PRACTICE EXAM
 GALOIS REPRESENTATIONS AND AUTOMORPHIC FORMS

You only have to do two of the problems of your choice.
You are allowed to refer to results from the notes, but not to the exercises.
Problem 1. Let K be a field of characteristic 0 .
(a) Consider the polynomial ring $K\left[X_{1}, X_{2}\right]$. For all $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(K)$, we define $g \cdot X_{1}=a X_{1}+c X_{2}, g \cdot X_{2}=b X_{1}+d X_{2}$. Show that these formulas can be extended to define a representation of $\mathrm{GL}_{2}(K)$ on the vector space of polynomials $K\left[X_{1}, X_{2}\right]$.
(b) Consider the vector space V of polynomials f in two variables X_{1}, X_{2} with coefficients in K which are homogeneous of degree 2 . Show that $V \subset K\left[X_{1}, X_{2}\right]$ is an irreducible subrepresentation of dimension 3.
Hint: Show that the only subspaces of V that are stable under the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \mathrm{GL}_{2}(K)$ are $\{0\}, \mathbb{C} X_{1}^{2}, \mathbb{C} X_{1}^{2}+\mathbb{C} X_{1} X_{2}$ and V; similarly, determine the subspaces of V that are stable under the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.
From the K-basis $\left(X_{1}^{2}, X_{1} X_{2}, X_{2}^{2}\right)$ of V, we obtain an isomorphism $V \cong K^{3}$ and a representation

$$
\mathrm{Sym}^{2}: \mathrm{GL}_{2}(K) \rightarrow \mathrm{GL}_{3}(K) .
$$

This representation is called the symmetric square. From now on, we will take $K=\overline{\mathbb{Q}}_{l}$. Let F be a number field, and let ℓ be a prime number. Consider a semi-simple Galois representation

$$
\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right) .
$$

We write

$$
r=\operatorname{Sym}^{2}(\rho): \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{3}\left(\overline{\mathbb{Q}}_{\ell}\right)
$$

for the composition of ρ with the representation $\operatorname{Sym}^{2}: \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right) \rightarrow \mathrm{GL}_{3}\left(\overline{\mathbb{Q}}_{\ell}\right)$.
(c) Show that at every F-place v where the representation ρ is unramified, the representation r is unramified as well, and we have
$\operatorname{charpol}\left(r\left(\operatorname{Frob}_{v}\right)\right)=X^{3}-\left(t_{v}^{2}-d_{v}\right) X^{2}+d_{v}\left(t_{v}^{2}-d_{v}\right) X-d_{v}^{3} \in \overline{\mathbb{Q}}_{\ell}[X]$,
where $t_{v}=\operatorname{Tr} \rho\left(\operatorname{Frob}_{v}\right)$ and $d_{v}=\operatorname{det}\left(\rho\left(\operatorname{Frob}_{v}\right)\right)$ in $\overline{\mathbb{Q}}_{\ell}$.
(d) Consider another semi-simple Galois representation

$$
r^{\prime}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{3}\left(\overline{\mathbb{Q}}_{\ell}\right)
$$

such that for almost all F-places v where r^{\prime} is unramified, the characteristic polynomial of $r^{\prime}\left(\operatorname{Frob}_{v}\right) \in \mathrm{GL}_{3}\left(\overline{\mathbb{Q}}_{\ell}\right)$ is given by equation (11). Show that r^{\prime} is isomorphic to r.

Problem 2. Let F be a number field, and let $\chi: \mathbb{A}_{F}^{\times} \rightarrow \mathbb{C}^{\times}$be a Hecke character, i.e. a continuous morphism which is trivial on F^{\times}embedded diagonally in the idèles $\mathbb{A}_{F}^{\times}=\prod_{v}^{\prime}\left(F_{v}^{\times}: \mathcal{O}_{F_{v}}^{\times}\right)$. Assume that F is totally real, i.e. all Archimedean places are real. Let $S=\left\{v_{1}, \ldots, v_{r}\right\}$ be the set of Archimedean places of F, all of which are real by assumption; here $r=[F: \mathbb{Q}]$. By a version of Dirichlet's unit theorem from algebraic number theory, the abelian group \mathcal{O}_{F}^{\times}is isomorphic to \mathbb{Z}^{r-1} times a finite group, and the image of the group homomorphism

$$
\begin{aligned}
\mathcal{O}_{F}^{\times} & \rightarrow \mathbb{R}^{r} \\
x & \mapsto\left(\log |x|_{v_{i}}\right)_{i=1}^{r}
\end{aligned}
$$

is a discrete subgroup of rank $r-1$ in \mathbb{R}^{r}. In particular, the \mathbb{R}-vector space spanned by this subgroup has dimension $r-1$.

In this exercise we will show that there exists a real number $w \in \mathbb{R}$ such that the character $\chi \cdot|\cdot|_{\mathbb{A}_{F}^{\times}}^{-w}: \mathbb{A}_{F}^{\times} \rightarrow \mathbb{C}^{\times}$has finite image.
(a) Let $\chi_{\infty}: F_{\infty}^{\times} \rightarrow \mathbb{C}^{\times}$be the restriction of χ to

$$
F_{\infty}^{\times}:=\left(F \otimes_{\mathbb{Q}} \mathbb{R}\right)^{\times} \cong \prod_{v \mid \infty} F_{v}^{\times}
$$

via the inclusion of F_{∞}^{\times}into the infinite part of the idèles \mathbb{A}_{F}^{\times}. Show that χ_{∞} is trivial on a subgroup of \mathcal{O}_{F}^{\times}which is of finite index.
(b) Let H be a subgroup of finite index in \mathcal{O}_{F}^{\times}. Show that the additive group $\operatorname{Hom}\left(F_{\infty}^{\times} / H, \mathbb{R}\right)$ of continuous group homomorphisms $F_{\infty}^{\times} / H \rightarrow \mathbb{R}$ has a natural structure of a real vector space of dimension 1.
(c) Deduce that there exists a real number w satisfying

$$
\log \left|\chi_{\infty}(x)\right|=w \log \left(\prod_{v \mid \infty}\left|x_{v}\right|_{F_{v}}\right) \quad \text { for all } x=\left(x_{v}\right)_{v \mid \infty} \in F_{\infty}^{\times} .
$$

(d) Identify $\mathbb{A}_{F}^{\infty, \times} / F^{\times} \widehat{\mathcal{O}}_{F}^{\times}$with the class group of F, and deduce that this quotient is finite. Then show that for any compact open subgroup $U \subset \mathbb{A}_{F}^{\infty, \times}$ the quotient $\mathbb{A}_{F}^{\infty, \times} / F^{\times} U$ is finite.
(e) Show that the character $\mathbb{A}_{F}^{\times} / F^{\times} \rightarrow \mathbb{C}^{\times}, x \mapsto|x|_{\mathbb{A}_{F}^{\times}}^{-w} \cdot \chi(x)$ has finite image.

Problem 3. In this problem we assume that the global Langlands conjecture is true and investigate some of its consequences. Let F be a number field, and let F^{\prime} be a quadratic extension of F.
(a) Let V be a two-dimensional \mathbb{C}-vector space, and let ϕ be an endomorphism of V. Write the characteristic polynomial of ϕ as $X^{2}-t X+d$. Show that the characteristic polynomial of $\phi \circ \phi$ equals $X^{2}-\left(t^{2}-2 d\right) X+d^{2}$.
(b) Let π be a cuspidal algebraic automorphic representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$, and let S be the set of all finite places v of F such that both the smooth representation π_{v} of $\mathrm{GL}_{2}\left(F_{v}\right)$ is unramified at v and the extension F^{\prime} / F is unramified
at v. For each $v \in S$, recall that the Satake parameter of π_{v} is a semisimple conjugacy class in $\mathrm{GL}_{2}(\mathbb{C})$; we write its characteristic polynomial as $X^{2}-t_{v} X+d_{v} \in \mathbb{C}[X]$.

Assuming the global Langlands conjecture, prove that there exists a unique automorphic representation Π of $\mathrm{GL}_{2}\left(\mathbb{A}_{F^{\prime}}\right)$ with the following properties: Π is unramified at all places w of F^{\prime} lying above a place $v \in S$, and for every such place w, the Satake parameter of Π_{w} is the unique semi-simple conjugacy class in $\mathrm{GL}_{2}(\mathbb{C})$ whose characteristic polynomial is given by

$$
\begin{cases}X^{2}-t_{v} X+d_{v} & \text { if } v \text { is split in } F^{\prime} \\ X^{2}-\left(t_{v}^{2}-2 d_{v}\right) X+d_{v}^{2} & \text { if } v \text { is inert in } F^{\prime}\end{cases}
$$

(c) Let E be an elliptic curve over F. Let S be the set of finite places of F such that E has good reduction at v and the extension F^{\prime} / F is unramified at v. For all $v \in S$, let $\kappa(v)$ be the residue field of F at v, let $q_{v}=\# \kappa(v)$, and let $a_{v}(E)=1-\# E(\kappa(v))+q_{v}$. Assuming the global Langlands conjecture, prove that the Euler product

$$
\prod_{v \in S \text { split in } F^{\prime}} \frac{1}{\left(q_{v}^{-2 s}-a_{v}(E) q_{v}^{-s}+q_{v}\right)^{2}} \cdot \prod_{v \in S \text { inert in } F^{\prime}} \frac{1}{q_{v}^{-4 s}-\left(a_{v}(E)^{2}-2 q_{v}\right) q_{v}^{-2 s}+q_{v}^{2}}
$$

converges for $\Re s$ sufficiently large and (after multiplying by suitable Euler factors at the places outside S) has an analytic continuation to the whole complex plane that satisfies a functional equation (which you do not need to specify).

Problem 4. Let p and ℓ be distinct prime numbers. Let $\langle p\rangle$ be the subgroup of \mathbb{Q}_{p}^{\times} generated by p, and let $G_{\mathbb{Q}_{p}}=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$. For all integers $r \geq 0$, let A_{r} be the Abelian group defined by

$$
A_{r}=\left(\overline{\mathbb{Q}}_{p}^{\times} /\langle p\rangle\right)\left[\ell^{r}\right]=\left\{x \in \overline{\mathbb{Q}}_{p}^{\times} \mid x^{\ell^{r}} \in\langle p\rangle\right\} /\langle p\rangle
$$

with the natural action of $G_{\mathbb{Q}_{p}}$.
(a) Show that A_{r} is (non-canonically) isomorphic to $\mathbb{Z} / \ell^{r} \mathbb{Z} \times \mathbb{Z} / \ell^{r} \mathbb{Z}$.
(b) Show that there exists a Galois-equivariant short exact sequence

$$
1 \longrightarrow \mu_{\ell^{r}}\left(\overline{\mathbb{Q}}_{p}\right) \longrightarrow A_{r} \longrightarrow B_{r} \longrightarrow 1
$$

where B_{r} is a cyclic group of order ℓ^{r} with trivial action of $G_{\mathbb{Q}_{p}}$.
(c) Define $\mathbb{Q}_{\ell}(1)=\mathbb{Q}_{\ell} \otimes_{\mathbb{Z}_{\ell}} \lim _{\varlimsup_{r}} \mu_{\ell^{r}}\left(\overline{\mathbb{Q}}_{p}\right)$ and

$$
V=\mathbb{Q}_{\ell} \otimes_{\mathbb{Z}_{\ell}}{\underset{\gtrless}{r}}_{\lim } A_{r} .
$$

Let $I_{\mathbb{Q}_{p}} \subset G_{\mathbb{Q}_{p}}$ be the inertia subgroup, and let $V^{I_{\mathbb{Q}_{p}}} \subseteq V$ be the subspace of inertia invariants. Show that there is an isomorphism $\mathbb{Q}_{\ell}(1) \xrightarrow{\sim} V^{I_{\mathbb{Q}_{p}}}$.
(d) Show that the L-function of the representation V of $G_{\mathbb{Q}_{p}}$ equals $\left(1-p \cdot p^{-s}\right)^{-1}$.

