆{f, h}+ {f,∆h} = {∆f, h} = X∆f (h)

and using this fact and the last proposition

[∆, Xf ] +
1
2
[Xf , Xf ] = X∆f+ 1

2{f,f}

It will also be useful to note that

Proposition 2.9. The map A→ Der(A), f 7→ Xf is a derivation i.e.

Xfg = fXg + (−1)|f ||g|gXf

and therefore a differential operator of order less then 1

Proof.

Xfg(h) = {fg, h}
= f{g, h}+ (−)|f ||g|g{f, h} = fXg + (−1)|f ||g|gXf

3 Generators defined by Divergence operators and
Berezinian sections

There is a natural method to get a generating operator on a Gerstenhaber Algebra if
we are given a volume form (generator of the Berezinian bundle). This is explained
in this section.

Definition 3.1. A Divergence operator is a even R-linear map

div : Der(A)→ A

which satisfies:
div(aX) = a · div(X) + (−1)|a||X|X(a)

Proposition 3.2. A divergence operator is a differential operator of order less then
1

The proof is a straightforward computation

Proposition 3.3. Given a Gerstenhaber bracket and a divergence operator then
the operator

∆(f) := (−1)|f |
1
2
div(Xf )

is a generator (not neccesarily square zero) of the bracket.

Proof. First note that ∆ is odd and ∆(1) = 0 since X1 = 0. By the two previous
propositions ∆ is a differential operator of order less than 2. Next we compute

(−)|f |+|g|∆(fg) =
1
2
div(Xfg) =

1
2
div(fXg + (−)|f ||g|gXf )

= (−)|g|f∆g + (−)|f |+|g|(∆f)g +
1
2
(−)|f |(|g|+1){g, f}+

1
2
(−)|g|{f, g}

= (−)|g|f∆g + (−)|f |+|g|(∆f)g + (−)|g|{f, g}

which proves the proposition.
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Note that divergence operators form an affine space over even one forms Λ1(A).
So given a divergence operator div and an even function f ∈ A we can construct a
new divergence operator div′ = div + df where df is the differential of f .

Proposition 3.4. If two divergence operators are related by

div′ = div + df

where f is an even function then the corresponding generating operators are related
by the formula

∆′ = ∆ +X 1
2 f

Proof.

∆′(h) = (−)|h|
1
2

(div(Xh) + df(Xh))

= (−)|h|
1
2

(
div(Xh) + (−)|h|{f, h}

)
= ∆(h) +X 1

2 f
(h)

Suppose now that the Berezinian Bundle of A is freely generated by one even
element (this happens when the underlying even manifold is orientable). Then given
a Berezinian Volume form ρ (i.e. an even generator of the Berezinian bundle) we
can associate to every derivation X ∈ Der(A) a function (denoted by divρ(X) ∈ A)
by the formula:

LXρ = divρ(X) · ρ

where LX is the Lie derivative of X.

Proposition 3.5. The map

divρ : Der(A)→ A

defined above is a divergence operator

For the proof we need some facts about the Lie derivative on the Berezin bundle.
Proofs can be found in [Del]

Proposition 3.6. For X ∈ Der(A), f ∈ A and ρ a section of the Berezin bundle
we have

LX(fρ) = X(f)ρ+ (−)|X||f |fLXρ

LfX(ρ) = (−)|X||f |LX(fρ)

Now we prove the last proposition

Proof. It is clear that the map is even and R linear. Now

divρ(fX)ρ = LfXρ = (−)|f ||X|LX(fρ)

= (−)|X||f |X(f)ρ+ fLXρ

=
(
(−)|X||f |X(f) + fdivρ(X)

)
ρ
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We denote the generating operator induced by divρ with ∆ρ. Now suppose we
are given two Berezinian volume forms ρ and ρ′. Then ρ′ = fρ for some even
invertible f ∈ A. Recall that we can also write f = ±e2g for some even g ∈
A (see Appendix 2). For simplicity we assume that f has positive bosonic part
(this situation appears when we work in local coordinates and make a orientation
preserving chart change).

Proposition 3.7. In the situation above the induced divergence operators are re-
lated by:

divρ′ = divρ + f−1df

or equivalently
divρ′ = divρ + 2dg

and the Laplacians by:
∆ρ′ = ∆ρ +Xg

Proof.

divρ′(X)fρ = divρ′(X)ρ′ = LX(ρ′)

= LX(fρ) = X(f)ρ+ (−)|X||f |fLXρ

= (−)|X||f | (df(X) + fdivρ(X)) ρ

multiplying both sides with f−1 we get the result. For the second equation we use
de2g = e2gd(2g). And the last one follows from previous results.

3.1 Laplacian on w-densities

In this section we shall work in local coordinates i.e. on the super domains Rn|m, and
the algebras A = C∞(Rn|m). Denote the standard coordinates on Rn|m with x, ξ
and the volume form induced by this coordinates with D. We will define densities
of arbitrary weight w ∈ R. For more details see [KV]. We first note that if f ∈ A is
invertible with positive bosonic part we can define fw by first writing f = eg (see
the second Appendix) and putting

fw := ewg

Definition 3.8. The module of densities of weight w is the free module generated
by the one even element Dw, i.e. every w-density can be written as σ = f(x, ξ)Dw

where f ∈ A. Under orientation preserving cooordinate changes x, ξ 7→ x̃, ξ̃ the new
generator D̃w is related to the old one by the transformation formula

D =
(

BerJ(
x, ξ

x̃, ξ̃
)
)w

D̃w

Here Ber is the Berezin determinant and J(x,ξ
x̃,ξ̃

) is the Jacobi matrix of the trans-
formation.

So densities of weight 0 are functions and densities of weigt 1 are sections of the
Berezin bundle. What is important for us is that if ρ is a berezinian volume form
ρ = fD where f is even invertible and has positive bosonic part then

ρw = fw ·Dw

Khudaverdian and Voronov [KV] propose to extend the operator ∆ρ of the
previous section to densities of arbitrary weight as follows. Given a volume form ρ
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any w-density σ can be uniquely written as σ = f · ρw with f ∈ A, we define the
laplace operator ∆ρ,w on w-densities by

∆ρ,w(σ) := ∆ρ(f)ρw

Where ∆ρ is the laplacian on functions. One sees immediately that the so defined
operator is a second order linear differential operator on the module of densities of
weight w.

Theorem 3.9 (Transformation formula of Khudaverdian). If we have two
Berezinian volume forms related by ρ′ := e2gρ with g ∈ A even, then:

∆ρ′,w = ∆ρ,w + (1− 2w)Lg − 4w(1− w)
(

∆ρ(g) +
1
2
{g, g}

)
where the second term is the Lie derivative on w desities of Xg and the last term
is a zero order operator (multiplication with the term).

One sees from this formula that half densities are privileged since the laplacian
on them only changes by a zero order term. Before we proof it we need

Lemma 3.10. Let g ∈ A be even. Then:

∆(eg) =
(

∆(g) +
1
2
{g, g}

)
eg

Proof. By induction one can easily prove that:

∆(gn) = ngn−1∆g +
n(n− 1)

2
gn−2{g, g}

(use the relation ∆(fg) = ∆(f)g + (−)|f |f∆g + (−)|f |{f, g}) Then the proposition
follows from this.

We also need some facts on the Lie derivative on w-densities, namely

LX(fρw) = X(f)ρw + (−)|f ||X|fLX(ρw)

and if ρ is a Berezinian volume form and g ∈ A is even then

Lg(ρw) = wρw−1Lg(ρ) = wdivρ(Xg)ρw = 2w∆ρ(g)ρw

from these equations we get that if σ = f · ρw is any density of weight w then

Lg(σ) = Xg(f)ρw + (−)|f |2wf∆ρ(g)ρw

Proof of the theorem. Let σ = f · ρw with f even. Then

σ = (fe−w2g)ρ′w

and so
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∆ρ′,w(σ)−∆ρ,w(σ)− Lg(σ) =

=∆ρ′(fe−w2g)ρ′w −∆ρ,w(σ)− Lg(σ)

=
(
∆ρ(fe−w2g) +Xg(fe−w2g)

)
ρ′w −∆ρ(f)ρw − Lg(σ)

=
(
f∆ρ(e−w2g) + {f, e−2wg}+ fXg(e−2wg)

)
ρ′w − 2wf∆ρ(g)ρw

=
(
f∆ρ(−2wg) +

1
2
f{2wg, 2wg} − 2w{f, g} − 2wf{g, g} − 2wf∆ρ(g)

)
ρw

=− 2w (f∆ρ(g)− wf{g, g}+Xg(f) + f{g, g}+ f∆ρ(g)) ρw

=− 2w (Xg(f) + f∆ρ(g) + f∆ρ(g) + (1− w){g, g}f) ρw

=− 2w (Xg(f) + 2w∆ρ(g)f + ((2− 2w)∆ρ(g) + (1− w){g, g}) f) ρw

=− 2w
(
Xg(f) + 2wf∆ρ(g) + 2(1− w)

(
∆ρ(g) +

1
2
{g, g}

)
f

)
ρw

=− 2wLg(σ)− 4w(1− w)
(

∆ρ(g) +
1
2
{g, g}

)
σ

4 Some physical background to Batalin-Vilkovisky
formalism

This section is intended to explain (to a small extent) how the Batalin-Vilkovisky
formalism appears in physics.

4.1 Faddeev-Popov quantization and BRST symmetry

In field theory one is given a set of fields M , an action functional S : M → R on the
set of fields and a group of symmetries G acting on M . The action S is invariant
under the operation of the group: S[ψ] = S[gψ] for ψ ∈ M , g ∈ G, and one thinks
of two fields as having the same physical content if they lie in the same orbit of
the group operation. In classical (not quantized) field theory, the evolution of the
system is given by critical ”points” of the action. In quantum field theory one is
interested in computing the expectation value of observables. An observable is a
function on the set of fields O : M → R invariant under the operation of the group.
The expectation is computed (following an idea of Feynman) as

〈O〉 = |
∫
M

Oe
i
~SDψ|

where the integral Dψ over all fields is not defined as in measure theory but is
computed by complicated methods depending on the specific field theory, and is
maybe the central mystery surrounding quantum field theory from a mathematicians
point of view. Intuitively one should think of the functional integral as summing
up the contributions O[ψ]e

i
~S[ψ] for every field ψ.

One common method for computing it goes under the name of perturbative ex-
pansion. One starts by learning to compute the integral when the action is quadratic
(i.e. S[ψ] = 〈ψ,Aψ〉, where A is a positive definite symmetric operator on the set
of fields and 〈, 〉 is a scalar product). These integrals are called Gaussian integrals.
The next case is to allow more general actions S which, as the quadratic ones only
have one nondegenerate critical point. In that case the action and the observable are
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Taylor expanded around that critical point and each term is computed using gaus-
sian integrals. The method is called perturbative expansion because S is considered
to be a perturbation of its quadratic part d2S.

But in the case the action has symmetries the critical points are certainly de-
generate. The first idea would be to compute the integral

I :=
∫
M/G

Oe
i
~SD[ψ]

Where M/G is the orbit space and O, S are the functions O, S considered as
functions on M/G. This is also physically more plausible since two fields in the
same orbit are actually physically equivalent. But the space M/G is very difficult
to handle, so physicists devised a method called Faddeev-Popov quantization which
shall be sketched below.

To capture the idea we shall work with at a toy model where M is a finite
dimensional smooth manifold equipped with a volume form µ representing Dψ. The
action shall be a smooth function on our manifold S ∈ C∞(M) and the symmetries
are given by the operation of a Lie Algebra g → Vect(M), γ 7→ Xγ . The action
being invariant under the operation translates to the condition.

Xγ(S) = 0

for γ ∈ g.
Instead of computing the functional integral over the orbit space one tries to

choose a set of representatives of the orbits and compute the integral over the
resulting ”submanifold” of M . Such a set of representatives is in practice given by
the set of zeroes of a function

F : M → g

the function is called gauge fixing function. The integral can then be expressed as

I =
∫
M

Oe
i
~Sδ0(F ) det (A)µ

where δ0 is the delta function at 0 ∈ g and A : M → End(g) is given by A(p)γ =
dFp(Xγ(p)) This integral can again be written differently as the integral over a
super manifold. Let’s define this super manifold by the function algebra

Λ(g∗ ⊕ g)⊗R C
∞(M × g∗)

as a supermanifold it is written as M̃ = Πg∗ × Πg ×M × g∗ it evidently contains
M as a submanifold but there is also a projection onto M making it possible to
consider the action S and all observables on M as functions on M̃ . We define a
new measure on M̃ by

D = ω̃ ⊗ µ⊗ ω

where we chose a ω ∈ Λtop(g∗) to give a measure µ ⊗ ω on M × g∗. And where ω̃
acts by first projecting Λ(g∗ ⊕ g) canonically to Λtop(g∗ ⊕ g) and then projecting
onto R by the canonical (up to a sign) identification. Now note that g∗ ⊗ g can be
canonically imbedded in Λ2(g∗⊕ g) and thereby A can be considered an element of
Λ(g∗ ⊕ g)⊗C∞(M × g∗). The gauge fixing function F is considered as an element
of C∞(M × g∗) by F (p, g∗) = g∗(F (p)). Now using the fact that∫

Πg×Πg∗
eA = det(A)
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(here the exponential function is defined by the infinite sum and A is considered as
an element of the function algebra Λ(g∗ ⊕ g)) and using the Fourier transform of
the delta function the integral becomes.

I =
∫
M̃

Oe
i
~S+F+AD

we can define the gauge fixed action

SF := S +
~
i
F +

~
i
A ∈ C∞(M̃)

it can be considered a action on the superspace. The integral is now written

I =
∫
M̃

Oe
i
~SFD

and looks just like doing QFT on ”supermanifolds”. One has the possibility now
to allow even more observables since we have expanded C∞(M) to the function
algebra on the super space. But what happened with the symmetries? This is
where the BRST symmetry comes in (which will also be useful for answering the
question whether the above expression is independent of the chosen gauge fixing).

Definition 4.1. We shall define a derivation on C∞(M̃)

δ : Λ(g∗ ⊕ g)⊗ C∞(M × g∗)→ Λ(g∗ ⊕ g)⊗ C∞(M × g∗)

called the BRST operator. To this end first fix a basis e1, . . . em in g and let ei

be the dual basis, let f ijk denote corresponding structure constants. With this basis
we introduce coordinates ci and ci in Λ(g⊕ g∗) which become odd functions on M̃ .
A point (p, γ∗) ∈M ×g∗ shall be written as (p, λ1, . . . λm) where λi are coordinates
on g∗ induced by the basis ei. With these choices a function on M̃ can be written
as

f =
∑

fI,I(p, λ1, . . . λm)cI cI

where I and I are ordered subsets of {1, . . . ,m} and fI,I ∈ C∞(M ×g∗). We define
δ in these coordinate by

δci = −1
2
f ijkc

jck

δf(p) =
∑
i

Xei(f)ci

δci = λi, δλi = 0

and one immediately checks that the definition is independent of the choice of basis
in g

By the definition it is evident that δ is odd and one verifies that δ2 = 0. Another
easily recognized fact is that f ∈ C∞(M) is invariant under the operation of the Lie
algebra (i.e. is an observable in the original sense) iff δ(f) = 0. For the next central
theorem it is useful to write SF differently. Namely the information contained in
the gauge fixing F can also be represented differently as an element of C∞(M̃) by
defining the function

ΨF = F i(p)ci

called the gauge-fixing fermion. One verifies that SF = S + δΨF

12



Theorem 4.2. If δ is divergence free i.e. div(δ) = 0 and g ∈ C∞(M̃) satisfies
δ(g) = 0 then ∫

M̃

e
i
~SF gD

is gauge fixing independent. If moreover g = δf for some f ∈ C∞(M̃) then∫
M̃

e
i
~SF gD = 0

Skechy Proof. Let F0 and F1 be two gauge fixing functions and let Ft be a family
of gauge fixing functions connecting the two. Then (using SF = S + δΨF ) we get

d

dt

∫
M̃

e
i
~SFt gD =

∫
M̃

d

dt
e
i
~SFt gD

=
i

~

∫
M̃

(
d

dt
δΨFt)e

i
~SFt gD =

i

~

∫
M̃

δ(
d

dt
ΨFt)e

i
~SFt gD

=
i

~

∫
M̃

δ(
d

dt
ΨFte

i
~SFt g)D =

i

~

∫
M̃

div(δ)(
d

dt
ΨFte

i
~SFt g)D

= 0

The last theorem suggests to define the extended observables of our physical
theory as the cohomology of the BRST operator ker(δ)/im(δ).

4.2 BV formalism for quantization

In the BV quantization one extends the space M̃ into an even bigger super space N
which has a odd poisson bracket on it. This is achieved by taking for example the
space ΠT ∗M̃ , whose function algebra are the multivectorfields with their canonical
Schouten bracket (see [Vall] for a general definition of this space and the bracket
when M̃ is a supermanifold, there one also finds a constructions of generating
operators for the bracket starting from a divergence operator on M̃). The action S
on M is extended to an action S̃ on N and a gauge fixing fermion ΨF from before
now defines a lagrangian submanifold LF of N . One gets that

SF = S̃|Lψ

One can also show that dπ(XS̃) = δ where π : N → M̃ is the canonical projection
We assume that we are given a berezinian on N extending the one on M̃ so that
the associated laplacian satisfies ∆2 = 0. The expectation value of an observable
can then be written as an integral over the Lagrangian submanifold∫

LF

e
i
~ S̃gD̃L

Where D̃L is the volume form on the lagrangian submanifold. One can show as be-
fore that the integral is independent of the gauge fixing if in addition ∆(e

i
~ S̃g) = 0.

Schwarz shows [Schw] that more generally if one is given two lagrangian subman-
ifolds of an odd symplectic manifold whose bosonic parts are homologuos, then∫
L1
HD̃1 =

∫
L2
HD̃2 if ∆(H) = 0.

Proposition 4.3. Let A,∆ be a smooth BV algebra and Σ ∈ A, then ∆e
i
~ Σ = 0 is

equivalent to the quantum master equation

{Σ,Σ} − 2i~∆Σ = 0

13



Proof. This follows from the equation ∆(ef ) = (∆(f) + 1
2{f, f})e

f

Definition 4.4. An even element S ∈ C ⊗ A =: AC satisfying the quantum
master equation:

{S, S} − 2i~∆S = 0

is called a quantum action. Given a quantum action we define a quantum
coboundary operator Ω : AC → AC associated to S by

Ω(f) := {S, f} − i~∆f

Proposition 4.5. Let S be a quantum action and Ω the associatet coboundary
operator then for f ∈ A: ∆(fe

i
~S) = 0⇔ Ω(f) = 0

Proof.

∆(fe
i
~S) =∆(f)e

i
~S + f ∆(e

i
~S)︸ ︷︷ ︸

=0

+(−)|f |{f, e i~S}

=
(

∆(f) + (−)|f |
i

~
{f, S}

)
e
i
~S

=
i

~
({S, f} − i~∆f) e

i
~S

Proposition 4.6. The quantum coboundary operator squares to zero:

Ω2 = 0

Proof.

Ω2f = {S, ({S, f} − i~∆f)} − i~∆({S, f} − i~∆f)
= {S, {S, f}} − i~{S,∆f} − i~∆{S, f} − ~2 ∆2(f)︸ ︷︷ ︸

=0

=
1
2
{{S, S}, f} − i~{S,∆f} − i~∆{S, f}

= i~{∆S, f} − i~{S,∆f} − i~∆{S, f}
= 0

The elements in the homology of Ω are called quantum observables.

5 Appendix: Introduction to Supermanifolds

The main notions of differential geometry can be considered as a part of commu-
tative algebra by replacing a manifold M with the algebra C∞(M) and a vector
bundle π : E → M with the C∞(M) module of sections Γ(E). See [Nes] for this
approach. In theoretical physics the notion of ”functions” which anticommute arose
i.e. fg = −gf . This among other things gave birth to super- or Z2 graded mathe-
matics [Ber] [Bar]. One might say that the idea here is to replace the commutative
algebra C∞(M) by a ”weakly” non commutative algebra A (specifically a Z2 graded
commutative algebra) which is to be thought of as the ”function algebra” of a su-
perspace. Of course no space has functions with values in R which don’t commute,
so this space does not exist in the same sense as a manifold. Yet it seems that all the

14



main notions known from differential geometry like vector fields, differential forms,
linear differential operators, integration etc. may all be defined for these specific
non commutative algebras similarly as in the commutative case. So we will only
work with the ”functions” on the superspace, and will never try to construct this
space. Roughly speaking the whole theory might be summarized as commutative
algebra with the addition of the ”sign rule”: Whenever exchanging two adjacent
objects in an expression which are both odd one catches a minus sign.

The difference of this presentation with the usual ones is that I tried to formu-
late the theory in a purely algebraic way in contrast to the usual approach through
sheafs. That means we only work with the algebra of global functions. The belief
is that this approach is as powerful as the usual one without the extra layer of ma-
chinery, and it may be extendible to the ”infinite dimensional” case, i.e. when we
are dealing with spaces of functions. The purely algebraic approach to supermathe-
matics is not new [Verb] and is suggested by the mathematicians around the Diffiety
institute. From the algebraic viewpoint one might say that the central notion of
calculus is that of a linear differential operator. Most other concepts are seen to
follow ”functorially” from this one.

If this is the first contact of the reader with supermathematics its recommended
to read the first section parallel to the second one. Proofs which consist of direct
computations are skipped in this appendix.

5.1 The purely algebraic framework for Supermathematics

Conventions: As base field for linear spaces or other algebraic constructions we will
always use R. When I speak of a graded algebraic object I mean Z2-graded unless
otherwise stated. The elements of Z2 = Z/2Z are denoted by their representatives
0 and 1. The decomposition of an element a of some graded space into even and
odd part is usually written as a = a0 + a1.

In this section we summarize main notions of ”super commutative” algebra. These
will be graded commutative algebras (functions of our superspace), graded modules
(sections of vectorbundles), and graded Lie algebras (infinitesimal symmetries). But
we will start by recalling some details of graded linear spaces. These are of impor-
tance since all the objects mentioned before have the underlying structure of graded
linear spaces.

5.1.1 Graded Linear Algebra

Definition 5.1. A Z2-graded Vector space consist of a real vector space V
together with a linear map P : V → V called parity operator which satisfies
P 2 = idV .

It is a fact that such an operator P decomposes our vector space into a direct
sum V = V0⊕V1 (the indices should be thought of as the elements of Z2) where V0

is the eigenspace to the eigenvalue 1 and its elements are called even, while V1 is
the eigenspace to the eigenvalue -1 and its elements are called odd. An element of
V0 ∪ V1 is called homogenous. If x ∈ V \{0} is homogeneous we denote its parity
(or degree) by

|x| :=
{

0 if x ∈ V0

1 if x ∈ V1

Equivalently we could have defined a graded vector space as a space given with a
decomposition into a direct sum and a choice of parity.

Let V and W be to graded vector spaces. The vector space HomR(V,W ) of
linear maps is then naturally supplied with a Z2 grading, namely φ ∈ HomR(V,W )
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is called even if it respects the parity: φ(Vi) ⊂ φ(Wi) where i ∈ Z2 (equivalently
φ◦PV = PW ◦φ). It is called odd if it reverses parity: φ(Vi) ⊂ φ(Wi+1) (equivalently
ϕ ◦ −PV = PW ◦ ϕ), and one checks that every linear map can be decomposed
uniquely into even and odd part ϕ = ϕ0 + ϕ1.

It is natural to consider two graded vector spaces as isomorphic if there is a parity
preserving isomorphism of vector spaces. This leads us to consider the following
definition.

Definition 5.2. A morphism of graded vector spaces is a even linear map.
The set of these morphisms is denoted by HomR(V,W )0

Having defined this category, common notions of linear algebra such as subspace,
quotien, product of graded spaces, multi-linear algebra and tensor-product of graded
linear spaces follow naturally, and we will have a look at some of them now.

Definition 5.3. A graded subspace of a graded linear space V = V0 ⊕ V1 is a
subspace U ⊂ V of the form U = U0 +U1 where U0 is a subspace of V0 and U1 is a
subspace of V1. The grading of U is then the one induced by V .

Note that not all subspaces are graded subspaces.

Proposition 5.4. If U is a graded subspace of V then the quotient V/U is a graded
linear space and the canonical projection π : V → V/U is a morphism of graded
spaces. Given any morphism ϕ : V → W graded spaces, then ker(ϕ) and im(ϕ)
are graded subspaces and the morphism ϕ factors uniquely through the projection:
ϕ = ψ ◦ π with ψ even.

Proof. We define the even resp. odd elements of V/U by π(V0) resp. π(V1). These
two spaces span V/U since v +U = (v0 + v1) +U = (v0 +U) + (v1 +U). They are
disjoint since from v0 +U = v1 +U follows v0−v1 ∈ U an therefore v0 ∈ U0, v1 ∈ U1

so v0 + U = v1 + U = 0. By definition of this grading π is parity preserving.
The other statements follow from noting that ker(ϕ) = ker(ϕ|V0) ⊕ ker(ϕ|V1)

and im(ϕ) = im(ϕ|V0) ⊕ im(ϕ|V1). The unique factorization follows analogous to
common linear algebra.

Definition 5.5. The graded sum V ⊕ W of two graded spaces V and W is
given by the usual sum, and the grading is given by (V ⊕W )0 := V0 ⊕W0 and
(V ⊕W )1 := V1 ⊕W1 . As usual there are the canonical projections πV , πW and
injections iV , iW which are even mappings.

Proposition 5.6. V ⊕W,πV , πW satisfies the universal property of the product in
the category of graded spaces. V ⊕W, iV , iW satisfies the universal property of the
coproduct.

Proof. Let U be another graded vector space and ψ1 : U → V , ψ2 : U → W
even morphisms. Since we can consider everything as ungraded objects, then by
the universal property of the sum of vector spaces there is a unique vector space
morphism φ : U → V ⊕W such that πi ◦φ = ψi. So all that remains to check is that
φ is parity preserving. But this follows by recalling that φ(v, w) = ψ1(v) + ψ2(w).
The result about the coproduct follows analogously.

Lets also recall that bilinear maps β : V ×W → U , where V,W,U are classical
vector spaces, correspond bijectively to linear maps β̃ : V → HomR(W,U), i.e. there
is a natural isomorphims:

BilR(V,W ;U) ' HomR(V,HomR(W,U))
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Now if V,W,U are graded then the r.h.s is naturally graded and so we get a grading
on the bilinear maps. Concretely on verifies that β is even iff

β(Vi,Wj) ⊂ Ui+j i, j ∈ Z2

and odd iff
β(Vi,Wj) ⊂ Ui+j+1 i, j ∈ Z2

5.1.2 Supermanifolds

Now we turn to graded commutative algebras. These should be thought of as
”function algebras” C∞(S) of our ”super space” S. The space S will not be defined
but it is useful to think in analogy to the ungraded situation where S is a manifold.

Definition 5.7. By a graded commutative Algebra A we shall mean an as-
sociative R-algebra with unit, for which the underlying vector space is graded
A = A0 ⊕A1. The multiplication of the algebra is demanded to satisfy:

i) AiAj ⊂ Ai+j for i, j ∈ Z2 (even operation)

ii) ab = (−1)|a||b|ba for homogeneous elements (graded commutative)

The morphisms of graded Algebras are even algebra morphisms.

Note that the non-commutativity of the algebra is in a sense very mild. We shall
sometimes call an element f ∈ A a function.

Definition 5.8. A graded subalgebra (for short subalgebra) is a subalgebra of
A (containing the unit) which is also a graded subspace.

Subalgebras should be thought of as foliations (or quotients) of our space, i.e.
as those functions which are constant on each leaf of the foliation.

Definition 5.9. By a graded Ideal we mean a left ideal that is a graded subspace.

Note that a left ideal of this form is also a right ideal and conversely (check it
first for homogeneous elements, and decompose general elements). We can consider
the ”subspace” of our superspace given by the quotient algebra A/I. So the ideal
is thought of as those functions which vanish on the subspace.

Proposition 5.10. If ϕ : A→ B is a morphism of graded algebras, then im(ϕ) is a
graded subalgebra of B and kerϕ is a graded ideal of A. Also the canonical inclusion
map of a subalgebra is a morphism of graded algebras, and if I is a graded Ideal then
the quotient A/I is a graded algebra and the canonical projection is a morphism of
graded algebras.

Proof. For the first statement, it is clear that im(ϕ) is a subalgebra of B, it remains
to check that it is a graded one. So let b = b0 + b1 ∈ im(ϕ) then there is a
a = a0 + a1 ∈ A with ϕ(a) = b but since ϕ is even and the decomposition of b
in even and odd part is unique it follows that ϕ(a0) = b0 and ϕ(a1) = b1 and so
b0, b1 ∈ im(ϕ). In the same manner one deduces that the kernel of a even morphism
is a graded ideal. The remark concerning the inclusion map of a subalgebra is
also clear. Let’s now check that the quotient of a graded algebra by a graded
ideal is again a graded algebra. From the section above it follows that A/I is a
graded vector space. We define the multiplication as usual through representatives
[a] · [b] := [a · b]. It is well defined and one easily verifies that it satisfies the axioms
of a graded algebra.
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Let A be a graded commutative R algebra. Denote by

N := {f ∈ A | ∃n ∈ N : fn = 0}

the set of nilpotent elements of the algebra.

Lemma 5.11. N is a graded Ideal of A which contains the odd elements.

First note that in general if a = a0 + a1 ∈ A then an = an0 + nan−1
0 a1. This

follows by applying the binomial formula to (a0 + a1)n (which is allowed since even
elements commute with odd ones) and using the fact that a2

1 = 0. Now we proof
the Lemma.

Proof. It is evident that the odd elements are nilpotent. Now suppose a = a0+a1 ∈
N with an = 0 using the above formula we get an0 = −nan−1

0 a1 so a2n
0 = 0 and

we get that N is graded. Now let a, b ∈ N with an = bn = 0 then (a + b)4n+1 =
(a0 + b0)4n+1 +(4n+1)(a0 + b0)4n(a1 + b1) = 0 where we used the binomial formula
for the last equality. So we get that the sum of two nilpotent elements is nilpotent.
So it remains to check that A ·N ⊂ N . But it suffices to check this for homogeneous
elements in N and for those it is evident.

Now we define:

N k := {
n∑
i=1

ai1ai2 · · · aik | aij ∈ N}

It is easily verified that N k is a graded ideal in A and that

A ⊃ N ⊃ N 2 ⊃ N 3 . . .

this is a Z filtration on A which is compatible with the product, i.e.

N k · N l ⊂ N k+l

This makes it possible to define the Z2 × Z graded algebra (for a general definition
of G-graded commutative algebras, where G is an abelian group, see [Verb]):

A/N ⊗N/N 2 ⊗N 2/N 3 ⊗ . . .

where an element has degree (l, k) ∈ Z2 × Z if it is contained in N k
l /N

k+1
l , the

lower index refers to the Z2 grading of A. The product in this algebra is defined
by representatives, and it is graded commutative with respect to the commutation
factor (−1)ll

′
(see [Verb]). The next lemma assures that this construction is functo-

rial. More specifically we get a covariant functor from the Z2 graded commutative
algebras to the Z2 × Z graded commutative (with the commutation factor given
before) algebras.

Lemma 5.12. Let ϕ : A→ B be a morphism of graded algebras then ϕ(N k
i ) ⊂ N k

i

Proof. The statement is true for k = 1 and follows almost immediately from this
case for the situation where k ≥ 1

Lemma 5.13. The quotient Ã := A/N is a reduced commutative algebra, with the
universal property that every algebra morphism A→ B into a commutative reduced
algebra B factors uniquely through the projection A→ Ã

The proof is standard.
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Remark 5.14. So Ã may be considered the biggest classical submanifold contained
in the supermanifold. Every other puerly even submanifold is contained in that one.
Also note that we may speak of the points of this submanifold but not of a ”point”
in the superspace outside of Ã. Dan Freed [Freed] propses that one should picture
a supermanifold as a classical manifold surrounded by some sort of superfuzz.

Now we can give a definition of Supermanifold. First note that if

π : E →M

is a smooth vector bundle over a classical manifold M then Γ(ΛE) is naturally a
Z2 graded algebra by giving it the grading Γ(ΛE)i :=

⊕
n Λ2n+iE.

Definition 5.15. A graded Algebra A shall be called a smooth superalgebra
(or the function algebra of a supermanifold) if
i) Ã is a smooth algebra (i.e. it is a function algebra of a smooth manifold [Nes])
ii) N/N 2 is finitely generated and projective as Ã-module
iii) A is isomorphic to ΛÃN/N 2 as Z2 graded Algebras.

The dimension of a super-manifold is the pair n|d where n is the dimension of
the manifold associated to Ã and d is the rank of the vector-bundle associated to
N/N 2. The classical manifold associated to Ã is sometimes called the body or the
bosonic part of the supermanifold.

Note that we only demand the existence of such an isomorphism between A
and ΛÃN/N 2, so it is not canonical in any sense. The full subcategory of smooth
graded algebras in the category of graded commutative algebras shall be called
the category of Smooth Superalgebras, it is so to speak the dual to the cat-
egory of Supermanifolds. We shall sometimes refer to the algebra A itself as the
supermanifold, and even worse shall we after a while forget the prefix super.

Example 5.16. The most common example of smooth superalgebras are alternating
forms Γ(ΛT ∗M) and multi-vectorfields Γ(ΛTM) of a classical manifold. The su-
permanifold ”associated” to the first one is denoted by ΠTM the one associated to
the second one by ΠT ∗M . The reason for this notation is that in local coordinates
(see section 3) the transformation behavior for the standard coordinates in these
manifolds is just as the transformation behavior for the bundle TM resp. T ∗M
with the parity of the fiber coordinates reversed.

A closed submanifold of a supermanifold may be defined as follows

Definition 5.17. Let I be a graded ideal of a smooth super algebra A. If A/I is
a smooth super algebra then A/I together with the projection A→ A/I is called a
submanifold of A

When applying this definition to the purely commutative case one sees that it
is more general than the usual definition of (closed) submanifold.

Let Uq be a superdomain (see section: local superanalysis) of the same dimension
as our supermanifold S. A morphism C∞(S) → C∞(Uq) shall be called a chart
if there exists an isomorphism Γ(Λ(E)) → C∞(S) such that the composition with
the map above gives a restricion morphism of the sections of Λ(E) to open subset
of M .

5.1.3 Super Vectorbundles

The objects which replace the notion of ”vector bundle” (actually sections of a
vector bundle) are given next:

19



Definition 5.18. By a graded right A-Module P we mean a right A-module
whose underlying abelian group is graded P = P0⊕P1 and the scalar multiplication
satisfies the additional condition:

Pj ·Ai ⊂ Pi+j

Right modules together with right module morphisms (i.e. ϕ(pf) = ϕ(p)f for
p ∈ P and f ∈ A) form a category denoted by mod − A. The set of morphisms in
this category is a graded abelian group Hommod−A(P,Q) = Hommod−A(P,Q)0 +
Hommod−A(P,Q)1 (but no right module with the evident multiplication). The
restricted category of graded right modules with purely even morphisms shall be
denoted by mod0 −A.

Be aware that the Pi are not submodules of P . The definition of left graded
A-module is analogous and this category shall be denoted by A−mod. It may be
convenient to write left module morphisms as operating from the right

(fp)ϕ = f(p)ϕ

(and so the composition of two arrows

P
ϕ→Q

ψ→S

is written as ϕ◦ψ in this category) The usefulness of this notation will become clear
in a moment.
Example 5.19 (Free Modules). If A is a graded commutative algebra then the abelian
group P := A is evidently an (left or right) A module. But we can choose essentially
two different gradings on this Module. The first one is the one already given on A

P0 := A0, P1 := A1

but the second one swaps the parity:

P0 := A1, P1 := A0

The first one can also be considered as the free graded module generated by an even
element (in this case 1 ∈ P ) and the second one as the free module generated by
an odd element (also 1 ∈ P ). We shall denote the first one by A1|0 an the second
one by A0|1. Note that the parity of the generator is essential: A1|0 can not be
generated by an odd element and A0|1 not by an even one. More generally we can
consider P = A×A× . . .×A︸ ︷︷ ︸

r times

as an A module, and if n+m = r then we can give

it the grading
P0 = An0 ⊕Am1 , P1 = An1 ⊕Am0

This module is denoted by An|m. It is free generated by n even and m odd elements.
Example 5.20. Let E → M be a classical vectorbundle over a manifold and A =
Γ(ΛE). Suppose F = F0 ⊕ F1 → M is a graded vector bundle over M then
A⊗C∞(M) Γ(F ) is a graded A module.

Definition 5.21. A graded module P over a smooth graded algebra is called a
module of sections of a smooth super vectorbundle (for short a smooth module, or
smooth vectorbundle) if it is finitely generated and projective.

We may sometimes refers to the elements of a smooth graded module P as
”sections”.

There are two omnipresent functors for graded modules which cause some subtle
differences to the purely commutative world. The first one turns left modules into
right ones and has an inverse (and no name).
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Definition 5.22. Given a left A-module P it becomes a right A-module by defining

p · f := (−1)|f ||p|f · p

for homogenous p ∈ P and f ∈ A, and extending to general elements by decompos-
ing them into even and odd part. Conversely a right module becomes a left one by
the same construction and these construction are inverse to one another. It may be
convenient to denote the module by

←−
P if considered as right and by

−→
P if considered

as left module

Note that one may also consider P as a bi-module since both multiplications
commute: f(pg) = (fp)g. How does the functor operate on morphisms? For the
restricted categories mod0 −A and A−mod0 one can define it as the identity:

−→ϕ (p) := (p)ϕ

One is tempted to extend this covariant functor to the whole set HomA−mod(P,Q)
by

−→ϕ (p) := (−1)|p||ϕ|(p)ϕ

this indeed defines a bijection between HomA−mod(P,Q) and Hommod−A(P,Q) but
it is not functorial since for the composition of two morphisms

P
ϕ→Q

ψ→R

we get −−−→
ϕ ◦ ψ(p) = (−1)|p|(|ψ|+|ϕ|)((p)ϕ)ψ = (−1)|ψ||ϕ|

−→
ψ (−→ϕ (p))

in other words we get a functor up to a sign (satisfying again the sign rule)

−−−→
ϕ ◦ ψ = (−1)|ψ||ϕ|

−→
ψ ◦ −→ϕ

Corollary 5.23. If P,Q are two graded modules then Hommod−A(P,Q) is a left
A-module by (fϕ)(p) := f(ϕ(p)), and by the general construction above it becomes a
right module. Analogously HomA−mod(P,Q)becomes a right module etc. The bijec-
tion between these two Hom sets as defined above is actually an (even) isomorphism
of graded modules.

This makes it possible to define the dual P ∗ of a graded module as either
HomA−mod(P,A) or Hommod−A(P,A) since these are now canonically isomorphic.

Now we turn to the second functor mentioned earlier which is called the parity
change functor Π. The phenomenon could already be observed in the example of
free modules. Namely given a graded module P we can define a new graded module
ΠP which as a module is exactly the same as P , only with the grading swapped:

ΠPi := Pi+1

This functor goes from either of the categories of A-Modules to itself and operates
without any change on morphism.

Definition 5.24. If P and Q are graded A-modules then the set P × Q has a
natural structure of a graded A-module denoted P ⊕Q. Where the grading is given
by

(P ⊕Q)i := Pi ×Qi

Proposition 5.25. The graded module P ⊕Q with the canonical projections onto
the factors satisfies the universal property of a product in the category of graded A
modules with even morphisms. Together with the canonical injections it satisfies the
universal property of a coproduct.
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Now we define the graded tensor product

Definition 5.26. Let P,Q be graded A-modules. Consider P as a right and Q as a
left module then the usual tensor product P ⊗AQ (the abelian group generated by
the elements of P ×Q modulo the relations (p+p′)⊗q = p⊗q+p′⊗q, p⊗(q+q′) =
p⊗ q+ p⊗ q′ and pf ⊗ q = p⊗ fq) can be given the structure of a graded A module
by giving it the grading

(P ⊗A Q)0 :=
{∑

pi ⊗ qi | |pi| = 0, |qi| = 0
}
⊕
{∑

pi × qi | |pi| = 1, |qi| = 1
}

(P ⊗A Q)1 :=
{∑

pi ⊗ qi | |pi| = 1, |qi| = 0
}
⊕
{∑

pi × qi | |pi| = 0, |qi| = 1
}

in other words |p⊗ q| = |p|+ |q|. Then the scalar multiplication can be given by:

f(p⊗ q) = (fp)⊗ q

which in accordance with the general construction of the right multiplication gives
the formula p⊗ qf = (p⊗ q)f

This graded tensor product satisfies universal properties as in the commutative
case. Which we will not list now. See for example [Bar].

Definition 5.27. The symmetric algebra Sym(P ) of a graded module P is the
quotient

TP/I

where

TP =
∞⊕
n=0

P ⊗ . . .⊗ P︸ ︷︷ ︸
n times

and I is the graded Ideal generated elements of the form

s1 ⊗ s2 − (−)|s1||s2|s2 ⊗ s1

with s1, s2 ∈ P homogenous. The exterior algebra Λ(P ) is the quotient

TP/J

where J is the ideal generated by elements of the form

s1 ⊗ s2 + (−)|s1||s2|s2 ⊗ s1

5.1.4 Super Lie algebras

Definition 5.28. A graded Lie Algebra consists of a graded vector space L en-
dowed with a even bilinear map [ , ] : L × L → L called (graded) bracket which
satisfies:

i) [x, y] = −(−1)(|x||y|)[y, x]
(graded anti-commutative)

ii) (−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0
(graded Jacobi identity)

where the equalities are demanded for homogeneous elements. The morphisms
of graded Lie Algebras are even linear maps that respect the brackets:

φ[x, y]L = [φ(x), φ(y)]L̃
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Using property i) of the Lie bracket one finds that property ii) is equivalent to
the derivation property

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]]

Example 5.29. For any graded linear space V the graded space EndR(V ) of R linear
endomorphisms is naturally supplied with a graded lie bracket called the graded
commutator. On homogeneous elements G,H ∈ EndR(V ) it is given by:

[G,H] := GH − (−1)|G||H|HG

And it is extended to general elements by linearity. Note also that EndR(V ) is
a graded Algebra with the usual composition FG = F ◦ G but this composition
is not graded commutative. Still the bracket is a derivation with respect to the
composition:

[F,GH] = [F,G]H + (−1)|F ||G|G[F,H]

Since any graded commutative algebra A is also a graded linear space the above
construction applies to EndR(A). This is part of what we will do in the next section
to define vector fields, differential operators etc. . .

5.2 Calculus on Supermanifolds

5.2.1 Derivations

Remember that in the classical situation the vector fields of a manifold are the
derivations of the function algebra C∞(M). In the graded case the analog is the
following.

Definition 5.30. Let A be a graded commutative algebra. An even (odd) element
X ∈ EndR(A) is called a even (odd) derivation of the graded algebra A if:

X(fg) = X(f)g + (−1)|X||f |fX(g)

for homogeneous f, g ∈ A. The set of even derivations is denoted by Der0(A) the
one of odd derivations by Der1(A). They are both R linear subspaces. We define
Der(A) := Der0(A)⊕Der1(A) and call the elements derivations of the algebra.

Actually this is what is sometimes called a left derivation in the literature, there
is also the notion of right derivation which is a R linear operator X ( better written
on the right of the function they operate on (f)X) which satisfies:

(fg)X = (−1)|g||X|(f)X · g + f · (g)X

One writes
−→
X for left and

←−
X for right derivations to distinguish them easier.

Right derivations don’t contribute anything essentially new since left and right
derivations are canonically in bijection: given a left derivation

−→
X we can construct

a right one by f
←−
X := (−1)|f ||

−→
X |−→Xf . Of course the inverse of this construction is

given by
−→
Xf = (−1)|f ||

←−
X |f
←−
X . So when I speak of derivation I will always mean

left derivation unless otherwise stated.
The following result is the graded analog to the fact that vector fileds form a

Lie algebra and are the sections of a bundle over the manifold.

Proposition 5.31. Der(A) is a graded Lie algebra since it is closed under the
bracket given on EndR(A). It is also a graded A-module since if X is a derivation
and f ∈ A then f ·X is also a derivation.
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Proof. Let ∇ and ∇̃ be homogeneous derivations and f, g ∈ A homogenous. Then
direct computation yields

[∇, ∇̃](f · g) =∇∇̃(fg)− (−1)|∇̃||∇|∇̃∇(fg)

=∇
(
∇̃(f)g + (−1)|f ||∇̃|f∇̃g

)
− (−1)|∇̃||∇|∇̃

(
∇(f)g + (−1)|f ||∇|f∇g

)
=∇(∇̃f)g + (−1)|∇|(|f |+|∇̃|)∇̃f∇g

+ (−1)|f ||∇̃|∇f∇̃g + (−1)|f |(|∇̃|+|∇|)f∇∇̃g

− (−1)|∇̃||∇|∇̃(∇f)g − (−1)|∇̃||f |∇f∇̃g

− (−1)(|f |+|∇̃|)|∇|∇̃f∇g − (−1)|f |(|∇|+|∇̃|)−|∇||∇̃|f∇̃∇g

=[∇, ∇̃](f) · g + (−1)|f |(|∇|+|∇̃|)f · [∇, ∇̃](g)

so the bracket of two derivations is again a derivation. To check that derivations
are closed under multiplication from the left with elements of A it suffices again to
verify the case where f ∈ A and ∇ ∈ Der(A) are both homogenous.

f∇(gh) = f∇(g)h+ (−1)|∇||g|fg∇(h)

= f∇(g)h+ (−1)(|∇|+|f |)|g|gf∇(h)

The general situation follows by decomposing f = f0 + f1 and ∇ = ∇0 +∇1 into
homogenous parts.

Note that D(A) is not closed under multiplication from the right (where I mean
the multiplication X · f(g) := X(g)f). So if we consider D(A) as a right A module
we mean the formal multiplication defined above for general A Modules. This
multiplication satisfies the (by now natural) property Xf(g) = (−1)|g||f |X(g)f .

A useful generalization of the concept above is

Definition 5.32. A derivation of a graded algebra A to a graded module P is a R
linear map

D : A→ P

that satisfies
D(fg) = fD(g) + (−)|D||f |fD(g)

The set of derivations from A to P is denoted with Der(P ).

One can show that they form a graded A module as in the previous case

5.2.2 Linear Differential Operators

Derivations are a special case of the more general notion of linear partial differential
operator to which we turn to now.

We shall at once give the more general definition of linear differential opera-
tors between two A modules P and Q. First note that the set of R linear maps
HomR(P,Q) can be given two left A-module structures. For the first one we define
the product of f ∈ A and ∆ ∈ HomR(P,Q) by:

f∆ : P → Q, p 7→ f ·∆(p)

In the second module structure the product of f and ∆ (now denoted by f+∆) is
given by

f+∆ : P → Q, p 7→ (−)|∆||f |∆(fp)
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Notice that in the first case the multiplication occurs in Q while for the second one
it occurs in P . These multiplications commute (in the super sense):

f(g+∆) = (−)|f ||g|g+(f∆)

To distinguish these different structures we denote the R linear space HomR(P,Q)
by Hom( )

R (P,Q) if it is considered as the left A-module in the first sense, and by
Hom+

R (P,Q) if it is considered as A module in the second sense. Finally it is written
as Hom(+)

R (P,Q) if it is considered as bimodule.
Next we define

δf (∆) := f+∆− f∆

it is evidently again in HomR(P,Q).

Proposition 5.33. The map

δf : HomR(P,Q)→ HomR(P,Q)

is a (right) module morphism (i.e.: δf (g∆) = (−)|f ||g|gδf (∆)) for both module
structures, and has degree |f |.

Proposition 5.34. The map

δ : A→ EndA
(
Hom(+)(P,Q)

)
is even R linear and satisfies:

δf ·g(∆) = δf (g+∆) + f(δg∆)

We also define
δf0,...,fk := δf0 ◦ . . . ◦ δfk

note that δf,g = (−)|f ||g|δg,f
Now we come to the central definition.

Definition 5.35. An even (odd) linear Differential operator from P to Q of
order less than k is an even (odd) linear map ∆ : P → Q which satisfies:

δf0,f1...,fk∆ = 0

for all f0, . . . , fk ∈ A. The set of even DO of order ≤ k is denoted by Diff0
k(P,Q)

the set of odd ones by Diff1
k(P,Q), they are both R vector spaces. The direct sum

of even and odd differential operators of order ≤ k is denoted by Diffk(P,Q) and
its elements are called differential operators of order less than k.

Note that Diffk(P,Q) ⊂ Diffk+1(A). The elements of Diff(P,Q) :=
⋃
k∈N Diffk(P,Q)

are called differential operators. We say that ∆ ∈ Diff(P,Q) has order k if ∆ ∈
Diffk(P,Q)\Diffk−1(P,Q). But one should remember that differential operators of
(highest) order k do not form a vector space. We also write Diffk(P ) := Diffk(A,P ).

Proposition 5.36. Diffk(P,Q) is closed under both module structures mentioned
above and so Diff(+)(P,Q) is a N filtered, Z2 graded A-bimodule.

The proof is straightforward applying the previous formulas. Note that zero
order operators are module morphism.

Definition 5.37. We define the module of symbols as

Symbk(P,Q) := Diffk(P,Q)/Diffk−1(P,Q)
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Proposition 5.38. If ∆ ∈ Diffk(R,Q) and ∆̃ ∈ Diff l(P,R) then ∆◦∆̃ ∈ Diffk+l(P,Q)

Proof. Use
δf (∆ ◦ ∆̃) = δf (∆) ◦ ∆̃ + (−)|f ||∆|∆ ◦ δf (∆̃)

Proposition 5.39. Let ∆ ∈ Diffk(A) and ∆̃ ∈ Diff l(A), then [∆, ∆̃] ∈ Diffk+l−1(A).
So Diff(A) is actually a Z filtered and Z2 graded Lie algebra, with a Lie bracket of
degree −1

Proof. ?

Proposition 5.40. Let ∆ : A→ P be R linear. Then

∆ ∈ Diff1(P )⇔ ∆−∆(1) ∈ Der(P )

So we have canocnical splitting

Diff1(P ) = Der(P )⊕ P

Proof. Note that if D is a derivation then δf (D)(a) = (−)|f ||D|D(f)a. So δfD is a
zero order operator, hence D is first order. So if ∆ −∆(1) is a derivation then ∆
is a first order differential operator. Suppose now conversely that ∆ is first oder,
then ∆̃ := ∆−∆(1) is also first order and additionally ∆̃(1) = 0. So

0 =δf,g∆̃(1) = f+g+∆̃(1)− f+g∆̃(1)− fg+∆̃(1)

=(−)|∆̃|(|f |+|g|)∆̃(fg)− (−)|∆̃|(|f |+|g|)∆̃(f)g − (−)|g||∆̃|f∆̃(g)

5.2.3 Super differential forms

Let A be a graded algebra, we will now define the analog of differential forms and
the exterior derivative.

Definition 5.41. The A-dual of the module of vector fields is called the module of
1-forms and denoted by:

Λ1 := HomA(D(A), A)

The differential df of a function f ∈ A is the 1-form

df(X) := (−1)|X||f |X(f)

This gives us an even map
d : A→ Λ1

Some authors define the module of one forms with the parity chaged. The
algebra of forms of arbitrary degree is defined as the exterior algebra of one forms.
One can extend d in a unique way to a derivation of this algebra satisfying the
property d2 = 0. The cohomology of the resulting complex is denoted with H(A).
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5.2.4 Berenzinian Bundle, Integration

Definition 5.42. Let A be a graded algebra, we shall write Λk = Λk(A). Consider
the complex

0→ Diff+(Λ0) w→Diff+(Λ1) w→Diff+(Λ2) . . .

where w(∆) := d ◦ ∆. The cohomology of this complex at the term k is denoted
with Âk. We call the module

∞⊕
k=0

Âk

the Berezinian of A and denote it with Ber(A). The integral is defined as the map∫
: Ber(A)→ H(A)

[∆] 7→ [∆(1)]

5.3 The local description and index notation in supermath-
ematics

In this chapter we analyze the super analogs to the algebras C∞(U) where U is
a domain in Rp. Here we also use the index notation as in classical differential
geometry which is a useful tool for computations.

Let U be an open subset of Rp with standard coordinates denoted by x1, . . . , xp,
and let Λq be the Grassmann algebra generated by the elements ξ1, . . . , ξq. The
algebra of interest is then A := C∞(U)⊗R Λq. The elements of these algebras will
be referred to as functions on the superdomain Uq and the elements

x1, . . . , xp, ξ1, . . . , ξq ∈ A

are referred to as the standard coordinates on the superdomain Uq, we also write
C∞(Uq) := A (we stress again that the superdomian Uq is not defined as some set
of points, it is just an expression). The elements of such an algebra can be uniquely
described by expressions of the form:

f =
∑
k≥0

∑
1≤i1,...ik≤q

fi1,...,ikξi1 · · · ξik

where the fi1,...,ik are in C∞(U) and are antisymmetric in their indices. Becaouse
of this one also writes f = f(x, ξ). More geometrically one can consider f ∈ C∞(U)
as a smooth section of the trivial bundle U × Λq → U . The algebra A is naturally
graded: an element is even if it is of the form

f =
∑
k≥0

∑
1≤i1,...i2k≤q

fi1,...,i2kξi1 · · · ξi2k

and odd if:
f =

∑
k≥0

∑
1≤i1,...i2k+1≤q

fi1,...,i2k+1ξi1 · · · ξi2k+1

The superdomains Rpq are sometimes written as Rp|q.

5.3.1 Morphisms between superdomains

In this short section we will sketch a useful formalism that allows to handle elements
of these graded algebras as if they were ”functions depending on commuting and
anti-commuting variables”.
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Suppose again U ⊂ Rp open, with standard coordinates denoted by y1, . . . , yp,
and V ⊂ Rp′ open, with coordinates x1, . . . , xp′ . Recall that in the classical situation
a smooth map: G : V → U is given by p functions g1(x1, . . . xp′), . . . , gp(x1, . . . xp′)
(the components of G) which are nothing other than the pullback of the functions
y1, . . . yp, i.e. the images of these elements under G∗ : C∞(U)→ C∞(V ). To obtain
G∗(f) for any other element f(y1, . . . yp) ∈ C∞(U) one simply composes:

f(g1(x1, . . . xp′), . . . , gp(x1, . . . xp′))

The same fact is true for superdomains. For a proof see [Ber], here we only show
how the composition f(g) can be defined for functions on superdomains. The idea is
to use Taylor expansion, since sufficiently high powers of terms with odd generators
vanish.

Definition 5.43. Let f ∈ C∞(Rpq) where the standard coordinates on Rpq shall
be denoted by yi, ηj , f(y, η) =

∑
I⊂{1,...q} fI(y1, . . . , yp)η

I . Suppose we are further

given functions g1 . . . gp, ϕ1 . . . ϕq ∈ C∞(Rp
′

q′ ) where the gi are even and the ϕi

are odd. Lets denote the standard coordinates on Rp
′

q′ by xi, ξj . Then we define

f(g, ϕ) ∈ C∞(Rp
′

q′ ) by:

f(g1, . . . , gp, ϕ1, . . . , ϕq) :=
∑

I⊂{1,...,q

fI(g1, . . . gp)ϕI

Where we still have to define fI(g1, . . . , gp). For this first write gi = g̃i + ni where
g̃i is the term of gi containing no odd elements and ni is the rest. Then we put:

fI(g1, . . . , gp) :=
∑
λ∈Np

∂|λ|

∂yλ
fI(g̃1 . . . g̃p)nλ

Note that the sum is finite since the ni are nilpotent and also note that the product
nλ is independent of the order of the factors since the gi are even.

5.3.2 Derivations and differential operators on superdomains

Given a superdomain Uq with standard coordinates x1, . . . , xp, ξ1, . . . , ξq we define
the even derivations ∂

∂x1
, . . . , ∂

∂xp
∈ Der(C∞(Uq)) as those which operate on func-

tions f ∈ C∞(U) ⊂ C∞(Uq) in the usual way known from calculus

∂

∂xi
f =

∂

∂xi
f(x1, . . . , xp)

and on the odd coordinates by
∂

∂xi
ξj = 0

We also define the odd derivations ∂
∂ξ1

, . . . , ∂
∂ξq
∈ Der(C∞(Uq)) by the properties:

∂

∂ξj
f = 0,

∂

∂ξj
ξi = δij

where f ∈ C∞(U). One verifies easily that these derivations exist and are uniquely
characterized by the properties given above.

Proposition 5.44. Every derivation ∇ ∈ Der(C∞(Uq)) can be written uniquely as

∇ =
p∑
i=1

αi
∂

∂xi
+

q∑
j=1

βj
∂

∂ξj

where αi and βj are elements of C∞(Uq).
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Proof. The uniqueness follows by applying the operator on the r.h.s to standard
coordinates x1, . . . , xp, ξ1, . . . , ξq. This also gives us the clue as how to construct
the α’s and β’s, namely by

αi := ∇(xi), βj := ∇(ξj)

It suffices to check that ∇ and
∑p
i=1 αi

∂
∂xi

+
∑q
j=1 βj

∂
∂ξj

operate in the same way on
functions f ∈ C∞(U) and on the elements ξ1, . . . , ξq. By linearity and the derivation
property it then follows that they operate in the same way on any superfunction.
That they operate in the same fashion on odd elements follows by construction,
and that they operate in the same way on bosinic functions can be proven as in the
commutative case.

From this proposition follows that the module of derivations on a superdomain
is a free, finitely generated module with even generators ∂

∂x1
, . . . , ∂

∂xp
and odd gen-

erators ∂
∂ξ1

, . . . , ∂
∂ξq

. We also get that the module of one forms is generated by the
even one forms

dx1 . . . dxp

and the odd ones
dξ1 . . . dξq

Proposition 5.45. Every differential operator ∆ ∈ Diffk(C∞(Uq)) can be uniquely
written as:

∆ =
∑

0≤s≤min(q,k)

∑
1≤i1<...<is≤q

∑
γ∈Np

|γ|≤k−s

fγ,i1,...,is
∂γ

∂xγ
◦ ∂

∂ξi1
◦ . . . ◦ ∂

∂ξis

where the fγ,i1,...,is are in C∞(Uq) and by ∂γ

∂xγ we mean the operator ∂γ1

∂xγ1
◦ . . .◦ ∂γp

∂xγp

In other words Diffk(C∞(Uq)) is again a free and finitely generated C∞(Uq)
module with the generators

∂γ

∂xγ
◦ ∂

∂ξi1
◦ . . . ◦ ∂

∂ξis

where the total degree is smaller than k i.e. s+ |γ| ≤ k.

5.3.3 Berezin integration in local coordinates

One can show (see [Verb]) that if A = C∞(Rp|q) all the cohomologies Âk vanish
except the term Âp and so

Ber(C∞(Rp|q) = Âp

Further if x1, . . . xp, ξ1, . . . ξq are local coordinates then every section of Ber(C∞(Rp|q))
can be written by

[f+ ∂q

∂ξ1 · · · ∂ξq
dx1 · · · dxp]

with f ∈ A and the differential operator ∂q

∂ξ1···∂ξq · dx1 · · · dxp acts as

a 7→
(

∂q

∂ξ1 · · · ∂ξq
a

)
· dx1 · · · dxp

Further if yi, ηj are new local coordinates then

dx1 · · · dxp
∂q

∂ξ1 · · · ∂ξq
= Ber(J

(
x, ξ

y, η

)
)dy1 · · · dyp

∂q

∂η1 · · · ∂ηq
+ T

29



Where

J

(
x, ξ

y, η

)
is the Jacobi Matrix of the chart change

Ber
(
A B
C D

)
:= det(A−BD−1C)(detD)−1

is the Berezin determinant, and T is a differential operator cohomologous to zero.
One also sees that the integral is given by∫

[f+ ∂q

∂ξ1 · · · ∂ξq
dx1 · · · dxp] = [f1,...,qdx1 · · · dxp]

here f1,...,q ∈ C∞(Rp) is the coefficient of ξ1 . . . ξq in the representation

f =
∑
k≥0

∑
1≤i1,...ik≤q

fi1,...,ikξi1 · · · ξik

6 APPENDIX: Some facts about the exponential
on the function algebra of a supermanifold

In this section A denotes a superalgebra of the form A = Γ(ΛE) where E → M is
a smooth vector bundle. For f ∈ A we split f = fb + r according to decomposition
Γ(ΛE) = C∞(M)⊕

⊕
i>0 Λi(Γ(E)). So fb is a function on the base manifold called

the bosonic part of f and r is the nilpotent rest.

Proposition 6.1. Let R be a commutative ring. f ∈ R possesses an inverse with
respect to multiplication if and only if f̃ ∈ R̃ is invertible (here R̃ is the reduced
ring). For f ∈ Γ(ΛE) this means that fb vanishes nowhere as a function on the
base manifold.

Proof. It is evident that if f is invertible then so is f̃ . Suppose now that f̃ is
invertible then there exists a g ∈ R such that fg = 1 + n where n nilpotent. But
every element of the form 1 + n is invertible since we can multiply it with 1− n to
get 1− n2, now if n2 6= 0 we multiply again this time with 1 + n2 and so on, until
at one point the second term vanishes because of nilpotency.

Definition 6.2. Consider a graded algebra A = Γ(ΛE). For f ∈ A we define the
exponential (as usual) by

ef := efb

( ∞∑
k=0

1
k!
rk

)
it is well defined since the sum is finite

Remark 6.3. We note that if A is the function algebra for a smooth supermani-
fold then we can define the exponential ef by using an isomorphism to an algebra
Γ(ΛE). One can probably show that this definition is independent of the choice of
isomorphism.

Proposition 6.4. If f, g ∈ A satisfy fg = gf then

efeg = ef+g

Proof. Note that if f, g commute then so do their nilpotent parts. Then we can
follow the same proof as in a standard analysis course
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Corollary 6.5. ef is invertible with (ef )−1 = e−f . We also have enf = (ef )n for
n ∈ N

Proposition 6.6. The image of exp : A → A are the invertible elements of A
whose bosonic part is a positive function.

Proof. That ef is invertible was shown above, and that its bosonic part is positive
can be seen in the definition of the exponential. To show that every g with strictly
positive bosonic part is in the image write g = gb(1 + u) where u ∈ Γ(ΛE) is
nilpotent. Then gb = ±efb for some smooth function fb ∈ C∞(M) and 1 + u =
elog(1+u) where

log(1 + u) :=
∞∑
k=1

(−)k − 1
uk

k

and the sum is finite because of nilpotency.

Proposition 6.7. The map exp : A→ A is injective

Proof. Suppose first that f ∈ A is even and satisfies

ef = 1

then considering the degrees of the terms on the right hand side one concludes that
f = 0. From this, and using ef+g = efeg we get that for even functions ef = eg

implies f = g. Now for general functions we split f = f0 + f1 and use

ef = ef0(1 + f1)

Proposition 6.8. Let X ∈ Der(A) be a derivation and f ∈ A even, then

X(fn) = nX(f)fn−1

X(ef ) = X(f)ef

d(ef ) = efdf

Proof. The first equation is an easy induction and the second one follows from the
first one. The last one ist the second one rewritten.
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